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Abstract 

This paper aims to examine the relative efficiency of German engineering firms using a 

sample of roughly 23,000 observations between 1995 and 2004. As these firms had been 

successful in the examination period in terms of output- and export-growth, it is expected that 

a majority of firms is operating quite efficiently and that the density of efficiency scores is 

skewed to the left. Moreover, as the German engineering industry is dominated by medium 

sized firms, the question arises whether these firms are the most efficient ones. Finally an 

increasing efficiency gap between size classes over time is important since that would be a 

signal for a structural problem within the industry. The analysis - using recently developed 

DEA methods like bootstrapping or outlier detection - contradicts the two first expectations. 

The firms proved to operate quite inefficiently with an overall mean of 0.69, and efficiency 

differs significantly with firm size whereas medium sized firms being on average the least 

efficient ones. When looking at changes in efficiency over time, we find a decreasing 

efficiency gap between size classes.  
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I Introduction 

Germany is known to be the worlds export champion since 2003 and its growth and prosperity 

has become heavily depending on its export industries.1 Between 1995 and 2005 the share of 

exports on GDP rose from 22 to roughly 40 percent (Statistisches Bundesamt, 2006a), while 

the share of export depending employment rose from 15.6 to 21.4 percent or 8.3 Million jobs 

(Mohr, 2008). In terms of export values the most important sectors were the automotive 

industry, the mechanical engineering industry and the chemical industry, which account, 

according to the GENESIS data base of the German Federal Statistic Office, for 19.3, 14.4 

and 13.0 percent of overall industry exports in 2004. With respect to employment the 

engineering industry is even more important providing almost 1 Mill. jobs in 2004, while the 

automotive and the chemical industry offered 863,00 and 446,000 jobs (Statistisches 

Bundesamt, 2006b).  

The engineering industry is therefore referred to be a pillar of the German industry and its 

prosperity is of importance for the whole economy. It was successful in increasing its overall 

output by roughly 25 percent in the sample period while its exports increased by more than 50 

percent from 62.8 to 106.5 Bill. Euros as depicted in Figure 1. In terms of gross value added it 

was also the leading sector within the German industry, accounting for 15 percent or 67.7 

Bill. Euros in 2004 (Statistisches Bundesamt, 2009). However, beside these quite impressive 

figures little is known about the production efficiency of these firms, given that one would 

expect efficient operations to be an important contributing factor to this success. Therefore, 

this paper examines the efficiency of Germanys engineering firms focusing on three topics. 

Firstly, it is analyzed to what extend the success is due to highly efficient operations. 

Secondly, the relationship between firm size and efficiency is evaluated against the 

background of an industry that is dominated by medium sized firms. Finally, changes in 

efficiency over time are then measured in order to identify possible structural changes within 

the industry.  

The remaining paper is organized as follows. Previous research findings and the 

hypotheses are presented in section II. Section III provides the reader with a short overview of 

the methodology. The fourth section is devoted to the description of the data and the 

employed variables. The results of the empirical analysis are presented in section V whereas 

section VI concludes.  

 
1  “Der deutsche Außenhandel hat für das Wirtschaftswachstum sowie den Arbeitsmarkt in Deutschland 

zentrale Bedeutung.” (Statistisches Bundesamt, 2006a) 



II Previous Research and Hypotheses 

In theory, efficient productions are described by the most efficient input-output combinations 

of the production function. The production function in turn shows the technical or natural 

restriction in production. It also defines the production possibility set, containing all 

technically possible but inefficient production plans. In theory this area is of little interest as it 

is expected that profit maximizing firms always produce efficiently and do not waste 

resources.2 Besides, we could further argue that in a competitive environment firms are forced 

to be efficient in order to survive and make enough profits to reinvest for being technically up 

to date. According to the above mentioned successful development of the German engineering 

industry and in line with economic theory it could be expected to find a majority of firms 

operating at an efficient level, i.e. with an efficiency score – scaled between zero and one – to 

be near one.  

However, empirical studies examining efficiency in non-regulated industries found little 

evidence for average efficiency scores close to one. A recent paper by Badunenko (2008) 

found efficiency in the German chemical industry to be on average between 0.70 and 0.77. 

According to Badunenko et al. (2008), average efficiency in the German industrial sector is 

around 0.63, while Funke and Rahn (2002) found average efficiency in the West-German 

engineering industry to be between 0.83 and 0.85. Only little is known about efficiency in 

non-regulated industries in other European countries. The average efficiency of the Spanish 

industry oscillates around 0.76 according to Gumbau-Albert and Maudos (2002). Martin-

Marcos and Suarez-Galvez (2000), using different classification, found average efficiency 

scores of Spanish engineering firms ranging from 0.64 to 0.72. The average efficiency of 

small and medium size companies (SME) in the Chilean Industry was around 0.65 according 

to Alvarez and Crespi (2003), while that of the engineering industry was 0.71.  

