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Abstract

We analyze the choices between two technologies A and B that both exhibit network

e¤ects. We introduce a critical mass game in which coordination on either one of the stan-

dards constitutes a Nash equilibrium outcome while coordination on standard B is assumed

to be payo¤-dominant. We present a heuristic de�nition of a critical mass and show that

the critical mass is inversely related to the mixed strategy equilibrium. We show that the

critical mass is closely related to the risk dominance criterion, the global game theory, and

the maximin criterion. We present experimental evidence that both the relative degree of

payo¤ dominance and risk dominance explain players�choices. We �nally show that users�

adoption behavior induces �rms to select a relatively unrisky technology which minimizes

the problem of coordination failure to the bene�t of consumers.
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1 Introduction

In many parts of modern economies (e.g., in information and communications) users�payo¤s

associated with a particular product (or service) depend positively on the total number of other

users choosing the same product or service; a phenomenon, commonly termed as a positive

network e¤ect (see Shapiro and Varian, 1998, and Farrell and Klemperer, 2007, for surveys).

Though products may be di¤erentiated, its importance for buyers�purchasing decisions is often

negligible when compared with their preference for compatible products. A characteristic feature

of markets with network e¤ects is that users (which can be consumers or �rms) typically face

several incompatible technologies (so-called �standards�), while they can adopt only one of the

available technologies.

It is well-known that the choice between incompatible standards that exhibit positive network

e¤ects typically leads to multiple equilibria (see, Farrell and Saloner, 1985, and Katz and Shapiro,

1985, for seminal contributions). Whether or not these equilibria will emerge, and if yes which

equilibrium, depends on how well consumers cope with the coordination problem created by

positive network e¤ects. Successful coordination requires coordination on the Pareto-dominant

equilibrium (if equilibria are Pareto-rankable) while coordination failure arises either if users

coordinate on a Pareto-dominated Nash equilibrium or fail to coordinate altogether.

The general class of games which captures the coordination problem with Pareto-ranked

equilibria is referred to as coordination games. The seminal work by Harsanyi and Selten (1988)

proposes a theory of equilibrium selection based on two criteria; namely, payo¤ dominance and

risk dominance. While the �rst criterion selects the equilibrium based on overall collective

rationality, the second criterion is based on individual rationality and takes into account out-of-

equilibrium payo¤s. The results of many experiments in which the subjects played coordination

games suggest that both criteria are important for predicting players�decisions. For instance,

Van Huyck, Battalio, and Beil (1990) report for their �minimum game�that �[...] coordination

failure results from strategic uncertainty: some subjects conclude that it is too �risky�to choose

the payo¤-dominant action.�1 Moreover, Van Huyck, Battalio, and Beil (1990) express the idea

that strategic uncertainty becomes more pronounced the larger the number of subjects involved

1 In the minimum game a subject�s payo¤ depends negatively on its own �e¤ort�and positively on the minimum

�e¤ort�chosen by the other subjects.
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becomes: �[...] when the number of players is large it only takes a remote possibility that an

individual player will not select the payo¤-dominant action [...] to motivate defection from the

payo¤-dominant equilibrium.�

In this paper we specify a critical mass game as a one-shot coordination game, where N � 2

(homogeneous) users decide simultaneously to adopt either standard A or standard B. The

utility of each user depends on the stand-alone value and the (linear and positive) network e¤ect

of the standard. In this setting, both the choice of standard A and the choice of standard B are

a¤ected by consideration of strategic uncertainty.

Moreover, if the environment is not perfectly symmetric, then standards are typically di¤er-

entiated regarding their degree of �riskiness.� Intuitively, if a standard needs a relatively large

market share when compared to the other standard so as to become a strictly pro�table choice

for a single user, then we should expect that choosing this standards involves a relatively high

degree of �strategic uncertainty.�This reasoning carries us to a heuristic de�nition of the critical

mass of a particular standard which we de�ne as the minimum share of users necessary so as to

make the adoption of this standard a best reply for any remaining user. Intuitively, a standard

with a larger critical mass should be less likely to gain dominance in the market than a standard

with a smaller critical mass.

In this paper we relate the critical mass concept to the criterion of risk dominance as proposed

by Harsanyi and Selten (1988). The critical mass game has two pure strategy Nash equilibria

(A-equilibrium and B-equilibrium). We assume that the B-equilibrium is payo¤-dominant. Our

game also has a unique symmetric equilibrium in mixed strategies. We show that the equilibrium

in mixed strategies is inversely related to our critical mass concept. We also show that there is

an unambiguous concordance between the critical mass of a standard and the risk dominance of

a particular equilibrium. Similar results are obtained for the maximin criterion and the global

game theory. Precisely, the equilibrium in which users adopt a standard with the smaller critical

mass is also selected by the risk dominance criterion, the maximin criterion, and the global game

theory.

In contrast to the mentioned selection theories, our heuristic of a critical mass allows us

to analyze the in�uence of the riskiness of a particular standard (or, equivalently, of strategic

uncertainty) on users�behavior by varying the critical mass of a standard which we derive from
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the primitives of users�utilities. By varying the di¤erence in the maximum payo¤s delivered by

the two standards, we are also able to identify the impact of the payo¤ dominance criterion on

users�adoption decisions.

We confront our theoretical analysis of the critical mass game with the experimental results

of a paper-and-pencil experiment performed at the University of Göttingen. In the experiment

we specify 16 di¤erent decision situations, which can be grouped into four di¤erent blocks.

Within each block we increase the relative riskiness of the payo¤-dominant standard B (by

increasing its critical mass), while the degree of standard B�s payo¤ dominance (measured by

the di¤erence in the maximum payo¤s of the two standards) is kept constant. By doing so we

can analyze how the riskiness of the payo¤-dominant equilibrium in�uences subjects�decisions.

By re-grouping the 16 decision situations, we can also analyze how the relative degree of payo¤

dominance a¤ects players�choices, while keeping the relative riskiness of the standards constant

in each block.

The analysis of the experimental data reveals that both risk dominance and payo¤dominance

considerations signi�cantly a¤ect players�adoption decisions. Precisely, we proxy the relative

degree of standard B�s payo¤ dominance by the di¤erence of both standards�maximum payo¤s

(relative to standard B�s maximum payo¤). Similarly, we proxy the relative degree of standard

B�s riskiness by the di¤erence of the standards�critical masses (relative to standard B�s critical

mass). Regression results (OLS and Logit) then show that both explanatory variables are signif-

icant drivers of users�adoption decisions such that the number of B choices (or the probability

of a B-choice) increases, whenever the relative payo¤ dominance of standard B increases while

the number of B-choices decreases if the relative riskiness of standard B increases. In another

speci�cation we use the di¤erence in both standards�minimum values (again, relative to the

minimum value of standard B) as a proxy of standard B�s relative riskiness (an approach sug-

gested by the maximin criterion). Here, we obtain even more signi�cant results which suggest

that users�may very well refer to a simpler rule (than suggested by critical mass considerations)

to proxy the relative riskiness of a standard.

Taking our experimental results seriously, we are left with the observation that users�choices,

and hence, a standard�s expected market share should be determined by its relative payo¤

dominance and its relative riskiness. We postulate a simpli�ed speci�cation of users�aggregate
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demands which incorporates both features. We further abstract from pricing problems and

assume that �rms maximize their market shares. Given the so speci�ed expected demands, we

analyze �rms�technology choices in a two-stage game. We suppose that �rms choose between

standard A and standard B in the �rst stage of the game, while buyers�demand is realized in the

second stage of the game. Our analysis shows, if demand is biased towards the risk-dominant

standard, then both �rms choose to supply the risk-dominant standard which ultimately bene�ts

buyers in expected terms. Hence, users are on average better o¤ if �rms choose an inferior

standard (i.e., a standard with a lower maximum payo¤) in a world where a miscoordination is

pervasive.

Our paper�s main intention is to contribute to the extensive industrial organization literature

which has been analyzing network e¤ects. The fundamental problem of choice in that literature

is that between two competing standards exhibiting network e¤ects (see Farrell and Saloner,

1985, and, for a recent survey, Farrell and Klemperer, 2007) which means that users essentially

face a critical mass game. Interestingly, that literature has been (to our best knowledge) largely

salient about the role of selection criteria as risk dominance and the maximin rule for predicting

users�choices and market outcomes.2 Typically, that literature took the multiplicity of Nash

equilibria for granted or simply assumed coordination on a Pareto-dominant standard, or even

applied the mixed strategy equilibrium when highlighting coordination failure (as in Farrell and

Saloner, 1988). Our analysis of �rms�technology choices is, therefore, the �rst analysis of the

implications of user behavior in a critical mass game on �rms�technology choices when users

have to solve a trade-o¤ between payo¤ dominance and risk dominance.

