A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Burke, Andrew E.; Hanley, Aoife #### **Working Paper** # Market concentration and business survival in static v dynamic industries Kiel Working Paper, No. 1517 #### **Provided in Cooperation with:** Kiel Institute for the World Economy – Leibniz Center for Research on Global Economic Challenges Suggested Citation: Burke, Andrew E.; Hanley, Aoife (2009): Market concentration and business survival in static v dynamic industries, Kiel Working Paper, No. 1517, Kiel Institute for the World Economy (IfW), Kiel This Version is available at: https://hdl.handle.net/10419/28345 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. Kiel # **Working Papers** Kiel Institute for the World Economy Market Concentration and Business Survival in Static v Dynamic Industries by Andrew Burke and Aoife Hanley **No. 1517**| May 2009 Web: www.ifw-kiel.de Kiel Working Paper No. 1517 | May 2009 # Market Concentration and Business Survival in Static v Dynamic Industries \* Andrew Burke<sup>A</sup> and Aoife Hanley<sup>B</sup> #### Abstract: We propose that the effect of market concentration on firm survival is different according to whether an industry is static (low entry and exit) or dynamic. In our empirical analysis we find support for this hypothesis. Industry concentration rates reduce the survival of new plants but only in markets marked by low entry and exit rates. Specifically, a 10 percent increase in the 5-firm concentration ratio in a dynamic market raises the survival rate of new ventures by approximately 2 percent. Our results have implications for the antitrust/competition law indicating less need for regulation of dominant firms in dynamic industries characterized by high entry and exit rates. We use a unique dataset comprising the population of new ventures that enter the UK market in 1998. Keywords: new firms, start-ups, survival, dynamism, competition policy, industry concentration JEL classification: L11, L25, M13, M40 #### A Bettany Centre for Entrepreneurial Performance & Economics, Cranfield School of Management, UK Telephone: +44 (0)1234 751122 E-mail: andrew.burke@cranfield.co.uk В Kiel Institute for the World Economy 24100 Kiel, Germany Telephone: +49 (0) 431 8814339 E-mail: aoife.hanley@ifw-kiel.de We owe thanks to two anonymous referees for useful comments. We are also grateful to Felix Ritchie and several staff members at the ONS for help with the data. Finally, financial support from Nottingham University through Grant No. NLF A2 RBL6 and from the Leverhulme Trust through Grant No. F114/BF is gratefully acknowledged. Note: This work contains statistical data from ONS which is Crown copyright and reproduced with the permission of the controller of HMSO and Queen's Printer for Scotland. The use of the ONS statistical data in this work does not imply the endorsement of the ONS in relation to the interpretation or analysis of the statistical data Coverphoto: uni\_com on photocase.com The responsibility for the contents of the working papers rests with the author, not the Institute. Since working papers are of a preliminary nature, it may be useful to contact the author of a particular working paper about results or caveats before referring to, or quoting, a paper. Any comments on working papers should be sent directly to the author. #### 1. Introduction. One of the main aims of competition policy is the limiting excessive market power and the abuse thereof. The assumption behind these policies is that high market power, or high rates of concentration, can be detrimental to consumer welfare and to the emergence of competitors in the industry. Related empirical evidence does suggest that high rates of competition and market power are indeed negatively correlated with entry, growth and survival of firms (Caves, 1998). Our paper contributes to this literature by making a simple, yet important, point. We argue and provide evidence that the effects of concentration are different for dynamic and static industries. We define dynamic industries as those characterized by high rates of entry and exit, otherwise they are considered static. In order to make this point we focus on one particular aspect of firm performance, namely survival. Stigler (1958) argues that firms who survive are more usually those which are more efficient and who as a result gain market share; enabling further scale efficiency gains and competitive advantage. In essence, Stigler believes that a test of survival provides a useful indicator of firm efficiency. This is an important topic not only because plant survival shapes the competitive landscape of the economy, but also because the persistence of jobs is linked to the survival of plants. Both of these issues can be expected to impact on welfare in the economy. Specifically, we look at the interactions between industry dynamism (aggregate entry and exit) and measures of industry concentration and find that where dynamism is high (defined as dynamic markets), industry concentration helps new entrants to survive. The distinction between static and dynamic markets largely seeks to distinguish between different dominant forms of competition (see Audretsch et al. 2001), in particular situations where price drives competition (static markets) from those where product and technological innovation play more prominent roles (dynamic markets). - <sup>&</sup>lt;sup>1</sup> Previous studies on plant or firm survival that considered the importance of concentration include Wagner (1994), Audretsch and Mahmood (1995), Mata et al. (1995) and Görg and Strobl (2003). We use an exhaustive database of UK Value Added Tax (VAT) registrations from 1997-2002 for our analysis of firm survival. One advantage of our data is that it is essentially a census of all businesses including the smallest of entrants. This is considered extremely important for an accurate description of entry and exit, as these are often small firm phenomena. Secondly, our data is at the plant level which is arguably more appropriate for an analysis of survival since failure of individual plants making up an establishment otherwise goes unrecorded. The policy implication of our paper is that high levels of concentration and large market shares by incumbents are less of an antitrust concern as far as the survival of new entrants is concerned. What really matters is what type of