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Abstract 

This paper analyzes research efficiency at the industry level in manufacturing for 13 European 

member and four nonmember countries during 2000 and 2004. A unique dataset was compiled 

that matches patent applications at the European Patent Office (EPO) to industry-specific 

R&D inputs from EU KLEMS. We find that Germany, the United States, and Denmark have 

the highest efficiency scores on average in total manufacturing. The main industries that are at 

the technology frontier are those involved in electrical and optical equipment and machinery. 

Separate frontier estimations for these industries, conducted without the constraint of a 

constant technology frontier, provide additional support for our results. 

 

 

Keywords: R&D efficiency, industry level, data envelopment analysis, manufacturing 
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1 Introduction 

A knowledge-production function is central to many endogenous economic growth models in 

which innovation plays a crucial role in sustaining long-term growth. Innovation becomes 

even more important to productivity growth when a particular national industry approaches 

the world technology frontier because, at that point, imitation, as opposed to true innovation, 

is less feasible. Empirical literature confirms the importance of research and development 

(R&D) expenditures to economic growth [e.g., GUELLEC & VAN POTTELSBERGHE, 2001]. The 

resources available for the generation of new knowledge are often limited and thus need to be 

used as efficiently as possible to sustain and promote long-term growth. 

 

Our paper aims at identifying the country-industry combinations that define the world 

technology frontier in the manufacturing sector. In the literature to date, country-level studies 

assume a common technology frontier across all industries under observation. Obviously, 

however, calculating efficiency at the country level ignores differences in the structure and 

efficiency of different industries. This paper intends to discover which countries have the 

most efficient industry-specific knowledge production processes. First, we derive efficiency 

estimates for the entire manufacturing sector at the country level. Second, we relax the 

assumption of a common country-industry technology frontier and identify those county-

industry combinations that are occupying the world technology frontier. Third, we focus on 

those industries with the highest efficiency scores — that is, the industries that define the 

technology frontier — and conduct separate efficiency analyses to add further solid support to 

our results. 

 

Identifying the best-performing industries among countries can serve the useful purpose of 

providing a benchmark against which other industries’ strengths and weaknesses can be 

measured. Being able to conduct a performance assessment of knowledge production will 

help decision makers allocate limited financial resources efficiently so as to achieve the most 

knowledge production possible. In addition, countries with less efficient industries can use 

our findings regarding the most efficient countries to improve their own processes. 

 

Although a number of studies measure research efficiency at the country level, ours is the first 

to analyze it at the industry level. This focus on the industry level of knowledge production 

provides detailed insight into efficiency differences within and across countries’ research 
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activities. It allows us to conduct a fine-grained examination of various nations’ domains of 

specialization, measured by a high share of gross output and industries occupying the world 

technology frontier. 

 

Our study is based on a unique industry dataset compiled from two sources: EU KLEMS and 

PATSTAT. We match EPO patent applications to the EU KLEMS industry-level data by using 

the concordance provided in SCHMOCH & AL. [2003]. To our knowledge, this paper is the first 

to link these two sources, thus making a unique contribution to the study of research 

efficiency. 

 

To measure research efficiency across industries, we employ the nonparametric DEA method, 

an approach well suited, for several reasons, for measuring R&D performance [WANG & 

HUANG, 2007]. It requires no specification of the functional form of the knowledge production 

process; neither does it need any a priori information concerning the importance of inputs and 

outputs. Since DEA is a deterministic approach, extreme observations can have a strong 

influence on the calculated efficiencies. We circumvent this problem by using the super-

efficiency approach of BANKER & CHANG [2006] to detect and then remove extreme 

observations from the sample, thus achieving a consistent and robust technology frontier. 

Furthermore, industries of various economic sizes are compared in our model. It is both 

statistically and economically important to determine whether the underlying technology 

exhibits increasing, constant, or decreasing returns to scale. Therefore, we test the hypotheses 

of constant returns to scale using the bootstrap procedure proposed by SIMAR & WILSON 

[2002]. 

 

Our paper is organized as follows. Section 2 introduces the analytical framework and briefly 

summarizes the literature in this field. In Section 3, the methodology of data envelopment 

analysis (DEA) studies is introduced. Section 4 describes the model specification and data. 

The empirical results for total manufacturing and by industry are presented in Section 5. 

Section 6 summarized the findings and concludes. 
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2 Analytical Framework 

We focus on the economic process leading to reduction in the cost of producing existing 

products (process innovations) or in the development of new products (product innovations). 

In particular, we analyze whether there are substantial differences in knowledge creation 

between countries and industries. 

 

Our model follows the “knowledge production function” framework first articulated by 

GRILICHES [1979] and implemented by PAKES & GRILICHES [1984], JAFFE [1986], HALL & 

ZIEDONIS [2001], among others. Innovative output is the product of knowledge-generating 

inputs, similar to the production of physical goods. Some observable measures of inputs, such 

as R&D expenditure and high-skilled labor and researchers, are invested in a knowledge 

production function. These “inputs” are directed toward producing economically valuable 

knowledge. The production process is viewed as a continuum leading from R&D and human 

capital (the inputs) to some observable measure of innovative activity: 

 

( & , , )ci ci ci ciI f R D HS MS  

 

where I is innovative output, R&D denotes the R&D capital stock as a proxy for accumulated 

knowledge, and HS and MS are, respectively, the number of high-skilled and medium-skilled 

workers employed. The unit of observation is the country (c) industry (i) level. 

 

Innovative output as the result of knowledge production is difficult to measure. We use patent 

applications as a measure of successful knowledge production, although doing so has its 

drawbacks. First, patent applications are often criticized as measuring just one component of 

the innovative output since inventors may choose other protection strategies, such as trade 

secrets. Thus, the use of patents underestimates real innovative activity. Second, research 

[E.G., SCHERER, 1965; PAKES & SCHANKERMAN, 1984; PAKES, 1986; GRILICHES, 1990] shows 

that the value of patents is skewed to the right, with only a few patents being highly valuable. 

Despite this criticism, however, patents are probably the best indicator of research output and 

are widely used as such in the literature [E.G., HAUSMAN ET AL., 1984; KORTUM, 1997; TEITEL, 

1994]. First, they are by definition related to inventiveness and based on an objective and 

fairly time-insensitive standard. Second, data on patent applications are widely available and 

provide additional information about the origin of the inventor and a detailed technological 

classification of the underlying invention. 
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Based on a knowledge production function framework, the literature confirms the importance 

of research personnel and R&D capital to the knowledge creation process; however, far less 

attention has been paid to the importance of the efficient use of scare resources in this process. 