From a global game theory perspective the analysis of the technology adoption problem

under network e¤ects is a natural application (see Myatt, Shin, and Wallace, 2002). Recently,

the more traditional industrial organization literature on network e¤ects and the global game

theory was brought together in Argenziano (2008). She uses the theory of global games to �nd

a unique equilibrium in a model where a continuum of consumers choose between the products

of two �rms both exhibiting network e¤ects. In contrast to our model, consumers are assumed

2 Incidentally, Liebowitz and Margolis (1996) also point out the importance of the critical mass (which they

label di¤erently) in their illustrative analysis of consumers�choices between di¤erent standards. Besides several

di¤erences, our analysis gives theoretical support to their approach based on the risk dominance criterion.
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to be heterogenous in her analysis leading to equilibria which are (from a social welfare point of

view) �too balanced.�

Our analysis of risk dominance is related to Kim (1996) who analyzes equilibrium selection

in N -person coordination games.3 Our analysis of the global game version of the critical mass

game builds on Carlsson and van Damme (1993b) and Morris and Shin (2002).

The experimental part of our paper is closely related to Heinemann, Nagel, and Ockenfels

(2009) who run a series of experiments to explore aspects of strategic uncertainty in one-shot

coordination games with multiple Nash equilibria. They consider a multi-player coordination

game of two choices, where one choice yields a �secure�payo¤ while the payo¤ of the �risky�

choice depends positively on the other players�choices. In contrast to their set-up, our critical

mass games assumes that both choices depend positively on the adoption decisions of the other

players (we provide a more precise comparison below).

Our work contributes to those experimental studies which elicit how players resolve the trade-

o¤ between payo¤ dominance and risk dominance (Van Huyck, Battalio, and Beil, 1991 and

Straub, 1995). Similar to Schmidt et al. (2003) who examine a two-player coordination game,

we also �nd that risk dominance has a signi�cant in�uence on players�ability to coordinate.

However, in contrast to their study, we �nd that the degree of payo¤ dominance also impacts

signi�cantly on players�choices.4

We proceed as follows. In Section 2 we de�ne the critical mass game and present the critical

mass heuristic. In Section 3 we examine risk dominance, the maximin criterion, and the theory

of global games within the critical mass game. Section 4 presents the design of the experiment

while in Section 5 we report the results. In Section 6 we analyze �rms�technology choices when

both risk dominance and payo¤ dominance drive users�adoption decisions. Finally, Section 7

concludes.

3Related is also Carlsson and van Damme (1993a) who examine the stag hunt games which is a special case

of our critical mass game.

4There are also many other works which analyze the in�uence of several features on the likelihood of coordina-

tion. See, for instance, Van Huyck, Gillette, and Battalio (1990) who examine the role of an arbiter in two-person

coordination games and Keser, Ehrhart, and Berninghaus (1998) who analyze the in�uence of local interaction on

equilibrium outcomes in three-player coordination games. More recently, Crawford, Gneezy, and Rottenstreich

(2008) examined the role of payo¤ asymmetries as a source of coordination failure.
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2 The Critical Mass Game

Suppose N � 2 identical users (which can be consumers and/or �rms) make simultaneously

their choices between two standard technologies (or, in short, standards) A and B. The payo¤

a user derives from standard i = A;B depends on the total number of users choosing the same

standard, Ni � N , and is assumed to be given by the linear function

Ui(Ni) = �i + i(Ni � 1). (1)

We assume that users always �nd it optimal to adopt one of the standards, so that the market

is always covered; i.e., NA + NB = N holds. The parameter �i � 0 can be interpreted as the

�stand-alone value�a user derives from the standard technology when he is the only user of this

standard. The term i(Ni�1) measures positive network e¤ects if Ni > 1 users choose the same

standard i = A;B.5 The coe¢ cient i � 0 measures the (constant) slope of the network e¤ects

function.

The game is parameterized such that it has two Nash equilibria in pure strategies in which

either all players choose standard A (A-equilibrium) or all players choose standard B (B-

equilibrium). In other words, users face a coordination problem in the game. This is ensured

by the assumption �i < �j + j(N � 1) for any i; j = A;B and i 6= j. Furthermore, we assume

that the B-equilibrium is payo¤-dominant; i.e., the utility of every user in the B-equilibrium is

higher than in the A-equilibrium. Formally, �B + B(N � 1) > �A + A(N � 1) holds.

To analyze the coordination problem we introduce a heuristic de�nition of the critical mass

of a standard. We de�ne the critical mass mi of a standard i = A;B as the minimum share

of users choosing standard i necessary to make the choice of this standard a best reply for any

remaining player. The following lemma provides the formal derivation of the critical mass and

states its properties.

Lemma 1. The value of the critical mass mi is given by

mi =
�j � �i + j(N � 1)�
i + j

�
(N � 1)

, (2)

with i; j = A;B and i 6= j. It holds that mA = 1�mB. Moreover, @mi=@�i < 0, @mi=@i < 0,

@mi=@�j > 0, and @mi=@j > 0.

5We assume that users do not create network e¤ects for themselves.

7



Proof. First note that all users are homogeneous. Consider the decision problem of a single

user. Assume that eN other users choose standard i. If choosing standard i constitutes a best

response for a user under the assumption that all the other, N � eN � 1, users choose standard

j 6= i, then it also constitutes a best response in all the other cases (when less than N � eN � 1

users choose standard j). Hence, it must hold that Ui( eN + 1) > Uj(N � eN) or
�i + i eN � �j + j(N � eN � 1). (3)

The minimum value of eN , which satis�es Condition (3) is given by6
eN =

�j � �i + j(N � 1)
A + B

.

Under the parameter restriction �i < �j + j(N � 1) it holds that 0 < eN < N � 1. Thus, emi is

given by

mi(�i; i; �j ; j ; N) =
�j � �i + j(N � 1)
(A + B) (N � 1) ,

for i; j = A;B and i 6= j. Adding up the critical masses of standards A and B, we getmA+mB =

1. The signs of the derivatives @mi=@�i < 0, @mi=@i < 0 and @mi=@�j > 0 are straightforward,

while

@mi=@j = �
�j � [�i + i(N � 1)]
(A + B)

2 (N � 1)
> 0, i 6= j (4)

follows from our assumption that �j < �i + i(N � 1) must hold. Q.E.D.

The value of the critical mass of a standard i decreases when the respective parameters �i

and i of the payo¤ function increase, while the critical mass increases in the parameters �j

and j of the rival standard j 6= i. Those results are intuitive as with an increase of both

the stand-alone value and the slope of the network e¤ects function less adopters are needed to

make the choice of this standard a best reply for the remaining users. With the increase of the

parameters of the rival standard the attractiveness of the standard decreases, so that the value

of the critical mass increases.

We are now in a position to de�ne the critical mass game.

De�nition 1. A critical mass game is a game in which N � 2 users simultaneously make their

choices between two standard technologies, A and B, such that:

6 If eN is not an integer, then we take instead the next integer which ful�lls (3).

8



(i) for each standard the payo¤ of an individual user from choosing this standard is given by

Equation (1),

(ii) users face a coordination problem so that �i < �j + j(N � 1) (or, equivalently, mi 2

(0; 1)) for i; j = A;B and i 6= j holds, and

(iii) the outcome where all users choose standard B is payo¤-dominant; i.e., �B+B(N�1) >

�A + A(N � 1) holds.

Assumption ii) assures that there are two Nash equilibria in pure strategies (A- and B-

equilibrium), while assumption iii) implies that the B-equilibrium is payo¤-dominant. The

following proposition states that the critical mass game has in addition to the two Nash equilibria

in pure strategies a unique equilibrium in (symmetric) mixed strategies.7

Proposition 1. The critical mass game has exactly two strict equilibria in pure strategies, the

A- and the B-equilibrium, and a unique equilibrium in (symmetric) mixed strategies where each

user chooses standard i, with probability pi = mi ( i = A;B).

Proof. We start with the pure strategy equilibria. An equilibrium in which every user chooses

standard i is a strict equilibrium if Ui(N) > Uj(1) holds which is equivalent to �j < �i+i(N�1).

There cannot exist another equilibrium in pure strategies in which both standards are chosen.

Assume to the contrary that there exists such an equilibrium with NA < N users choosing

standard A and NB < N users choosing standard B with NA+ NB = N . Then it must hold

that UA(NA) � UB(NB + 1) and UB(NB) � UA(NA + 1). From Equation (1) it follows that

UA(NA +1) > UA(NA), which together with the former inequality implies UB(NB) � UA(NA +

1) > UA(NA) � UB(NB + 1). From this it follows that UB(NB) > UB(NB + 1). Obviously,

this is not consistent with (1). Hence, the condition �A(N � 1) < �A � �B < B(N � 1)

assures that there are only two equilibria in pure strategies; namely, the A-equilibrium and the

B-equilibrium.