market a firm is operating in – whether it is static or dynamic. This is an important finding, as Audretsch, Baumol and Burke (2001) note that competition policy generally emphasizes the possible effects of concentration on static, rather than dynamic markets. These authors outline theory indicating that this approach is not appropriate. This paper provides some empirical evidence to support these assertions. We structure our paper as follows. In the next section we discuss our argument for why concentration and market dynamism matter for survival. Section 3 sets out the empirically model. This is followed in section 4 by a discussion of the data and some summary statistics. The empirical analysis in Section 5 is followed in Section 6 by a discussion as well as some suggestions for future research. The paper closes with conclusions. #### 2. Background to Concentration, Dynamism and Survival There is little consensus in the literature on whether incumbent firms challenge entrants or not. The conventional view is that industry concentration is associated with entrants, i.e., reduce their survival chances. In line with this argument, applying market concentration as a proxy for market power exercised by existing firms, Audretsch et al. (1991) observe that survival falls with concentration.<sup>2</sup> However, another scenario is possible. Empirical studies indicate that new entrants frequently introduce new innovations to the market and thus pose a threat to incumbents (e.g., Geroski, 1995; Audretsch, 1995a,b). If incumbents are vulnerable to the innovation of new entrants and assuming that some level of monopolistic x-inefficiency has crept into incumbents (Leibenstein, 1966) then high concentration may pose a competitive cushion and permit entrants to successfully contest a market – and increase their chances of survival compared to entrants in other markets. In fact, entry into a less concentrated industry with more efficient incumbents, may pose a much more testing environment for entrants. Examples of where x-inefficient incumbents unwittingly ceded market share to new entrants abound. The new ventures launched by Richard Branson and his Virgin group of new ventures actually targeted highly concentrated industries where incumbents were not used to competition and were slow to respond (DTI, 1996). Likewise, the new entrants who introduced the 'low cost travel' innovation to the European airline industry benefited from the fact that incumbents were monopolistic x-inefficient firms (such as British Airways and Aer Lingus). The latter had relied on landing slots to block entry and had over time become highly cost inefficient and moreover, were sufficiently inflexible to take a very long time to bring their costs down to competitive levels. This provided crucial breathing space for once small new entrants such as Ryanair and EasyJet to survive (and grow to become large firms). Therefore, either way, market concentration is not necessarily a bad thing for new entrants - <sup>&</sup>lt;sup>2</sup> Mata et al. (1995) qualify this finding by observing that very new entrants (those less than 3 years old) affect market share so negligibly that their entry goes unchallenged by incumbents. when competition is innovation-based competition or when x-inefficiencies make incumbents unable to respond to new entry.<sup>3</sup> If we accept this argument, then the next question is whether and how the direct effect of competition is moderated by the dynamism of market entry and exit. Since entry and exit rates are highly correlated, we speak of static markets as those where there is little entry and exit. Similarly dynamic markets exhibit high entry and exit rates.<sup>4</sup> We would expect to see different effects of competition on business survival in these two different types of markets. More specifically, the distinction between static and dynamic markets largely seeks to distinguish between different dominant forms of competition (see Audretsch, Baumol and Burke 2001). In particular, to distinguish situations where price drives competition (static markets) from those where product and technological innovation play more prominent roles (dynamic markets).<sup>5</sup> Thus, in more static environments where new entrants cannot shield themselves from price competition through product and technological innovation (differentiation), the market power of incumbents associated with high industry concentration is likely to pose a major threat to new entrants; implying a negative relationship between concentration and entrants' survival probabilities. By contrast, in more dynamic settings where higher levels of innovation provide a means for entrants to \_ <sup>&</sup>lt;sup>3</sup> We could also look at innovation based competition from the perspective of differentiated products. Consider the price that smart new entrants with differentiated products can charge when they encounter inelastic demand from customers. If the survival of new entrants is enhanced because of the novelty of their product (a genuine innovation), consumer demand is sufficiently inelastic thus allowing new firms a cushion against price cuts from incumbents. Caves and Pugel (1980) suggest that small firms actively use product innovation as a way of garnering market share in industries with high minimum efficient scale. Product novelty increases the price a new entrant is able to charge its customer base, before customers switch to the next best alternative (incumbent firm's product). <sup>&</sup>lt;sup>4</sup> One explanation for this finding that new firms enter despite high industry exit rates (high observed correlation between entry with exit rates) is that any individual firm is unaware of its survival prospects ex ante but becomes aware ex post of its survival chances. This is the conclusion of learning theories in the context of market entry and exit (e.g., Jovanovic, 1982; Pakes and Ericson, 1998). <sup>&</sup>lt;sup>5</sup> As Geroski (1995) observes, it is these latter markets which are characterised by high levels of firm entry and exit. circumvent the competitive advantages of possibly x-inefficient incumbents, high industry concentration may in fact boost the viability of entrants and improve their survival prospects. To summarize, the potential for market concentration to induce X-inefficiencies implies that it is not always