One has to take into consideration when trying to compare these results, that the studies 

used different approaches, ranging from a fixed effect model (Badunenko et al., 2008) to 

stochastic frontier models (Funke und Rahn, 2002; Gumbau-Albert and Maudos, 2002; 

Martin-Marcos and Suarez-Galvez, 2000) and to the non-parametric data envelopment 

analysis (Badunenko, 2008; Alvarez and Crespi, 2003). Yet all approaches try to approximate 

a production function (called frontier) to measure efficiency. Moreover, the database as well 

as the defined and applied inputs and outputs differ between these studies. However, no study 

found average efficiency scores close to one. But even if the literature does not support the 

expectation of an average efficiency close to one, the afore mentioned prosperity of German 

engineering firms leads to the expectation that the majority of these firms operate rather close 
                                                 
2 The reader is referred to Varian (2001) and Figure 2 in Appendix A. 
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to the frontier. As there is always a minority of firms leaving the market it can also be 

expected to find a density of efficiency scores that is skewed to the left with a majority of 

firms operating quite efficiently while a minority does not. Such skewness seems also 

reasonable if one takes into account that the probability of survival ought to fall with 

increasing inefficiency and thus with efficiency scores below the mean. This leads to the first 

hypotheses: 
 

Hypothesis 1:  (a) A majority of the German engineering firms is operating fairly efficient. 

(b) The density of the efficiency of engineering firms is skewed to the left. 
 

Besides pure efficiency the question arises if efficiency significantly differs across 

company sizes and if larger companies are more efficient than smaller ones. Looking at the 

structure of the German engineering industry this question is a crucial one since there is an 

industry with many medium sized firms, so called “Mittelständlern”, and the widespread 

notion is that these firms are the heart and backbone of the industry. By 2004 they accounted 

for 53 percent of all firms and 46 percent of all jobs in the sector. In contrast just 5 percent of 

the firms are large ones (LEs)3 but they accounted for 45 percent of all jobs in the same year. 

The small and micro companies finally provide 9 percent of all jobs and account for 42 

percent of all companies. The trend, at least in terms of number of firms is in favor for the 

SMEs.4 They increased by 6.5 percent while the number of employees was stable between 

1995 and 2004. At the same time the number of LEs as well as the number of jobs provided 

by these firms felt by 18 and 17 percent. However, the SMEs account for less than 48 percent 

of gross production value in 2004 (Statistisches Bundesamt, 2006b). 

Thus, this relationship between size and efficiency needs a closer look. The literature is 

ambiguous in this respect. On the one side it is argued that financial restrictions for small 

companies result in a lower efficiency. Furthermore larger companies are able to exploit 

economies of scale or scope and are therefore more efficient (Kumar 2003). On the other 

hand, following Leibenstein (1966) it is more difficult to keep all units within a large firm 

coordinated. Due to supervision efforts and a more hierarchical structure, efficiency in large 

companies may fall. According to Agell (2004), employees in small companies are more 

intrinsically motivated than the ones in big companies. These factors combined with a more 

flexible structure, shorter communication channels and a faster decision making process could 

enhance efficiency of small firms.  

                                                 
3 Here large enterprises (LE) are defined as companies with more than 500 employees.  
4  These are firms with less then 500 and more than 10 employees. The turnover as second criteria is supposed 

to be larger than 1 Mill. Euros but not more than 50. Mill Euros p.a.  
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In contrast, empirical studies such as Gumbau-Albert and Maudos (2002) found a positive 

relationship between size and efficiency, taking turn over as a proxy for size. Defining size by 

the number of employees, roughly the same is true for the German chemical industry as 

Badunenko (2008) revealed. Also taking the number of employees to define size, Alvarez and 

Crespi (2003) found differences between size classes, whereas micro firms are found to be 

more efficient than small ones, but less efficient than medium sized firms. This result is 

supported by the findings of Prùša (2009) who analyzed the efficiency and size of the Czech 

SME’s. Chow and Fung (1997), examining the efficiency and size relation in Shanghai’s 

manufacturing industries found that efficiency is increasing with firm size, but that the 

smallest enterprises have a higher efficiency than medium sized firms, while large companies 

are the most efficient ones on average. Finally Badunenko et al. (2008) found a strict but 

negative relation between size and efficiency analyzing data of German manufacturing 

industries. Thus, there are findings in favor of small firms, medium sized firms and large 

firms. But a closer look also reveals that all studies that found medium sized firms to be the 

most efficient ones did not include large firms, while those with large firms in the sample 

usually found the latter to be most efficient. This leads to the second hypotheses: 
 

Hypothesis 2:  (a) There are significant differences in efficiency between size classes. 

(b) On average, the efficiency increases with firm size. 

 

When finally looking at the changes in efficiency over time the questions arises if the 

least efficient size classes catch up to the most efficient ones? A complete catch up however is 

not reasonable, since that would violate the second hypotheses. If catching up took place it 

should therefore be in line with the ranking between the groups, while the gap in efficiency 

should be subject to changes. On the other hand, if we see no catching up but the least 

efficient size classes to further fall behind, the industry would face a structural problem. 

Hence, the last step of the analysis will answer the question: 

 

Research Question:   Did the least efficient size classes reduced the efficiency gap to the 

most efficient ones, or did the gap become larger?  

 

III Methodology 

For the present analysis a nonparametric frontier approach was adopted to estimate Farrell’s 

technical efficiency (Farrell, 1957), basically using the idea of a production function and its 

production possibility set as visualized in Figure 2. In general, the fields of research that apply 
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a nonparametric approach, especially the data envelopment analysis (DEA), are enormous as 

shown by Tavares (2002). The foundation of this success was created almost fifty years ago 

by the works of Koopmans (1951), Debreu (1951), Farrell (1957) and Shephard (1970), to 

name the most important ones. Moreover, it has to be stated that Deprins et al. (1984) 

invented the practical approach to measure efficiency using a free disposal hull (FDH), while 

the data envelopment analysis (DEA) became popular by the work of Charnes et al. (1978). 

