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Abstract

The asymptotic covariance matrices of the corrected score, the quasi score,
and the simple score estimators of a polynomial measurement error model
have been derived in the literature. Here some alternative formulas are pre-
sented, which might lead to an easier computation of these matrices. In
particular, new properties of the variables tr and µr that constitute the esti-
mators are derived. In addition, the term in the formula for the covariance
matrix of the quasi score estimator stemming from the estimation of nui-
sance parameters is evaluated. The same is done for the log-linear Poisson
measurement error model.

In the polynomial case, it is shown that the simple score and the quasi score
estimators are not always more efficient than the corrected score estimator
if the nuisance parameters have to be estimated.

1 Introduction

Despite the many results that have been found in recent years on the esti-
mation of regression coefficients of a polynomial model with measurement
errors in the covariable, cf., e.g., Cheng and Schneeweiss (1998), Cheng and
Schneeweiss (2002), Kukush et al. (2005b), Kukush and Schneeweiss (2005),
Shklyar et al. (2005), some issues concerning the computation of estimators
and their asymptotic covariance matrices (ACM) are still open to investiga-
tion. Although the polynomial model is the main subject of this paper, the
log-linear Poisson model with measurement errors is dealt with, too. Again,
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despite the work of Kukush et al. (2004) and Shklyar and Schneeweiss (2005),
there are still a few properties of the estimators of this model, which have
not yet been sufficiently investigated.

The plynomial measurement error model is given by the regression equation

y = ζ⊤β + ǫ,

with ζ⊤ =
(
1, ξ, · · · , ξk

)
, β := (β0, β1, · · · , βk)

⊤, Eǫ = 0, Vǫ = σ2
ǫ , ǫ and ξ

independent, and the measurement equation

x = ξ + δ,

δ ∼ N(0, σ2
δ ) being the measurement error, which is independent of ξ and ǫ. It

is assumed that σ
2

δ is known. In addition, we here assume that ξ ∼ N(µξ, σ
2
ξ ).

The problem is to estimate β from an i.i.d. sample (xi, yi), i = 1, · · · , n.

In addition to the naive(N) estimator, we consider two consistent estimators:
the (structural) quasi score (QS) and the (functional) corrected score (CS)
estimator. The first one utilizes the distribution of ξ, the latter one does not.
Both methods are based on a transformation of the powers xri of the data xi
into new (artificial) data, µr(xi) for QS and tr(xi) for CS.

The first issue of this paper is to explore some, up to now unknown, properties
of the variables µr and tr and to reveal a peculiar duality between them.
Another issue is to transform the formulas for the ACMs and their small-σδ
approximations so that they become easier to compute, possibly with the
help of a matrix oriented programming language. In particular, they should
be written in terms of the observable variable x instead of the unobservable
ξ. An important point in this respect is the evaluation of the terms in the
ACM of QS that stem from the estimation of the nuisance parameters µξ and
σ2
ξ . Contrary to what one might conclude from the original form of the ACM

in Kukush et al. (2005b), it turns out that these additional terms can be
computed without any integration (although integration remains necessary
to compute the main term of the ACM formula).

Shklyar et al. (2005) have studied a simplified version of the QS estimator,
the so-called simple score (SS) estimator. Two equivalent formulas for its
ACM are presented. The ACM formula has the same term originating from
the estimation of the nuisance parameters as the ACM of QS.

If this term is ignored (i.e., if the nuisance parameters are taken to be known),
the difference of the ACMs of the CS and SS estimators is p.s.d., cf. Shklyar
et al. (2005). This is no more true if the nuisance parameters have to be
estimated. In this case, the difference of the ACMs may become indefinite.
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This result settles a question which up to now has been an open problem.
We now know that, when the nuisance parameters have to be estimated, the
SS estimator is not necessarily more efficient than the CS estimator (as it is
in the case of known nuisance parameters). In particular, this may happen
if the error variance is large. A similar result holds for the QS estimator.

As to the log-linear Poisson measurement error model, there is no need to
repeat the ACM formula for the CS estimator, which is well documented in
Shklyar and Schneeweiss (2005). The ACM of the QS estimator can only be
given in an implicit form (i.e., as an integral). The SS estimator of Shklyar
and Schneeweiss (2005) has been derived via an ad hoc approach. There is,
however a more general model from which an SS estimator can be developed.
This has been done by Kukush et al. (2005a). Therefore the SS estimator for
the Poisson model is now constructed on the basis of this last paper, and its
ACM is derived. Finally, the contribution of the estimation of the nuisance
parameters to the ACM of QS and SS is found. It is shown that it is the
same for QS and SS and, indeed, for a general class of structural estimators,
just as in the case of the polynomial measurement error model.

