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Geoadditive survival models

Andrea Hennerfeind, Andreas Brezger, and Ludwig Fahrmeir

Department of Statistics, University of Munich

Abstract

Survival data often contain geographical or spatial information, such as the residence of individuals.
We propose geoadditive survival models for analyzing spatial effects jointly with possibly nonlinear
effects of other covariates. Within a unified Bayesian framework, our approach extends the classical
Cox model to a more general multiplicative hazard rate model, augmenting the common linear
predictor with a spatial component and nonparemetric terms for nonlinear effects of time and
metrical covariates. Markov random fields and penalized regression splines are used as basic
building blocks. Inference is fully Bayesian and uses computationally efficient MCMC sampling
schemes. Smoothing parameters are an integral part of the model and are estimated automatically.
Perfomance is investigated through simulation studies. We apply our approach to data from a
case study in London and Essex that aims to estimate the effect of area of residence and further

covariates on waiting times to coronary artery bypass graft (CABG).

Key words: Bayesian hazard rate models, Markov random fields, penalized splines, MCMC, semi-

parametric models, spatial survival data, CABG.

1 Introduction

In epidemiological, economic or social science applications, survival data often contain geographical
or spatial information such as the district or postal code of the residence of individuals in the study.
For example, Henderson, Shimakura and Gorst (2002) model spatial variation in survival of acute
myeloid leukemia patients in northwest England, Banerjee, Wall and Carlin (2003) apply a spatial
frailty model to infant mortality in Minnesota, and Li and Ryan (2002) analyze the effect of risk

factors on the onset of childhood asthma with spatial data from the East Boston Asthma Study. In



a study on unemployment duration in Germany, Fahrmeir, Lang, Wolff and Bender (2003) inves-
tigate the impact of small area labor market regions and other covariates, such as calendar time,
age and unemployment benefits. Because unemployment duration is given in months, they apply
a geoadditive discrete-time probit model. With the same method, Adebayo and Fahrmeir (2003)
model regional and socio—economic variation of childhood mortality in Nigeria. In Section 5 of this
paper, we will apply our approach to data from the Appropriateness of Coronary Revascularisa-
tion (ACRE) study. Spatial survival data from this study have been recently analyzed within a
discrete—time setting by Crook, Knorr—Held and Hemingway (2003).

In this paper, we propose flexible, continuous—time geoadditive hazard rate models. Within a uni-
fied framework, our approach extends the Cox model with respect to several aspects often needed
in applications. We generalize the common linear predictor to an additive predictor, including
unknown functional forms for the log baseline hazard, time varying effects and possibly nonlin-
ear effects of metrical covariates, and a spatial component for geographical effects. In addition,

uncorrelated frailty effects or nonlinear two—way interactions can be incorporated if appropriate.

Modelling and inference is developed from a Bayesian perspective, using information from the full
likelihood, rather than from a partial likelihood, in combination with priors for parameters and
functions. Estimation of unknown functions of time and metrical covariates is based on penalized
spline (P—spline) regression, introduced by Eilers and Marx (1996), Marx and Eilers (1998) for
generalized additive models in a frequentist setting. We will use Bayesian versions (Lang and
Brezger, 2003) as a basic building block. Basically, time is treated in the same way as a metrical
covariate, but the degree and amount of smoothness may be different. For example, simple ran-
dom walk priors for the log—baseline effect in a piecewise exponential model are P—splines of degree
zero. The spatial component is modelled by Gaussian Markov random field priors, as common in
disease mapping, or by two dimensional penalized tensor—product splines. A particular feature of
our Bayesian approach is that all priors can be written in the same general form, see Section 2.

This is also of advantage for a unified approach to posterior analysis with computationally efficient
MCMC techniques. Smoothing parameters are an integral part of the model and can be estimated

jointly with unknown functions and other parameters. Inferential procedures have been imple-



mented in C++ as part of BayesX (Brezger, Kneib and Lang, 2003).