To make the approaches actually applicable the statistical properties of their estimators are 

crucial. Here Banker (1993) and Kneip et al. (2003, 2008) as well as Simar and Wilson 

(2000b, 2002) have done the basic research. 

There are several reasons for the preference of nonparametric analysis in econometric 

research. One of them is the fact that no assumptions regarding the functional form of the 

production function are necessary.5 The actual measurement utilizes a best practice frontier 

based on actual observations. This frontier itself is defined by the production set 

( ){ }, p qx y x can produce y+
+= ∈ℜ , Ψ

where  contains a set of  inputs and  contains a set of q  outputs. Since an input 

orientated approach will be adopted the input requirement set for all  is described by 

px +ℜ∈ p qy +ℜ∈

Ψ∈y

( ) ( ){ },C y x y ∈ Ψpx += ∈ℜ  and thus the frontier is finally defined by  

( ) ( ) ( ){ }, 0 1y x x C y x C yθ θ= ∈ ∉ ∀ < <C∂ . 

)00

(

This frontier can be seen as an empirical production function derived out of real input-

output combinations. The input oriented technical efficiency by Farrell for firm with an 

observed combination of outputs and inputs (  based on the frontier above is given by , yx

) ( ){ } ( ){ }0 0,x yθ ∈Ψ ,  

)

0 0 0 0inf inf ,x C y x yθ θ θ θ= ∈ =

whereas 0 0( ,x yθ  is a radial measure, taking values between zero and one. Consequently, a 

company is considered to be efficient if it lies exactly on the frontier and hence its  takes the 

value of one. In contrast, if 0 0

θ

( , )x yθ  is below one (e.g. ), the company would need to 

reduce the amount of assembled inputs by  percent in order to operate efficiently.  

0.7θ =

1 θ−

Of course the real production set is unknown. Typically there is just a sample of 

observations ( ){ }, , 1, ,N i ix y i nΘ = =   and  needs to be estimated. This can be done either by 

using the free disposal hull method or by applying DEA, which was done in this analysis. 

Depending on the assumed returns to scale, the production set has a convex or conical hull. 

Ψ

                                                 
5  The assumptions that form the basis of these nonparametric models are rather rudimental, affecting 

mathematic questions like a closed input/output space etc. For further information on the assumptions see for 
instance Daraio and Simar (2007).  
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The DEA frontier under var th a convex hull) is defined 

( ) ( )

iable returns to scale (and therefore wi

as follows:  

{ }1 1 1
,i i i i ii i i

ˆ , , 1, 0 1, ,
n n np q

VRS N ix y y y x xγ γ γ+ = = =
ℜ ≤ ≥ =   i nγ+Ψ Θ = ∈ ≥ ∀ =  , 

and the technical efficiency can be calculated by solving the subsequent linear program 

1
1 1

ˆ min 0 , , 1, 0 1, ,
n n

n

VRS i i i i i ii
i i

y y x x i nθ θ γ θ γ γ γ
=

= =

 
= > ≤ ≥ = ≥ ∀ = 

 
    . 

A major concern in econometric analysis is the consistency of the estimators. Within this 

framework the estimator is always consistent under the assumption of variable returns to scale 

(VRS), although it is not efficient if the production set exhibits constant (CRS) or non-

increasing returns (NIRS) to scale (Simar and Wilson, 2002). On the other hand, if Ψ  exhibits 

variable returns to scale and the model assumes constant or non-increasing returns to scale, 

both ĈRSθ  and ˆ
NIRSθ  are inconsistent. Therefore a test is needed to make sure which scale 

characteristic is appropriate. Typical tests as the Kolmogorov-Smirnov test perform rather 

poorly within the DEA context so that a new test was defined by Simar and Wilson (2002) to 

examine the scale characteristics of the frontier. That one is used in this study. 

Another important issue is the potential bias of DEA-estima  bias traces back to 

the fact that the efficiency of a firm is measured by sition within the production set 

compared to the frontier of this production set. Since the latter is estimated itself based on a 

limited sample, ˆ

tors. This

its po

DEAΨ  is a subset of the unknown production set ( )ˆ
DEAΨ ⊆ Ψ  by construction and 

therefore ( )ˆ
DEAC y∂  is inward-biased compared to ( )DEAC y∂ . Consequently, the technical 

efficiency of a firm is potentially upward-biased ( )ˆ
VRS VRSθ θ≤ or in other words too optimistic 

(Simar and Wilson, 2005). Hence, it is necessary to calculate bias-corrected estimates which 

can be done by bootstrapping. Unfortunately, the naive bootstrap method leads to inconsistent 

estimates if applied to DEA-estimators since they are bounded. Nevertheless, calculating bias 

corrected estimates is possible and was done in the present survey (see Simar and Wilson 

1998, 2000a, 2000b and Kneip et al. 2008). 

