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Abstract

Classification trees based on imprecise probabilities
provide an advancement of classical classification
trees. The Gini Index is the default splitting criterion
in classical classification trees, while in classification
trees based on imprecise probabilities, an extension
of the Shannon entropy has been introduced as the
splitting criterion. However, the use of these empir-
ical entropy measures as split selection criteria can
lead to a bias in variable selection, such that vari-
ables are preferred for features other than their infor-
mation content. This bias is not eliminated by the
imprecise probability approach. The source of vari-
able selection bias for the estimated Shannon entropy,
as well as possible corrections, are outlined. The vari-
able selection performance of the biased and corrected
estimators are evaluated in a simulation study. Addi-
tional results from research on variable selection bias
in classical classification trees are incorporated, im-
plying further investigation of alternative split selec-
tion criteria in classification trees based on imprecise
probabilities.

Keywords. Classification trees, credal classification,
variable selection bias, attribute selection error, Shan-
non entropy, entropy estimation.

1 Introduction

Classification trees are a means of non-parametric re-
gression analysis for predicting the value of a cate-
gorical response variable Y from the values of cate-
gorical or continuous predictor variables X1, . . . , Xp.
In comparison to other classical classification proce-
dures such as the linear discriminant analysis or lo-
gistic regression the prominent advantages of classifi-
cation trees are the nonparametric and nonlinear ap-
proach and the straightforward interpretability and
applicability of the results.

The extension of classification trees as credal classi-
fiers based on imprecise probabilities by Abellán and
Moral (2004) establishes a more sensitive means of
classification, that is not as susceptible to overfit-
ting as classical classification trees requiring terminal
pruning (Section 2).

Classification tree algorithms are specified by their
split selection criterion, which controls variable selec-
tion, and the number of splits they produce in each
node. Some authors favor binary splits (e.g. Breiman,
Friedman, Olshen, and Stone, 1984, as implemented
in the statistical programming tools CART R© and R),
while others favor multiway splits (e.g. Abellán and
Moral, 2004; Quinlan, 1993, as implemented in C4.5).
In case of binary splits, i.e. if not as many nodes as
categories of the categorical predictor used for split-
ting are created in each split, and generally for metric
predictor variables, the split selection criterion also
determines the cutpoint selection.

For classical classification and regression trees
(CART) research has revealed that split selection cri-
teria can be biased in variable selection, preferring
variables for features other than their information
content (Section 3).

Sources of variable selection bias, also termed at-
tribute selection error in the literature, are firstly
multiple testing effects in cutpoint selection in binary
splitting algorithms, and secondly effects of sample
size in both binary and multiway splitting. This work
concentrates on the effects of sample sizes on variable
selection bias.

Differences in sample size between two predictor vari-
ables can be caused either by different numbers of
categories, leaving smaller numbers of observations
in each node, or by missing values. While the lat-
ter problem of missing values can be handled within
the imprecise probabilities framework (Zaffalon, 2002;
de Cooman and Zaffalon, 2004), a solution for the for-
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mer problem of different numbers of categories is yet
to be found.

The problem of different numbers of categories af-
fects variable selection when empirical measures of
entropy serve as split selection criteria. This is the
case both in classical classification tree approaches
(Breiman et al., 1984), where the empirical Gini In-
dex is used to evaluate the amount of entropy in each
node, and in recent approaches employing imprecise
probabilities (Abellán and Moral, 2004), where the
empirical Shannon entropy is employed.

We will show that the source of variable selection bias
for the empirical Shannon entropy is an estimation
bias. The bias is due to the fact that the empirical
Shannon entropy is a plug-in estimator based on rel-
ative frequencies of observations as estimators for the
class probabilities (Sections 2 and 4).1

Corrected estimators will be discussed and evaluated
in simulation studies investigating the variable selec-
tion performance of the biased and corrected estima-
tors in classification trees based on imprecise proba-
bilities (Section 4).

Additional results of simulation studies comparing the
variable selection performance of the Gini Index to
the performance of alternative split selection criteria
based on p-values in classical classification trees are
displayed (Section 5), and an outlook on transferring
the results on unbiased split selection in classical clas-
sification trees to classification trees based on impre-
cise probabilities is given (Section 6).