 

ROUSSEAU & ROUSSEAU [1997, 1998] were the first to use a DEA approach to assess the 

relative efficiency of the R&D process. Using a sample of 18 developed countries, they 

applied an input-oriented, constant return to scale model with two outputs—the number of 

scientific publications and the number of granted patents at the European Patent Office (EPO) 

— and used GDP, along with population and R&D investment, as input factors. Based on 

their data and specification, they found Switzerland to be the most efficient country in Europe 

in 1993, followed closely by the Netherlands. Using the same framework, ROUSSEAU & 

ROUSSEAU [1998] extended their work on R&D efficiency by including the non-European 

countries, specifically the United States, Canada, Australia, and Japan. With the caveat that 

the findings could contain some bias due to using EPO patent applications for the non-

European countries, the authors reaffirmed their previous conclusion that Switzerland, again 

followed by the Netherlands, are the countries with the highest research efficiency. 

 

LEE & PARK [2005] measure R&D efficiency in 27 countries with a special emphasis on Asia. 

They expand ROUSSEAU & ROUSSEAU’S [1997, 1998] basic framework by using the 

technology balance of receipts as an additional output of the innovation process. In their basic 

model, Austria, Finland, Germany, Hungary, and Great Britain are found to occupy the 

technology frontier. 

 

WANG & HUANG [2007] propose a three-stage approach to evaluating the relative technical 

efficiency of R&D across 30 OECD member and nonmember countries that controls for cross-

country variation in external factors such as the enrollment rate in tertiary education, PC 

density, and English proficiency. In the first stage, they apply an input-oriented DEA analysis 

where patents and publications serve as outputs and R&D expenditure and researchers as 

inputs. Their findings indicate that about half the countries in their sample are efficient in 

R&D activity. In a second stage, they take the input slacks generated in the first stage as the 

dependent variable for a Tobit regression in order to purge external effects caused by 

environmental factors outside the efficiency evaluation. Using the results from the second 

stage, an additional DEA is conducted, the results of which indicate a decrease in the number 

of efficient countries due to the external factors. 
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A recent study by SHARMA & THOMAS [2008] measures the efficiency of the R&D process 

across 18 countries using a DEA approach that applies constant as well as variable returns to 

scale production technology. Their approach deviates from previous work in two ways. First, 

they consider a time lag between R&D expenditure and patents granted and, second, they 

include developing countries in their analysis. Their main findings indicate that when using 

the constant returns to scale approach, Japan, the Republic of Korea, and China occupy the 

efficiency frontier, whereas within the variable returns to scale framework, Japan, the 

Republic of Korea, China, India, Slovenia, and Hungary are found to be efficient. 

 

3 Methods 

Data envelopment analysis (DEA) is a nonparametric approach to measuring the efficiency of 

a DMU that neither requires any assumptions about the functional form of a production 

function nor any a priori information on the importance of inputs and outputs. Central to DEA 

is the production frontier, which is defined as the geometrical locus of optimal production 

plans [SIMAR & WILSON, 1998, 2007]. Using linear programming techniques, a piecewise 

linear surface, or frontier, that envelopes the data is constructed as a reference point. The 

individual efficiencies of each DMU relative to the production frontier are then calculated by 

means of distance functions. DMUs located on the frontier are considered 100% efficient, 

whereas DMUs with efficiency scores below 100% are inefficient. The distance to the frontier 

is thus a measure of inefficiency. There are basically two types of DEA model: those that 

maximize outputs, leaving the input vector fixed (output-oriented), and those that minimize 

inputs, keeping the output vector constant (input-oriented). 

 

We use the output-oriented approach with constant returns to scale technology. The efficiency 

score of the i th industry in a sample of N industries in the constant returns to scale (VRS) 

model is determined by the following optimization [COELLI & AL., 2005]: 
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where λ is a N×1 vector of constants and ,X Y  represent input and output vectors.   

measures the radial distance between the observation ii yx ,  and the efficiency frontier. The 

efficiency score is the point on the frontier characterized by the level of inputs necessary to be 

efficient [SIMAR & WILSON, 1998]. A value of 1 1   indicates that an industry is fully 

efficient and thus is located on the efficiency frontier. 

 

Different assumptions can be made regarding the underlying technology that defines the 

frontier. Here, we distinguish between two types of technology: constant returns to scale 

(CRS) [CHARNES & AL., 1978] and variable returns to scale (VRS), which assumes that scale 

inefficiencies are present [BANKER & AL. 1984]. The only difference between the CRS and the 

VRS models is the presence of an additional convexity condition ∑λ=1. 

 

Within this framework, industries of different sizes concerning the input requirements are 

compared. It is both statistically and economically important to determine whether the 

underlying technology exhibits increasing, constant, or decreasing returns to scale. If we 

assume, a priori, CRS technology without investigating the possibility that it is nonconstant, 

we run the risk that our efficiency estimates will be inconsistent. On the other hand, if we 

assume variable returns to scale when, in reality, the technology exhibits global constant 

returns to scale, there may be a loss of statistical efficiency [SIMAR & WILSON, 2002]. To test 

hypotheses regarding returns to scale we employ a bootstrap procedure. We test the null 

hypothesis (H0) of a global CRS production frontier against the alternative hypothesis (H1) 

that the production frontier exhibits VRS. Our test statistic is the estimated ratio between the 

CRS and the VRS efficiency; formally 

 

ˆ ( , )
ˆ

ˆ ( , )

CRS
n
VRS
n

x y

x y




 . 

 

This statistic provides an estimate of the distance between both frontiers. The appropriate p-

values are calculated by means of bootstrapping.2 

 

Our DEA estimator is a deterministic frontier model, which implies that all observations are 

assumed to be technically attainable. The main drawback of deterministic frontier models is 

that they are highly sensitive to outliers and extreme values in the data [SIMAR & WILSON, 
                                                 
2 For a detailed description of the test procedure, see Simar & Wilson [1998, 2002]. 
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2000, 2007]. Outliers are extreme observations often caused by errors in measuring either the 

inputs or outputs. It is therefore important to assess ex ante whether the data contain outliers 

that are driving the location of the efficiency boundary and inappropriately influencing the 

performance estimations of the other DMUs in the sample. In this paper we use the super-

efficiency method proposed by ANDERSEN & PETERSEN [1993] and BANKER & CHANG [2006] 

to identify and remove extreme values ex ante. The concept of super-efficiency is based on 

the idea of re-estimating the production frontier with different sets of observations from the 

sample. At every step some of the efficient DMUs are excluded from the reference set so that 

it is possible to obtain efficiency scores that exceed 1. If an efficient observation is an outlier, 

it is more likely to have an output level much greater than that of other observations with 

similar input levels. These outliers are more likely to have a super-efficiency score greater 

than 1. According to BANKER & CHANG [2006], DMUs with efficiency scores larger than 1.2 

should be considered outliers and removed from the sample before conducting the final DEA 

calculation. 