Nonparametric analyses are also “cursed” as some scientists put it. This “curse” is related 

to the convergence of estimators and their dimensionality. Within the DEA, estimators 

converge at a rate of 2 1p qn + + . Thus, as the number of inputs and outputs applied in the 

calculation increases, the rate of convergence decreases. A further problem appears with 

increasing dimensions. As shown by Wheelock and Wilson (2003) the number of efficient 

firms, i.e. of DMUs that lie at the frontier, increases with a rising number of dimensions. This 

is not surprising looking at the way the frontier is designed. The number of defined inputs and 

outputs should therefore be limited.  
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Another point to have in mind in DEA is the sensitivity towards outliers. This problem can 

be overcome by another recently developed approach, the semi-parametric outlier detection 

method by Simar (2003). The basic idea is the estimation of an order-m frontier (Cazals et al., 

2002) which is not enveloping all observations and thus accounts for possible outliers and 

noise. Using several levels of m and α  one is able to choose a reasonable combination of both 

and the tabled results are then used to decide which of the potential outliers are true outliers 

by

tability of technology could result in inconsistent 

eff

ng for outliers the scale assumption needs to be outlined and tested using the 

turn to scale test. Finally, by constructing yearly frontiers and applying the 

thod, bias corrected efficiency scores are obtained and the hypotheses can be 

 gathered by the German Federal Statistic office and firms 

are

Since it is the efficiency of engineering firms that is of interest, only data of this sector are 

u e  of 

 looking at each of them individually. This is especially true for potential outliers on the 

lower or upper end of the frontier, because they can possibly be labeled as outliers due to the 

limited number of observations in their neighborhood.6  

Finally, it is necessary to decide whether one should use a common frontier or not. 

Utilizing a common frontier assumes a stable technology over the examination period. The 

impact of this assumption is as critical as the assumption concerning the economies of scale. 

An erroneous assumption regarding the s

iciency scores, since they would contain inefficiencies regarding technologies that did not 

exist in specific periods.7 An easy way to avoid such distortion is the construction of yearly 

frontiers, which was done in this survey.  

In order to derive consistent estimates the actual calculations will have to follow a strict 

procedure. According to the theoretical remarks the first step is the detection of outliers, 

which will be done by applying the already mentioned outlier detection method. After 

controlli

described re

bootstrap me

tested.  

IV Data 

The study uses data from the German Cost Structure Census of manufacturing (CSC) for the 

period 1995 to 2004. This sample is

 obliged to deliver the requested data. All companies with more than 500 employees are 

always part of the sample. In addition a representative set of smaller companies is also 

included as a random sub sample.  

s d, giving us a sample of 23,591 observations between 1995 and 2004 with a wide range

                                                 
The approach is very intu6  itive and easy to implement based on the already published MATLAB code by 

7  
Simar (2003). The interested reader is referred to it for more information. 
The reader is referred to Grosskopf (1993) for more information on changes in efficiency over time and 
technological changes. 
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characteristics.8 This large set of information is generally appreciable but the chosen 

dimension should not be too high because of the already mentioned “curse”. Hence, in order 

to avoid implausible estimates the characteristics were summed up to create five factors. The 

first one is output, which is basically the gross production value adjusted by all revenues that 

have nothing to do with the core business of an engineering firm, such as turnover out of 

‘other activities’ or ‘trading goods’. These revenues were excluded since they have no 

ex

. are put into the factor ‘others’. After creating these new 

fac

al for all 

e to the identical input prices and consequently also for the frontier.  

planatory power in terms of a production function. 

The model contains the additional input factors: ‘material’, ‘capital’, ‘labor’ and ‘others’. 

The factor ‘material’ includes all materials and preliminary products as well as energy. The 

‘capital’ contains first of all interest and amortization. Moreover, rental and leasing 

expenditures need to be taken into account. Since a company could also buy a machine or a 

building rather than rent it, ‘capital’ also include these expenses. The third input factor ‘labor‘ 

is also made up of several characteristics. It entails all wages including the social insurance 

contributions that companies must pay. In addition all social benefits (e.g. employee pensions) 

guaranteed by firms beyond legal requirements are summed up in the factor. The remaining 

costs like repair, installation etc

tors their values are deflated. 

However, constructing inputs and outputs using monetary units needs further discussion. 

The efficiency measure described above arises from a comparison of an observed input-output 

combination and its corresponding pair on the best practice frontier. The appropriate way to 

do that is by looking at physical units in the production process. Unfortunately the sample 

contains no physical information but monetary value data. When applying the above 

mentioned methods on this data the calculated efficiency scores would measure the distance 

to a frontier that is defined by data with allocative and technical information. Unfortunately, 

we can not conclude whether the measured inefficiency is caused by inefficiencies in the 

production process or whether it is due to allocative inefficiencies. Since no information on 

input prices or input units is given it is not possible to derive the allocative and technical 

efficiency separately. However, by assuming that input prices do not differ between firms due 

to market prices and competition on the input markets, having allocative information just 

means that we have a linear transformation of input quantities. The result is therefore just a 

shift of all observations within the production possibility set, whereas this shift is equ

observations du

                                                 
8  Almost all characteristics entail information in monetary form. In this study only the monetary informations 

are used and summed up. The only exception is the number of employees, but these are not used as input 
factor in the calculation.  
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V Results 

According to the above outlined procedure the analysis starts by detecting and removing 

outliers. In a first step all obvious errors are deleted, that is observations with zero inputs or 

outputs. The semi-automatic outlier detection method by Simar (2003) is applied thereafter on 

the remaining 22,131 observations. Roughly 2 percent of all meaningful observations are 

labeled as outliers and removed from the sample. The remaining 21,650 observations are quite 

constantly distributed over the years.9 Based on this sample the actual analysis was 

conducted. The results of the returns to scale test show that the frontier in all years is 

ch

d almost twice as 

ma

aracterized by variable returns to scale at p-values of zero.10 Applying the assumption of 

variable returns to scale and constructing yearly frontiers, the bootstrap method is used to 

estimate bias-corrected efficiency scores to validate the first hypotheses.  