Nonparametric Bayesian survival models have become quite popular in recent years, and some
previous work deals with related, special cases of our approach. Ibrahim, Chen and Sinha (2001)
provide a very good introduction and overview. Joint estimation of the baseline hazard and usual
linear covariate effects in the Cox model has been considered by several authors. Gamerman (1991)
proposes a Gaussian random walk model for the log—baseline hazard in the piecewise exponential
model, and Sinha (1993) suggests a joint Gaussian smoothness prior. Arjas and Gasbarra (1994)
introduce a first order autoregressive gamma model, and Cai, Hyndman and Wand (2002) use a
mixed model representation of linear regression splines to estimate the baseline hazard. Time—
varying effects have been treated within a state space framework by Gamerman (1991) for the
piecewise exponential model. In all these approaches, however, main effects of metrical covariates
are assumed to be of the usual linear form, and no spatial component is present. The spatial
survival models of Li and Ryan (2002) and Henderson, Shimakura and Gorst (2002) add a spatial
component in form of a stationary Gaussian field, common in geostatistics, to the linear predictor
of the Cox model. Inference is based on partial likelihood by the first authors, while the second
author plug in the Breslow estimator for the baseline hazard in MCMC updating steps. Carlin
and Banerjee (2002) develop Bayesian spatio—temporal survival models, modelling baseline hazard
functions nonparametrically through a beta mixture approach and assuming Markov random field
priors for spatial effects. Nonparametric terms for nonlinear functions of time or other covariates

are not included in these approaches.

Within the more conventional framework of Gaussian regression, geoadditive models have been sug-
gested by Kamman and Wand (2003), who introduced the term ”geoadditive”. Inference is based
on linear regression splines and stationary Gaussian fields, using a mixed model representation.
Fully Bayesian modelling and inference for (generalized) geoadditive models has been developed
in Fahrmeir and Lang (2001) and Brezger and Lang (2003). Because discrete—time survival mod-
els can be rewritten as a sequence of binary regression models, this approach can be adapted to
discrete-time geoadditive survival models as in Crook et al. (2003) and Adebayo and Fahrmeir

(2003).



The rest of the paper is organized as follows. In Section 2 we describe models, likelihood, and
priors for unknown functions and parameters. Inference is outlined in Section 3. Performance is
studied in Section 4 through a simulation study. Applications in Section 5 illustrate the method.

The concluding section contains some proposals for future research.

2 Models, likelihood and priors

Consider survival data in usual form, i. e. , it is assumed that each individual ¢ in the study has a
lifetime T3, and a censoring time C; that are independent random variables. The observed lifetime

is then t; = min(T;, C;), and ¢; denotes the censoring indicator. The data are then given by
(ti,éi;v,-), 2'21,...,’[1 (1)

where v is the vector of covariates. Covariates may also be time dependent, but we restrict

discussion to time—constant covariates for simplicity.

In Cox’s proportional model the hazard rate for individual ¢ is assumed as the product
i(t;v:) = Xo(t)exp(v1vi1 + ... + 1vir) = Xo(t)exp(viy). (2)

The baseline hazard rate is unspecified, and, through the exponential link function, the covariates
v = (v1,...,v,) act multiplicatively on the hazard rate. As pointed out in the introduction, in
a number of applications there is a need for extending this basic model with respect to several
aspects. We propose novel nonparametric Bayesian survival models that can deal with these issues
in a flexible and unified framework. Reparametrizing the baseline hazard rate through exp{ fo(t)}.

fo(t) = log{Xo(t)} and partitioning the vector of covariates into groups of covariates x, z, s and v,

we extend model (2) to the nonparametric multiplicative model

Ailt) = Ni(ts @i, 24, 80, v1) = exp{n;(t)} (3)
with predictor
P p+q
mi(t) = folt) + D fi@®)zi5 + D fi(@igop) + fapar(si) +viy + bgi. (4)
j=1 Jj=p+1

Here fo(t) = log{Ao(t)} is the log-baseline effect, f;(t) are time-varying effects of covariates z;,

fj(x) is the nonlinear effect of a metrical covariate z, fspat(s) is the (structured) effect of a spatial



covariate s, with s; = s if unit 7 is from area s, s = 1,...,.5, 7y is the vector of usual linear fixed
effects, and by is a unit— or group-specific frailty or random effect, with by; = by if unit 4 is in
group g, g = 1,...,G. For G = n, we obtain individual-specific frailties, for G < n, b, might be
the effect of centre g in a multicentre study or the unstructured (random) spatial effect of an area
(i. e. by = bs), for example. As an extension, random slopes could be introduced in (4), but we omit
this here. Several other extensions of the model, such as choice of other link functions, inclusion

of interactions and competing risks, are possible. We discuss this in the concluding section.