In Section 2, the variables µr and tr are investigated. More results on deriva-
tives of the µr are found in Section 3. Section 4 deals with the ACM of the QS
estimator in the polynomial model and in particular with the terms resulting
from estimating the nuisance parameters. Section 5 has a reformulation of
the ACM of the CS estimator, and Section 6 deals with the SS estimator. In
Section 7, an example is presented showing that, in the polynomial model,
the ACM of SS is not necessarily smaller (in the Loewner sense) than the
ACM of CS. Some new results for the Poisson model are found in Section 8.
Section 9 has some concluding remarks.

2 QS and CS: The variables µr and tr

The QS estimator β̂Q of the polynomial measurement error model is based
on the quasi score function

ψQ(y, x, β) = (y − µ⊤β)v−1µ,

where µ := E(ζ|x) =: (µ0, µ1, · · · , µk)
⊤ and v := V(y|x). The elements of

the conditional mean vector µ, µr = E(ξr|x), are polynomials in x of degree
r. µ0 = 1 and µ1 = µ1(x) = E(ξ|x) is given by

µ1 =
σ2
δ

σ2
x

µx +

(
1 −

σ2
δ

σ2
x

)
x. (1)
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The other µr are polynomials of µ1 of degree r, c.f. Thamerus (1998):

µr =
r∑

j=0

(
r
j

)
µ∗

jµ
r−j
1 (2)

with

µ∗

j =






0 if j is odd

(j − 1)!!τ j if j is even
(3)

τ 2 := V(ξ|x) = σ2

δ

(
1 −

σ2
δ

σ2
x

)
, (4)

where (j − 1)!! is short for 1 · 3 · 5 · · · (j − 1) and (−1)!! = 1. The conditional
variance v is given by

v = σ2

ǫ + β⊤
(
M − µµ⊤

)
β, (5)

where M = M(x) is a (k + 1) × (k + 1)-matrix with elements Mrs = µr+s,
r, s = 0, · · · , k. Note that the µr(xi) can be computed from the data xi if
the nuisance parameters µx and σ2

x are given. Typically they are unknown
and must be estimated from the data xi in the usual way.

The CS estimator β̂C is based on the corrected score function

ψC(y, x, β) = yt− Tβ,

where t = t(x) is such that E(t|ξ) = ζ. Thus t = (t0, t1, . . . , tk)
⊤ and

E(tr|ξ) = ξr. T = T (x) is a (k+1)× (k+1)-matrix with elements Trs = tr+s.
The tr are polynomials in x of degree r. They can be computed via the
recursion formula, cf. Stefanski (1989) and Cheng and Schneeweiss (1998),

tr+1 = trx− rtr−1σ
2

δ ; t0 = 1, t−1 = 0. (6)

Note the duality in the definitions of µ and t:

µ = E(ζ|x), E(t|ξ) = ζ

and also in the matrices M and T :

M = E(ζζT |x), E(T |ξ) = ζζ⊤.

This duality reaches farther. It turns out that, although the defining formulas
(2) and (6) for µ and t, respectively, are quite different, there are other ways
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of computing µ and t, which very much resemble (2) and (6), but with the
role of µ and t interchanged.

Proposition 1

The variables µr can be computed via the recursion formula

µr+1 = µrµ1 + rµr−1τ
2, µ0 = 1, µ−1 = 0. (7)

Proof: According to (2)

µr+1 =
r+1∑

j=0

(
r + 1
j

)
µr+1−j

1 µ∗

j

=
r+1∑

j=1

(
r

j − 1

)
µr+1−j

1 µ∗

j +
r∑

j=0

(
r
j

)
µr+1−j

1 µ∗

j

=
r∑

j=0

(
r
j

)
µr−j1 µ∗

j+1 +
r∑

j=0

(
r
j

)
µr+1−j

1 µ∗

j .

In the second equation we used the identity

(
r + 1
j

)
=

(
r

j − 1

)
+

(
r
j

)
, 1 ≤ j ≤ r.

Now again by (2), the r.h.s. of the recursion formula (7) is

r∑

j=0

(
r
j

)
µr+1−j

1 µ∗

j + r
r−1∑

j=0

(
r − 1
j

)
µr−1−j

1 µ∗

jτ
2

=
r∑

j=0

(
r
j

)
µr+1−j

1 µ∗

j +
r−1∑

j=0

(
r

j + 1

)
µr−1−j

1 µ∗

j+2

=
r∑

j=0

(
r
j

)
µr+1−j

1 µ∗

j +
r∑

j=0

(
r
j

)
µr−j1 µ∗

j+1 = µr+1.

In the second equation the identity,

(j + 1)µ∗

jτ
2 = µ∗

j+2,

see (3), was used and in the third equation the fact that µ∗

1 = 0.�
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Remark: The proof is similar to the proof of (6) as given in Cheng and
Schneeweiss (1996).