2 Split selection in classification trees
based on imprecise probabilities

Abellán and Moral (2004) present a measure of en-
tropy for credal sets as a split selection criterion in
classification trees based on imprecise probabilities.
Their impurity criterion for the credal set P defined
on the finite set K of values k = 1, 2, . . . , |K| of the
response variable Y with p (k) := p (Y = k)

TU2(P) = max
p∈P

⎧⎨
⎩−

|K|∑
k=1

p (k) ln[p (k)]

⎫⎬
⎭ (1)

is a generalization of the popular Shannon entropy
(Shannon, 1948) for classical probabilities.

1Estimators for classical probabilities will be denoted as p̂(·)
in the following, while the true probabilities will be denoted as
p(·). To distinguish between classical probabilities and interval-
valued probabilities, the latter will be denoted as capital P (·).

The authors have previously suggested the total im-
purity criterion

TU1(P) = TU2(P) + IG(P), (2)

where IG(P) is a measure of non-specificity with

IG(P) =
∑

A⊆K

mP(A) ln(|A|)

where mP is the Möbius inverse of the lower proba-
bility function fP

mP(A) =
∑
B⊆A

(−1)|A−B| fP(B),

and |A − B| is the cardinality of the set A excluding
B.

IG(P) is a generalization of the Hartley measure of
non-specificity I(A) = log2(|A|) (in bits). Here, the
finite set A includes all possible candidates for a true
class. Thus, the non-specificity of the characterization
increases with the cardinality of the set of possible
alternatives (cp. Klir, 1999, 2003).

The total impurity measure TU1(P) additively incor-
porates both uncertainty and non-specificity. How-
ever, Abellán and Moral (2004) settle for TU2(P) as
a measure of total uncertainty, arguing that TU2(P)
also increases with non-specificity. The authors thus
conclude that adding a measure of non-specificity as
in TU1(P) overweighs non-specificity in the total im-
purity criterion.

Technically, the maximization in TU2(P) is accom-
plished by means of the maximum entropy algorithm
introduced in Abellán and Moral (2003). The algo-
rithm identifies the posteriori probability distribution
on K with the maximum entropy that is in accordance
with the upper and lower probabilities for each class
k ∈ K, which are derived from the Imprecise Dirichlet
Model (IDM) (Walley, 1996). The Shannon entropy
is then applied to the posteriori maximum entropy
distribution.

Abellán and Moral (2004) apply the IDM locally to
subsets of the data defined by configurations of the
predictor variables. For each subset, defined by pre-
dictor variable configuration σ, the calculation of the
lower and upper probabilities with the IDM is based
on counts of nσ

k class k objects out of Nσ objects in
total in the subset defined by σ:

P (k) = [P (k), P (k)] =
[

nσ
k

Nσ + s
,

nσ
k + s

Nσ + s

]
,
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where s denotes the hyperparameter of the IDM, in-
terpretable as the number of yet unobserved observa-
tions. Taking this interpretation of s literally, the cal-
culation of the lower and upper probabilities is based
on relative frequencies excluding, and respectively in-
cluding, s additional observations of class k.

3 Experiences from split selection in
classical classification trees

Recent publications on classical CART address the
problem of variable selection bias, indicating that for
some split selection criteria the selection probability
of a predictor variable is affected by features other
than its discriminatory power.

Features relevant for variable selection bias are the
number of observations assigned to subsequent nodes,
from which the criterion value is calculated, for binary
as well as for multiway splits, and the number of pos-
sible cutpoints for binary splits. Both features are
affected by the number of categories in each categori-
cal predictor and by the number of missing values (or
ties) in each metric predictor.

In categorical predictors a higher number of categories
leaves less observations in each node, and provides
more possible cutpoints, while in metric predictor
variables missing values also leave less observations
in each node, but provide less possible cutpoints. A
higher number of possible cutpoints can produce mul-
tiple testing effects, while a lower number of obser-
vations in each node affects the quality of criterion
estimates.

Loh and Shih (1997) present numerical evidence for
variable selection bias with the Pearson χ2- (metric
predictor with bisecting cutpoint, binary response; see
also (Shih, 2004)) and F-statistic (categorical predic-
tor with bisecting cutpoint, metric response). In both
cases predictor variables with more distinct values or
classes are preferred, while predictor variables with
less distinct values are penalized in variable selection.

The authors accredit their findings of selection bias to
an increasing type I error-rate in multiple testing sit-
uations: for the search algorithms used in CART the
number of tests conducted increases with the number
of distinct values of the predictor variable, which de-
termines the number of possible cutpoints to be eval-
uated.