As Figure 3 reveals, the majority of the firms are working at an efficiency level far below 

one. The mean as well as the median are roughly 0.69. Hence, the engineering firms are 

operating on average inefficiently, using about 31 percent more inputs than necessary. 

Furthermore in fifty percent of all observations the firms work at an efficiency level of 0.63 to 

0.76, meaning that they use 24 to 37 percent more inputs than necessary. In just five percent 

of all cases firms  an  score above 0.86. In contrast, 20 percent of all 

observed efficiencies are between 0.63 and 0.52. In these cases firms use

have had efficiency

ny input as necessary. Also the form of the density is surprising: it is almost a normal 

distribution (with 0.6944μ =  and 0.1088σ = ) with nearly as many firms with efficiency scores 

below the mean as there are firms with efficiency scores above the mean.11  

Thus, the hypothesis of German engineering firms working on average quite efficiently, 

tha

firms are separated by the number of employees, whereas the rather rough EU definition for 

t is hypothesis 1(a), is rejected. The majority of engineering firms produces at an efficiency 

level of on average 0.69. The expectation of a density that is skewed to the left, hence 

hypothesis 1(b), is rejected by the results as well.  

Besides efficiency the second hypotheses questions whether the efficiency of a firm 

increases on average with firm size. This is especially interesting as there is a widespread 

presumption in the German public that SME’s, but especially the medium sized firms, are the 

backbone of German industrial success, in particular in the engineering industry. In a first step 

                                                 
See Table 1 in Appendix B.  
See Tabl

9  
10  e 2 in Appendix B. 

al 
 

11  A test of normal distribution rejects the null hypothesis. The statement of “almost” just addresses the optic
conformity between the probability density and the diagrammed density of the normal distribution (yellow
line).  
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SMEs is extended according German Federal Statistic Office, creating six groups.12 To 

illustrate possible differences in efficiency for each size, the empirical distribution functions 

of efficiency scores are drawn within one graph. Figure 4 shows that there are significant 

differences. The black curve, which pictures the efficiency scores of large firms with 1000 

and more employees, dominates all other curves. Hence, within this group the number of 

firms with a rather high efficiency score is the highest and consequently the average 

eff

cient than the 

me

                                                

iciency of large firms is also higher than that of smaller firms. This becomes also obvious 

looking at the descriptive statistics in Table 3.  

More importantly, even if large firms are the most efficient ones on average, the results in 

Figure 4 and Table 3 show that there is no straight relationship between size and efficiency. 

This becomes apparent when looking at the blue curve which contains the efficiency scores of 

the smallest companies. It dominates the curves (green and red) of the next size groups (50 – 

99 E and 100 – 250 E).13 Hence, small companies are on average more efficient than the next 

larger ones. It seems as if the relationship between size and efficiency is rather u-shaped than 

straight and that large as well as small companies are on average more effi

dium sized firms.14 The discovered differences are furthermore statistically significant as 

the p-values of the applied bilateral Wilcoxon rank-sum tests in Table 5 show.  

Another criterion commonly used with the number of employees to define firm size is the 

companies’ turnover. In default of turn over, output is used in this study to classify the size of 

firms. In order to overcome the rather rough EU definition, the size classes are chosen so that 

the number of observations in each of the created classes is around 2400. This gives us nine 

instead of six classes and allows for a more diverse picture.15 Figure 5 shows again the 

conditional empirical distribution functions of efficiency scores in each size class: It confirms 

the previous analysis according to which we observe significant differences. The suspected u-

shape becomes even more pronounced. After a rather high median efficiency of 0.75, we 

observe a sharp drop to almost 0.65, followed by an increasing efficiency with higher output 

levels. Taking the median efficiency and the corresponding median output for each size class, 

the observed u-shaped relationship is visualized in Figure 6. As shown in Table 11, the u-

 
12  The classes are defined as follows: 20-49 employees (E), 50-99 E, 100-249 E, 250-499 E, 500-999 E and 

1000 and more employees (Statistisches Bundesamt, 2006b). The EU definition for SMEs with respect to 

13  ix B. 
iciency is therefore not just because of a frontier that is only defined by small and large 

15  follows: y ≤ 3, 3 < y 
, 30 < y ≤ 55, 55 < y ≤ 120, 120 < y. 

size is as follows: <10 micro companies, <50 small enterprises, <250 medium sized enterprises. 

Of course there are efficient firms in each size class in every year as can be seen in Table 4 in Append
The lower eff
companies.  

14  As depicted is Table 10, this holds true even if we look at it for each year individually. 
The classification in Mill Euros (y is used as a dummy for gross production value) is as 
≤ 5, 5 < y ≤ 8, 8 < y ≤ 12, 12 < y ≤ 19, 19 < y ≤ 30
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sha

ones, small ones are almost as efficient, 

wh

d with the worst ranks and still had these ranks in the last period. We 

jus

e years a 

cat

we can positively answer the research question. The ranking between size groups 

cy was subject to changes. We observed no group falling 

but some catching up and the narrowing of the quite large gap of the late 

                                                

ped relationship still holds true when looking at the efficiency in each size class on a 

yearly basis. The corresponding tests for identically distributed efficiency scores support this 

finding as well.16  

Thus, the second hypothesis (a) of significant differences in efficiency between large, 

medium sized and small companies can be confirmed but differently than expected. Even 

though large firms prove to be the most efficient 

ile the medium sized firms are the least efficient. The relationship between size and 

efficiency is therefore more precisely described by a u-shape than by the assumed straight 

positive correlation as expected in hypotheses 2(b). 