We now turn to the mixed strategy equilibrium. In that equilibrium all users choose each

standard with some probability such that the expected payo¤s from choosing each standard are

equal. Let pi be the probability with which users choose standard i = A;B in the mixed strategy

equilibrium. Users�choices of a standard then give rise to a binomial distribution such that each

7Kim (1996) derives similar results for a symmetric coordination game in which N � 2 players make binary

choices.
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user expects pi(N � 1) other users to choose standard i. In a mixed strategy equilibrium every

player must be indi¤erent between choosing standard A or standard B which yields the condition

�i + i [1 + pi(N � 1)� 1] = �j + j [1 + pj(N � 1) + 1] , (5)

from which we obtain the equilibrium probability

pi =
�j � �i + j(N � 1)
(A + B)(N � 1) = mi,

where the latter equality follows from Lemma 1. As our parameter restrictions assuremi 2 (0; 1)

it also follows that pi 2 (0; 1). Q.E.D.

In the proof of Proposition 1 we have shown that the equilibrium probability, pi, with which

each user chooses standard i, is equal to mi, so that the comparative static results of Lemma 1

also apply to the mixed strategy equilibrium. Hence, an increase of standard i�s quality (in terms

of �i and/or i) implies that consumers reduce the probability with which to choose standard

i in the mixed strategy equilibrium. While it is well-known that a mixed strategy equilibrium

may exhibit counter intuitive features, its inverse relationship to our critical mass heuristic adds

to its curiosity. In sharp contrast to our heuristically de�ned critical mass, which suggests to

favor the choice of the standard with the smaller critical mass, the mixed strategy equilibrium

requires to favor the standard with the larger critical mass.

Proposition 1 states that the critical mass game has two Nash equilibria in pure strate-

gies. Harsanyi and Selten (1988) propose two equilibrium selection criteria: namely, payo¤

dominance and risk dominance. In the critical mass game the B-equilibrium is by de�nition

payo¤-dominant. In the next section we show that out critical mass heuristic is closely related

to the concept of risk dominance, the global game theory, and the maximin criterion.

3 Equilibrium Selection in the Critical Mass Game

Risk Dominance. To �nd the risk-dominant equilibrium in the critical mass game, we apply

the tracing procedure as proposed by Harsanyi and Selten (1988). This procedure describes a

process of converging expectations leading to a particular equilibrium which is coined as the risk-

dominant equilibrium, in which every player adopts and expects the other players to adopt the

standard that implies the risk-dominant equilibrium. To �nd this equilibrium, we �rst have to
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determine bicentric priors for every player which represent a probability distribution over the two

Nash equilibria, A and B. To determine the bicentric prior for a particular player l = 1; 2; :::; N

we assume �rst that the player expects that either all other players choose standard A or all

other players choose standard B. The outcome in which all other players choose standard i

(i = A;B) is assumed to occur with probability qi, while the opposite outcome is realized with

counter probability 1� qi. Second, a player plays a best response to his beliefs. And third, it is

assumed that the beliefs are distributed uniformly over the unit interval. The tracing procedure

consists then in �nding a feasible path from the equilibrium in the starting point given by the

bicentric priors to the equilibrium in the end point given by the original game. The equilibrium

in the end point constitutes the risk-dominant equilibrium.

The next proposition states which equilibrium should be chosen in the critical mass game

when we apply the risk dominance criterion.8

Proposition 2. In the critical mass game the equilibrium in which all players adopt standard

i is risk-dominant if and only if standard i has a lower critical mass than the rival standard j,

with i; j = A;B and i 6= j. If mA = mB, then there exists no risk-dominant equilibrium.

Proof. We search for the risk-dominant equilibrium by applying the tracing procedure as

proposed by Harsanyi and Selten (1988). We start with users� bicentric priors. Let a user

l = 1; 2; :::; N attribute probability ql to the situation that all the others choose standard B and,

correspondingly, probability 1� ql to the situation that all the others choose standard A. Using

(5), we can re-write user l�s indi¤erence condition between choosing A and B to obtain

ql =
�A � �B + A(N � 1)
(A + B)(N � 1) =: eq. (6)

Note that the critical value eq is the same for all users and that eq 2 (0; 1) holds. From Condition

(6) we observe that user l�s best reply to his beliefs is as follows: play A if ql < eq and play B if

ql > eq. Now, recall that the bicentric belief ql is assumed to be uniformly distributed over the
interval [0; 1]. Hence, the probability that ql < eq is given by eq and the probability that ql > eq is

8Carlsson and van Damme (1993a) derive implicitly the condition of risk dominance for the stag hunt games.

In that game N � 2 identical players make binary choices between two options, one if which delivers a secure

payo¤ while the other delivers a risky payo¤ that is increasing in the share of the players opting for the risky

choice. Kim (1996) derives the explicit condition of risk dominance for N -person coordination games.
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given by 1� eq. Hence, users choose A with probability eq and B with counter probability 1� eq.
As all users are identical in our case, the expected return of a user from choosing standard A

given that all the other players choose A with probability eq is
�A + A(N � 1)eq. (7)

Similarly, the expected payo¤ from choosing standard B is given by

�B + B(N � 1)(1� eq). (8)

Combining (7) and (8) we obtain that a user chooses B if and only if

�B + B(N � 1)(1� eq) > �A + A(N � 1)eq
holds, which is equivalent to

2(�A � �B) + (N � 1)(A � B) < 0. (9)

Comparing Condition (9) with the de�nition of the critical mass (2), it is obvious that Condition

(9) holds if and only if mB < 1=2 holds. From Condition (9) it is immediate that a user chooses

A if and only if

2(�A � �B) + (N � 1)(A � B) > 0. (10)

If mB = 1=2, then a user is indi¤erent between selecting A or B from a risk dominance perspec-

tive. By Lemma 4.17.7 of Harsanyi and Selten (1988, p. 183) the equilibrium of the game based

on the bicentric priors is the outcome selected by the tracing procedure if the following condi-

tions hold. First, the equilibrium must be a strong equilibrium point when each player behaves

according to his prior beliefs, which is guaranteed for the B-equilibrium by Condition (9) and

for the A-equilibrium by Condition (10).9 Second, the equilibrium must also be an equilibrium

of the original game, which holds by Proposition 1. Hence, we obtain the result that a standard

i = A;B is risk-dominant if mi < mj , for i; j = A;B and i 6= j. Q.E.D.

According to Proposition 2 the critical mass can be used as a measure to determine whether

or not a standard is risk-dominant in the critical mass game. Precisely, the standard with

the lower critical mass is risk-dominant. This result is intuitive as a larger critical mass of a

9 In a strong equilibrium each player has a strong best reply to the equilibrium strategies of the other players.
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standard implies that relatively more users are needed to make the adoption of the standard

surely pro�table. As more users are needed to make the choice pro�table, the choice of a standard

with a larger critical mass involves a higher degree of strategic uncertainty. The risk dominance

criterion then requires to select the payo¤-inferior equilibrium in the critical mass game.

Re-writing Condition (9), we obtain that the equilibrium i = A;B is risk-dominant if

Ui(N)� Uj(1) > Uj(N)� Ui(1)

holds. Hence, the risk dominance criterion selects the equilibrium in which the loss from de-

viating from the equilibrium strategy i when all the others play i is larger than the loss from

deviating from equilibrium strategy j when all the others play j (i; j = A;B and i 6= j). The

Condition (9) can also be re-written in the following way

Ui(1) + Ui(N) > Uj(1) + Uj(N),

which implies that standard i constitutes a risk-dominant equilibrium outcome if the expected

payo¤ from choosing standard i is larger than the payo¤ from playing j, if a player expects all

the others to behave as one player who chooses with equal probabilities either i or j.

From Proposition 2 it follows that if mB < 1=2, then both selection criteria (payo¤ domi-

nance and risk dominance) are aligned and pick the same equilibrium B, while for mB > 1=2,

both criteria favor di¤erent outcomes (namely, equilibrium A is favored by risk dominance and

equilibrium B is selected by payo¤dominance).10 Following Harsanyi and Selten, we expect that

users should be able to coordinate successfully on B whenever both criteria are aligned, whereas

in other instances players face a trade-o¤. Below we analyze experimentally users�behavior in

the critical mass game to better understand how subjects resolve the trade-o¤ between payo¤

dominance and risk dominance when both criteria are not aligned.

10There is an interesting connection between risk dominance in our critical mass game and cognitive hierarchy

models. In a cognitive hierarchy model a type k-player anchors its beliefs in a nonstrategic 0-type and adjusts

them by thought experiments with iterated best responses where a type 1 player chooses a best response to type

0, type 2 to type 1, and so on. In our critical mass game, then half of type 0 players choose either A or B, while

type 1 players choose A as a best response whenever the critical mass of standard A is smaller than the critical

mass of standard B. Accordingly, all higher types then also choose A (see Camerer, Ho, and Chong, 2004 for a

similar observation for the stag hunt game).
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Maximin criterion. The maximin criterion selects the choice which delivers the maximum

payo¤ in the worst outcome. In the critical mass game the worst outcome a user can face is

given by the standard�s stand-alone value, �i (i = A;B). In the following Corollary we state

how the maximin criterion relates to the criteria of payo¤ dominance and risk dominance.