Proposition 2

tr can be computed via the closed form formula

tr =
r∑

j=0

(
r
j

)
µ+

j x
r−j (8)

µ+

j :=






0 if j is odd

(j − 1)!!(−1)
j
2σjδ if j is even

Proof: If we replace µr, µ1, and τ j with tr, x and (−1)
j
2σjδ , respectively,

(7) changes to (6) and (2) changes to (8). By Proposition 1, (7) follows from
(2), and so (6) follows from (8). But as (6) defines the tr uniquely, the tr
defined by (6) must be the same as those defined by (8).�

The great similarity in the construction of the variables µr and tr can also
be seen by looking at its values, e.g.:

µ1 = µ1, µ2 = µ2

1 + τ 2, µ3 = µ3

1 + 3τ 2µ1, µ4 = µ4

1 + 6τ 2µ2

1 + 3τ 4

and

t1 = x, t2 = x2 − σ2

δ , t3 = x3 − 3σ2

δx, t4 = x4 − 6σ2

δx
2 + 3σ4

δ .

3 Derivatives of µr

By (2) and (3) µr is a function of µ1 and τ 2. We can derive formulas for the
derivatives of µr with respect to µ1 and τ 2, which will be usefull later on.

Proposition 3

∂µr
∂µ1

= rµr−1, r ≥ 1 (9)

∂µr
∂τ 2

=

(
r
2

)
µr−2, r ≥ 2 (10)
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Proof: Instead of (9), we will proof the stronger proposition

µr = r

∫ µ1

0

µr−1dµ1 + µ∗

r.

Indeed, by (2) the r.h.s of this equation equals

r

∫ µ1

0

r−1∑

j=0

(
r − 1
j

)
µ∗

jµ
r−1−j
1 dµ1 + µ∗

r

= r

r−1∑

j=0

(
r − 1
j

)
µ∗

j

µr−j1

r − j
+ µ∗

r

=
r−1∑

j=0

(
r
j

)
µ∗

jµ
r−j
1 + µ∗

r

=
r∑

j=0

(
r
j

)
µ∗

jµ
r−j
1 ,

which is equal to µr by (2).

To prove (10), first note that by (3), for j even, j ≥ 2,

∂µ∗

j

∂τ 2
= (j − 1)!!

j

2
τ j−2

=

(
j
2

)
(j − 3)!!τ j−2 =

(
j
2

)
µ∗

j−2.

Now from (2) and the previous equation, for r ≥ 2,

∂µr
∂τ 2

=
r∑

j=2

(
r
j

)(
j
2

)
µ∗

j−2µ
r−j
1

=
r(r − 1)

2

r∑

j=2

(
r − 2
j − 2

)
µ∗

j−2µ
r−j
1

=

(
r
2

) r−2∑

j=0

(
r − 2
j

)
µ∗

jµ
r−2−j
1 =

(
r
2

)
µr−2.�

By stacking the formulas (9) and (10), respectively, for r = 0, . . . , k, we
can now give corresponding expressions for the vector µ. We introduce the
(k + 1) × (k + 1) triangular band matrices
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D1 :=





0
1 0

2 0
· · ·

· · ·
k 0





D2 :=





0
0 0(
2
2

)
0 0

(
3
2

)
0 0

· · ·
· · ·(
k
2

)
0 0





(11)

and note that

D2 =
1

2
D2

1. (12)

Proposition 3 then, translates immediately into.

Proposition 4

∂µ

∂µ1

= D1µ (13)

∂µ

∂τ 2
= D2µ. (14)

Finally we also have

Proposition 5

µ1

∂µ

∂µ1

= (D − τ 2D2

1)µ (15)

with D := diag(0, 1, 2, . . . , k).

8



Proof: First note that by Proposition 1

µ1µ =





µ1

µ2

µ3

...
µk+1




− τ 2





0
µ0

2µ1

...
kµk−1




.

The last vector equals D1µ, and the first vector on the r.h.s multiplied by
D1 equals Dµ. Therefore

µ1

∂µ

∂µ1

= D1µ1µ = Dµ− τ 2D2

1µ.�

4 The ACM of QS

According to Kukush et al. (2005b), the ACM of β̂Q is given by

ΣQ = (Ev−1µµ⊤)−1 + (Ev−1µµ⊤)−1(σ2

xF1F
⊤

1 +
2

σ4
x

F2F
⊤

2 )(Ev−1µµ⊤)−1 (16)

where

Fp = Ev−1µ
∂µ⊤

∂γp
β, p = 1, 2, γ1 = µx, γ2 =

1

σ2
x

.