An inverse effect of variable selection bias has been
reported for the Gini Index as early as Breiman et al.
(1984). The numerical evidence confirms that for the
Gini Index split selection in classification trees is bi-

ased toward selecting variables with a lower number
of distinct values (caused by different numbers of cat-
egories in in categorical predictors and by missing
values in metric predictors in Kim and Loh (2001),
by missing values and different numbers of categories
in categorical predictors in Dobra and Gehrke (2001)
and by missing values in metric predictors in Strobl
(2004)).

However, the Gini index is still the default split se-
lection criterion for frequentist classification trees in
statistical programming tools such as CART R© and R.

4 Entropy measures in split selection

The Gini Index, as Shannon’s entropy, is a theoreti-
cal entropy measure that suffices the following desir-
able properties (depicted in Figure 1 for the two-class
case):

1. Pure sets (with all but one class probability equal
to zero) have minimum entropy.

2. Maximally impure sets (with all class probabili-
ties equal) have maximum entropy.

3. The impurity function is continuous and concave,
with the slope increasing with the distance from
the equilibrium point.
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Figure 1: Desirable shape of an impurity function in
the two class case.

However, the properties of these theoretical entropy
measures are not self-evidently passed over to their
empirical equivalents. Therefore, the quality of poten-
tial estimators for the entropy measures has to be as-
sessed before using them in applications such as split
selection in classification trees.

3



4.1 Estimation bias for empirical entropy
measures

To evaluate a split in the course of variable selection
in a classification tree, an estimate of the empirical en-
tropy measure is computed in each node. A weighted
sum of these estimates then describes the empirical
entropy induced by the split, with the relative fre-
quencies of observations per node as the weights. A
variable is selected for splitting if the empirical en-
tropy induced by the split is sufficiently small as com-
pared to the empirical entropy before splitting.

The estimator for the Gini Index in classical classifica-
tion trees, as well as the estimator for the Shannon en-
tropy, used by Abellán and Moral (2004) in classifica-
tion trees based on imprecise probabilities and Chiang
and Hsu (2002) in fuzzy classification trees, are plug-
in estimators based on the relative class-frequencies
as maximum-likelihood estimators of the class proba-
bilities.

When using these plug-in estimators for the Gini In-
dex and the Shannon entropy for variable selection in
classification trees, variable selection is biased towards
variables with less observations per node. The vari-
able selection bias is due to the biased small-sample
estimator for the empirical entropy measures: With
a decreasing number of observations per node the
standard error of the estimators increases, producing
posterior class distributions misleadingly implying a
higher amount of information.

The same mechanism takes effect in the approach of
Abellán and Moral (2004), where the biased Shannon
entropy estimator is applied to the posterior maxi-
mum entropy distribution derived from the IDM, the
fluctuation of which is also due to statistical deviation
in the random variables for the class counts in small
samples.

The bias becomes relevant for variables with more cat-
egories and hence less observations per category, or for
variables with missing data. A solution for the latter
case can be derived from the approach of Zaffalon
(2002) (q.v. de Cooman and Zaffalon, 2004) within
the imprecise probabilities framework. However, the
remaining problem of different numbers of categories
has to be addressed. Based on a statistical evaluation
of the bias, possible correction strategies are derived
in the following:

Both Miller (1955) and Basharin (1959) indepen-
dently derived the expected value of the plug-in es-
timate Ĥ for the Shannon entropy H

Ep (Ĥ) = Ep

⎛
⎝−

|K|∑
k=1

p̂ (k) ln[p̂ (k)]

⎞
⎠

= Ep

⎛
⎝−

|K|∑
k=1

nk

N
ln

[nk

N

]⎞⎠
= H − k − 1

2N
+ O

(
1

N2

)
,

where O( 1
N2 ) includes terms of order 1

N2 , which are
suppressed in the following naive correction approach
because they depend on the true class probabilities
p(k) (cp. Schürmann, 2004).

Since this estimation bias applies to any classical
probability distribution, it applies analogously to the
posterior maximum entropy distribution derived from
a credal set by means of the maximum entropy algo-
rithm (Abellán and Moral, 2003) employed in Abellán
and Moral (2004).

According to the above assessment of the estimation
bias a naive correction approach for an unbiased esti-
mate ĤMiller as suggested by Miller (1955) is

ĤMiller = Ĥ +
|K| − 1

2N
.