harmful to new venture survival. Moreover, market concentration is only expected to confer an advantage to incumbents over new entrants when competition is cost based, i.e., more usually when operating in a static market. If cost based competition is a feature of high concentration levels coupled with low industry dynamism, only under such conditions will market share harm the survival of new ventures. This can be summarized in the following hypothesis: **Hypothesis**: The impact of industry concentration on the survival of new entrants is more likely to be negative when markets are static and positive when markets are dynamic. # 3. Empirical model We investigate this issue empirically by modeling a new entrant's hazard of exiting, conditional on a number of covariates. In order to put our study into context, Table 1 summarizes some of the stylized facts about business survival and other covariates. There is a consensus that size in general, and attaining minimum efficient scale (MES) specifically, raises a firm's survival prospects. Hopenhayn's (1992) model ties in with the intuition in Gibrat's law that greater size implies a greater capability to capitalize on new opportunities. Analogously, in the 'learning models' first advanced by Jovanovic (1982) and built upon by Pakes and Ericson (1998), hazard rates decline with firm size because larger firms have a higher rational expectation of survival. A significant body of the empirical literature on the 5 <sup>&</sup>lt;sup>6</sup> See Agarwal and Audretsch (2001) for a review of this literature survival of new entrants in manufacturing industries has found a positive effect of firms' start-up size on survival.<sup>7</sup> Accordingly, we include firm size at start-up in our empirical model. Moreover, industry growth has been found to enhance survival as firms in growing industries may be more likely to avoid competitive pressure from incumbents (e.g., Audretsch, 1991). Hence, we also include this variable in our estimation. Furthermore, Audretsch and Mahmood (1995) argue that survival should be higher in industries that are characterized by high wage rates, as wages may proxy for labor related sunk costs such as training. We also include the median industry wage in our analysis. In line with much of the literature we use a standard Cox proportional hazard model where we model the probability of firm failure, f.8 As in previous studies, failure is denoted by firms exiting the sample. In other words, firms enter in time t and who no longer are VAT registered in time t+k are noted as having failed. The Cox proportional hazard model specifies the hazard function h(t) to be the following: $$h(t) = h_0(t)e^{(X\beta)} \tag{1}$$ where h(t) is the rate at which plants exit at time t given that they have survived in t-1. For instance, what is the failure hazard of start-ups in 2001 who have survived their first 3 years (1998 to 2000 inclusive)? h<sub>0</sub> is the baseline hazard function (the parametric form of which is not specified) when all of the covariates are set to zero, e is the exponent as is common to most survival functions and X is a vector of plant and industry characteristics hypothesized to impact on a plant's hazard rate. The following covariates are included in the vector X: <sup>&</sup>lt;sup>7</sup> Evans (1987), Hall (1987) and Audretsch (1991, 1995) have found a positive relationship between survival and firm start-up size for US manufacturing industries. Mata, Portugal and Guimaraes (1995) find similar evidence for Portuguese manufacturing. <sup>&</sup>lt;sup>8</sup> See, e.g., Disney et al. (2003), Audretsch and Mahmood (1995), Mata et al. (1995). <sup>&</sup>lt;sup>9</sup> We apply a standard convention in survival analyses of this type by classifying exit from the sample as failure. However, exit may be both a temporary as well as a strategic phenomenon (See Fershtman, 1996) where X comprises a vector of variables impacting on survival based which have been informed by past research (Table 1 and foregoing discussion). These are minimum efficient scale, MES, size, S, dynamism, D, growth, G and industry wage, $W^{10}$ . The term $h_0$ (t) represents the baseline hazard function which describes the probability of death conditional on the firm having survived until time t following market entry. An innovation of our analysis is our focus on the effects of market concentration on survival under different competitive regimes. Accordingly the hazard ratios describing the marginal effect of concentration on failure rates must be allowed to vary according to whether an industry is denoted as dynamic or static. It follows that the validity of any split regression must be evaluated compared to a standard pooled regression by interacting our dynamism dummy against all model covariates and comparing the F test of the standard visà-vis the augmented model (the unconstrained model allowing the marginal effects to change under different conditional for market dynamism). Consistent with standard practice in analyses of this kind, our approach must consider potential for variation in survival rates across different industry sectors. Accordingly, we treat each 2-digit SIC code as a separate stratum and allow the baseline hazard function to vary across these different strata. We should further note that the standard errors estimated in our analyses allow for clustering to occur on an individual firm basis. Accordingly, we use the robust measure of variance in our estimations. In so doing, we recognize that any firm can be expected to behave in a systematic way, and that errors across years therefore, are correlated. <sup>&</sup>lt;sup>10</sup> We note that because we examine the survival prospect of cohort, age is invariant over time and is therefore excluded # 4. Data and Descriptive Statistics Our data are drawn from the Inter-Departmental Business Register (IDBR) database at the UK Office for National Statistics. <sup>11</sup> This register captures VAT registered businesses and as such comprises about 98 percent of UK business activity. <sup>12</sup> The advantage of using data from the register is twofold. Firstly it is highly representative, given that it covers almost the population of UK firms and does not suffer from biases induced by sampling. This latter point is especially important in duration studies, where over-sampling of large