Under the usual assumption about noninformative censoring, the likelihood is given by

n

L = J[x@®)%-exp ( /Oti/\,v(u)du)

i=1

inserting (3) and (4).

The Bayesian model formulation is completed by assumptions about priors for parameters and
functions. For fixed effect parameters v we assume diffuse priors p(7) o< const. A weakly infor-
mative normal prior would be another choice. Random effects are assumed to be i.i.d. Gaussian,
by ~ N(0, Tb2)

For unknown functions f;, we assume Bayesian P—spline priors as in Lang and Brezger (2002).
Random walk priors, which have been suggested in Fahrmeir and Lang (2001) and may be used
as smoothness priors for the baseline effect and dynamic effects in a piecewise exponential model,
appear as a special case. The basic idea of P-spline regression (Eilers and Marx, 1996) is to

approximate a function f;(x) as a linear combination of B-spline basis functions B,,, i .e.
M;
Fi@) =" BjmBun().
m=1
The basis functions B,, are B—splines of degree [ defined over a grid of equally spaced knots
Tmin = &0 < &1 < ... < & = Tmax, M; = 1+ 5. The number of knots is moderate, but not too
small, to maintain flexibility, but smoothness of the function is encouraged by difference penalties

for neighbouring coefficients in the sequence 3; = (8j1,- .-, Bja;)’. The Bayesian analogue are first

or second order random walk smoothness priors

6jm = Bj,mfl + Ujm or 5jm = 26j,m71 - /Bj,m72 + Ujm, (6)



with i.i.d. Gaussian errors w;,, ~ N (0, 7'j2) and diffuse priors p(3;1) o const, or p(f;1) and p(B;2) o
const, for initial values. A first order random walk penalizes abrupt jumps Bjp, — 5jm-1, and a
second order random walk penalizes deviations from a linear trend. The amount of smoothness or
penalization is controlled by the variance Tj2, which acts as a smoothness parameter.

The joint prior of the regression parameters (3; is Gaussian and can be easily computed as a product

of conditional densities defined by (6) as

1
G | 'rj2 o exp (—ﬁ,@;—KJﬂJ) .
j

The penalty matrix K is of the form K; = D'D, where D is a first or second order difference

matrix. For second order random walks, for example, K; is given by

with zero elements outside the second off-diagonals.

The band structure of K is very useful for computationally efficient MCMC updating schemes.
A common choice for approximating smooth curves are quadratic or cubic B-splines. Computation-
ally, linear splines are simpler. The simplest choice are B—splines of degree zero, i. e. B, (z) =1
over the m-th interval, and B,,(z) = 0 elsewhere. Then the effect is approximated by a piecewise
constant function, and the function values follow a random walk model as in Fahrmeir and Lang
(2001). This special choice, with time ¢ as covariate, is the easiest way to smooth the baseline in
the piecewise exponential model; moreover the integral in the likelihood (5) reduces to a sum, see
the next section. With P—splines of higher degree, however, estimation of smooth baseline effects

is improved in terms of MSE’s, see Section 4.



For the structured spatial effect fspq:(s) we assume either Markov random field priors or two di-
mensional tensor product P—spline priors. Considering small area data with sparse data for at least
some of the areas, fixed area—specific effects would not lead to reliable estimations. Therefore we
fit a smoothed spatial effect by using a technique that borrows strength from neighbouring areas,
i. e. we assume that neighbouring areas are more similar than arbitrary areas and therefore the

spatial effect varies smoothly.

In the case of MRF priors we define areas as neighbours if they share a common boundary and
assume that the effect of an area s is normally distributed with the mean of the effects of neighouring
areas as expectation and a variance that is inverse proportional to the number of neighbours of

area s, i. e.

1 spa 2
Fapar(s) 1= B = 5 3 B + s, us~ N (0’ )

N,
SjGés S

where Ny is the number of neighbours of area s and j € d5 denotes that area j is a neighbour of

area s.