4.2 Suggested corrections based on the IDM

As an empirical entropy estimator in every node of
a classification tree based on imprecise probabilities
in accordance to Abellán and Moral (2004), i.e. for
every predictor value configuration σ, we suggest

ĤMiller = Ĥ +
|K| − 1

2(Nσ + s)
, (3)

as a corrected estimator of the Shannon entropy. This
correction accounts for the derivation of the posterior
maximum entropy distribution, to which the entropy
estimator is applied, from the posterior lower and up-
per probabilities computed with respect to the impre-
cise Dirichlet model with hyperparameter s (cp. Sec-
tion 2). The correction seems appropriate for large
Nσ, while it over-penalizes for small Nσ with respect
to the number of categoies |K|, which is supported by
the numerical results in Section 4.3.

In another correction approach we are revisiting the
empirical measure ÎG(P), the theoretical analogy of
which was employed by Abellán and Moral (2004) as
a measure of non-specificity in the total impurity cri-
terion TU1(P) (cp. Equation 2 in Section 2). Like
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the correction term in the above approach ÎG(P) is
a function of the sample size Nσ and the number of
categories |K|.
In the special case where the lower probabilities used
in the computation of the Möbius inverses in ÎG(P)
are derived from the IDM, the Möbius inverses of all
subsets of the power set of K, besides the sigletons
k ∈ K and the complete set K, are equal to zero
due to the additivity induced by the IDM. Again tak-
ing the interpretation of s as the number of yet un-
observed observations literally, the basic probability
assignment mP(·) is greater than zero only for the
sigletons, due to the Nσ out of Nσ + s observations
for which one class k ∈ K was observed, and for the
complete set K, due to the s out of Nσ + s yet unob-
served observations for which any class k ∈ K can be
observed.

Because the logarithm of the cardinality of the single-
tons is zero, the Möbius inverse for the set K collapses
to the width s

Nσ+s of the lower and upper probabil-
ities on K computed from the IDM with hyperpa-
rameter s, and the empirical non-specificity measure
ÎG(P) depends only on the sample size Nσ through
the interval width, and on the number of categories
|K| through the factor ln(|K|). We thus suggest

Ĥ + ÎG = Ĥ + m̂P(K) ln(|K|) = ̂TU1(P) (4)

as another corrected estimator, where m̂P(K) is the
Möbius inverse computed from the posterior lower
class probabilities derived from the IDM. We will
again see in Section 4.3 that this correction is only
reliable for large Nσ and small |K|, while otherwise
it is overcautious.

4.3 Simulation study: performance of
entropy estimators in split selection

The variable selection performance of a split selection
criterion can be evaluated by means of the following
simulation study design: Several uninformative pre-
dictor variables are generated by random sampling.
The predictor variables are sampled such that they
only differ in one feature, which is expected to gener-
ate variable selection bias. The relative frequencies of
simulations in which each variable is selected by the
split selection criterion, out of the number of all sim-
ulations, are estimates for the selection probabilities,
which should be equal (at random choice probabil-
ity 1/number of variables) for uninformative predictor
variables if no selection bias occurs.

The relative frequencies can sum up to values greater

than 1 if more than one variable reaches the minimum
criterion value, i.e. if more than one variable is equally
appropriate to be selected, in one simulation, which is
more likely for small sample sizes. (In a tree building
algorithm one variable has to be randomly chosen for
splitting in this case.)

The following results are from a simulation study run
with 1000 simulations and 10 uninformative predictor
variables, one of which has 3 (respectively 5) distinct
categories, while the rest have 2 distinct categories.
The value of the hyperparameter s of the IDM was
set equal to 1.

In this study, the behavior of the plug-in estimator Ĥ
for the Shannon entropy (cp. Equation 1) is compared
to the behavior of the corrected estimators ĤMiller
(Equation 3) and Ĥ+ÎG (Equation 4 or cp. Equation
2) for medium sample sizes N (n1 = n2 = 100 class 1
and 2 observations) and small sample sizes N (n1 =
n2 = 10 class 1 and 2 observations).

Figures 2 through 5 display that, with the plug-in
estimate Ĥ for the Shannon entropy, variable selection
bias affects the estimated selection probabilities even
if the variables differ in their number of categories
only by 1. This effect is strongly aggravated if the
variables differ more in their number of categories.