Lastly the measured efficiencies are used to analyze the changes in efficiency over time. 

By looking at the efficiency scores in each year and size class we can answer the question if 

catching up occurred or if the least efficient classes further fall behind. In a first step we rank 

the size classes according to their efficiency in each year, as it is done in Table 8 and Table 9. 

Taking the first and the last three years as average, we see only minor changes.17 The medium 

sized firms were not able to increase their ranking. Taking the number of employees as a 

proxy for size, they starte

t see a little shift such that the group with 100-249 employees started with the last ranking 

(6) and had the slightly better ranking (5) at the end. When we define size by turnover, the 

changes are also minor. 

However, even if the efficiency order proves to be stable, the gap between the classes 

might have changed. By taking the large firms as benchmark we can measure that gap of each 

class to that benchmark. As shown in Figure 7, we see a stable structure between the classes. 

The least efficient classes always have the highest differences with a peak in 1998. In this 

year the gap ranged from 17.29 percent (50-99 employees) to 3.19 percent (500-999 

employees). After 1998 the gap constantly decreased until 2003 with 2.27 percent (20-49 

employees) to 8.78 percent (50-99 employees). Hence, within a time frame of fiv

ching up took place. The same holds true when defining size by turnover, as can be seen in 

Table 11. Yet, its impact was not large enough to change the ranking between size classes as 

shown before. After 2003 the gap became larger again but not as much as in 1998.  

Thus, 

stayed stable but the gap in efficien

behind and therefore 

1990’s.  

 
16  The results are tabled in Table 7 in Appendix B.  
17  A two year period would do just as well.  
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VI Conclusion 

This paper analyses the efficiency of German engineering firms by making use of a large data 

set with more than 23,000 observations and applying recently developed DEA methods. As 

shown in the beginning, the engineering firms were economically successful within the 

examination period. They increased their output by around 25 percent while the export grew 

by roughly 50 percent to more than 100 Bill. Euros. It was expected that this economic 

success was based on highly efficient operations. Moreover, the differences between small, 

medium and large firms were analyzed. This is especially interesting in the case of the 

German engineering sector, since it is dominated by small and medium sized firms and the 

wi

otential for 

reo

large firms are the 

mo

some catching up. Yet, the fact that 

the ranking stayed stable over time indicates that there are some structural components, 

maybe the organizational differences between large, medium and small firms, that are given 

and responsible for the average differences in efficiency. 

despread notion is that these firms are the heart and backbone of the industry. Finally, it 

was analyzed whether the changes in efficiency over time increased or narrowed the expected 

gap in efficiency between size classes.  

Firstly, the average efficiency of the firms – scaled between zero and one – was found to 

be 0.69. Hence, the average firm could produce the same output by using just 69 percent of 

the actual input. Given this average inefficiency of 31 percent, there is a lot p

rganization and restructuring in the German engineering industry. We can furthermore not 

conclude that the economic success was due to highly efficient operations of a majority of the 

firms. There need to be other factors than pure efficiency that drove that success.  

With respect to the relationship between size and efficiency the analyses showed a slightly 

different picture than expected. The anticipated positive relationship between size and 

efficiency was confirmed by the results in a way that the largest and the second largest firms 

are found to be the most efficient ones on average. The smallest firms however are found to 

be almost as efficient. Thus, the actual results indicate a u-shaped relationship, finding micro 

and small firms to be more efficient than medium sized firms while the 

st efficient ones. The medium sized firms are found to be the least efficient ones on 

average, regardless of the proxy used to define size. Again, although these firms are often 

economically successful, they showed the highest optimization potentials. 

Finally it was looked at the differences in efficiency between size classes over time. As 

expected, the observed changes were not large enough to change the ranking of the size 

groups. The least efficient ones did not become the most efficient ones and so forth and the 

structure of the order of classes was found to be stable. Nevertheless, we saw some catching 

up. The gap between the most and the least efficient classes was the highest in 1998 with 

more than 17 percent. Until 2003 this gap narrowed to 8.8 percent. Even though that 

difference became larger again in 2004 we still can state 
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Appendix A 
 

 

 

Figure 1: Export and output of German engineering firms18 
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Figure 2: Production set and production function19 
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18  Data are taken from the GENESIS data base of the German Federal Statistic Office.  
19  The figure was taken from Varian (2001). 
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Figure 3: Technical efficiency all years all periods20 

 

 

Figure 4: Empirical distribution function of efficiency scores for each size class,  
whereas size is defined by the number of employees 

 

                                                 
20  The calculation was conducted by choosing a number of 1000 replications in the bootstrap procedure.  
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Figure 5: Empirical distribution function of efficiency scores for each size class,  
whereas size is defined by output level 

 

 

Figure 6: The median efficiency in each size class 

 

 



 

Figure 7: Gap in mean efficiency between sizes classes, whereas size is defined by the 
number of employees21 
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21  The gap is measured by taking the mean efficiency of the largest firms (more than 1000 employees) as 

benchmark. The negative gap in 1996 for the smallest companies is because this class had the highest average 
efficiency score in this year and was therefore better than the chosen benchmark: the largest firms.  
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Appendix B 
 

 

Table 1: Frequency of firm observations in the sample 

year  
number of 

observations 

Share of all 
observations 

(percent) 

cumulative 
number of 

observations 

cumulative 
share of all 

observations 
(percent) 