Considering the x and y coordinates of the geographical center of each area, the spatial effect can
be seen as an interaction between two metrical covariates x5 and ys. Therefore our second approach
is based on two dimensional P—splines, a rather parsimonious, but flexible method for modelling
interactions between metrical covariates described in Lang and Brezger (2003) for Gaussian regres-
sion. The assumption is that the unknown structured spatial effect fgpq¢(s) can be approximated

by the tensor product of one dimensional B—splines, i. e.

M, M

fspat(s) = fspat(xsays) = Z Z ﬂs,mlszs,ml (xs)Bs,mg (ys)

m1:1 777,2:1

As before with one dimensional P—splines the B—splines of degree [ are defined over a grid of a
moderate, but not too small number of equally spaced knots. Smoothness is encouraged by a
two dimensional first order random walk smoothness prior (with smoothing parameter 72) for
Bs = (Bsa1s-- -, Bs,m,m,) . More details can be found in Lang and Brezger (2003).

Again, in both approaches the amount of smoothness is controlled by a smoothing parameter 72
that is estimated jointly with the unknown parameters [;.

When applying our model to real data we do not know how much of the spatial variation is

structured and how much is unstructured. Therefore we fit an additional (unstructured) area—



specific random effect and let the data decide.

Variances Tj2 follow inverse Gamma priors IG(a;;b;). The hyperparameters a;, b; are chosen such
that this prior is weakly informative. We routinely use a; = b; = 0.001 as a standard choice. For
moderate to large data sets, results are rather insensitive to the choice of a; and b;. For smaller
data sets, a sensitivity analysis is useful. We also assume an inverse Gamma prior for the variance
72 of the normal random effects b, and the variance 72 of the spatial effect.

The Bayesian model specification is completed by assuming that all priors for parameters are

conditionally independent, and that all priors are mutually independent.

3 Markov chain Monte Carlo inference

In what follows, let 8 = (0o, ..., Bp, Bp+1;s ---s Bp+q)’ denote the vector of all B-spline regression

coefficients, B, = (B;7",..., B the vector of spatial effects in the case of a MRF-prior or
Bs = (Bsa1,--+,Bs,m,m,) the coefficient vector of the two dimensional P-spline, respectively, v

the vector of fixed effects, b the vector of random effects, and 72 = (73, ... ) the vector

2 2
1 Tptrqr Tss
of all variance components.

Full Bayesian inference is based on the entire posterior distribution

p(ﬁaﬁs777ba7—2 ‘ data) X L(B7 ﬁ5777b7 7—2)p(ﬂ7 657’\/71)7 TZ)-

Due to the (conditional) independence assumptions, the joint prior factorizes into

pt+aq

(ﬂ ﬁsa’%b T Hp ﬂj ‘T ]2) (ﬁs |T {Hp |Tb } ( E)Q)p(ﬂ/)a

where the last factor can be omitted for diffuse fixed effect priors.
The likelihood L(3,3s,7,b,7%) is given by inserting (3),(4) into (5), but the integral requires

integration over all terms depending on survival time ¢, i. e. terms of the form

t; p
I = / eap | folw) + > fi(w)z; | du,
0 =

where f;(t) =Y BjmBm(t). Apart from B-splines B,, (t) of degree zero, i. e. random walk models,

and linear B—splines, these integrals are not available in closed form. The first case leads to the



piecewise exponential model: The time axis is divided into a grid

0:£0<£1<---<£t71<£t<---<£s:tmam7

and f;(t) is assumed to be a piecewise constant function, i. e.