 

4 Model Specification and Data 

EA model, R&D investments and manpower serve as inputs while patent 

e estimate a cross-industry cross-country pooled frontier, where each observation is 

4.1. Specification 

In our empirical D

applications are used to approximate innovative output. Some authors [e.g., ROUSSEAU & 

ROUSSEAU, 1997, 1998] suggest including publications as an additional output; however, we 

do not, for three reasons. First, recent studies reveal a number of measurement problems 

inherent in publication counts, such as double-counting in the case of co-authoring [SHARMA 

& THOMAS, 2008]. Second, detailed publication data are not available at the industry level; 

therefore, assigning publications to industries is highly problematic and would involve the 

difficult and possibly not entirely objective task of matching journals to sectors. Third, 

publication counts have the potential to introduce a language bias in favor of Anglophone 

countries. 

 

W

accounted for as a single industry-country combination in time without considering the panel 

structure of the data. Since the objective of business R&D is to increase innovative output so 

as to improve the firm’s competitive position, we apply an output-oriented DEA model. 
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4.2 Data 

 analyzes research efficiency based on a sample of 13 EU member states and four 

ur information on patent applications comes from the European Patent Office’s Worldwide 

atents are assigned to industries based on a concordance developed by SCHMOCH & AL. 

                                                

This study

nonmember states (Australia, Japan, South Korea, and the United States). The data on input 

and output for the efficiency analysis are collected from two underlying datasets: EU KLEMS 

and PATSTAT. 

 

O

Patent Statistical Database.3 This database, maintained by the European Patent Office, 

contains all national and international patent applications, including information on inventors 

and applicants and the location of each, priority dates, and technological classifications. We 

focus on EPO applications since an application to an international authority, in contrast to one 

made to a national authority, can be taken as a signal that the patentee believes the invention 

to be of high enough value to justify the expense of in international application. Central to our 

exercise is the construction of patent aggregates by country, industry, and year. We build this 

variable by using all patent applications filed with the European Patent Office (EPO) with a 

priority date between 2000 and 2004. The “priority date” is the date the invention was 

covered by a patent for the first time. However, most patents are first filed for at the national 

level and thus the majority of patent applications at the EPO are second filings. Accordingly, 

in this study, we date patent applications using the priority date instead of the usual 

application date since it is the date closest to the date of invention and the decision to seek 

patent protection [DE RASSENFOSSE & VAN POTTELSBERGHE, 2007]. Patent applications are 

assigned to the inventor’s country, instead of that of the applicant, as the former is more 

indicative of the location where the invention occurred. In line with previous literature, only 

the first inventor’s country of residence is considered [e.g., WANG, 2007; WIPO, 2008]. 

 

P

[2003], who used expert assessments and micro-data evidence on the patent activity of firms 

in the manufacturing industry4 to link technologies to industry sectors. The international 

patent classification (IPC) technology classes provided in the patent application are grouped 

into 44 technological fields and then assigned to industries based on the NACE5 code. 

Because patent applications usually contain more than one technology class and none of them 

 
3 PATSTAT 1/2008 

4 The authors argue that patents are most widely used in the manufacturing sector to protect intellectual property. 

5 Nomenclature générale des activités économiques dans les Communautés européennes. 
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can be interpreted as its main class,6 a weighting scheme is needed so as to avoid double 

counting of patents. Therefore, we weight every technology class mentioned in an application 

by the reciprocal of the total number of classes when constructing our industry-specific patent 

aggregates at the country level, which serves as the output in our efficiency analysis.7 Finally, 

some further aggregation of NACE classes is needed to match the patent data to the input data 

sources. A detailed description of the concordance is provided in Appendix A. 

 

Human capital and R&D effort serve as the inputs in our model. The R&D resources used in 

the innovative process at the sector level are approximated by R&D stocks provided by the 

EU KLEMS8 database. From a theoretical point of view, R&D stocks are preferable to annual 

R&D expenditures since they capture the amount of knowledge available in an economy even 

though, in practice, assumptions must be made when calculating the initial stock. R&D stocks 

in the EU KLEMS database are built according to the perpetual inventory method,9 as 

suggested by GUELLEC & VAN POTTELSBERGHE [2001]. To ensure comparability at the country 

level, the R&D stocks are deflated using implicit purchasing power parities10 from the OECD 

[2008b] Main Science and Technology database. 

 

The manpower invested in R&D is usually captured by the number of researchers per country 

as published by the OECD in the Main Science and Technology Indicators [OECD, 2008b]. 

However, these data are not available at the sector level and so we approximate human capital 

input by the share of skilled workers as we are convinced that researchers and support staff 

are mainly recruited from this group. The exact distinction between high-skilled and medium-

skilled workers is of necessity vague due to differences in national educational systems 

[TIMMER & AL. 2007, 2008]. In case of high-skilled labor, comparability can be assumed for 

bachelor degrees, but not for any others. Therefore, we decided to include both high- and 

medium-skilled labor as inputs to control for heterogeneity across countries. However, our 

findings suggest that the main results are robust with respect to the use of skilled or high-

skilled labor. Data on the share of high- and medium-skilled labor at the sector level are 

available from the EU KLEMS database. These shares are used to derive the amount of high- 

and medium-skilled labor in each industry and serve as additional inputs in the analysis of 

                                                 
6 This is in contrast to applications made at the United States Patent & Trademark Office (USPTO), which distinguishes between main and 

subclasses. 

7 An example would be a patent with five IPC classes, each contributing only a fifth to the country-industry level aggregates. 

8 Release March 2008. 

9 The depreciation rate equals 12%. Calculation of R&D stocks is explained in detail in O’Mahony & al. [2008]. 

10 We use PPPs at constant 2000 prices, which are derived from R&D expenditures. 
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research efficiency. 