firms in comparison to small firms underestimates the real amount of movement in an economy, since entry and exit is mostly a small firm phenomenon. Secondly, the register identifies businesses at the local unit level. Barnes and Martin (2002) define this as the "individual site or workplace (factory, shop etc.) at which activity takes place" (p. 37). This is for most cases the level of the plant. Our data is comprised entirely of single plant firms so exit implies firm as well as plant closure. Higher levels of aggregation (establishment level) used to identify unique firms within the UK Annual Respondents Database (ARD, drawn from mostly larger firms within the IDBR) has up to now made it difficult for researchers to investigate plant exit. An establishment can consist of more than one local unit (plant) and, hence the exit of only one local unit may remain undetected in case the establishment remains alive (albeit with a smaller number of local units). It is also difficult to pinpoint whether the exit of an establishment from the data was caused by the failure of all local units belonging to the enterprise. Alternatively, the exit of an establishment could be induced by the failure of a large and important local unit which in turn caused the whole enterprise to exit from the data. Notwithstanding the exit of the large and important local unit, any sister units could <sup>&</sup>lt;sup>11</sup> Access to this data is possible under controlled conditions on site at ONS offices. <sup>&</sup>lt;sup>12</sup> See Barnes and Martin (2002) for an overview of this data. <sup>&</sup>lt;sup>13</sup> While the number of local units is in principle observable a reduction in the number may not only be due to exit of local units but could merely be due to an internal reorganisation within an enterprise that may consist of more than one establishment. have remained operational if they had been independent entities rather than been part of an enterprise group. To put it simply: an examination of single plant firms is the simplest and arguably most appropriate way to examine entry and exit when we need to directly attribute entry and exit to the local unit under examination. Aoife, should we not make a comment on how this data restriction affects the representativeness of our analysis i.e. there will be no (large) multi plant firms in our data?? Representativeness and research relevance come at a cost however: While the IDBR contains a reasonably exhaustive listing of all firms from all sectors of the UK economy, knowledge about the features of these firms is limited to sectoral and employment information. To remedy this information shortfall, we import information at a *sectoral* level on wages and market structure from the ARD data. This lets us describe the composition of the sector in which our firms operate and report, inter alia, industry concentration ratios. Our data extends for a 6 year period, 1997 to 2002. Focusing on this period is due to one important reason: since 1997, the ARD data cover services as well as manufacturing industries in the UK, while before that year only manufacturing data was available. As an important innovation of our paper is to consider services alongside manufacturing, we analyze data from 1997 onwards. However, this translates into a relatively short year survival horizon for the cohort of firms who appear in the data for the first time. Data for 1997 is essentially used as a criterion that allows us to identify new entrants (present in 1998 but not in 1997) and data for 2002 allows us to identify real, uncensored exits (present in 2001 but not in 2002). Accordingly, we limit our duration analysis to a 3 year time window when we have accounted for left- and right-hand side censoring and represented failures that arise in 1998 (entry year) as happening at the beginning of the following year.<sup>14</sup> \_ <sup>&</sup>lt;sup>14</sup> As is customary in survival analyses of this type with 'simultaneous' entry and exit. Fortunately, given the high level of attrition of start-ups in the earliest phases of their operation (almost 50 percent of start-ups exited within these 3 years) even within a relatively short time span we manage to capture a high level of early stage exits. This pattern most likely arises from our ability to include low quality, under-capitalized, start-ups when using the IDBR data. Given the comprehensive nature of the data, we are confident that this data is representative. Since our analysis focuses on exit from industry sectors, we first report exit levels for the cohort of UK plants entering in 1998, tracking the number of exits from 1998 until 2001. Table 2 presents the development of industry level exit rates, calculated as number of exiting firms in industry j relative to the total number of firms in the industry. The average percentage of exits across all firms in the database is about 8 percent per year. This average is slightly higher in manufacturing than in services sector. Overall, this suggests that only a minority of firms across the broad spectrum of UK industry exits in any year. As such, dynamism at a sectoral level appears to happen at the fringes of industry in general, and an examination of all industry exits suggests some inertia. #### [Table 2. here] This inertia seen across UK industry masks the dynamism that arises within cohorts of new ventures, however. Accordingly, we would expect that annual exit rates *within* the grouping of new ventures should be much higher, given the greater financial fragility and unproven track-record of new ventures. **Figure 1** and **Figure 2** trace the hazard rates for our 1998 cohort of UK firms as Kaplan-Meier functions. Attrition is recorded for 3 analysis \_ <sup>&</sup>lt;sup>15</sup> We cannot calculate the value of exits for 2002 because firm's survival is right censored at this date. <sup>&</sup>lt;sup>16</sup> This compares with an average of 6.5% found by Baldwin and Gorecki (1991) for Canadian manufacturing industries. Dunne and Hughes (1994) report an average death rate of 20.5% in their UK data for 1975-85, however, their data comprises only a sample of 2000 quoted and unquoted companies (mainly large) in the UK financial and non-financial companies. times and this corresponds to 1999, 2000 and 2001 respectively.