Corollary 2. If in the critical mass game the equilibrium in which all players adopt standard i is

payo¤-dominant and the equilibrium in which all players adopt standard j is risk-dominant, then

equilibrium j is also an equilibrium which is chosen by the maximin criterion, with i; j = A;B

and i 6= j.

Proof. If equilibrium i is payo¤-dominant, then

�j � �i + (N � 1)(j � i) < 0. (11)

must hold. If equilibrium j is risk-dominant, then according to Proposition 2

2(�j � �i) + (N � 1)(j � i) > 0 (12)

holds as well. Condition (11) can only be true if one of the three following parameter constel-

lations holds: i) �j < �i, j < i; ii) �j < �i, j > i, or iii) �j > �i, j < i. Assume that

�j < �i is true, then it follows from Equation (11) that

2(�j � �i) + (N � 1)(j � i) < 0

must hold, which contradicts Inequality (12). Hence, it is only possible that �j > �i and case

iii) applies. It is left to note that the stand-alone value of standard i, �i, is the minimum payo¤

a player can get by choosing this standard. Hence, the risk-dominant equilibrium is selected by

the maximin criterion. Q.E.D.

Corollary 1 states that for the particular case that payo¤ dominance and risk dominance

select di¤erent standards that the risk dominant standard is then also the standard selected

by the maximin rule. In those instances, the risk-dominant standard has a higher stand-alone

value than the other standard picked by the payo¤ dominance criterion. As the maximin rule

chooses a standard with the higher stand-alone value, it follows that the maximin rule coincides

with the risk dominance criterion. Before we turn to our experiment (which focuses on the case

where payo¤ dominance and risk dominance select di¤erent standards), we show in the following

section that the critical mass is also closely related to the global game theory.
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Global Game Theory. We now apply the theory of global games (see Carlsson and van

Damme, 1993b, and Morris and Shin, 2002) to the critical mass game to select one of the two

Nash equilibria in pure strategies. The global game speci�cation requires to introduce incomplete

information into the critical mass game. Let us now assume that every player l gets a private

signal, �l, about the stand-alone value of the standard B, �B, which is now assumed to be a

random variable with an improper uniform distribution. The private signal of a player l is given

by �l = �B + "l, where "l is independently normally distributed with "l s N(0; �2). When a

player observes signal �, then he expects �B to be normally distributed with �B s N(�; �2).

Furthermore, he concludes that the signals of the other players, �l0 (l 6= l0), are also normally

distributed with �l0 s N(�; 2�2).11 Given those speci�cations of the information structure, we

can now state in the next proposition which equilibrium is chosen by the global game theory.

Proposition 3. In the critical mass game the global game theory chooses the i-equilibrium if

standard i has a lower critical mass than standard j, with i; j = A;B, i 6= j.

Proof. See Appendix.

Proposition 3 shows that the global game theory prediction coincides with the risk dominance

selection criterion in the critical mass game.

We are now interested how users resolve the trade-o¤ between payo¤ dominance and risk

dominance in a one-shot critical mass game. We focus on those parameter constellations which

guarantee that the A-equilibrium is risk-dominant and the B-equilibrium is payo¤-dominant.

4 Design of the Experiment

Both concepts of payo¤ dominance and risk dominance predict that either all users choose the

standard with the higher maximum payo¤ or the standard with the lower critical mass, respec-

tively. We design an experiment where the risk dominance criterion selects the A-equilibrium

while the payo¤ dominance criterion selects the B-equilibrium. In this setting, we expect that

the exact values of the critical mass and of the relative payo¤ dominance matter. Precisely, we

take the critical mass of standard B as a measure of the relative risk dominance of standard

11 If X s N(�X ; �
2
X) and Y s N(�Y ; �

2
Y ) are two normally and independently distributed random variables,

then Z = X + Y is also normally distributed with Z s N(�X + �Y ; �
2
X + �

2
Y ).
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A. Holding everything else constant, a higher critical mass of standard B should then induce

more users to adopt standard A. Accordingly, we take the absolute di¤erence in the standards�

maximum payo¤s as a measure of the relative payo¤ dominance of standard B. Again, holding

everything constant, we expect that an increase of the payo¤ dominance of standard B should

induce more users to select standard B.

The experiment consists of 16 decision situations. Every decision situation is based on a

particular speci�cation of the critical mass game. In every decision situation, each of the 17

players chooses between two alternatives: standard A and standard B. The payo¤s (which

depend on the choices of the other players) were presented in a table to each player (see the

Appendix for the tables of the 16 decision situations).12

In Table 1 we present the most important parameters characterizing each decision situation;

namely: the maximum possible payo¤ from choosing standard i = A;B, denoted by Umaxi with

Umaxi = Ui(N), the di¤erence in the maximum payo¤s of the two standards given by dmax, with

dmax = UB(17) � UA(17), the minimum possible payo¤ from choosing standard i, denoted by

Umini with Umini = Ui(1) = �i, the di¤erence in the minimum payo¤s of the two standards given

by dmin = UA(1)�UB(1), and the critical mass of standard i multiplied with 16 (the number of

the other players in a decision situation).

The decision situations consist of four di¤erent blocks. In each block we keep UmaxA and

UmaxB constant. Hence, the di¤erence dmax which we interpret as a measure of the relative payo¤

dominance of standard B, remains constant within each block. Across blocks, we vary the payo¤

dominance of standard B. Precisely, we reduce the di¤erence dmax from 75 in the �rst block to

46 in the fourth block.

Within each block we have four decision situations which vary with respect to the critical

mass of standard B. The critical mass of standard B is assumed to be always larger than one-

half which ensures that standard A is risk-dominant. We increase the critical mass of standard

B (multiplied by 16) from 9 up to 12, so that within each block the degree of standard A�s risk

dominance increases.

We hypothesize that for a given degree of payo¤ dominance of standard B, dmax, the number

12 In the tables the critical mass game is stated as a discrete game where we rounded the payo¤s if given by a

non-integer.
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Table 1: Parameters of the experiment

Block 1 Block 2 Block 3 Block 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

UmaxB 325 325 325 325 300 300 300 300 280 280 280 280 310 310 310 310

UmaxA 250 250 250 250 245 245 245 245 229 229 229 229 264 264 264 264

dmax 75 75 75 75 55 55 55 55 51 51 51 51 46 46 46 46

UminB 5 5 5 5 60 60 60 60 133 104 64 4 164 134 92 30

UminA 134 178 214 243 156 189 216 238 205 205 205 205 232 232 232 232

dmin 129 173 209 238 96 129 156 178 72 101 141 201 68 98 140 202

16 �mB 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

16 �mA 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4

of B-choices is lower the higher is the critical mass of standard B. Moreover, we hypothesize

that for a given degree of risk dominance of standard A, mB, the number of B-choices is higher

the higher is the degree of standard B�s payo¤ dominance.

We ran two sessions of a paper-and-pencil experiment at the Georg-August-University of

Göttingen in February, 2009. In both experimental sessions together there were 153 participants.

We excluded �ve from the analysis, whose answers were incomplete. In the following, we analyze

the decisions of the remaining 148 participants.

The experimental instructions were read aloud to guarantee that all the participants know

that the conditions of the experiment are common knowledge. After the instructions were read

the participants could ask questions which were answered individually.

In each session 16 participants were randomly chosen whose answers were analyzed in a pre-

selected decision situation (decision situation 2). Out of these 16 participants one was randomly

chosen for the �nal payment. In the �rst session the chosen participant got 83:00 Euro and in

the second the payment was 114:00 Euro.

17



Table 2: Choices depending on the degree of payo¤ dominance

mB = 9 mB = 10 mB = 11 mB = 12

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

dmax 75 55 51 46 75 55 51 46 75 55 51 46 75 55 51 46

NB 75 70 68 63* 65 76 68 59* 64 67 61* 62* 71 66 61* 61*

NA 73 78 80 85 83 72 80 89 84 81 87 86 77 82 87 87

Note: Signi�cance level (binomial test, two-sided) is: *10%.

5 Experimental Results

In the following we report the main results of our experiment. Our �rst observation is that

participants largely fail to coordinate.

Result 1. Subjects fail to coordinate on a unique standard.

Table 2 presents the total number of A-choices and B-choices in the 16 decision situations.

It shows that subjects fail to coordinate on one of the standards. The di¤erence between the

number of A-choices and B-choices is statistically signi�cant in the six decision situations (two-

sided binomial test with 10% signi�cance level), while in the ten decision situations the di¤erence

is not signi�cant. The highest share a standard achieved is 60% which is the share of standard

A in the decision situation 14.