 

Our dataset covers 13 industries for the period 2000 to 2004.11 We impose one restriction on 

the industry-specific country patent aggregates, namely, that at least 15 patents were applied 

for within a certain year, to make sure that sufficient patent activity is present in each sector of 

the countries covered. 

 

Table 1 sets out sample statistics of the input and output variables used in our analysis for the 

period 2000-2004. On average, across countries, industries, and years, 886 patents have been 

applied for at the EPO, although there is a great deal of heterogeneity within this average, 

ranging from a minimum of 16 patents to a maximum of 17,664. A similar pattern can be seen 

in the R&D stocks, measured in purchasing power parities to the basis year 2000. In line with 

expectations, the share of high-skilled workers is substantially smaller (one-fourth) than the 

share of medium-skilled workers. 

  

Output Variable  Observations Mean Std. Dev. Minimum Maximum 

EPO patents 816 885.712 2266.49 16 17664 

      

Input Variable      

R&D Stock (PPP)  653 12479.4 40855.95 1.13 370589.2 

High Skilled 846 107.4 232.21 0.11 2008.9 

Medium Skilled 846 428.76 583.66 0.74 3355.31 

Table 1: Descriptive statistics 

 

Looking at the country-level statistics, namely, the aggregated manufacturing-level data 

(Appendix C), we find that the United States has the highest average number of patent 

applications at the EPO, which is remarkable considering the “home” bias of the European 

countries in our sample. In Europe, Germany is the most frequent patent applicant, with an 

average R&D stock almost twice that of France. Comparing the number of high-skilled and 

medium-skilled workers, we find substantial variation across countries. Notably, the number 

of high-skilled workers in South Korea is more than four times that of Germany. 

 

Appendix B shows the industry-specific means of the input and output variables calculated by 

averaging over countries and years. The two industries in our sample that exhibit the highest 

                                                 
11 The truncation point is determined by the availability of patent applications, which are published 18 months after application. 
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patent intensity are chemicals and chemical products and electrical and optical equipment. 

Both industries also have comparatively high R&D stock. 

 

Consistent with recent literature on research efficiency [SHARMA & THOMAS, 2008; WANG & 

HUANG, 2007], we impose a lag structure for inputs to account for the fact that R&D efforts 

do not immediately result in innovative output [HALL & AL., 1986]. Therefore, inputs are 

lagged by two years in the DEA application. 

 

5 Results 

The empirical analysis is divided into three parts. First, we derive efficiency estimates for the 

manufacturing sector at the country level. Second, we identify industries occupying the world 

technology frontier by proceeding to industry- and country-specific data. Third, we focus on 

those industries revealing the highest efficiency scores — thereby defining the frontier — and 

conduct separate efficiency analyses for the industries of interest. 

 

5.1 Cross-country comparison 

A first impression of research efficiency in manufacturing is given by comparing average 

efficiencies at the country level. Figure 1 displays these average efficiencies for the period 

from 2000 to 2004. Averages are derived by first aggregating over sector-level data and then 

conducting a variable returns to scale12 DEA analysis using these country-level aggregates. 

We implicitly assume of a time-invariant technology frontier and focus on the distance of 

countries from the estimated frontier. An alternative method would be to compare the 

technology frontiers of different years by means of Malmquist indices, as suggested in 

COELLI & AL. [2005].13 

 

We find that Germany and Denmark are the most efficient countries with respect to research 

output in manufacturing, followed by the United States, the Netherlands, and Belgium (Figure 

1). These countries could serve as benchmarks to help less efficient countries improve their 

performance. The high average efficiency of the United States, indicative of a remarkably 

strong position in the international context, is especially noteworthy due to our use of 

                                                 
12 As shown by Sharma & Thomas [2008], most countries reveal increasing returns to scale, hence, a constant returns to scale technology is 

inappropriate.  

13 This approach is impossible in case of unbalanced panels and therefore not applicable for our datasets because we do not observe 

sufficient patent activity across all years, countries, and sectors. 
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European patent data to approximate innovative output. 
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Figure 1 Average research efficiency across countries 

 

This approach of using European patent data will tend to underestimate the output and thus 

the performance of non-European countries such as the United States, Japan, Australia, and 

South Korea. Inventors in these countries will first seek patent protection in their home 

markets and expand protection globally only for the most potentially profitable inventions. 

Thus, the United States is one of the leading countries worldwide in research and 

development in manufacturing. The leading role in Europe is played by Germany, which is 

located on or close to the technology frontier for all the years in our sample, thus revealing its 

excellence in research. Our results for the United States and Germany confirm those found by 

previous work [CULLMANN & AL. 2009; LEE & PARK, 2005]. 

 

Our results for total manufacturing are summarized by sorting our sample countries into three 

groups according to their average research efficiency in manufacturing: 

 

 high efficiency: Germany, Denmark, the United States, the Netherlands, Belgium,   

Ireland, Finland; 

 medium efficiency: Italy, Sweden, Japan, Australia, France; 
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 low efficiency: South Korea, the United Kingdom, Spain, Poland, the Czech Republic. 

 

The small European economies, Denmark, Belgium, the Netherlands, Ireland, and Finland, 

show a remarkably high level of research efficiency, whereas some of the larger ones, namely, 

the United Kingdom, France, and Spain, lag behind. One explanation for this could be that it 

may be easier for small countries to link research conducted at universities to private business 

R&D activities due to the small number of large companies in those countries. Furthermore, a 

small country tends to show a higher degree of specialization, which could raise efficiency in 

the industries observed here. 

 

The efficiency values for South Korea and Poland should be interpreted with caution because 

fewer data are available for these countries, especially R&D data at the sector level. Our 

results suggest that South Korea is not yet a major player in international innovation, but this 

could change in the near future because recent data show a drastic increase in Korean patent 

activity, both locally and at the international level [OECD, 2008a]. 

 

The lowest efficiency score was found for the Czech Republic, which is only slowly entering 

the international patenting arena. Recently, however, the country has increased its R&D 

efforts, and a 2008 OECD publication [OECD, 2008a] reveals that the Czech Republic is 

engaging in a great deal of cooperation with foreign co-inventors. Thus, our first-inventor 

approach to determining an invention’s country of origin might contain a downward bias in 

the case of the Czech Republic, as the domestic inventor is often named second in 

international patent applications. 