1995 2159 9.97% 2159 9.97% 

1996 2127 9.82% 4286 19.80% 

1997 2119 9.79% 6405 29.58% 

1998 2025 9.35% 8430 38.94% 

1999 2193 10.13% 10623 49.07% 

2000 2207 10.19% 12830 59.26% 

2001 2096 9.68% 14926 68.94% 

2002 2027 9.36% 16953 78.30% 

2003 2387 11.03% 19340 89.33% 

2004 2310 10.67% 21650 100.00% 

Total  21650 100.00%   

 

 

Table 2: Returns to scale test for each year 

 years 
 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

n 2158 2127 2119 2025 2189 2207 2096 2025 2384 2308

p-value 
globally 
CRS 

0 0 0 0 0 0 0 0 0 0 

p-Value 
globally 
NIRS 

0 0 0 0 0 0 0 0 0 0 

RTS 
(1:VRS, 
2:NIRS, 
3:CRS) 

1 1 1 1 1 1 1 1 1 1 
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Table 3: Efficiency in each size class, whereas size is defined by the number of employees 

 size classes 

 0-49 50-99 100-249 250-499 500-999 1000 ≤ 
n 5484 4968 5401 2708 1777 1312 
99er percentile 0.9208 0.9033 0.9033 0.9183 0.9166 0.9141 
75er percentile 0.7994 0.7222 0.7348 0.7704 0.7918 0.8313 
median 0.7205 0.654 0.6711 0.7087 0.7375 0.7893 
mean 0.7209 0.6563 0.6688 0.7027 0.7295 0.7692 
25er percentile 0.6502 0.5924 0.6075 0.6452 0.6789 0.7179 
1er percentile 0.4527 0.3709 0.3754 0.3896 0.4413 0.5066 
sigma 0.1038 0.1066 0.1061 0.1043 0.0943 0.0895 
ranking 3 6 5 4 2 1 

 

 

Table 4: Number of frontier observations in each size class in each year22 

  years 
  1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

0-49 62 55 46 43 47 47 45 50 59 50 

50- 12 17 19 9 18 17 19 17 15 17 

100- 12 16 16 17 16 9 22 22 15 18 

250- 9 8 12 10 16 15 8 10 8 12 

500- 8 9 12 11 5 5 8 10 9 7 

1000 26 17 25 25 27 33 27 26 23 22 

si
ze

 c
la

ss
es

 

All 129 122 130 115 129 126 129 135 129 126 

 

 

Table 5: p-values of the Wilcoxon – test for equally distributed efficiency scores between 
size classes, whereas size is defined by the number of employees 

 size classes 
 50-99 100-249 250-499 500-999 1000 ≤ 
0-49 0 0 0 0 0 

50-99  0 0 0 0 

100-249   0 0 0 

250-499    0 0 si
ze

 c
la

ss
es

 

500-999     0 

 

                                                 
22  The frontier over the years is not defined by the same companies, since the construction of sub sample makes 

sure that firms with less than 500 employees are not part of that sample in successive sample periods. 

 23



 

 

 

Table 6: Efficiency in each size class, whereas size is defined by output level 

  

n
 

99
er

 
p

er
ce

n
ti

le
 

75
er

 
p

er
ce

n
ti

le
 

m
ed

ia
n

 

m
ea

n
 

25
er

 
p

er
ce

n
ti

le
 

1e
r 

p
er

ce
n

ti
le

 

y≤2.70 2404 0.9216 0.828 0.7524 0.7418 0.6775 0.3902 

2.70<y≤4.25 2411 0.9024 0.7524 0.677 0.6791 0.6161 0.3545 

4.25<y≤6.35 2418 0.899 0.7245 0.6547 0.6582 0.5915 0.3784 

6.35<y≤9.40 2386 0.906 0.7184 0.6489 0.6524 0.5858 0.3672 

9.40<y≤14.25 2405 0.9033 0.721 0.6592 0.6592 0.6013 0.3754 

14.25<y≤23.00 2394 0.9132 0.7375 0.6752 0.6755 0.6146 0.3929 

23.00<y≤40.00 2380 0.9083 0.7508 0.6944 0.6914 0.6361 0.4091 

40.00<y≤86.00 2392 0.9209 0.7832 0.7273 0.7251 0.672 0.4644 

si
ze

 c
la

ss
es

 

86.00<y 2460 0.9246 0.8217 0.777 0.7656 0.7163 0.5245 

 

 

 

Table 7: p-values of the Wilcoxon-test for equally distributed efficiency scores between size 
classes, whereas size is defined by output level 
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y≤2.70 0 0 0 0 0 0 0 0 

2.70<y≤4.25  0 0 0 0.1728 0 0 0 

4.25<y≤6.35   0.0506 0.3100 0 0 0 0 

6.35<y≤9.40    0.0023 0 0 0 0 

9.40<y≤14.25     0 0 0 0 

14.25<y≤23.00      0 0 0 

23.00<y≤40.00       0 0 

40.00<y≤86.00        0 

si
ze

 c
la

ss
es
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Table 8: ranking of size classes according to their mean efficiency scores, whereas size is 
defined by the number of employees23 

ranking 

19
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19
96

 

19
97

 

19
98

 

19
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00

 

20
01

 

20
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20
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20
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19
95