We observe that in most of the decision situations the number of B-choices is smaller than

the number of A-choices. Only in the decision situations 1 and 6 the number of B-choices is

larger. The average share of standard B is given by 45%, while the average share of standard

A is equal to 55%. These results clearly suggest that the pure strategy Nash equilibria fail

to predict players�behavior. Similarly, neither the risk dominance and the payo¤ dominance

criterion nor the global game theory are able to predict players�aggregate adoption decisions.

Our next observation shows that an increase of standard B�s relative payo¤ dominance tends

to increase the number of B-choices.

Result 2. The number of B-choices (A-choices) tends to increase (decrease) as dmax increases.

In Table 2 we keep in each block the critical mass constant, while within each block the
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Table 3: Choices depending on the degree of risk dominance

dmax = 75 dmax = 55 dmax = 51 dmax = 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 �mB 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

NB 75 65 64 71 70 76 67 66 68 68 61* 61* 63* 59* 62* 61*

NA 73 83 84 77 78 72 81 82 80 80 87 87 85 89 86 87

Note: Signi�cance level (binomial test, two-sided) is: *10 %.

di¤erence dmax decreases and takes the values 75, 55, 51, and 46. From Table 2 we observe that

in each block the number of B-choices tends to fall from the left to the right. In each block the

number of B-choices becomes signi�cantly lower than the number of A-choices if dmax takes the

smallest value 46. For the second smallest value of dmax = 51 the number of B-choices is still

signi�cantly lower than the number of A-choices in blocks 3 and 4. Interestingly, in blocks 1 and

4 the number of B-choices decreases monotonically when dmax becomes smaller, whereas blocks

2 and 3 exhibit some irregularities.

In Table 3 we have re-arranged the columns of Table 2 such that each block represents a

di¤erent value of dmax, while within each block the critical mass increases from 9, to 10, to 11,

and �nally, to 12. If we take the average number of B-choices in each block of Table 3, we

obtain the (rounded) values 69, 70, 65, and 61 for blocks 1, 2, 3, and 4, respectively. Hence, at

the aggregate level we also see that the number of B-choices tends to decrease when the relative

payo¤ dominance of standard B decreases.

Table 3 allows us to infer how the critical mass a¤ects players�choices.

Result 3. The number of B-choices (A-choices) tends to decrease (increase) as the critical

mass, mB, increases.

From Table 3 we observe that in every block the number of B-choices almost monotonically

decreases as the value of the critical mass of standard B increases from 9 up to 12. For example,

in the �rst decision block we get 75, 65, 64, and 71 B-choices for the critical masses of 9, 10, 11,

and 12, respectively. Only in the last decision situation of the �rst block with the critical mass

of 12 we see an irregularity. Turning back to Table 2, we can calculate in each block the average
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Table 4: OLS regression explaining the number of B-choices

Explanatory Variables Coe¢ cients (p-Values)

Constant 55:15*** (< 0:001)

(UmaxB � UmaxA )=UmaxB 86:47** (0:03)

(mB �mA)=mB �11:3* (0:095)

R2 (adjusted R2) 0:41 (0:32)

Number of observations 16

Note: Signi�cance levels are: ***1%, **5%, *10 %.

number of B-choices for a given value of the critical mass. The (rounded) average number of

B-choices for the critical mass of 9 is 69, for the critical mass of 10 it is 67, for the critical mass

of 11 it is 64, and for critical mass of 12 the average value is 65. Again, we see that the average

number of B-choices almost monotonically decreases when standard B�s critical mass increases.

While these results suggest that risk dominance tends to a¤ect players�choices, they also show

that the mixed strategy equilibrium performs poorly.13

Results 2 and 3 show that both the relative degree of payo¤ dominance of standard B (as

measured by dmax) and the relative degree of risk dominance of standard A (as measured by

mB) a¤ect players�choices. To better understand the trade-o¤ between them we next examine

the combined e¤ect by using regression analysis.

Result 4. Payo¤ dominance and risk dominance measured by the relative di¤erence in the

maximum payo¤s and the relative di¤erence in the critical masses, respectively, jointly explain

the choice of a standard.

Table 4 presents the results of a simple OLS regression with the number of B-choices as the

dependent variable. We checked several speci�cations for the explanatory variables. We �nally

decided to relate our measure of the relative payo¤ dominance of standard B (dmax) to the

absolute value of the maximum utility of standard B (UmaxB ). Similarly, we related the relative

degree of riskiness of standard B (mB �mA) to the critical mass of standard B (mB). That

13A similar result is obtained in Heinemann, Nagel, and Ockenfels (2009) who point out that a Bayesian game

speci�cation is not helpful because of its similarity to the mixed strategy equilibrium.
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Table 5: Logit regression explaining the probability of B-choices

Explanatory Variables Coe¢ cients (p-Values)

Constant �1:1** (0:045)

(UmaxB � UmaxA )=UmaxB 5:72*** (0:009)

(mB �mA)=mB �0:75* (0:054)

Log likelihood �940

Number of observations (number of groups) 2368(148)

Note: Signi�cance levels are: ***1%, **5%, *10 %.

speci�cation turned out to yield the most signi�cant results.

Table 4 shows that both the degree of payo¤ dominance and the degree of risk dominance

in�uence subjects�choices. The regression results imply that the number of B-choices increases

when the relative payo¤ dominance of standard B increases. The respective parameter estimate

is signi�cant at the 5% signi�cance level. Our measure of the relative riskiness of standard B

is negatively correlated with the number of B-choices. The respective parameter estimate is

still signi�cant at the 10%-signi�cance level. In line with �ndings in Heinemann, Nagel, and

Ockenfels (2009) the minimum number of players necessary to make a risky choice pro�table

helps to explain players�choices.

In the Table 5 we present the results of a Logit model with random e¤ects with the probability

of choosing standard B as the dependant variable. The results of the Logit regression support

our previous conclusions that both the relative di¤erence in the maximum payo¤s as well as

the relative di¤erence in the critical masses signi�cantly impact on the probability of choosing

standard B. Similar to the OLS regression, the signi�cance level of the parameter estimate

which measures the in�uence of payo¤ dominance is higher than the one which measures the

in�uence of risk dominance.

Result 5. The choice of a standard can be explained jointly by the degree of payo¤ dominance

and the relative di¤erence in the minimum payo¤s of the two standards.

Above we stated in Corollary 1 that a risk-dominant standard which is not at the same

a payo¤-dominant standard also has a larger stand-alone value. Therefore, the risk-dominant
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Table 6: OLS regression explaining the number of B-choices

Explanatory Variables Coe¢ cients (p-Values)

Constant 37:98*** (< 0:001)

(UmaxB � UmaxA )=UmaxB 163:62*** (0:004)

(UminA � UminB )=UminB �0:17** (0:042)

R2 (adjusted R2) 0:47 (0:39)

Number of observations 16

Note: Signi�cance levels are: ***1%, **5%.

standard is also the standard selected by the maximin criterion. We measure the in�uence of

the maximin criterion on players�choices by the di¤erence of the minimum payo¤s of standard

A and standard B (again, relative to the minimum payo¤ of standard B). We incorporate that

measure into our regression analysis as an explanatory variable. The results are presented in

Table 6.

Table 6 shows that both the relative di¤erence in the maximum payo¤s as well as the relative

di¤erence in the minimum payo¤s of the standards explain players�choices of standard B. Again,

the larger the relative di¤erence in the maximum payo¤s becomes, the more players adopt

standard B. The respective parameter estimate is signi�cant at the 1% signi�cance level. We

also see that a widening of the relative di¤erence of the minimum payo¤s reduces the number of

B adoptions. The respective parameter estimate is signi�cant at the 5% signi�cance level. When

we compare Table 6 with with Table 4 (where we used the relative di¤erence in the standards�

critical masses as an explanatory variable), we see that the �maximin� speci�cation performs

better in terms of the signi�cance level of the parameter estimates as well as in terms of the

overall explanatory power. We speculate that the maximin criterion is easier to apply than a

calculation of the critical mass as it only requires to compare the save payo¤s (i.e., the minimum

payo¤s of each standard). In other words, the critical mass seems to be a more sophisticated

concept for the subjects than the maximin criterion which relies on the standards�minimum

payo¤s.

In Table 7 we present the parameters of the Logit regression with random e¤ects explaining
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Table 7: Logit regression explaining the probability of B-choices

Explanatory Variables Coe¢ cients (p-Values)

Constant �2:26*** (< 0:001)

(UmaxB � UmaxA )=UmaxB 10:9*** (0:001)

(UminA � UminB )=UminB �0:01** (0:022)

Log likelihood �940

Number of observations (number of groups) 2368 (148)

Note: Signi�cance levels are: ***1%, **5%.

the probability of choosing standard B. These results support again the results of the simple

OLS regression.