fi(t) = B
in time interval (§;—1,&], t = 1,...,s. In this case, the integral reduces to a sum, and, after some
simple calculations, the likelihood can rewritten in the form of a Poisson-likelihood, with the
predictor 7;; containing an additional offset term, see Fahrmeir and Tutz (2001, Section 9.1) or
Ibrahim, Chen and Sinha (2001, Section 3.1) for details.
For linear B—splines, the integrals can still be solved analytically, but expressions are rather messy
and the computational effort is quite high, see Cai et al. (2002, Appendix). Following their sug-
gestion, we use simple numerical integration in form of the trapezoidal rule for linear B—splines as
well as for the commonly used cubic B—splines, where analytical integration is not possible anyway.
Full Bayesian inference via MCMC simulation is based on updating full conditionals of single pa-
rameters or blocks of parameters, given the rest of the data.
For updating the parameter vectors (3j,j = p + 1,...,p + ¢, which correspond to the time
independent functions f;(x), as well as spatial effects §, (the parameter vector (s of the two
dimensional P-spline, respectively), fixed effects v and random effects b, we use a slightly mod-
ified version of an MH algorithm based on iteratively weighted least squares (IWLS) proposals,
developed for fixed and random effects by Gamerman (1997) and adapted to generalized additive
mixed models in Brezger and Lang (2003). More precisely, the goal is to approximate the posterior
by a Gaussian distribution, obtained by accomplishing one IWLS step in every iteration of the
sampler. Then, random samples have to be drawn from a high dimensional multivariate Gaussian

distribution with precision matrix and mean

1 B o
Py = X;W(B)X; + 5 K. my =Py XGW(55)(5 = 7).
J

Here, i = ni(ti) — fi(%ij—p), W(B§) = diag(wi,...,wy) is the weight matrix for IWLS with

weights
p+q
w; = exrp Z fk(xi,kfp) + fspat(si) + U;’Y + bgi -1
k=p



obtained form the current state 37. The working observations g; are given by

Iy
i =mi(t:) + — — L.

Wi

Random numbers from the high dimensional proposal distributions can be efficiently drawn by
using matrix operations for sparse matrices.

Suppose we want to update [3;, with current value (3§ of the chain. Then a new value ﬁf is
proposed by drawing a random vector from a (high dimensional) multivariate Gaussian proposal
distribution ¢( ) 557 ), which is obtained from a quadratic approximation of the log-likelihood by
a second order Taylor expansion with respect to ﬁj, in analogy to IWLS iterations in generalized

linear models. The proposed vector ﬁf is accepted as the new state of the chain with probability

o ) = mi <1 LCAR ;ﬁ&;))
7, 05) =man | 1,

p(B5 | )a(Bs5,57)

where p(; | -) is the full conditional for 3; (i. e. the conditional distribution of 3; given all other
parameters and the data).

For a fast implementation, we use the fact that the precision matrices of the Gaussian proposal
distributions are banded, so that Cholesky decompositions can be performed efficiently.

For the parameters (3, ..., 3, corresponding to the functions fy(t),..., f»(t) depending on time t,
the IWLS MH algorithm requires considerably more computational effort, because the integrals in
the log—likelihood as well as first and second derivatives are involved now. Therefore, we adopt a
computationally faster MH—algorithm based on conditional prior proposals, although TWLS-MH
has better mixing properties. This algorithm was first developed by Knorr—Held (1999) for state
space models and extended for generalized additive mixed models in Fahrmeir and Lang (2001). It
requires only evaluation of the log—likelihood, not of derivatives. However, draws are not performed
for the entire vector (3;, but iteratively for blocks of subvectors, see Fahrmeir and Lang (2001) for
details.

2

The full conditionals for the variance parameters 7; are inverse gamma with parameters

1 1
G =ay s k(i) amd 0=, + Loy

10



and updating can be done by simple Gibbs steps, drawing random numbers directly from the
inverse gamma densities. In complete analogy, the full conditional for a variance component 72 of
the spatial effect and sz of a random intercept or slope is again an inverse gamma distribution,
and updating is straightforward.

For model comparison we suggest to use the Deviance Information Criterion (DIC) developed in

Spiegelhalter et al. (2002). It is given as

DIC = D(0) +2pp = D(0) + pp,

where 6 is the vector of parameters, D(f) is the deviance of the model evaluated at the posterior

mean estimate 0, D(0) is the posterior mean of the deviance and pp = D(0) — D(f) is the effective
number of parameters. Since it is at least unclear, how the saturated model should be defined in the
case of survival data, when the baseline hazard and other nonparametric functions are parameters
of interest, we use the unstandardized deviance D(0) = —2 - logLikelihood instead of the saturated

deviance.