<sup>17</sup> We can see from the exit function that almost 25 percent of entrants have died in the year of entry, culminating in a rate of almost 50 percent for the third year of existence, an exit rate in line with others documented for UK manufacturing industries.<sup>18</sup> We moreover split our cohort depending on whether sectoral entry rates at a sectoral level exceed median sectoral entry rates. This allows us to capture possible differences in attrition according as firms enter markets characterized by low and high levels of dynamism respectively. #### [Figures 1 and 2 here] We see from **Figure 1** that firms entering industries with above average entry rates where minimum entry rates are at least 11 percent ('high\_entry' = 1) appear less likely to survive than their counterparts. This pattern is reflected in the Kaplan-Meier function which formulates entry as a discrete variable.<sup>19</sup> However, we should note that the Kaplan-Meier does not take account of the auxiliary role of other covariates in influencing survival and hence is merely illustrative. # [Figure 1 here] **Figure 2**, on the other hand, reports the hazard rates for firms entering industries marked by high dynamism (summation of entry and exit rates), where our dummy variable 'high\_churn' is set for dynamism rates greater than and equal to the $75^{th}$ percentile (dynamism $\geq 20\%$ churn i.e. entry plus exit as a percentage of total firms). Here we see that higher hazard rates are registered by firms entering more dynamic industries, a pattern most <sup>17</sup> A convention in duration analyses of this type is to treat all failures in the year of entry as having occurred at the beginning of the next year. Accordingly all failure times for entry at time t are treated as failures arising in <sup>t+1</sup> <sup>&</sup>lt;sup>18</sup> Our attrition rate for the 1998 cohort (1<sup>st</sup> three years), corresponds with other UK exit rates: 42 percent after 2 years cited by Scarpetta (2001) for the early 1990's and 45 percent in Disney et al., (2003) for the period 1986 to 1991. However, note that these studies only relate to manufacturing industries. <sup>&</sup>lt;sup>19</sup> We should note however, the negative correlation coefficient between failure and entry rates (Appendix 1) when firm entry rates are formulated as a continuous variable. likely induced by the dominance of industry exit within our measure for industry dynamism. This pattern is also borne out in the positive bivariate correlation coefficient between our dynamism variable 'churn' and 'death' in Appendix 1. The next step is to analyze whether there is a link between industry dynamism and plant survival taking into account other covariates at the industry and plant level, as discussed in Section 2. **Table 3** shows the breakdown of the covariates used in our analysis. #### [Table 3. here] While overall industry sales growth rates in the ARD are shown to be highly volatile across industries and time (as evidenced by the high standard deviation), the variables minimum efficient scale, average output of the leading 5 firms in the sector) and median wage rates, show less variation relative to the mean. On average, the top 5 firms in the dataset of UK start-ups possess 4 percent of industry sales with a standard deviation of 6 percent. Industry sales growth is approximately 16 percent over the 3 years for which we have data. The median industry wage is approximately £20,090 over the period. On average, start-ups firms in the three years observed have 5 employees although start-ups with up to 45 employees are also commonplace (standard deviation is 40.03). Our key variable measuring industry dynamism, 'churn' shows a mean value of 9.8, i.e., the average value for industry dynamism (entry plus exit) is about 10 percent. Appendix 3 shows how concentration varies across the industries in our analysis.<sup>20</sup> The classification system used is the UK Standard Industrial Classification system. The version here is the 1997 revision which expanded the categories to include some new 21 <sup>&</sup>lt;sup>20</sup> At the request of the ONS, for industries with fewer than 10 firms, we have not published any information in case individual firms can be identified. industries in response to user demand.<sup>21</sup> We report values at the 2-digit aggregation level. For example, sector 15 is the first industry reported (Manufacture of Food) where the 6,556 observations reported correspond to the 3 years captured in our data. The largest 5 firms had a combined market share of on average 20 percent of total industry sales for the three years. Our concentration measure reports high values in the Tobacco industry and Public Utilities (16 and 40 respectively) and low values are reported for concentration in the Hotel sector and other Services (55 and 93 respectively). # [Appendix 3 here] # 5. Analysis Our response variable in the model is coded as 1 to signify that the venture has failed. This implies that when interpreting the regression output, hazard ratios of less than 1 mean that the firm's survival chances improve with increases in the exogenous variable. Conversely, hazard ratios greater than 1 show an adverse effect of the covariate on firm survival. We investigate whether our hypothesis holds in our empirical analysis. **Table 4** summarizes the results of our Cox duration analysis where the hazard rates of plants in the 1998 cohort are modeled as a function of the industry variables sector, growth, wages, MES and a concentration measure, namely the 5 Firm Concentration Ratio.