The F -terms stem from the estimation of the nuisance parameters. The
purpose of this section is to evaluate these terms so that they become com-
putationally more accessible. It turns out that it is not necessary to compute
the expected value as prescribed in the definition of Fp.

Proposition 6

The ACM of β̂Q equals

ΣQ = (Ev−1µµ⊤)−1 + F, (17)

where

F = σ4

δ (G
⊤

1 ββ
⊤G1 + 2G⊤

2 ββ
⊤G2)

G1 =
1

σx
D1

G2 =
1

σ2
x − σ2

δ

(µXD1 −D + σ2

δD2).
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Proof: As µ is a function of µ1 and τ 2, we have

∂µ

∂γp
=

∂µ

∂µ1

∂µ1

∂γp
+
∂µ

∂τ 2

∂τ 2

∂γp
, p = 1, 2.

For p = 1 and p = 2, we find because of (1) and (4)

∂µ

∂γ1

=
∂µ

∂µ1

σ2
δ

σ2
x

∂µ

∂γ2

=

[
∂µ

∂µ1

(µx − x) −
∂µ

∂τ 2
σ2

δ

]
σ2

δ .

With

µx − x =
σ2
x

σ2
x − σ2

δ

(µx − µ1),

which follows from (1), the latter becomes

∂µ

∂γ2

= σ2

δ

[
∂µ

∂µ1

σ2
x

σ2
x − σ2

δ

(µx − µ1) −
∂µ

∂τ 2
σ2

δ

]

Finally, by (13) to (15),

∂µ

∂γ1

=
σ2
δ

σ2
x

D1µ =
σ2
δ

σx
G1µ

∂µ

∂γ2

= σ2

δ

[
σ2
x

σ2
x − σ2

δ

(µxD1 −D + τ 2D2

1)µ− σ2

δD2µ

]

Because of (12) and (4), the latter becomes

∂µ

∂γ2

= σ2

δ

σ2
x

σ2
x − σ2

δ

(µxD1 −D + σ2

δD2)µ = σ2

δσ
2

xG2µ.

We thus have

F1 =
σ2
δ

σx
Ev−1µµ⊤G⊤

1 β

F2 = σ2

δσ
2

xEv
−1µµ⊤G⊤

2 β.

By substituting F1 and F2 in (16) we finally obtain (17).�
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For k = 2 the two matrices G1 and G2 are, respectively,

G1 =
1

σx




0 0 0
1 0 0
0 2 0



 (18)

G2 =
1

σ2
x − σ2

δ




0 0 0
µx −1 0
σ2
δ 2µx −2



 . (19)

For small σ2
δ an approximation to ΣQ can be derived. The general formula

in Kukush and Schneeweiss (2005) can be specialized to the polynomial case
and yields

ΣQ = σ2

ǫ (EZ)−1

+σ2

δ (EZ)−1
E

{(
∂z⊤

∂x
β

)2

Z + σ2

ǫ

(
1

2

∂2Z

∂x2
+
∂z

∂x

∂z⊤

∂x

)}
(EZ)−1

+O(σ4

δ ),

where z := (1, x, . . . , xk)⊤ and Z := zz⊤. By noting that

∂z

∂x
= D1z,

∂2Z

∂x2
= D2

1Z + 2D1ZD
⊤

1 + ZD⊤2

1 ,

this can be written as

ΣQ = σ2

ǫ (EZ)−1

+ σ2

δ (EZ)−1
E{(β⊤D1ZD

⊤

1 β)Z + σ2

ǫ (D2Z + ZD⊤

2 + 2D1ZD
⊤

1 )}(EZ)−1

+ O(σ4

δ ). (20)

It may be noted that, contrary to (17), the expectations involved simply yield
moments of x and are therefore easy to compute.

¿From Kukush et al. (2005b) a similar formula can be derived, which however
is stated in terms of ξ rather than x. Both formulas differ in value but the
difference is of the order σ4

δ .

5 The ACM of CS

In Kukush et al. (2005b) a formula for the ACM of β̂C has been derived:

ΣC = (Eζζ⊤)−1{σ2

ǫEtt
⊤ + E(T − tζ⊤)ββ⊤(T − ζt⊤)}(Eζζ⊤)−1. (21)

11



This is a hybrid formula in so far as t and T are functions of x, whereas ζ is
a function of ξ. With (5) and with the help of the identity

E[(T − tζ⊤)ββ⊤(T − ζt⊤)|x]

= Tββ⊤T − tµ⊤ββ⊤T − Tββ⊤µt⊤ + tβ⊤Mβt⊤

= (T − tµ⊤)ββ⊤(T − µt⊤) + tβ⊤(M − µµ⊤)βt⊤,

(21) can be written as

ΣC = (ET )−1
E{(T − tµ⊤)ββ⊤(T − µt⊤) + vtt⊤}(ET )−1. (22)

Again only moments of x are needed in order to compute the ACM of β̂C .
We have several options to evaluate ET because, cf. Shklyar et al. (2005),

ET = EM = Etµ⊤ = Eζζ⊤.