We can summarize our experimental results now as follows. First, the Nash equilibrium

predictions (both in pure strategies and in mixed strategies) fail to explain players�adoption

behavior. Secondly, and accordingly, the global game theory and the maximin criterion which

both select the A-equilibrium fail to predict players�choices. Third, as suggested by Harsanyi

and Selten (1988) both the payo¤ dominance and risk dominance re�nements together help to

explain the aggregate adoption behavior of players.

With regard to the global game prediction our results are also supportive to Heinemann,

Nagel, and Ockenfels�(2009) �ndings who analyze the choice between a certain payo¤and a risky

payo¤where the risky payo¤depends as in our critical mass game positively on the other players�

choices. While their approach helps to elicit the role of the certainty equivalent in a context of

strategic uncertainty, our results show that in a setting where both choices are associated with

strategic uncertainty, the role of payo¤ dominance becomes important. Heinemann, Nagel, and

Ockenfels (2009) consider a game in which players choose between a secure payo¤ and a risky

payo¤. If a certain number of players choose the risky choice, then the payo¤ of the risky choice

is higher when compared with the choice of the certain payo¤. If the number of players choosing

the risky choice falls short of a certain value, then the certain choice implies a higher payo¤.

This setting is similar to our critical mass game as both games highlight a trade-o¤ between

a relatively high certain payo¤ (standard A) and a relatively high uncertain payo¤ (standard
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B). Heinemann, Nagel, Ockenfels (2009) increase the secure payment stepwise and also consider

three di¤erent values for the coordination requirement k. The coordination requirement k is

similar in spirit to our concept of a critical mass: if a share k of the other players chooses B,

then it is the best reply for each of the remaining players to choose also B.

There are, however, important di¤erences between their experiment and ours. First, both

strategies A and B in the critical mass game deliver risky payo¤s in the sense that they always

depend on the other players� choices. Second, in their study the coordination requirement k

is given exogenously while we derive the value of the critical mass endogenously (from the

parameters of the payo¤ functions associated with the two standards). Hence, we show how

the critical mass naturally emerges in the presence of network e¤ects and how it is related to

the secure payo¤s of each standard.14 Third, in their experiment the decision situations were

displayed on a screen ordered by the coordination requirement. Our experiment instead placed

all the decision situations in the questionnaire in a random order so that the subjects were

not explicitly framed to follow threshold strategies according to the riskiness of the uncertain

choice. Besides those di¤erences, our experimental results by large do not contradict the results

obtained in Heinemann, Nagel, and Ockenfels (2009).15 We note, however, that our analysis

helps to elicit the role of payo¤ dominance, when both choices involve strategic uncertainty.

We �nally note that our results stand in contrast to Schmidt et al. (2003) who showed within

their setting that players were following the risk dominance criterion while the payo¤ dominance

criterion did not considerably a¤ect players�choices.

The payo¤ dominance and risk dominance concepts as such are �discrete� concepts in the

sense that they select one of the two standards with probability one. Our experiment suggests

14An important consequence for the experimental design of our approach is that subjects had to infer the value

of the critical mass from the presented payo¤ tables (see the Appendix), while in Heinemann, Nagel, and Ockenfels

(2009) the critical value, k, was stated explicitly in the decision situations.

15A di¤erence noteworthy though, is the relatively large degree of coordination failure and the lower statistical

signi�cance of our regressions. However, those di¤erences can be easily explained by both the limits of a paper-

and-pencil experiment and the absence of framing devices (as the ordered presentation of all decision situations on

a single screen and the explicitly stated critical values of k; see Heinemann, Nagel, and Ockenfels 2009, Figure 1),

which naturally increases the consistency of subjects�choices (namely, to adhere to threshold strategies). In fact,

as decision situation were not ordered in our experiment, we observe a considerable portion of subjects behaving

inconsistently.
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that subjects resolve the trade-o¤ between both forces di¤erently, so that in the aggregate

changes in the relative risk dominance and the relative payo¤ dominance only a¤ect players�

choices at the margin. In the following section we turn to the industrial organization implications

of our �ndings, where we analyze how users�behavior a¤ects �rms�technology choices.

6 Technology Choice

In this section we analyze how our experimental results may impact on �rms�technology choices.

This means, we postulate that the expected demand for a certain standard is driven by the joint

impact of its relative payo¤ dominance and its relative risk dominance.

We assume two �rms k = 1; 2 which maximize their market shares.16 Each �rm has to

decide whether to adopt technology A or technology B. Both technologies give rise to network

e¤ects as speci�ed in Equation (1). We assume a critical mass game as stated in De�nition 1.

In addition, we suppose that standard A is risk-dominant; i.e., mA < mB holds.

We analyze a two-stage game, where in the �rst stage �rms simultaneously and noncooper-

atively decide which technology to adopt. In the second stage, N � 2 users simultaneously and

independently make their choices. Users�utility functions are given by Equation (1). Hence,

the utility a consumer realizes only depends on the standard i = A;B and is independent of the

�rm.

We suppose that the relative degree of risk dominance and the relative degree of payo¤ dom-

inance jointly determine the market demand. To keep the analysis simple, we use the absolute

di¤erence in the standards�minimum payo¤s as a proxy for the degree of risk dominance. Sim-

ilarly, we take the absolute di¤erence in the maximum payo¤s as a proxy for payo¤ dominance.

Given those assumptions, we can formulate the expected probability that a user chooses the

standard of a �rm k = 1; 2 when �rm k has chosen technology i = A;B and the rival �rm k0

(k0 6= k) has chosen standard j = A;B as

P i;jk = 1=2 + �(Umaxi � Umaxj ) + �(Umini � Uminj ), (13)

16This is, we abstract from �rms� pricing decisions. One application may be the market for online search

engines which are o¤ered at a price of zero and where pro�ts are generated by advertisements which are typically

proportional to the number of users.
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where � > 0 measures the impact of payo¤ dominance and � > 0 measures the impact of risk

dominance.17,18 Equation (13) mirrors the qualitative results of our experiment, such that the

expected adoptions of a standard increase when its relative payo¤ dominance and/or its relative

risk dominance increases. As every user chooses the standard of �rm k with probability P i;jk ,

the expected demand of �rm k is given by P i;jk N .

Given the demands, we can calculate �rms�equilibrium technology choices in the �rst stage

of the game which yields the following proposition.

Proposition 4. For any given parameters � and � the following equilibria emerge:

i) If �=� > (UmaxB � UmaxA )=(UminA � UminB ), then in the only equilibrium (which is also an

equilibrium in dominant strategies) both �rms choose standard A.

ii) If �=� < (UmaxB � UmaxA )=(UminA � UminB ), then in the only equilibrium (which is also an

equilibrium in dominant strategies) both �rms choose standard B.

iii) If �=� = (UmaxB �UmaxA )=(UminA �UminB ), then four equilibria emerge, in which every �rm

chooses either standard A or standard B.

Each �rms�expected market share is one-half in any equilibrium.

Proof. Note �rst that a �rms�market share is one-half if both �rms adopt the same technology.

Assume that �rm 1 opts for standard A. Then if �rm 2 also chooses standard A, its market share

is 1=2. If it chooses standard B, then its market share is 1=2+�(UmaxB �UmaxA )+�(UminB �UminA ),

which is larger than 1=2 if �=� < (UmaxB � UmaxA )=(UminA � UminB ) holds and smaller otherwise.

Assume now that �rm 1 opts for standard B, then by choosing standard B �rm 2, again,

gets half of the market. If, in contrast, it chooses standard A, then its market share is equal to

1=2+�(UmaxA �UmaxB )+�(UminA �UminB ), which is larger than 1=2 if �=� > (UmaxB �UmaxA )=(UminA �

UminB ) and smaller otherwise. Hence, it is a dominant strategy for a �rm to choose standard A if

�=� > (UmaxB � UmaxA )=(UminA � UminB ). If to the contrary �=� < (UmaxB � UmaxA )=(UminA � UminB )

holds, then for both �rms the dominant strategy is to choose standard B. Finally, if �=� =

17Note that pi;j1 + pi;j2 = 1, so that market shares sum up to one. Note also that (13) implies pA;A1 = pA;A2 =

pB;B1 = pB;B2 = 1=2. Hence, if both �rms opt for the same standard, then every �rm�s standard is chosen with

equal probabilities.

18Equation (13) can easily be rewritten to account for the relative di¤erences in the minimum and maximum

payo¤s by introducing new parameters e� = �UmaxB and e� = �UminB , such that pi;jk = 0:5+e�(Umaxi �Umaxj )=UmaxB +e�(Umini � Uminj )=UminB .
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(UmaxB �UmaxA )=(UminA �UminB ), then PA;Bk = PB;Ak = 1=2, so that each �rm is indi¤erent for any

choice of its opponent. Q.E.D.