<sup>22</sup> Firm size (number of employees) at the start-up stage is also included as is standard practice in models of firm survival as discussed in Section 2. We first analyze all plants in a pooled <sup>2</sup> <sup>&</sup>lt;sup>21</sup> For further information on UK SIC (1997) e.g. harmonisation with international classifications, please see the UK government website at http://www.statistics.gov.uk/methods\_quality/sic/. The five firm concentration ratio (C5) is a robust and intuitive measure (Sleuwaegen and Dehandschutter, 1986). Although not reported, we also used the Hirschman Herfindahl Index (HHI) with similar results. We also, in alternative regressions, included MES, which we defined as per Sutton (1991) as the log of median employment size in sector j in the model. The insignificance of the MES coefficient may be due to its correlation with other industry variables. It was subsequently dropped from the most parsimonious model. framework before going on to explore possible interactions as markets exhibit higher or lower levels of dynamism. #### [Table 4. here] We see from Table 4 that when we introduce the market concentration measure, C5 measure in column (1), that it is statistically significant. The market share occupied by the 5 biggest firms is a sufficiently important determinant that a 10 percent increase in the 5-firm concentration ratio decreases the survival rate of new ventures by approximately 8 percent. We derived this marginal effect as follows: a hazard ratio of 1.000 would have left the survival rates unchanged. A hazard ratio of 1.008 increases the risk of failure by 0.8 percent for a 1 percent change in C5 or equivalently 8 percent for a 10 percent increase in the concentration measure. Another relationship to note is the response of new venture survival to industry growth. Consistent with theories of growth and entry, an increase in industry growth of 10 percent causes survival to rise by approximately 1 percent. This result appears in line with the stylized facts of survival, where growing industries exhibit a higher capacity to absorb new entrants (see Caves, 1998). The high variation in this variable as evidenced by the high standard deviation in Table 3, indicates that even though the coefficient itself is small, industry growth can be of highly important economic significance for plant survival.<sup>23</sup> In the next step we question the validity of this pooled regression where the competitive regime is taken as a given and no consideration given to industry dynamism. To begin with, we define a dummy variable equal to one if an industry is dynamic. It is defined as such if entry and exit rates combined equal or exceed 20 percent of the stock of firms. This corresponds to the 75<sup>th</sup> percentile of the distribution of aggregate entry and exit rates. <sup>23</sup> <sup>&</sup>lt;sup>23</sup> We also find that firm size has the predicted positive effect on firm survival, although the coefficient is statistically insignificant. This may perhaps be due to the fact that our sample is dominated by services sector firms, whereas most of the evidence on the size-survival relationship is based on studies for manufacturing industries. Accordingly we interact all covariates in the model with the industry dynamism dummy and check the Wald for the "augmented" model containing the interaction terms. The explanatory power of this augmented model is better (higher $\chi^2$ ) than that of its pooled counterpart. Furthermore, the Wald test shows that we can reject the hypothesis that the interaction terms are jointly equal to zero and so we opt on this basis to split our sample along dynamic / static lines.<sup>24</sup> In Table 5 we report our results for estimating the hazard model on the separate samples of static and dynamic industries respectively. ### [Table 5. here] Interestingly, 6,338 firms can be classified using our convention as belonging in industries that were characterized as continuously dynamic for the short period of our study. The majority of firms (98,800) are denoted as belonging to static industries.<sup>25</sup> For those firms entering a static industry, start-up size does not affect survival prospects. Only firms in dynamic industries report start-up size as having adverse consequences for survival. This finding is possibly consistent with a concept of over-investment where cash flow problems can arise. The idea here is based on the common use of staged financing in the face of a limited supply of capital and an uncertain environment with risk milestones. In such circumstances, start-up at smaller size (not drawing down all available finance) allows flexibility in terms of the capability to change/adapt as the venture evolves and market opportunities become more predictable. By contrast scaling up to predicted optimal scale at start-up can limit the available pool of future finance to allow the firm to change strategy should the business develop differently than anticipated. This conclusion follows if industry 2 <sup>&</sup>lt;sup>24</sup> We do not report these regressions and tests here to save space, but results can be obtained from the authors. <sup>25</sup> In alternative regressions, dynamism was defined as "dynamism in the year that the new firm enters the industry" giving approx. 30,000 firms for the 1998 cohort. Because an industry's dynamism can evolve (see Geroski, 1995), this implied that some industries move from static to dynamic or vice versa. We revised the definition to mean permanently dynamic or permanently static for our period of study (3 years). dynamism is manifested by innovation based competition. According to Agarwal and Audretsch, (2001) "While the likelihood of survival confronting small entrants is generally less than that confronting their larger counterparts, the relationship does not hold for ..... technologically intensive products" [p. 21] Our key variable of interest is market concentration as measured by the 5-firm concentration index. Looking at both of these in columns (1) and (2), we find that entrants into static industries encounter significantly lower survival prospects with rising levels of industry concentration. For example, a 10 percent increase in the 5-firm concentration ratio in a static market, reduces the survival rate of new ventures by approximately 20 percent. We now turn to columns (3) and (4) in order to examine survival in dynamic industries. Here, our concentration measures both improve survival. The point estimate of the hazard ratio suggests that an increase in size of C5 by 10 percent induces a reduction in the hazard rate of 2 percent (i.e., an increase in the survival rate). This positive relationship between concentration and survival is contrary to what we noted for entry into static industries. It is also consistent with the view that the market share of incumbents can promote survival if it provides a competitive cushion for new entrants. These results support our key hypothesis: new entrants into dynamic industries fare better in terms of survival probabilities when industry exhibits higher concentration levels. The reverse appears to hold true for new entrants into static markets. #### 6. Discussion and further