In passing, it might be worthwile to mention the ACM of the naive (N)
estimator β̂N := (

∑n

1
ziz

⊤

i )−1
∑n

1
ziyi. A hybrid formula for its ACM is given

in Kukush et al. (2005b). It can be ”improved” to a formula that is based
on the observed variables xi solely:

ΣN = (EZ)−1
EvZ(EZ)−1.

6 SS and its ACM

Another structural estimator can be constructed as a simplified version of
QS. It is called simple score (SS) estimator and is based on the simplified
score function

ψS(y, x, β) = (y − µ⊤β)t.

An equivalent score function for SS is

ψ∗

S(y, x, β) = (y − µ⊤β)µ,

cf. Shklyar et al. (2005), which differs from ψQ just by the omission of the
factor v−1.

The merit of the SS estimator is that it is much simpler to compute than
the QS estimator. It is, however, (slightly) less efficient than the latter,
but it is still more efficient than the CS estimator as long as µξ and σ2

ξ are
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known and need not be estimated, see Section 7. It serves as an intermediate
estimator between QS and CS and is useful if one wants to compare the
relative efficiencies of the latter two.

The ACM of the SS estimator is given by two equivalent formulas depending
on whether it is derived from ψS or ψ∗

S:

ΣS = (ET )−1
Evtt⊤(ET )−1 + F

= (Eµµ⊤)−1Evµµ⊤(Eµµ⊤)−1 + F, (23)

where F is the same as in (17).

The first formula (23) is implicitly given in Shklyar et al. (2005), the second
one follows in a similar way from ψ∗

S. Their equivalence can be directly
seen by noting that t = Kµ with some nonsingular matrix K and that
E(µt⊤) = Eζζ⊤ = ET , cf. Shklyar et al. (2005).

7 Efficiency comparison

One can show that ΣQ ≤ ΣS, cf. Shklyar et al.(2005). Indeed, since the
term F in (17) and (23) is the same, one needs only to compare the first
terms in (17) and (23), respectively, and for this comparison one can use the
Cauchy-Schwartz inequality.

These arguments do not hold for an efficiency comparison of CS and SS. The
difference of their ACMs is

ΣC − ΣS = (ET )−1
E(T − tµ⊤)ββ⊤(T − µt⊤)(ET )−1 − F. (24)

It is not clear at the outset whether this difference is always ≥ 0. (It is,
of course, ≥ 0 if the last term vanishes, which occurs when the nuisance
parameters need not be estimated: ΣS ≤ ΣC if µξ and σ2

ξ are both known,
cf. Shklyar et al. (2005)).

In order to construct a counterexample, consider a quadratic model with β1 =
0 and µξ = 0 (β0 plays no role in the following). Then an easy calculation
shows that

ET =




1 0 σ2

ξ

0 σ2
ξ 0

σ2
ξ 0 3σ4

ξ



 .
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The matrix K := E(T − tµT )ββT (T − µtT ) is more difficult to compute. It
is a matrix which has the same pattern of zeros and nonzeros as ET :

K = β2

2




k11 0 k13

0 k22 0
k13 0 k33



 .

The matrix F has a similar form. It can be computed with the help of (18)
and (19):

F = σ4

δβ
2

2



 4

σ2
x




0 0 0
0 1 0
0 0 0



+
2

σ4
ξ




σ4
δ 0 −2σ2

δ

0 0 0
−2σ2

δ 0 4







 .

Now letting σ2
δ vary and keeping the other parameters, β2 and σ2

ξ , constant,
it turns out that the leading term in k11 is of the order σ4

δ , in k13 and k22 of
the order σ6

δ , and in k33 of the order σ8
δ .Thus the matrix of leading terms of

K is of the form

K̃ := β2

2




k̃11σ

4
δ 0 k̃13σ

6
δ

0 k̃22σ
6
δ 0

k̃13σ
6
δ 0 k̃33σ

8
δ



 ,

where k̃ii > 0, i = 1, 2, 3. However, when K is multiplied by (ET )−1 on both
sides the resulting matrix S := (ET )−1K(ET )−1, which has the same form
as K, has elements at its four corners that are all of the order σ8

δ . Indeed if
the elements of (ET )−1 are denoted by eij, the matrix of leading terms of S
is of the form

S̃ := β2

2




e213k̃33σ

8
δ 0 e33e13k̃33σ

8
δ

0 e2
22k̃22σ

6
δ 0

e33e13k̃33σ
8
δ 0 e2

33k̃33σ
8
δ



 ,

Its determinant vanishes: detS̃ = 0. The matrix of leading terms of S−F =
ΣC − ΣS is the same as S̃ except for the element in the upper left corner,
which becomes

β2

2(e
2

13k̃33 −
2

σ4
ξ

)σ8

δ .