4 Simulation study

We investigate performance through a simulation study. Life times T;, ¢ = 1, ..., 1236, were gener-

ated according to the hazard model

Ai(t) = Xo@)exp(fi(z:i) + fspat(si) +yvi)

= exp(log(3t?) + sin(x;) + sin(xs, - ys,) — 0.3v;). (8)

In this model, the baseline hazard rate \o(t) is set to 3t2, which is a Weibull hazard rate, so
that fo(t) = log(3t?). The covariate v is binary, with the v; ‘s randomly drawn from a Bernoulli
B(1;0.5) distribution, and the covariate z is continuous, with the z; s randomly drawn from a
uniform U[—3,3] distribution. The spatial covariate s; denotes one of the s = 1,...,5 = 309
counties of the former Federal Republic of Germany and zg, and y,, are the centered coordinates
of the geographic center of county s;. We simulated four observations per county. Censoring
variables Cy, i = 1,...,1236, were generated as i. i. d. draws from a uniform UJ0, 5] distribution,

resulting in a proportion of 15-20 percent of censored observations.

11



Keeping the predictor fixed, 100 replications {Ti(T),C’i(r),i = 1,...,1236} resp. {(tz(-r),éy)), 1=
1,...,1236}, r = 1, ..., 100 of censored survival times were generated.

The log—baseline hazard fy(¢) was modelled by second order random walk priors, corresponding
to a piecewise exponential model (with grid length A = 0.1), and alternatively as a cubic
P-spline, with 20 knots. A cubic P-spline prior with 20 knots was chosen for f;(z) = sin(z).
The spatial effect was modelled as a MRF and alternatively as a two dimensional cubic P—spline
with 12x12 knots. Hyperparameters of inverse gamma priors for variance components were set to
a = 0.001, b = 0.001, the standard choice.

For each replication r = 1, ...,100, we computed the mean square errors

1 1236
MSE,(fo) = 52z (77 (67) = fo(t;"))?,
1236 ~—
for the log—baseline hazard fy(¢),
1 1236
MSE(f1) = 5o 2 (77 (@) = filwi)”
i=1
for f1(z) = sin(x), and
1 1236
MSE,(fupat) = Toz5 O (Fipur(50) = fopar(50))*
i=1

for the spatial effect fspqi(s) = sin(zc-yc), where f,(f) , k =0,1, spat, are posterior mean estimates
for simulation run r.
The MSE(y) was computed in the usual way.

(2,2 MSE,)
100

Table 2 summarizes the results, displaying MSE = as well as min,MSE, and

maxz,MSFE, in each cell.

As was to be expected, the P—spline model has smaller MSE’s for fy when compared to the
piecewise exponential model. Interestingly, the MSE s for v = —0.3, f1(z) and fspe(s) are more
or less unaffected by the choice of the smoothness prior for the log—baseline fy(t). Estimated
functions of replication r, with r chosen such that M SFE, is the median of MSE,..., MSFEq,

for fo(t), f1(x) and fspat(s) are displayed in Figures 7-9 in the appendix.

12



MRF geospline
piecewise MSE(fo) =0.154 MSE(fo) =0.155
exponential minMSE(fo) = 0.049 minMSE(fy) = 0.044
model maxMSE(fy) = 0.497 maxMSE(fy) = 0.496

MSE(f1) = 0.0068 MSE(f1) = 0.0061

minMSE(f1) = 0.0006 | minMSE(f,) = 0.0006

marMSE(fi1) =0.0193 | maxMSE(f1) = 0.0182

MSE(fupat) = 0042 | MSE(fopar) = 0.022

minMSE(fspat) = 0.028 | minMSE(fspat) = 0.010
marMSE(fspat) = 0.068 | maxMSE(fspar) = 0.039