Proposition 4 shows that �rms tend to choose the risk-dominant standard A if the impact

factor � is large enough. If, however, the impact factor � becomes relatively small, then �rms

are more likely to adopt the payo¤-dominant standard B.

We �nally examine the welfare consequences of �rms�technology choices. We abstract from

producer surplus and focus on consumer surplus. We suppose that �rms�products stay incom-

patible even if they adopt the same technology. For simplicity, we also disregard the non-generic

case iii) of Proposition 4, so that either both �rms choose standard A or standard B in the

technology choice game. The following result is then immediate.

Proposition 5. For any � and �, expected consumer surplus is maximized when both �rms

choose the risk-dominant standard A.

Proof. From Equation (13) it follows that the market is shared equally if both �rms adopt

the same technology. As we assumed mB > mA it follows that NUA(N=2) > NUB(N=2) holds.

Q.E.D.

Proposition 5 is an astonishing result which shows that consumers can be better o¤ if �rms

choose an inferior standard; i.e., a standard which has a lower maximum value than the rival

standard. When �rms correctly expect that buyers�choices are driven by considerations of risk

dominance, then �rms tend to favor the less risky technology, which ultimately bene�ts con-

sumers. The reason behind this result is the prevalence of coordination failure. If both �rms

select the same technology, then the expected market share of each �rm is one-half. If misco-

ordination is an overwhelming problem (as observed in one-shot experiments), then consumers

are better o¤ in expected terms, if �rms choose the less risky technology A which yields an

expected aggregate consumer surplus of NUA(N=2). That expected consumer surplus is nec-

essarily larger when compared with the consumer surplus, NUB(N=2), which can be expected

if both �rms choose the payo¤-dominant technology B. This comparison follows immediately

from our assumption that standard A is risk-dominant.
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7 Conclusion

We introduced a critical mass game in which N � 2 identical users make simultaneously their

adoption decisions where they have to choose between two standards that exhibit positive net-

work e¤ects. The critical mass game gives rise to a coordination problem as it has two strict

Nash equilibria in pure strategies. One of those equilibria is assumed to be payo¤-dominant. We

introduced heuristically the concept of a critical mass which we de�ned as the minimum share of

users adopting a certain standard so as to make the choice of this standard a best response for

any of the remaining users. In the theoretical part we showed that the equilibrium in which all

users adopt the standard with the lower critical mass is risk-dominant according to Harsanyi and

Selten, is chosen by the global game theory, and is also selected by the maximin criterion. Our

critical mass heuristic, therefore, is theoretically instructive. It gives additional intuitive appeal

to the risk-dominance criterion and the global game theory within the context of a critical mass

game.

In the experimental part we showed that subjects�choices depend on the degree of payo¤

dominance (measured by the relative di¤erence in the standards�maximum payo¤s) and the

degree of risk dominance (measured by the relative di¤erence in the standards�critical masses

or the standards�minimum payo¤s). Our experimental results suggest that an increase of the

relative degree of a standard�s payo¤ dominance tends to increase users�adoptions. Similarly,

we showed that an increase of a standard�s relative degree of risk dominance tends to increase

adoptions.

We also analyzed how consumer behavior a¤ects �rms�technology decisions. We showed,

if the impact factor for risk dominance is su¢ ciently large, then both �rms choose the risk-

dominant standard. Quite surprisingly, those decisions lead to technology choices which tend

to bene�t users. The reason behind this result is that the choice of a less risky technology

minimizes the (almost sure) losses from coordination failure.

There are many possible directions for further research. One route is to generalize the concept

of the critical mass to games with nonlinear network e¤ects and to establish its relationship to

the concept of risk dominance. Another direction would be to analyze how the relative riskiness

of a standard a¤ects adoption decisions in a dynamic setting. Presumably, a standard with a

larger critical mass may need more time to gain dominance (if at all) in a dynamic setting when
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compared with a less riskier technology.

Appendix

In this Appendix we �rst present the proof of Proposition 3, then the instructions of the exper-

iment, and �nally, the participants�decision situations in the experiment.

Proof of Proposition 3

We �rst de�ne a switching strategy s(�) which prescribes which standard to choose depending

on the value of the private signal a player receives:

s(�) =

�
B if � > e�
A if � � e�. (14)

Assume that it is common knowledge that all users�standard choices are given by such a switch-

ing strategy. Then each user l knows that the probability that a user l0 with l 6= l0 observes a

signal smaller that e�, and hence, chooses standard A is given by ��e���p
2�

�
, where �(x) is c.d.f.

of the standard normal distribution.19 The probability that another player chooses standard B

is then given by 1� �
�e���p

2�

�
. The expected payo¤ of a player l if he chooses standard B after

observing signal � is then given by

� + B

�
1� �

�e� � �p
2�

��
(N � 1).

The expected payo¤ of choosing standard A is given by

�A + A�

�e� � �p
2�

�
(N � 1).

Hence, a player l will choose standard B if

� + B

�
1� �

�e� � �p
2�

��
(N � 1) > �A + A�

�e� � �p
2�

�
(N � 1)

19After observing signal � the user knows that the signals of the other players are distributed

with �j s N(�; 2�2). Hence, the probability that a user j observes a signal smaller than e� is
given by P (�j � e�). Note �nally, that P (�j � e�) = P

�
�j��p
2�
� e���p

2�

�
= �

�e���p
2�

�
. The last

equality follows from the fact that if �j s N(�; 2�2), then zj =
�j��p
2�

is normally distributed

with zj s N(0; 1).
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holds, which can be re-written as

� > �A � B(N � 1) + (A + B)�
�e� � �p

2�

�
(N � 1). (15)

Hence, according to decision rule (14) a user�s signal must be high enough to induce him to

choose standard B. Let us de�ne the right-hand side of (15) by the function f(e�) := �A �

B(N � 1) + (A + B)�
�e���p

2�

�
(N � 1) so that for � = f(e�) a user is indi¤erent between

standards A and B. To proceed with the proof, we have to analyze the main properties of the

function f(e�).
Ancillary Claim 1. The function f(e�) has the following properties:

i) f(e�) is well-de�ned,
ii) f(e�) is strictly increasing in e�,
iii) f(e�) has a unique �xed point, b�, with b� = f(b�) = (�A + (A � B)(N � 1))=2,

iv) f(e�) is concave for � > e� and convex for � < e�.
Proof. We prove each property one after the other.

i) Suppose to the contrary that the function is not well-de�ned. Then, for some e�1 there are
two values �1 and �2 such that

� � �A + B(N � 1)� (A + B)�
�e�1 � �p

2�

�
(N � 1) = 0 (16)

holds if either � = �1 or � = �2. Let us now introduce the function G(�; e�) := ���A+ B(N �
1)� (A+B)�

�e���p
2�

�
(N �1). Assume without loss of generality that �1 > �2. Note next that

G(�; e�) strictly increases in � as @����e�p
2�

�
=@� < 0. It then follows that G(�1; e�1) > G(�2; e�1),

so that G(�1; e�1) = G(�2; e�1) = 0 cannot be true.
ii) Consider the values e�1, e�2, �1 and �2 such that �1 = f(e�1), �2 = f(e�2) and e�1 > e�2. We

have to show that �1 > �2. Note that G(�; e�) is strictly decreasing in e� since @��e���p
2�

�
=@e� > 0.

Hence, it holds that G(�1; e�1) < G(�1; e�2). Note, moreover, that G(�1; e�1) = G(�2; e�2) = 0 and
we obtain G(�2; e�2) = G(�1; e�1) < G(�1; e�2). As G(�; e�) strictly increases in �, it follows from
G(�2; e�2) < G(�1; e�2) that �2 < �1.

iii) A �xed point requires e� = f(e�). Note, if e� = �, then ����e�p
2�

�
= 1=2. Hence, the �xed

point b� solves
b� = �A � B(N � 1) + A + B

2
(N � 1), (17)
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which gives

b� = �A + A � B
2

(N � 1).

As b� is uniquely determined by e� = f(e�), we conclude that there is only one �xed point.
iv) As G(�; e�) � 0 holds for any � and e� we obtain the expression�

1 +A
@�(x)

@x

�
d� = A

@�(x)

@x
de�,

with A � A+Bp
2�

(N � 1). Hence, we get that

@l(e�)
@e� =

A@�(x)@x

1 +A@�(x)@x

> 0.

We next have to determine the second derivative

@2f(e�)
(@e�)2 =

A@
2�(x)
(@x)2

�
1 +A@�(x)@x

�
�A2 @�(x)@x

@2�(x)
(@x)2�

1 +A@�(x)@x

�2 =
A@

2�(x)
(@x)2�

1 +A@�(x)@x

�2 . (18)

We have to consider two cases: e� � b� and e� > b�. If e� � b�, then @2�(x)
(@x)2

> 0, hence, it follows

from Expression (18) that @2f(e�)=(@e�)2 > 0 and l(e�) is a convex function. If e� > b�, then
@2�(x)
(@x)2

< 0, hence, it follows from Expression (18) that @2f(e�)=(@e�)2 < 0 and f(e�) is a concave
function. This completes the proof of the claim.