The determinant of this matrix, therefore, is negative. Thus det(ΣC − ΣS)
will eventually become negative for sufficiently large σ2

δ . E.g., for σ2
ξ = 0.5

and β2 = 1, this determinant has the (rounded) value -336,853 if σ2
δ = 1.6.

When one depicts det(ΣC−ΣS) as a function of σ2
δ one sees a curve that starts

with the value 0, gradually climbs to a maximum, and falls rapidly towards
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Figure 1: The determinant of ΣC − ΣS as a function of σ2
δ

−∞, crossing the zero-line between σ2
δ = 1.5 and σ2

δ = 1.6, see Figure 1.
(The very gentle rise of the curve at its start is in accordance with the fact
that ΣC − ΣS is of the order σ4

δ for σ2
δ → 0, cf. Kukush et al. (2005b)). A

similar picture shows up when one considers the principal minor consisting
of the four corner elements of ΣC − ΣS.

On the other hand, all the diagonal elements of ΣC−ΣS have positive leading
terms and thus tend to ∞ for σ2

δ → ∞. E.g., Figure 2 shows (ΣC − ΣS)11

as a function of σ2
δ for the same parameter values as in Figure 1. Thus the

CS estimates of the elements of β have larger asymptotic variances than the
corresponding SS (and, for that matter, also QS) estimates. In this narrow
sense, SS and QS are more efficient than CS. Figures 1 and 2 are typical also
for other parameter constellations.

As ΣQ differs from ΣS only by a small amount, one may expect that a similar
result holds for the difference of ΣC and ΣQ. Indeed, for the same parameter
values as before, det(ΣC − ΣQ) = −337, 560.

Thus, at least for large values of σ2
δ , the statements ΣS ≤ ΣC and ΣQ ≤ ΣC

are no more true if the nuisance parameters have to be estimated.
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Figure 2: The first diagonal element of ΣC − ΣS as a function of σ2
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8 The Poisson model

8.1 CS, QS and SS

The log-linear Poisson model with measurement errors is given by a response
variable y which is Poisson distributed with a parameter λ that is a log-linear
function of a random vector ξ (cf. Shklyar and Schneeweiss, 2005).

y|ξ ∼ Po(λ)

λ = exp(β0 + β⊤

1 ξ),

ξ = (ξ1, . . . , ξp)
⊤. The compound vector β := (β0, β

⊤

1 )⊤ is the parameter
of interest. In addition, there are nuisance parameters γ characterizing the
dirstribution of ξ. Here it is assumed that ξ ∼ N(µξ,Σξ). Finally, as in the
polynomial model, ξ is latent. Instead x = (x1, . . . , xp)

⊤ is observed with a
measurement error vector δ:

x = ξ + δ,

where δ ∼ N(0,Σδ), δ independent of ξ and y, and Σδ is assumed to be
known.
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The likelihood score function for β in the error free model is given by

ψ∗(y, ξ, β) = (y − λ)(1, ξ⊤)⊤.

The corrected score function ψC(y, x, β), which is the basis for the corrected

score (CS) estimator, is constructed such that E(ψC |y, ξ) = ψ∗ and is given
by

ψC(y, x, β) =

(
y − e
yx− e(x− Σδβ1)

)
,

where e = exp(β0 + β⊤

1 x − 1

2
β⊤

1 Σδβ1). The CS estimator constructed from
an i.i.d. sample (yi, xi), i = 1, . . . , n, is the solution to

n∑

i=1

ψC(yi, xi, β̂C) = 0.

The ACM of β̂C can be found in Shklyar and Schneeweiss (2005), equation
(22),albeit with a different notation.

For the quasi score (QS) estimator β̂Q we need to know the conditional
expectation and variance of y given ξ. The conditional distribution of x
given ξ is

x|ξ ∼ N(µ(x),⊤)

with

µ(x) = ΣδΣ
−1

x (µx − x) + x (25)

⊤ = Σδ − ΣδΣ
−1

x Σδ = Σξ − ΣξΣ
−1

x Σξ, (26)

cf. Shklyar and Schneeweiss (2005). (Note that the ⊤ of this section is
different from the T of the preceding sections and is not to be mixed up with
the transposition sign; ⊤ = τ 2 if p = 1. Similarly the vector µ(x) should
not be confused with the vector µ of the preceding sections; it is equal to
µ1 = µ1(x) if p = 1, see(1)). Therefore,

E(y|x) =: m(x, β) = exp{β0 + β⊤

1 µ(x) +
1

2
β⊤

1 ⊤β1} (27)

V (y|x) =: v(x, β) = m(x, β) + {exp(β⊤

1 ⊤β1) − 1}m2(x, β).