 

5.2 Analysis across countries and industries 

The next step in our empirical analysis is to measure research efficiency across countries and 

industries by conducting DEA using a pooled sample of industry-country observations.14 

Therefore, we test whether the underlying technology exhibits constant or variable returns to 

scale. A p-value of 7.7 percent for the SIMAR & WILSON [2002] test statistic suggests rejecting 

the hypothesis of constant returns to scale. Hence, we allow for variable returns to scale in 

frontier estimation. 

 

The assumption of a constant technology frontier enveloping all industries will be relaxed in 

                                                 
14 Poland and the Czech Republic have to be dropped due to insufficient data at the sector level. 
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the next section when we carry out an industry-specific efficiency analyses. To ensure the 

estimation of a consistent and robust technology frontier across countries and industries, we 

apply ex ante outlier detection by means of super-efficiency analysis [BANKER & CHANG, 

2006]. 

 

A first impression of research efficiency at the industry level is achieved by comparing the 

average scores across industries. Therefore, we derive pooled cross-section frontier estimates 

where each observation is accounting for one industry in a certain country in one year and 

then average over countries, as shown in Table 2. 

 

Industry Average efficiency 

Food products, beverages, and tobacco 0.114 

Textiles, textile products, leather, and footwear 0.232 

Wood, products of wood and cork 0.250 

Pulp, paper, paper products, printing, and publishing 0.175 

Coke, refined petroleum products, and nuclear fuel 0.219 

Chemicals and chemical products 0.531 

Rubber and plastics products 0.542 

Other nonmetallic mineral products 0.505 

Basic metals and fabricated metal products 0.299 

Machinery, NEC 0.591 

Electrical and optical equipment 0.638 

Transport equipment 0.216 

Manufacturing, NEC; recycling 0.454 

Table 2 Average research efficiency at the industry level 
 

The intertemporal frontier estimation exhibits average technical efficiencies of between 0.11 

and 0.64, which are relatively low compared to those found in other empirical work. These 

results suggest that large inefficiencies are present within the knowledge production process. 

The low mean efficiencies are influenced by the large within-sample variation in research 

efficiency across countries. 

 

There are substantial differences in patent intensity across industries. Chemicals, 

pharmaceuticals, and information and communication technology are known to be among the 

most patent-intensive industries, followed by machinery [SHEEHAN & AL., 2004]. This 
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phenomenon may be due to different strategic motives for patenting in these industries, 

leading to patent fences or patent thickets, both of which accelerate patenting [NOEL & 

SCHANKERMAN, 2006; SCHNEIDER, 2008]. Therefore, one could argue that it is not surprising 

to find a higher average efficiency in electrical and optical equipment, chemicals (including 

pharmaceuticals), plastics products, and machinery simply because these industries tend to 

seek patent protection more often than do other sectors. However, these industries also exhibit 

greater R&D intensity and larger R&D stocks compared to others, as shown in our descriptive 

statistics in Section 4. Hence, our results suggest that the observable knowledge production 

process is more efficient in these industries and thus defines the research technology frontier. 

Table 3 lists the efficient combinations that suggest excellent research performance. 

 

Industries Countries 

Wood, products of wood and cork Italy 

Coke, refined petroleum products, and 

nuclear fuel 

Netherlands 

Chemicals and chemical products Germany (3)  

Rubber and plastics products Netherlands, Finland 

Other nonmetallic mineral products Denmark (3), Finland (2), Italy 

Machinery, NEC Italy (3), Germany, Netherlands 

Electrical and optical equipment Netherlands (2), Germany, United States, Finland  

Transport equipment Denmark 

Manufacturing, NEC; recycling Germany, Sweden, Italy 

Table 3 Efficient country-industry combinations; number in parentheses indicates number of years country has 

occupied the technology frontier in the particular industry 

 

The electrical and optical equipment industry is efficient in the Netherlands, Germany, the 

United States, and Finland. Due to the underlying panel structure of our data, we usually 

observe industries in countries for five consecutive years. However, a certain country-industry 

combination does not necessarily have to be efficient every year to stay at the technology 

frontier and that is exactly what we observe: country-industry combinations occupy the 

frontier for one or two years and lag slightly behind for the rest of the estimation period. An 

example is the German electrical and optical equipment industry, which is fully efficient only 

once but reaches an average efficiency of 0.93. This is the second highest value in the cross-

country comparison; only the United States outperforms Germany, with an average of 0.96 in 

the electrical and optical equipment industry. Hence, the high research efficiency in this 
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industry is one of the driving forces behind the high overall U.S. efficiency score. 

 

Other industries that stand at the technology frontier include machinery, rubber and plastics, 

and chemical products. Chemicals and chemical products encompass the pharmaceutical 

industry, where patent protection has very strong effects because the process of research and 

development is so costly and time consuming that firms need to ensure protection of their 

intellectual property by way of a temporary monopoly [COHEN & AL., 2000]. Germany’s 

chemical industry reaches the frontier in three out of five years, which emphasizes Germany’s 

leading position, and not only in this industry; it also has large average efficiency scores of 

0.93 and 0.89 for machinery and rubber and plastics, respectively. Our results confirm that the 

small European countries, Finland, the Netherlands and Denmark, are some of the best-

performing countries in terms of research efficiency, with special strength in certain 

industries: Finland shows an excellent performance in rubber and plastics and mineral 

products, while Denmark plays a leading role in transport equipment. The Netherlands 

actually reaches the frontier in four industries, including machinery and electrical and optical 

equipment. Overall, we find electrical and optical equipment to be the most important 

industry when determining the technology frontier, followed by machinery. 