In the next claim we show that there is the only strategy which survives the iterated deletion

of strictly dominated strategies.

Ancillary Claim 2. The only switching strategy which survives the iterated elimination of

strictly dominated strategies is given by:

s(�) =

�
B if � > b� = �A + (A�B)

2 (N � 1)
A if � � b� = �A + (A�B)

2 (N � 1).

Proof. If a player l observes a signal � with � > �A + A(N � 1), then it is a dominant

strategy for him to choose standard B.20 If, to the contrary, player l observes a signal � such

20This means, even if all the other players decided to choose A (depending on the signals they

receive), it is still optimal for a player i to choose standard B.
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that � � �A � B(N � 1), then it is a dominant strategy for him to choose standard A. Hence,

every user infers that all the other users follow a switching strategy

s(�) =

�
B if � > �A + A(N � 1)
A if � � �A � B(N � 1). (19)

The strategy (19) follows from applying the �rst step of the iterated elimination of strictly

dominated strategies. The best response to this strategy is then given by

s(�) =

�
B if � > f(�A + A(N � 1))
A if � � f(�A � B(N � 1)).

The strategy we obtain in the n-th step of the iterated elimination of strictly dominated strategies

is then given by

s(�) =

�
B if � > fn�1(�A + A(N � 1))
A if � � fn�1(�A � B(N � 1)).

Using the properties of the function f(e�), which is concave for � > e�, convex for � < e� and has
a unique �xed point at b�, we obtain

lim
n!1

fn�1(�A + A(N � 1)) = lim
n!1

fn�1(�A � B(N � 1)) = b�.
This completes the proof of the claim.

It is only left to note that the condition � > �A + A(N � 1) is equivalent to mB 2 (0; 1=2),

while � < �A � B(N � 1) is equivalent to mB 2 (1=2; 1). Q.E.D.

Instructions

In the following we present the English translation of the instructions of our experiment which

were handed out in German.

Instructions. Please do not communicate with other participants! If you have questions

please raise your hand so that we can answer your question individually!

You are participating in a decision experiment in which you can earn money. With 16 other

randomly chosen participants which will not be known to you, you build up a group. How much

you earn depends on your own decisions and decisions of the other participants of your group.

Every participant makes his (her) decisions independently of the others.

The experiment consists of 16 di¤erent decision situations. In every decision situation every

experiment participant makes the choice between two alternatives, X and Z. The participant�s
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payo¤ in a particular decision situation depends on the own choice and the number of the other

participants of the group who have made the same choice. The payo¤ is higher the more other

participants have chosen the same alternative. The payments in all the 16 decision situations

are independent of each other and are given in �ctitious monetary units.

The �ctitious monetary units will be converted into Euros for one randomly chosen experi-

ment participant such that one monetary unit will be worth 50 Cents. Before the Experiment

we have randomly chosen one of the 16 decision situations, the number of this decision situation

is kept in an envelope. At the end of the experiment �rst a group of 17 participants will be

picked up, whose decisions in this decision situation will be analyzed. From this group then

one participant will be randomly chosen for the cash payment. Please notice that in the left

upper corner of this page as well as on the attached sheet you �nd your individual participation

number. We ask you to keep the attached sheet with which we can identify you for the possible

cash payment.

Every decision situation will be presented in a table. In this table you see how your individual

payo¤ in �ctitious monetary units depends on your choice and the choices of other participants.

On the next page we give you an example.

Example:

Assume that your payo¤ in one given decision situation depends on your individual choice

(alternative X or Z) and choices of the other participants of your group in the way presented in

the following Table:

Number of others

who choose Z
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice X 20 25 30 50 60 65 70 90 120 125 130 140 160 165 172 180 190

Z 170 150 145 130 125 120 115 90 80 75 70 65 60 55 50 45 40

According to this Table your payment is:

� 20, when you choose X and none of the other participants chooses X, what means that

all the other 16 participants choose Z,
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� 170, when you choose Z and none of the other participants chooses X, what means that

all the other 16 participants choose Z,

� 30, when you choose X, two of the other participants choose X and 14 of the other

participants choose Z,

� 145, when you choose Z, two of the other participants choose X and 14 of the other

participants choose Z,

� 165, when you choose X, 13 of the other participants choose X and three of the others

choose Z,

� 55, when you choose Z, 13 of the other participants choose X and 3 of the others choose

Z,

� 190, when you choose X, all the other 16 participants choose X and none of the others

chooses Z,

� 40, when you choose Z, all the other participants choose X and none of the others chooses

Z.

We ask you now to analyze the following decision situations and mark your choice, alternative

X or Z. For this you �nd a box under every decision situation.

When all the experiment participants are ready with their choices, we will collect the ques-

tionnaires and establish the person who will be paid in cash.

Decision Situations

In this section we present the decision situations in which experiment participants had to make

their choices. Decision situations were handed out in a random order. We presented two de-

cision situations on a single sheet of paper. Below, on top of each decision situation table, we

also provide the assumed utility functions UA(NA) and UB(NB) from which we calculated the

(rounded) payo¤s which were presented to the participants in the tables.
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Decision Situation 1: UA = 134:44 + 7:22(NA � 1) and UB = 5 + 20(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 134 142 149 156 163 171 178 185 192 199 207 214 221 228 236 243 250

B 325 305 285 265 245 225 205 185 165 145 125 105 85 65 45 25 5

Decision Situation 2: UA = 178 + 4:5(NA � 1) and UB = 5 + 20(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 178 183 187 192 196 201 205 210 214 219 223 228 232 237 241 246 250

B 325 305 285 265 245 225 205 185 165 145 125 105 85 65 45 25 5

Decision Situation 3: UA = 213:64 + 2:27(NA � 1) and UB = 5 + 20(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 214 216 218 220 223 225 227 230 232 234 236 239 241 243 245 248 250

B 325 305 285 265 245 225 205 185 165 145 125 105 85 65 45 25 5

Decision Situation 4: UA = 243:33 + 0:42(NA � 1) and UB = 5 + 20(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 243 244 244 245 245 245 246 246 247 247 247 248 248 249 249 250 250

B 325 305 285 265 245 225 205 185 165 145 125 105 85 65 45 25 5
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Decision Situation 5: UA = 156:11 + 5:56(NA � 1) and UB = 60 + 15(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 156 162 167 173 178 184 189 195 201 206 212 217 223 228 234 239 245

B 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60

Decision Situation 6: UA = 189 + 3:5(NA � 1) and UB = 60 + 15(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 189 193 196 200 203 207 210 214 217 221 224 228 231 235 238 242 245

B 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60

Decision Situation 7: UA = 215:9 + 1:8(NA � 1) and UB = 60 + 15(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 216 218 220 221 223 225 227 229 230 232 234 236 238 240 241 243 245

B 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60

Decision Situation 8: UA = 238:3 + 0:42(NA � 1) and UB = 60 + 15(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 238 239 239 240 240 240 241 241 242 242 242 243 243 244 244 245 245

B 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60
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Decision Situation 9: UA = 205 + 1:5(NA � 1) and UB = 132:57 + 9:2(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229

B 280 271 262 252 243 234 225 216 206 197 188 179 169 160 151 142 133

Decision Situation 10: UA = 205 + 1:5(NA � 1) and UB = 104 + 11(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229

B 280 269 258 247 236 225 214 203 192 181 170 159 148 137 126 115 104

Decision Situation 11: UA = 205 + 1:5(NA � 1) and UB = 64 + 13:5(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229

B 280 267 253 240 226 213 199 186 172 159 145 132 118 105 91 78 64

Decision Situation 12: UA = 205 + 1:5(NA � 1) and UB = 4 + 17:25(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229

B 280 263 246 228 211 194 177 159 142 125 108 90 73 56 39 21 4

37



Decision Situation 13: UA = 232 + 2(NA � 1) and UB = 164 + 9:1(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264

B 310 301 292 283 273 264 255 246 237 228 219 209 200 191 182 173 164

Decision Situation 14: UA = 232 + 2(NA � 1) and UB = 134 + 10:97(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264

B 310 299 288 277 266 255 244 233 222 211 200 189 178 167 156 145 134

Decision Situation 15: UA = 232 + 2(NA � 1) and UB = 93 + 13:58(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264

B 310 296 283 269 256 242 228 215 201 188 174 160 147 133 120 106 92

Decision Situation 16: UA = 232 + 2(NA � 1) and UB = 30 + 17:5(NB � 1)

Number of others

who choose B
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others

who choose A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264

B 310 293 275 258 240 223 205 188 170 153 135 118 100 83 65 48 30
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