MSE(7) = 0.0045 MSE(y) = 0.0038

minMSE(vy) =~ 0 minMSE(vy) = 0

maxMSE() = 0.0268 maxMSE(y) = 0.0197

P-spline MSE(fo) =0.126 MSE(fo) =0.127
model minMSE(fy) = 0.033 minMSE(fy) = 0.027

maxMSE(fy) = 0.450
MSE(f1) = 0.0070
minMSE(f1) = 0.0009
maxMSE(f;) = 0.0209
MSE(fspat) = 0.043
minMSE(fapar) = 0.029
maxMSE(fspar) = 0.071
MSE(v) = 0.0046
minMSE(vy) =~ 0

maxMSE(vy) = 0.0297

maxMSE(fy) = 0.453
MSE(f1) = 0.0063
minMSE(f,) = 0.0006
maxMSE(f;) = 0.0178
MSE(fspat) = 0.022
minMSE(fspat) = 0.010
maxrMSE(fspa) = 0.039
MSE(v) = 0.0038
minMSE(vy) =~ 0

mazMSE(y) = 0.0202

Table 1: Summary of MSE s
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5 Application: waiting times to CABG

We illustrate our methods by an application to data from a study in London and Essex that aims
to analyze the effects of area of residence and further individual specific covariates on waiting times
to coronary artery bypass graft (CABG). The data comprise observations for 3015 patients with
definite coronary artery disease who were referred to one cardiothoracic unit from five contiguous
health authorities. Waiting times from angiography to CABG are given in days. Covariates are,
among others, sex, age (in years), numbers of diseased vessels (1, 2, 3), and the area of residence
(one of 488 electoral wards).

The data were previously analyzed by Crook, Knorr-Held and Hemingway (2003) who classified
waiting times in months and applied discrete—time survival methodology as described for examples
in Fahrmeir and Tutz (2001, ch.9). They analyzed and compared a hierarchy of models, with
model comparison based on the deviance information criterion (DIC), developed in Spiegelhalter
et al. (2002). Here we apply continuous—time geoadditive survival models, with waiting times
given in days as in the original data set, and predictors based on models 11 and 12 in Crook et al.
(2003), which were the best in terms of DIC. Model 11 corresponds to a continuous—time model

with hazard rate
A(t) = exp(fo(t) + fage(age) + fs(ward) + byara + v15€xX + Y2dv2 + v3dv3), (9)

where fo(t) is the log-baseline rate, fage(age) is the nonlinear effect of age, fs(ward) is the struc-
tured spatial effect modelled through a MRF prior, and byarq is the unstructured spatial effect of
ward, modelled through uncorrelated random effects. The remaining covariates are dummy—coded:
sex=1 for female, and sex=0 for male, dv2=1 if the number of diseased vessels=2, dv2=0 else, and
dv3=1 if the number of diseased vessels=3, dv3=0 else.

The (log—) baseline prior was assumed as a (log—) piecewise exponential model with grid length
A=50 days and, alternatively, as a cubic P—spline model with 20 knots. For f,ze we assumed a
cubic P—spline prior with 20 knots.

Model 12 is a modification of (9), where the fixed effects 72 and 3 of dv2 and dv3 are replaced by
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time varying effects and the unstructured spatial effect of ward is removed:

A(t) = exp(fo(t) + fage(age) + fs(ward) + yisex + f1(¢)dv2 + fo(t)dv3). (10)

This model is a non—proportional hazard model and can be compared to the geoadditive propor-

tional hazard rate model (9).

P—spline model p-e.m.
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Figure 1: Posterior mean estimate for the (log-)baseline effect on time to CABG and 80% and 95% credible

intervals

P spline model | p.e.m.

sex | -0.037 (0.082) | -0.040 (0.085)
dv2 | 1.496 (0.100) | 1.500 (0.094)

dv3 | 1.815 (0.095) | 1.817 (0.089)

const | -9.382 (0.213) | -9.356 (0.198)

Table 2: Posterior mean estimates and standard deviations for the fixed effects on time to CABG

Table 2 contains estimation results for the fixed effects in model (9). While the effect of sex is
nonsignificant, the effects of two or three diseased vessels are clearly significant and show that
waiting times are decreasing with increasing number of vessels. These results correspond to the
findings of Crook et al. (2003). The baseline effects in Figure 1 show an initially high, but strongly
decreasing chance of CABG immediately after diagnosis, followed by a slow increase between 150

- 450 days. Later, the chance of being operated decreases. The overall pattern is similar to the
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results in Crook et al. (2003), obtained with a discrete time model. However, with the P spline
prior we get a distinctly smoother curve. The effect of age (Figure 2) is almost constant between
40 and 80 years and does not have significant influence on the waiting time. Also, the estimates
under a piecewise exponential and a cubic P—spline baseline prior are visually indistinguishable.