 

5.3 Industry-specific analysis 

We now relax the assumption of a common technology frontier and conduct separate industry-

specific frontier estimations to identify leading countries, as well as those lagging behind, for 

the main industries of interest: electrical and optical equipment, machinery, and chemical 

products. The economic importance of these industries in the countries can be seen from 

Table 4, which sets out each industry’s share of a country’s gross output in total 

manufacturing. 
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Country 
Chemical 
Products Machinery 

Electrical & 
Optical Equip. ∑ 

Australia 7.61% 5.48% 3.25% 16.34% 

Belgium 16.74% 4.78% 5.13% 26.64% 

Denmark 10.90% 12.52% 11.51% 34.93% 

Finland 6.39% 11.63% 19.51% 37.54% 

France 11.64% 6.92% 9.54% 28.09% 

Germany 9.51% 12.58% 12.74% 34.83% 

Ireland 26.83% 1.64% 28.69% 57.16% 

Italy 8.24% 12.30% 8.21% 28.75% 

Japan 9.22% 8.92% 16.92% 35.05% 

Netherlands 18.41% 7.67% 8.31% 34.39% 

South Korea 10.76% 7.04% 22.34% 40.14% 

Spain 8.46% 5.51% 5.78% 19.76% 

Sweden 8.51% 11.24% 12.55% 32.30% 

United Kingdom 11.29% 7.50% 10.08% 28.87% 

United States 11.03% 7.12% 13.45% 31.60% 
Table 4 Share in total manufacturing of gross output 

 

Running separate DEA analysis for the frontier industries generally corroborates our earlier 

findings. Germany and Denmark occupy the research frontier along with the United States 

and the Netherlands. We observe a relatively weak performance on the part of South Korea, 

the United Kingdom, and Spain, indicating that these countries have the potential to raise 

output given their levels of R&D effort. Once again, the score for South Korea should be 

interpreted with caution. 

 

In the case of electrical and optical equipment, Australia joins the group of leading countries, 

whereas the United Kingdom shows the weakest performance. 

 

In regard to the machinery industry, our earlier results showed this sector as efficient in Italy, 

Germany, and the Netherlands. Italy’s proficiency in this sector is confirmed by the present 

estimation results. The group of highly efficient countries in machinery also includes Belgium 

and Ireland. However, all the other countries exhibit a sharp decline in research efficiency, 

with Japan, Spain, the United Kingdom, and the United States all occupying surprisingly 

weak positions. 
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Country Chemical Products Machinery Electrical & Optical Equip. 

Australia 0.95 0.53 0.72 

Belgium 0.77 0.94 0.81 

Denmark 0.97 0.91 0.92 

Finland 0.86 0.59 0.82 

France 0.87 0.62 0.70 

Germany 0.99 0.93 0.94 

Ireland 0.72 0.96 0.56 

Italy 0.77 0.99 0.40 

Japan 0.52 0.36 0.83 

Netherlands 1.00 0.94 0.81 

South Korea 0.47 0.53 0.50 

Spain 0.52 0.34 0.28 

Sweden 0.54 0.52 0.56 

United Kingdom 0.35 0.34 0.55 

United States 0.99 0.44 0.96 
Table 5 Efficiency scores for various industries 

 
In the chemicals and chemical products industry, Germany is again the dominant player. The 

industry-specific analysis confirms the already identified leading groups of countries, with 

Australia close behind. At the end of the distribution, we find the United Kingdom, South 

Korea, Spain, and Japan, with a low average efficiency of about 0.5. Even though Japan is 

known for is pharmaceutical industry, the patent activity covered by the EPO dataset reveals 

substantial inefficiencies in the process of research and development, even when accounting 

for the home bias in patent applications. 

 

This DEA application’s focus on a single industry has given us a clearer picture of the 

strengths and weaknesses of our countries and, more specifically, of the gap between those 

that are efficient and those that are not. Compared to other industries, the efficiency gap in 

machinery production most obviously separates the countries into two groups: highly efficient 

and barely efficient. 

 

6 Conclusions 

This paper analyzes research efficiency at the industry level in total manufacturing for 13 

European member and four nonmember countries between 2000 and 2004. We consider three 

inputs: knowledge stocks approximated by R&D expenditures and high- and medium-skilled 

labor to capture manpower. 
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The results on overall manufacturing can be summarized by sorting the countries into three 

groups according to their average research efficiency score: 

 

 high efficiency: Germany, Denmark, the United States, the Netherlands, Belgium,  

Ireland, Finland; 

 medium efficiency: Italy, Sweden, Japan, Australia, France; 

 low efficiency: South Korea, the United Kingdom, Spain, Poland, and the Czech   

Republic. 

 

The smaller European economies, namely, Denmark, Belgium, the Netherlands, Ireland, and 

Finland, have remarkably high levels of research efficiency, whereas some of the larger ones 

— the United Kingdom, France, and Spain — lag behind. 

 

At the industry level, we find electrical and optical equipment to be the most important 

industry when determining the technology frontier, followed by machinery. Running separate 

DEA analyses for selected industries further supports the findings from the pooled estimation. 

Furthermore, estimating distinct industry frontiers paints a clearer picture of national strengths 

and weaknesses and, more specifically, shows more clearly the size of the gap between 

efficient countries and those that are less so. 

 

Our results can provide guidance to policymakers interested in improving innovative 

performance and thereby ensuring long-term economic growth. Specifically, in a case of 

limited resources, priority should be given to those industries promising the largest output for 

the available amount of investment. However, the findings of this study should not be 

inappropriately overgeneralized, but viewed more broadly as general, indeed somewhat 

theoretical, advice 

 

An interesting avenue of exploration for future research would be to test the influence of 

industry structure variables (e.g., competition or concentration) on research efficiency. This 

could be done with the bootstrap procedure proposed by SIMAR &WILSON [2007], which 

permits valid inference in the second-stage truncated regression of the efficiency scores on 

environmental variables while showing that conventional approaches for drawing inference in 

truncated Tobit regressions are invalid. 
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Appendix A: Concordance assigning IPC-Classes to European 

NACE15 

NACE Revision 1 Industry IPC classes 

15t16 Food products, beverages, 
and tobacco  

A01H, A21D, A23B, A23C, A23D, A23F, 
A23G, A23J, A23K, A23L, A23P, C12C, 
C12F, C12G, C12H, C12J, C13F, C13J, 
C13K, A24B, A24D, A24F 

17t19 Textiles, textile products, 
leather, and footwear 

D04D, D04G, D04H, D06C, D06J, D06M, 
D06N, D06P, D06Q, A41B, A41C, A41D, 
A41F, A43B, A43C, B68B, B68C 

20 Wood, products of wood and 
cork  

B27D, B27H, B27M, B27N, E04G 

21t22 Pulp, paper, paper products, 
printing, and publishing 

B41M, B42D, B42F, B44F, D21C, D21H, 
D21J 

23 Coke, refined petroleum 
products, and nuclear fuel 

C10G, C10L, G01V 

24 Chemicals and chemical 
products 

B01J, B09B, B09C, B29B, C01B, C01C, 
C01D, C01, C01G, C02F, C05B, C05C, 
C05D, C05F, C05G, C07B, C07C, C07F, 
C07G, C08B, C08C, C08F, C08, C08J, 
C08K, C08L, C09B, C09C, C09D, C09K, 
C10B, C10C, C10H, C10J, C10K, C12S, 
C25B, F17C, F17D, F25J, G21F, A01N, 
B27K, A61K, A61P, C07D, C07H, C07J, 
C07K, C12N, C12P, C12Q, C09F, C11D, 
D06L, A62D, C06B, C06C, C06D, C08H, 
C09G, C09H, C09J, C10M, C11B, C11C, 
C14C, C23F, C23G, D01C, F42B, F42D, 
G03C, D01F 