The quasi score function then is

ψQ(y, x, β) = (y −m)v−1
∂m

∂β
,
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where

∂m

∂β
= m

(
1
µ(x) + ⊤β1

)
=: mg, (28)

and the QS estimator is the solution to
n∑

i=1

ψQ(yi, xi, β̂Q) = 0.

The ACM of β̂Q is given by

ΣQ = (Ev−1m2gg⊤)−1. (29)

Here it is assumed that the nuisance parameters µx and Σx are given and
known to the statistician. The case of unknown nuisance parameters is
treated in the next subsection.

One can also construct a simplified score (SS) estimator β̂S which is based
on the simplified quasi score function.

ψS(y, x, β) = (y −m)(1, x)⊤.

This score function is derived from Kukush et al. (2005a). It differs from (but
is actually equivalent to) another simplified score function, which is given
in Shklyar and Schneeweiss (2005, equation (27)). Under known nuisance

parameters, the ACM of β̂S can be computed from the sandwich formula

ΣS = A−1

S BSA
−⊤

S , (30)

where

AS = −E
∂ψS
∂β⊤

= Em(1, x⊤)⊤g⊤

BS = EψSψ
⊤

S = Ev(1, x⊤)⊤(1, x⊤).

By arguments similar to those of Shklyar and Schneeweiss (2005)1 one can
evaluate AS and BS and thus ΣS.

Proposition 7

If µx and Σx are known, the ACM of the SS estimator is given by (30) with

AS = w

(
1 b⊤

b bb⊤ + Σξ

)
(31)

BS = w

(
1 b⊤

b bb⊤ + Σx

)
+ w∗

(
1 b∗⊤

b∗ b∗b∗⊤ + Σx

)
(32)

1There is a mistake in Corollary 3 of that paper: In (38), the term (Σx + 2ΣxΣ−1

w
Σx)

must be replaced with (Σx + ΣxΣ−1

w
Σx).
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where

w := exp(β0 + β⊤

1 µx +
1

2
β⊤

1 Σξβ1)

w∗ := [1 − exp(−β⊤

1 ⊤β1)] exp[2(β0 + β⊤

1 µx + β⊤

1 Σξβ1)]

b := µx + Σξβ1

b∗ := µx + 2Σξβ1

It can be shown, cf. Shklyar and Schneeweiss (2005) and Kukush et al.

(2005a), that

ΣQ ≤ ΣS ≤ ΣC .

Note, however, that the equations for ΣQ and ΣS are only valid under the
assumption of known nuisance parameters.

8.2 Nuisance parameters

The ”structural” estimators β̂Q and β̂S of the previous section have been
constructed assuming the (nuisance) parameters γ characterizing the distri-
bution of ξ to be known. We now drop this assumption. Instead we assume
that γ can be estimated from the observed data xi, 1, . . . , n, solely, without
the necessity to resort to the model and to the data yi. Under our assump-
tion that ξ ∼ N(µξ,Σξ) and consequently x ∼ N(µx,Σx), µξ and Σξ or,
equivalently, µx and Σx can be easily estimated by the corresponding sample
moments. We take as γ the vector composed of µx and w := vech(Σ−1

x ), i.e.,
γ = (µx, w

⊤)⊤, which is just a reparameterization of (µx,Σx).

The regression parameter vector β is then estimated by using a (structural)
score function like ψQ or ψS, where the nuisance parameter vector γ has been
substituted by its estimate γ̂. The resulting estimator is still consistent. But
the formula for its ACM has to be augmented by a term stemming from the
estimation of γ.

¿From a general point of view, assume that β is estimated on the basis of some
general estimating function ψ := ψ(y, x, β, γ), where the nuisance parameter
γ has been estimated in advance from the data xi, i = 1, . . . , n. Then the
ACM of β̂ is given by, cf. Shklyar et al. (2005),

Σ = A−1BA−⊤ + A−1AγΣγA
−⊤

γ A−⊤ =: Σ◦ + F, (33)

where A = −E
∂ψ

∂β⊤ , B = Eψψ⊤, Aγ = −E
∂ψ

∂γ⊤
and Σγ is the ACM of γ̂.

Σ◦ := A−1BA−⊤ is the ACM of β if γ is known, just as in the previous section.
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The matrix F , which is due to the estimation of the nuisance parameters,
corresponds to the matrix F of the polynomial model, see (17) and (23), but
is different from this F .