For the corrected estimate ĤMiller, Figures 6 through
9 document that the variable selection bias caused by
the estimation bias of the entropy estimate can be
fairly compensated by the correction. Only for small
sample sizes, aggravated by a large difference in the
number of categories of the predictor variables, the
correction is overly cautious, resulting in a reverse
variable selection bias.

For the corrected estimate Ĥ+ÎG, Figures 10 through
13 show that the reverse bias for small sample sizes
and large difference in the number of categories is even
stronger than for ĤMiller.

4.4 Alternative entropy estimators

Alternative estimators for the Shannon entropy have
been suggested e.g. by Pöschel et al. (2003), who em-
ploy rank ordered probabilities in entropy estimation,
and Grassberger (2003), who’s approach is based on
the assumption of Poisson-distributed frequencies in
small samples.

Another approach that might provide the opportu-
nity to be extended to split selection in classification
trees based on imprecise probabilities is the Bayesian
entropy estimator introduced by Holste, Grosse, and
Herzel (1998). The Bayesian estimator of the Shan-
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non entropy (in bits) is

ĤBayes =
1

ln(2)

K∑
k=1

nk + s tk
N + s

⎛
⎝ N+s∑

j=nk+stk+1

1
j

⎞
⎠

where the weights tk are the parameters of a Dirich-
let prior distribution with hyperparameter s for the
k = 1, 2, . . . , |K| class probabilities. The Bayesian es-
timate is least biased for a uniform prior.

5 P-value adjusted split selection in
classical CART

A different approach to prevent variable selection bias
promoted for classical CART is the use of exact or
approximated p-values of association measures as split
selection criteria, e.g. of Fisher’s exact test statistic,
where the sample size is incorporated in the degrees
of freedom of the hypergeometric distribution.

Some results of a simulation study on such a p-value
approach for split selection in classification trees are
outlined in the following. In this study the variable
selection performance of the Gini Index was compared
to the performance of the exact p-value of a risk statis-
tic derived from statistical decision theory, which was
designed to account for asymmetric misclassification
costs, and the statistic of Fisher’s exact test as split
selection criteria in classification trees (for details see
Strobl, 2004).

5.1 Simulation study: performance of Gini
Index and p-value criteria in split
selection

Figures 2 and 3 display estimated variable selection
probabilities for the Gini Index and the two p-value
adjusted split selection criteria. In this simulation
study design the percentage of missing values in one of
ten predictor variables is varied, while the rest of the
variables remain complete. The variables are either
all uninformative (Figure 2) or one variable with no
missing values and one variable with missing values is
informative (Figure 3).

The results support the expected behavior for the Gini
Index and p-value adjusted split selection criteria:

For uninformative predictor variables the estimated
selection probability increases with the number of
missing values in the regarded variable (and thus de-
creases in all other variables due to competition) when
using the Gini Index for split selection, indicating
variable selection bias. With the p-value adjusted

split selection criteria the estimated selection prob-
ability does not exceed random choice level.

For informative predictor variables the estimated se-
lection probability again increases with the number of
missing values in the regarded variable when using the
Gini Index. With the p-value adjusted split selection
criteria the estimated selection probability decreases
with the number of missing values in the regarded
variable (and thus increases in all other variables due
to a lack of competition), because of the decrease of
information inherent in the sample.

Thus, in Strobl (2004) we conclude that the use of the
p-value adjusted split selection criteria is advisable in
classical classification trees in order to avoid variable
selection bias.
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Figure 2: Estimated variable selection probabilities
for the Gini Index, the p-value adjusted risk criterion
and the p-value adjusted Fisher criterion. All vari-
ables are uninformative.

5.2 Detour: minimally or maximally
selected statistics in cutpoint selection

For binary splits and for metric predictor variables,
variable selection is conducted by comparing the cri-
terion value for the cutpoint that minimizes or re-
spectively maximizes the criterion value. The split
selection therefore consists firstly of cutpoint selec-
tion and secondly of variable selection on the basis of
the optimally selected cutpoint.

The distribution of a minimally or maximally selected
statistic used as criterion value in split selection is not
equivalent to the statistic’s original null-distribution,
because the cutpoint was not set a priori but chosen a
posteriori so as to minimize or maximize the statistic.
Adequate significance levels have to be derived from
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Figure 3: Estimated variable selection probabilities
for the Gini Index, the p-value adjusted risk crite-
rion and the p-value adjusted Fisher criterion. One
variable with missing values and one variable with no
missing values is informative.

an exact or approximated distribution (cp. Miller and
Siegmund, 1982).