25 Rubber and plastics products A45C, B29C, B29D, B60C, B65D, B67D, 
E02B, F16L, H02G 

26 Other nonmetallic mineral 
products 

B24D, B28B, B28C, B32B, C03B, C03C, 
C04B, E04B, E04C, E04, E04F, G21B 

27t28 Basic metals and fabricated 
metal products 

B21C, B21G, B22D, C21B, C21C, C21D, 
C22B, C22C, C22F, C25C, C25F, C30B, 
D07B, E03F, E04H, F27D, H01B, A01L, 
A44B, A47H, A47K, B21K, B21L, B22F, 
B25B, B25C, B25F, B25G, B25H, B26B, 
B27G, B44C, B65F, B82B, C23D, C25D, 
E01D, E01F, E02C, E03B, E03C, E03D, 
E05B, E05C, E05D, E05F, E05G, E06B, 
F01K, F15D, F16B, F16P, F16S, F16T, 
F17B, F22B, F22G, F24J, G21H 

29 Machinery, NEC B23F, F01B, F01C, F01D, F03B, F03C, 
F03D, F03G, F04B, F04C, F04D, F15B, 
F16C, F16D, F16F, F16H, F16K, F16M, 
F23R, A62C, B01D, B04C, B05B, B61B, 
B65G, B66B, B66C, B66D, B66F, C10F, 
C12L, F16G, F22D, F23B, F23C, F23D, 
F23G, F23H, F23J, F23K, F23L, F23M, 
F24F, F24H, F25B, F27B, F28B, F28C, 
F28D, F28F, F28G, G01G, H05F, A01B, 
A01C, A01D, A01F, A01G, A01J, A01K, 
A01M, B27L, B21D, B21F, B21H, B21J, 
B23B, B23C, B23D, B23G, B23H, B23K, 
B23P, B23Q, B24B, B24C, B25D, B25J, 
B26F, B27B, B27C, B27F, B27J, B28D, 
B30B, E21C, A21C, A22B, A22C, A23N, 
A24C, A41H, A42C, A43D, B01F, B02B, 

                                                 
15 Based on Schmoch & al. [2003]. 
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B02C, B03B, B03C, B03D, B05C, B05D, 
B06B, B07B, B07C, B08B, B21B, B22C, 
B26D, B31B, B31C, B31D, B31F, B41B, 
B41C, B41, B41F, B41G, B41L, B41N, 
B42B, B42C, B44B, B65B, B65C, B65H, 
B67B, B67C, B68F, C13C, C13D, C13G, 
C13H, C14B, C23C, D01B, D01D, D01G, 
D01H, D02G, D02H, D02J, D03C, D03D, 
D03J, D04B, D04C, D05B, D05C, D06B, 
D06G, D06H, D21B, D21D, D21F, D21G, 
E01C, E02D, E02F, E21B, E21D, E21F, 
F04F, F16N, F26B, H05H, B63G, F41A, 
F41B, F41C, F41F, F41G, F41H, F41J, 
F42C, G21J, A21B, A45D, A47G, A47J, 
A47L, B01B, D06F, E06C, F23N, F24B, 
F24C, F24D, F25C, F25D, H05B 

30t33 Electrical and optical 
equipment 

B41J, B41K, B43M, G02F, G03G, G05F, 
G06C, G06D, G06E, G06F, G06G, G06J, 
G06K, G06M, G06N, G06T, G07B, G07C, 
G07D, G07F, G07G, G09D, G09G, G10L, 
G11B, H03K, H03L, H02K, H02N, H02P, 
H01H, H01R, H02B, H01M, F21H, F21K, 
F21L, F21M, F21S, F21V, H01K, B60M, 
B61L, F21P, F21Q, G08B, G08G, G10K, 
G21C, G21D, H01T, H02H, H02M, H05C, 
B81B, B81C, G11C, H01C, H01F, H01G, 
H01J, H01L, G09B, G09C, H01P, H01Q, 
H01S, H02J, H03B, H03C, H03D, H03F, 
H03G, H03H, H03M, H04B, H04J, H04K, 
H04L, H04M, H04Q, H05K, G03H, H03J, 
H04H, H04N, H04R, H04S, A61B, A61C, 
A61D, A61F, A61G, A61H, A61J, A61L, 
A61M, A61N, A62B, B01L, B04B, C12M, 
G01T, G21G, G21K, H05G, F15C, G01B, 
G01C, G01D, G01F, G01H, G01J, G01M, 
G01N, G01R, G01S, G01W, G12B, G01K, 
G01L, G05B, G08C, G02B, G02C, G03B, 
G03D, G03F, G09F, G04B, G04C, G04D, 
G04F, G04G 

34t35 Transport equipment B60B, B60D, B60G, B60H, B60J, B60, 
B60L, B60N, B60P, B60Q, B60R, B60S, 
B60T, B62D, E01H 
F01L, F01M, F01N, F01P, F02B, F02D, 
F02F, F02G, F02M, F02N, F02P, F16J, 
G01P, G05D, G05G, B60F, B60V, B61C, 
B61D, B61F, B61G, B61H, B61J, B61K, 
B62C, B62H, B62J, B62K, B62L, B62M, 
B63B, B63C, B63H, B63J, B64B, B64C, 
B64D, B64F, B64G, E01B, F02C, F02K, 
F03H 

36t37 Manufacturing, NEC; 
recycling 

A41G, A42B, A44C, A45B, A45F, A46B, 
A46D, A47B, A47C, A47D, A47F, A63B, 
A63C, A63D, A63F, A63G, A63H, A63J, 
A63K, B43K, B43L, B44D, B62B, B68G, 
C06F, F23Q, G10B, G10C, G10D, G10F, 
G10G, G10H 
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Appendix B: Summary statistics at the industry level 