To be more specific, let the estimating function ψ be of the form

ψ(y, x, β, γ) = (y −m)a, (34)

where a := a(x, β, γ) is a known vector-valued function that specifies the
estimation procedure. For QS, a = v−1 ∂m

∂β
, and for SS, a = (1, x⊤)⊤. Note

that m is now also a function of γ, i.e., m := m(y, x, β, γ).

Proposition 8

For the Poisson model, F is independent of a and thus independent of the
estimation procedure chosen. In particular, F is the same for QS and SS.

This property has been proved for the polynomial measurement error model
in Shklyar et al. (2005) – see also (17) and (23) – but not for the Poisson
model, where F takes a different form.

Proof: To evaluate F for the Poisson model, first note that with the esti-
mation function (34)

A = Ea
∂m

∂β⊤
= Emag⊤,

where g comes from (28). Similarly,

Aγ = Ea
∂m

∂γ⊤
.

Now, by (27) and (25),

∂m

∂µx
= mΣ−1

x Σδβ1 = mΣ−1

x d, (35)

where d := Σδβ1, and by (25) to (27),

∂m

∂w
= m

∂vec⊤(Σ−1
x )

∂w
[vec{d(µx − x)⊤} −

1

2
vec(dd⊤)],

see Dhyrmes (1984, Prop. 100) for the differentiation rule employed. With
the abbreviation Dw := ∂vec⊤(Σ−1

x )/∂w and using the rule vec(ab⊤) = b⊗a,
the last expression can also be written as

∂m

∂w
= mDw[{µx − x−

1

2
d} ⊗ d].
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Dw is a matrix of ones and zeros such that D⊤

wvech(A) = vec(A) for any
symmetric matrix A.

Now from (25),

µx − x = ΣxΣ
−1

ξ {µx − µ(x)}

and thus

∂m

∂w
= mDw[{ΣxΣ

−1

ξ µx −
1

2
d− ΣxΣ

−1

ξ µ(x)} ⊗ d].

Together with (35) we thus have

∂m

∂γ
= mh

with

h :=

(
Σ−1
x d

Dw[{ΣxΣ
−1

ξ µx −
1

2
d− ΣxΣ

−1

ξ µ(x)} ⊗ d]

)
.

Obviously, g and h are linearly related:

h = Gg

with a non-stochastic matrixG. With the help of the identity ΣxΣ
−1

ξ ⊤β1 = d,
see (26), one can verify that G is given by

G =

(
Σ−1
x d 0

Dw[(ΣxΣ
−1

ξ µx + 1

2
d) ⊗ d] −Dw[(ΣxΣ

−1

ξ ) ⊗ d]

)
.

It follows that

Aγ = Emah⊤ = Emag⊤G⊤ = AG⊤

and, by (33),

F = G⊤ΣγG.

AsG is independent of the estimation procedure a, the proposition is proved.�

As a consequence of Proposition 8, ΣQ ≤ ΣS also holds true when nuisance
parameters are present.

In the univariate case, where β1 is a scalar – a case, which has been dealt
with in Kukush et al. (2004) – the matrix G has a rather simple form. Note
that in this case w = σ−2

x and thus Dw = 1. We have

G = σ2

δβ1

(
1

σ2
x

0
σ2

x

σ2
x−σ

2

δ

(µx + 1

2
τ 2β1) − σ2

x

σ2
x−σ

2

δ

)
.
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With

Σγ = diag(σ2

x, 2σ
−4

x )

we finally obtain

F = σ4

δβ
2

1

[
1

σ2
x

(
1
0

)(
1
0

)⊤

+
2

(σ2
x − σ2

δ )
2

(
µx + 1

2
β1τ

2

−1

)(
µx + 1

2
β1τ

2

−1

)⊤
]
.

9 Conclusion

The ACMs of three estimators (CS, QS, and SS) have been studied for the
polynomial as well as for the Poisson measurement error model. Some alter-
native formulas that are based solely on the observable variables have been
presented. The ACMs of QS and SS (and also of other structural estima-
tors) have a term that stems from the estimation of the nuisance parameters.
This term has been evaluated for both models. In particular for the Poisson
model, this term is the same for a large class of structural estimators, a result
which has been found previously for the polynomial model, too.

The presence of this term in the ACMs of the QS and SS estimators dimin-
ishes the efficiency of QS and SS, which would be greater if the nuisance
parameters were known. In particular for a polynomial model, the efficiency
of SS and also of QS is so much reduced that, in some cases, it is not higher
than the efficiency of CS anymore (as it would be if the nuisance parameters
were known).

In the polynomial model, the CS and QS estimators are constructed with the
help of transformed variables tr(xi) and µr(xi), respectively. New formulas
for the computation of these variables have been derived.
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