research At the heart of this paper is the view that the competitive environment can be quite different in markets where there is a lot of firm entry and exit (dynamic/turbulent markets) compared to more static markets. The static environment is closely associated with the typical depiction of competition in classical economics where firms sell fairly similar products, mainly compete on price and where economies of scale are a very important source of competitive advantage. In this situation a highly concentrated market where incumbents have economies of scale cost advantages is likely to pose a hostile environment for new entrants. Therefore, one would expect to observe a negative relationship between industry concentration and new firm survival. This is what we find. By contrast dynamic markets are more akin to industries where competition is characterized by innovation and where incumbent size and cost advantages are less important. By contrast, technological (product and/or process) advantage is more important. In this environment, through x-inefficiency large incumbents are frequently behind the knowledge frontier compared to new entrants. As a result, entrants can have a better chance of survival if entering a concentrated market when it is dynamic. This is what we find. The results have implications for entrepreneurs who may underestimate their chances of survival in dynamic industries if they adhere to conventional economics wisdom which argues that *in general* large incumbents pose big threats to entrants. Our results show that this is not a generality and only confined to static markets. By contrast, we show that entrepreneurs find it easier to survive when large incumbents dominate a dynamic market. The same finding also indicates that competition policy should be less concerned with abuses of market power by large incumbent firms in dynamic than in static markets. In fact, our results suggests that high rates of entry and exit could in fact be used as a guide for regulators to indicate the likelihood of abuse of market power on new entrants by large incumbent firms Of course we need to bear in mind that our analysis is just the first study which looks at the impact of market concentration on new venture survival and hence more analysis is need to flesh out the evidence. In addition, one needs to consider some of the limitations of our research and hence we propose the following suggestions for future analyses. One option is to explore the issues of dynamic and static industries using longer time windows than the 3 year observation window used here. Advances in data retrieval at the Office for National Statistics may facilitate this avenue for future research. Longer time windows may help researchers to ascertain how failure behaves when industries transition from dynamic to static. We could not observe transitions in industry patterns over the 3 year period because the period under observation was too short, an artifact of the data. There have been some criticisms of using Standard Classification Codes as a measure of industry. It is possible that future research could attempt to replicate our analysis using a product based taxonomy. Unfortunately, at the time of writing such a taxonomy does not exist although it has been discussed. Such a study might well help policy makers to target support to start-ups more accurately; for example, to target start-ups involved in manufacturing precision instruments. Similar to the point above, an analysis carried out at a more disaggregated level of industrial classification or which focuses on product groups could be augmented by a case study for the selected industries. Such an analysis might build on our analysis by seeking to give more evidence based answers as to which start-ups are most cushioned by x-inefficiencies in static markets. #### 7. Conclusions Using a unique dataset of approximately 180,000 UK firms, we track the survival of firms from the 1998 cohort. We model survival using conventional variables used elsewhere in the literature but uniquely, allow for potentially important interactions between industry dynamism (entry and exit) and the effect of market concentration on survival. Applying two separate concentration measures, we find that concentration actually promotes the survival of new ventures when the industry they enter is classified as dynamic. Specifically, a 10 percent increase in the 5-firm concentration ratio in a dynamic market, raises the survival rate of new ventures by approximately 2 percent. The corollary to the positive effect that we observe of concentration on survival in dynamic industries, is a significant negative effect in static industries. We conclude from this result that only in static industries does concentration harm the survival of new ventures. Our findings are in line with theories suggesting that x-inefficiencies (symptomatic of high concentration rates) can give rise to a competitive cushion which helps sustain new entrants. Another explanation of our findings is the potentially moderating effect of the technological environment on survival, reported in Agarwal and Audretsch (2001) and Audretsch (1991). Here innovation based competition negates the impact of scale variables such as start-up size and potentially concentration. From a competition policy perspective, our analysis implies that industry concentration only poses a threat to the viability of new firms in static markets. By contrast, industry concentration actually helps new ventures overcome other impediments to survival such as high risk in dynamic markets. Thus, from an antitrust perspective, the paper provides some key empirical support to the central hypothesis of Audretsch, et al. (2001) who contend that competition policy frequently needs to be different (in its form and conduct) in static and dynamic markets. #### References Acs, Z. and D.B. Audretsch, 1990, Innovation and small firms, Cambridge M.A., MIT Press Agarwal, R. and D.B. Audretsch, 2001, 'Does entry size matter? The impact of the life cycle and technology on firm survival', *Journal of Industrial Economics*, v49, pp. 21-43 Audretsch, D.B., 1991, 'New-firm survival and the technological regime', *Review of Economics and Statistics*, v73, n3, pp. 441-450 Audretsch, D.B., 1995a, Innovation and Industry Evolution, The MIT Press, Cambridge MA. Audretsch, D.B., 1995b, Innovation, growth and survival, *International Journal of Industrial Organization*, v13, pp. 441-457 Audretsch, D.B., W.J. Baumol, A.E. Burke, 2001, 'Competition policy in dynamic markets', *International Journal of Industrial Organization*, v19, pp. 613-634 Audretsch, D.B. and T. Mahmood, 1995, 'New-Firm Survival: New Results using a Hazard Function', *Review of Economics and Statistics*, 77, pp.97-103 Baldwin, J.R. and P.K. Gorecki, 1991, 'Firm entry and exit in the Canadian manufacturing sector', 1970-1982, *Canadian Journal of Economics*, v24, pp. 300-323. Barnes, M. and R. Martin, 2002, 'Business data linking: An introduction', *Economic Trends*, n581, April 2002, Office for National Statistics Burke, A.E., FitzRoy, F.R. and Nolan, M.A. 2000. 