Industry EPO Patents R&D Stock High Skilled Medium Skilled 

 Mean Std. Dev. Minimum Maximum Mean Std. Dev. Minimum Maximum Mean Std. Dev. Minimum Maximum Mean Std. Dev. Minimum Maximum 

Food products, beverages, and 
tobacco 

1728.4 44.4 1688.0 1781.0 39514.3 2113.7 37416.1 41892.0 1466.1 45.6 1414.7 1539.0 8342.7 105.6 8240.3 8509.2 

Textiles, textile products, leather, 
and footwear 

1159.2 132.2 968.0 1311.0 10461.8 247.9 10109.2 10670.9 492.6 53.2 421.1 550.1 4409.0 502.6 3823.1 5084.7 

Wood, products of wood and 
cork 

178.4 40.5 139.0 229.0 3206.6 925.8 1838.5 3865.2 213.6 49.1 145.2 272.4 1888.6 265.7 1530.6 2236.2 

Pulp, paper products, printing, 
and publishing 

1211.8 81.1 1109.0 1290.0 24509.5 1870.3 22443.2 26875.3 2027.1 148.8 1836.7 2173.2 6162.9 306.4 5844.7 6595.8 

Coke, refined petroleum 
products, and nuclear fuel 

683.8 23.3 667.0 723.0 23958.7 1255.6 22586.2 25623.2 111.8 5.2 107.1 119.0 316.5 18.0 289.3 339.1 

Chemicals and chemical 
products 

28545.2 892.0 27214.0 29570.0 368141.9 13914.7 353882.7 384520.4 1586.9 30.7 1552.9 1628.1 3406.5 127.6 3261.5 3564.4 

Rubber and plastics products 5617.4 106.9 5496.0 5734.0 37502.2 1949.3 35219.4 39634.4 928.7 31.4 893.7 962.9 4114.7 155.2 3984.6 4344.7 

Other nonmetallic mineral 
products 

3789.8 236.3 3487.0 4124.0 22539.5 245.4 22347.6 22865.9 526.8 9.0 518.7 538.9 2863.2 141.0 2713.2 3056.6 

Basic metals and fabricated 
metal products 

6307.6 128.1 6162.0 6455.0 62275.4 563.9 61605.1 62982.3 1798.8 46.2 1750.0 1869.9 10166.4 316.3 9891.5 10637.8 

Machinery, NEC 24701.8 686.5 24001.0 25828.0 144652.2 6548.6 137205.5 151711.5 1911.0 109.7 1812.0 2066.9 7989.2 489.9 7545.3 8633.6 

Electrical and optical equipment 56945.4 1828.0 55674.0 60165.0 779547.2 38031.6 735008.9 816686.9 4081.3 138.4 3916.6 4249.4 9973.3 899.6 9080.8 11099.8 

Transport equipment 11288.0 802.7 10531.0 12345.0 502620.9 16632.0 488258.5 522170.6 2134.1 111.6 2049.3 2295.6 7145.6 157.9 7011.5 7367.8 

Manufacturing, NEC 2256.8 65.4 2188.0 2343.0 15615.8 1050.5 14448.7 16803.1 695.6 22.8 669.9 721.5 3875.4 181.0 3721.8 4147.5 



 

Appendix C: Summary statistics at the country level 

Country EPO Patents R&D Stock High Skilled Medium Skilled 

  Mean Std. Dev. Minimum Maximum Mean Std. Dev. Minimum Maximum Mean Std. Dev. Minimum Maximum Mean Std. Dev. Minimum Maximum 

Australia 988.73 396.14 120.00 1316.00 11475.31 731.60 10695.31 12383.88 233.67 25.12 187.79 265.04 912.41 23.81 873.58 942.25 

Belgium 1791.46 513.58 703.00 2408.00 21247.66 691.09 20295.03 21869.15 100.09 2.44 96.31 104.06 500.09 27.46 451.92 534.94 

Germany 31328.55 10153.03 6738.00 40494.00 235506.10 7169.71 227042.00 243748.10 923.38 27.03 899.79 984.07 7594.50 265.25 7175.89 8119.92 

Denmark 1008.82 322.45 292.00 1377.00 8068.75 737.58 7192.70 8924.98 26.56 3.53 20.86 30.81 416.68 19.29 377.02 440.43 

Spain 937.64 362.05 441.00 1631.00 16832.96 1105.64 15624.49 18158.09 523.04 119.31 318.33 685.37 1441.02 230.98 995.70 1730.36 

Finland 1293.91 465.58 184.00 1756.00 12844.10 1342.51 11251.02 14380.25 185.62 16.26 155.60 205.53 346.51 19.14 311.06 369.24 

France 8311.46 2627.65 1425.00 10909.00 126489.10 3404.08 122569.80 130383.50 417.88 34.32 379.91 505.69 3739.69 93.07 3543.70 3829.43 

Great Britain 6117.46 1961.52 801.00 7673.00 97799.71 2146.41 95243.11 100233.10 781.08 69.20 660.10 851.81 5356.43 569.71 4325.81 6002.40 

Ireland 214.45 89.01 47.00 329.00 3149.89 153.26 2965.63 3322.22 65.04 16.89 40.53 91.21 428.75 24.28 393.41 454.91 

Italy 4929.91 1409.71 1909.00 6488.00 42905.19 114.67 42765.27 43019.69 248.24 14.71 225.13 266.75 8513.60 153.87 8127.31 8717.51 

Japan 21125.64 7292.83 2606.00 27615.00 486848.40 18084.60 465781.70 507609.80 4215.53 74.92 4058.65 4320.42 15395.44 943.06 14044.39 16722.28 

South Korea 1719.91 1323.35 526.00 4548.00 69024.85 3494.39 66553.94 71495.76 2750.78 430.54 2317.89 3472.43 6073.16 397.72 5340.16 6761.01 

Netherlands 3431.82 1185.97 777.00 4747.00 24787.83 446.53 24222.00 25293.68 83.75 14.64 65.56 108.82 1319.26 55.68 1205.07 1375.66 

Sweden 2441.73 634.41 728.00 3008.00 36348.87 2820.43 32826.70 39345.42 116.89 27.35 84.87 165.36 870.20 30.12 835.65 926.61 

United States 33048.82 10558.20 3428.00 39608.00 880727.00 5370.19 873631.70 886484.20 7781.95 380.48 7083.66 8304.06 22283.02 2549.71 18570.38 24570.59 

 

 

 

28 