This is also true for the structured spatial effects shown in Figure 3. The maps give an

P—spline model p-e.m.
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Figure 2: Posterior mean estimates of the effect of age on time to CABG and 80% and 95% credible

intervals

P—spline model p.e.m.

Figure 3: Posterior mean estimates of the structured spatial effect on time to CABG

impression of the spatially varying chance of CABG with light (dark) areas indicating an increased
(decreased) effect. Areas with increased chances are Chelmsford and Malden in North Essex, while
in areas around Harlow in North Essex and Walthamstow and Chingford in North East London

chances are lower, that means patients have to wait longer for surgery. The maps in Figure 4 show
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P—spline model p-e.m.

Figure 4: Posterior probabilities of the structured spatial effects, with white (black) areas indicating that

at least 80 % of the sample estimates were positive (negative)

P spline model

Figure 5: Posterior mean estimates of the random spatial effect on time to CABG

posterior probabilities of these spatial effects. White (black) areas indicate that at least 80 per cent
of the sample estimates were positive (negative). Remaining grey areas are considered as non—
significant’. The unstructured random effects in Figure 5 are much smaller than the structured
spatial effects and cannot be reasonably interpreted. Therefore, unstructured spatial effects have
been omitted in the final analysis of model (10).

Model (10) with time—varying effects f1(t) and f5(¢) of dv2 and dv3 can be interpreted as a model
with three separate baseline effects fo(t), fo(t) + f1(t), fo(t) + f2(t) for patients with one, two or
three diseased vessels, respectively. The corresponding estimated curves are displayed in Figure 6

and indicate that the proportional hazards assumption is violated, because the baseline effect of
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patients with three diseased vessels crosses the two other curves.

P spline model p.e.m.

Figure 6: (log—)baseline effects on time to CABG: posterior mean estimates for 1 diseased vessel (dv1), 2

diseased vessels (dv2) and 3 diseased vessels (dv3)

6 Conclusion

Spatial extensions of statistical models for analyzing survival and, more general, event history data,
will be of increasing relevance because spatial small area information is often available. Assessment
of spatial effects on hazard or survivor functions is not only of interest in its own but can be quite
useful for detecting unobserved covariates, which carry spatial information.

In this work, we have developed a flexible class of nonparametric geoadditive survival models within
a unified Bayesian framework for modelling and inference. Several extensions could be considered
in future research. More general event history models and censoring mechanisms including spatial
components can be embedded in the counting process framework. An important practical issue
is the development of numerically efficient solutions for evaluating the likelihood in the presence
of time—varying effects of covariates. A related point is to explore properties of criteria for model

choice such as the DIC.
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Appendix
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Figure 7: (log—)Baseline effects for the various model specifications; displayed are posterior mean estimates
and 95 % credible intervals of run r, with r chosen such that M SE, is the median of MSE,..., MSEg
(solid lines), and the true (log—)baseline effect (dashed line).

a) p.e.m., MRF, r=59, MSE=0.138

b) p.e.m., geospline, r=4, MSE=0.140

¢) P spline model, MRF, r=32, MSE=0.106

d) P-spline model, geospline, r=24, MSE=0.112
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Figure 8: Nonparametric effects for the various model specifications; displayed are posterior mean
estimates and 95% credible intervals of run r, with r chosen such that MSE, is the median of
MSE;,...,MSE\y (solid lines), and the true function (dashed line).

a) p.e.m., MRF, r=9, MSE=0.0059

b) p.e.m., geospline, r=70, MSE=0.0056

¢) P—spline model, MRF, r=26, MSE=0.0061

d) P—spline model, geospline, r=74, MSE=0.0057
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Figure 9: Spatial effects for the various model specifications; displayed are posterior mean estimates of
run r, with 7 chosen such that M SE, is the median of MSFE1,..., MSFE190
a) true function b) p.e.m., MRF, r=65, MSE=0.041 ¢) p.e.m., geospline, r=83, MSE=0.021 d) P—spline

model, MRF, r=67, MSE=0.042 e) P-spline model, geospline, r=22, MSE=0.021
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