The approach of using the p-value of a maximally or
minimally selected statistic in split selection avoids
the multiple testing effects relevant in cutpoint selec-
tion. Due to the fact that the derived distributions of
the maximally or minimally selected statistic incor-
porate the sample size, this approach also prevents
sample size effects.

Consider e.g. the χ2-statistic, for which variable se-
lection bias has been documented in Loh and Shih
(1997): neither the statistic nor the original p-value
take the sample size into account, because the degrees
of freedom of the original χ2-distribution rely only on
the number of cells in the contingency table. How-
ever, the exact distribution of the maximally selected
χ2-statistic derived by Koziol (1991) does depend on

the sample size. The exact p-value of the distribution
of the maximally selected χ2-statistic is employed for
split selection in classical classification trees by (Shih,
2004).

In the simulation study introduced above (Strobl,
2004), the main focus was on sample size effects. The
results show that sample size effects can be eliminated
by means of the p-value from the distribution of the
minimally selected risk statistic derived by Gail and
Green (1976), incorporating both the minimally se-
lected character of the statistic and the sample size,
or by means of the p-value of Fisher’s exact test (cp.
Martin, 1997), the original exact distribution of which
incorporates sample size as well. Halpern (1999) also
derived the exact p-value of the minimally selected
statistic of Fisher’s exact test.

For multiway splits in categorical predictors as used in
Abellán and Moral (2004) the outlined effects of cut-
point selection are not relevant. However, the topic
of minimally and maximally selected statistics, as the
potential bias induced by multiple testing in general,
has to be considered when the classification trees are
extended to splits in metric predictor variables, or if
not as many nodes as categories of the categorical
predictor used for splitting are created in each split.

6 Discussion and perspective

We have seen that the use of biased estimators for
entropy measures as the Gini Index and the Shannon
entropy in the tradition of classification trees, both
classical and based on imprecise probabilities, leads
to variable selection bias.

Our results imply the use of corrected estimators for
the Shannon entropy as split selection criterion in
classification trees based on imprecise probabilities.

The corrected estimator ĤMiller in Equation 3 shows
even better variable selection performance than the
corrected estimator Ĥ + ÎG in Equation 4. Both
corrected estimators are less reliable for small sam-
ple sizes and large numbers of categories of the pre-
dictor variables, where they react overcautious. The
corrected estimators can be easily applied to the pos-
terior maximum entropy distribution derived from the
lower and upper probabilities computed with the IDM
as suggested by (Abellán and Moral, 2004). More
elaborate entropy estimators can be considered for
split selection in future research.

For classification trees based on imprecise probabil-
ities another notion for research on unbiased split
selection could evolve from the results of Bernard
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Figure 2: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for 3
vs. 2 categories in the predictor variables and medium
sample sizes.
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Figure 4: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for 5
vs. 2 categories in the predictor variables and medium
sample sizes.
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Figure 6: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 3 vs. 2 categories in the predictor vari-
ables and medium sample sizes.
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Figure 3: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for
3 vs. 2 categories in the predictor variables and small
sample sizes.
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Figure 5: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for
5 vs. 2 categories in the predictor variables and small
sample sizes.
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Figure 7: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 3 vs. 2 categories in the predictor vari-
ables and small sample sizes.
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Figure 8: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 5 vs. 2 categories in the predictor vari-
ables and medium sample sizes.
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Figure 10: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 3 vs. 2 categories in the predictor variables
and medium sample sizes.
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Figure 12: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 5 vs. 2 categories in the predictor variables
and medium sample sizes.
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Figure 9: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 5 vs. 2 categories in the predictor vari-
ables and small sample sizes.
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Figure 11: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 3 vs. 2 categories in the predictor variables
and small sample sizes.
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Figure 13: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 5 vs. 2 categories in the predictor variables
and small sample sizes.
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(2003) and Bernard (2005) on association measures
in contingency tables based on the IDM. In this way,
the p-value approach successfully applied in classical
CART, e.g. based on the p-value of Fisher’s exact
test, could be extended towards imprecise probabil-
ities. The posterior upper probability of H0: “The
response class is independent from the category of
the predictor variable” could serve as the split selec-
tion criterion in classification trees based on imprecise
probabilities.

Our perspective is to establish unbiased criteria for
classification trees based on imprecise probabilities, as
well as classical classification trees, in order to abolish
the widespread use of biased criteria that overshadows
the advantages of classification trees.
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