-
19

97
 

20
02

-
20

04
 

<49 E 2 1 4 4 3 2 3 3 2 4 2 3 
50-99 E 5 5 6 6 6 5 6 5 6 6 5 6 

100-249 E 6 6 5 5 5 6 5 6 5 5 6 5 
250-499 E 4 4 3 3 4 4 4 4 3 3 4 3 
500-999 E 3 3 2 2 2 3 2 2 4 2 3 3 
>1000 E 1 2 1 1 1 1 1 1 1 1 1 1 

 

 

 

 

Table 9: ranking of size classes according to their mean efficiency scores, whereas size is 
defined by output level24 

ranking 
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-
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-
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04
 

≤ 2.70 2 1 3 3 2 2 2 2 3 2 2 2 
2.70-4.25 4 4 8 5 7 4 7 4 6 6 5 5 
4.25-6.35 6 7 9 7 8 6 8 5 7 9 7 7 
6.35-9.40 9 9 6 8 9 9 9 8 8 8 8 8 
9.40-14.25 7 8 7 9 6 8 6 9 9 7 7 8 
14.25-23.00 8 6 4 6 5 7 5 6 5 5 6 5 
23.00-40.00 5 5 5 4 4 5 4 7 4 4 5 5 
40.00-86.00 3 3 2 2 3 3 3 3 2 3 3 3 

> 86.00 1 2 1 1 1 1 1 1 1 1 1 1 

 

 

 

 

                                                 
23  The corresponding means are shown in Table 10. 
24  The corresponding means are shown in Table 11. 
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Table 10: Average efficiency in each size class for each year, whereas size is defined by the number of employees 

  size classes 
  <49 E 50-99 E 100-249 E 250-499 E 500-999 E >1000 E Total 

n 511 507 543 251 197 150 2159 
1995 

Mean 0.744 0.668 0.6555 0.6738 0.6971 0.7742 0.6936 

n 513 515 520 238 199 142 2127 
1996 

Mean 0.7575 0.6816 0.6689 0.7082 0.7231 0.7511 0.7083 

n 542 487 506 265 186 133 2119 
1997 

Mean 0.6985 0.6526 0.6726 0.7036 0.743 0.7887 0.692 

n 483 453 507 262 185 135 2025 
1998 

Mean 0.6828 0.597 0.6225 0.6943 0.738 0.7699 0.6608 

n 575 497 525 286 175 135 2193 
1999 

Mean 0.7255 0.6836 0.7022 0.7226 0.746 0.762 0.7139 

n 579 505 527 292 176 128 2207 
2000 

Mean 0.7328 0.6563 0.6502 0.6899 0.7282 0.786 0.6926 

n 507 477 524 288 171 129 2096 
2001 

Mean 0.7078 0.6488 0.6698 0.6929 0.7186 0.7531 0.6865 

n 491 471 506 279 156 124 2027 
2002 

Mean 0.7358 0.6748 0.6733 0.7014 0.74 0.7665 0.7035 

n 661 522 634 278 171 121 2387 
2003 

Mean 0.7251 0.66 0.6839 0.7221 0.7205 0.7478 0.7004 

n 622 534 609 269 161 115 2310 

ye
ar

s 

2004 
Mean 0.7 0.6355 0.6835 0.7166 0.746 0.7953 0.6906 

 



Table 11: Average efficiency in each size class for each year, whereas size is defined by output level 

  size classes 

   ≤ 2.70 2.70-
4.25 

4.25-
6.35 

6.35-
9.40 

9.40-
14.25 

14.25-
23.00 

23.00-
40.00 

40.00-
86.00 

> 86.00 Total 

n 252 251 254 248 237 235 228 220 234 2159 
1995 

Mean 0.7464 0.6894 0.671 0.6571 0.666 0.6631 0.685 0.7004 0.7646 0.6936 

n 253 245 249 241 229 238 219 217 236 2127 
1996 

Mean 0.7613 0.715 0.6834 0.6704 0.6728 0.6837 0.7081 0.7274 0.7513 0.7083 

n 284 225 207 249 210 228 239 247 230 2119 1997 
Mean 0.7231 0.6403 0.6351 0.6652 0.6642 0.6867 0.6809 0.7311 0.7842 0.692 

n 227 187 200 237 216 246 220 252 240 2025 1998 
Mean 0.7134 0.6487 0.6068 0.6037 0.5964 0.6079 0.6489 0.7312 0.7714 0.6608 

n 235 265 252 246 255 215 234 261 230 2193 1999 
Mean 0.7508 0.6921 0.6773 0.664 0.6955 0.7184 0.7286 0.7428 0.7636 0.7139 

n 216 269 263 239 252 224 231 253 260 2207 2000 
Mean 0.7587 0.7031 0.6631 0.6435 0.644 0.6604 0.6737 0.7131 0.7734 0.6926 

n 180 224 268 218 228 235 238 248 257 2096 2001 
Mean 0.7466 0.6559 0.6503 0.6497 0.6563 0.6836 0.6837 0.7095 0.7497 0.6865 

n 205 223 230 219 239 225 229 207 250 2027 2002 
Mean 0.7633 0.6862 0.6849 0.6698 0.6655 0.6844 0.6785 0.7315 0.7698 0.7035 

n 299 281 232 256 266 278 267 251 257 2387 2003 
Mean 0.7322 0.6823 0.6698 0.6665 0.664 0.6853 0.7174 0.7323 0.7496 0.7004 

n 253 241 263 233 273 270 275 236 266 2310 

ye
ar

s 

2004 
Mean 0.7319 0.6616 0.63 0.6319 0.6605 0.6856 0.7023 0.7292 0.7786 0.6906 
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