'When less is more: distinguishing between entrepreneurial choice and performance', *Oxford Bulletin of Economics and Statistics*, v62, pp. 565-587. Caves, R., 1998, 'Industrial organization and new findings on the turnover and mobility of firms', *Journal of Economic Literature*, v36, n4, pp.1947-1982 Caves, R. and T. Pugel, 1980, Intra industry differences in conduct and performance: Viable strategies in US manufacturing industries, New York, NY, New York University Press Disney, R., J. Haskel and Y. Heden, 2003, 'Entry, exit and establishment survival in UK manufacturing', *Journal of Industrial Economics*, v51, n1, pp. 91-112. DTI, 1996, *The Innovation Lecture 1996: Richard Branson*, Video, The Department of Trade and Industry, UK. Dunne, P. and A. Hughes, 1994, 'Age, size, growth and survival: UK companies in the 1980s', *Journal of Industrial Economics*, v42, pp. 115-140 Evans, D., 1987, 'The relationship between firm growth, size and age: estimates for 100 manufacturing industries', *Journal of Industrial Economics*, v35, pp.567-581 Fershtman, C., 1996, 'Survival of Small Firms: Guerrilla Warfare', *Journal of Economics and Management Strategy*, v5, pp. 131-47 Geroski, P., 1995, 'What do we know about entry?' *International Journal of Industrial Organisation*, v13, pp.421-440 Görg, H. and E. Strobl, 2003, 'Multinational companies, technology spillovers and plant survival', *Scandinavian Journal of Economics*, v105, pp.581-595 Hall, B., 1987, 'The relationship between firm size and firm growth in the US manufacturing sector', Journal of Industrial Economics, v35, pp.583-605 Hopenhayn, H., 1992, 'Entry, exit, and firm dynamics in long run equilibrium', *Econometrica*, v60, pp. 1127-50 Jovanovic, B., 1982, 'Selection and evolution of industry', *Econometrica*, v50, pp.649-670 Leibenstein, H., 1966, 'Allocative efficiency and X-efficiency,' *The American Economic Review*, v56, pp. 392-415. Mata, J., P. Portugal and P. Guimaraes, 1995, 'The survival of new plants: Start-up conditions and post-entry evolution', *International Journal of Industrial Organization*, v13, pp. 459-81 Pakes, A. and R. Ericson, 1998, 'Empirical implications of alternative models of firm dynamics', *Journal of Economic Theory*, v79, pp. 1-45 Scarpetta, S., 2001, OECD Economic Outlook, n69, June, Chapter 7, Paris Scherer, F., 1980, Industrial market structure and economic performance. 2<sup>nd</sup> Edition, Chichago, Rand-McNally College Publishing Sleuwaegen, L. and W. Dehandschutter 1986, 'The critical choice between the concentration ratio and the *H*-Index in assessing industry performance', *Journal of Industrial Economics*, v35, pp. 193-208 Stigler, G.J., 1958, 'The Economies of Scale,' *Journal of Law & Economics*, vol. 1 (October), pp. 54-71. Sutton, J., 1991, Sunk Costs and Market Structure, MIT Press, Cambridge M.A. Wagner, J. 1994, The post-entry performance of new small firms in German manufacturing industries, *Journal of Industrial Economics*, vol. 42, pp. 141-154 Table 1 PREDICTIONS FROM THE LITERATURE | KEY COVARIATE | CONTRIBUTER | PREDICTION / OBSERVATION | |-----------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------| | Size (Size) & MES | Hall (1987) | $\delta S_i / \delta Size_i > 0$ | | | Evans (1987a; 1987b) | | | | Dunne et al. (1989) | | | | Acs and Audretsch (1990) | | | | Scherer (1980) | | | | Hopenhayn (1992) | | | | Jovanovic (1982) | | | | Pakes and Ericson(1998) | | | Growth (G) | Audretsch (1991) | $\delta S_{ik} / \delta G_k > 0$ | | Industry Wage (W) | Audretsch and Mahmood (1995) | $\delta S_{ik} / \delta W_k > 0$ | | Dynamism (D) | Geroski (1995) | Dynamism is a feature of the product life cycle and hence every industry at some stage. | | | | Industries do not remain dynamic. Dynamism depresses survival rates. | | | | $\delta S_i / \delta D_k < 0$ | | | | High entry persists until entry pushes the net income of the marginal entrant to $Y = 0$ | | Technology (T) and Dynamism (D) | Audretsch, (1995a; 1995b) | Dynamism (high entry and exit) a feature of industries with high levels of technological | | | Mata et al, (1995) | change | | (1) Concentration (C) | Audretsch et al. (1991) | $\delta S_{ik} / \delta C_k < 0$ | | | Caves, (1998) | | | | Mata et al. (1995) | $\delta S_{ik} / \delta C_k = 0$ for firms less than 3 years old | | (2) Concentration (C) | Weiss, 1976; (1979) | $\delta S_{ik} / \delta C_k < 0$ does not hold if $P > Production$ Cost. Instead survival is an increasing | | | Leibenstein, (1966) | function of concentration and market share in the presence of X-inefficiencies i.e. $\delta S_{ik}/\delta C_k$ | | | | > 0 | | Concentration (C)and Dynamism (D) | This paper | $\delta S_{ik} / \delta C_k > 0$ with high levels of D | | | | $\delta S_{ik} / \delta C_k < 0$ with low levels of D | S denotes firm survival, lowercase i and k denotes firm and industry sector respectively Table 2AVERAGE EXIT RATES BY YEAR | YEAR | ALL SECTORS | MANUFACTURIN<br>G SECTORS | SERVICE<br>SECTORS ONLY | |------|-------------|---------------------------|-------------------------| | | | ONLY | 22010112 01121 | | 1998 | 7.8% | 8.6% | 7.8% | | | (0.052) | (0.057) | (0.053) | | 1999 | 8.8% | 9.4% | 8.8% | | | (0.060) | (0.057) | (0.060) | | 2000 | 7.8% | 8.6% | 7.8% | | | (0.059) | (0.059) | (0.060) | | 2001 | 7.8% | 8.6% | 7.8% | | | (0.059) | (0.052) | (0.059) | Source: Own calculations based on ONS data # **Notes**: Standard deviation in parentheses An exit rate is defined as the percentage of firms exiting the sample that year as a percentage of the firms remaining in the sample Table 3 DESCRIPTIVE STATISTICS | | MEAN | STD.<br>DEVIATIO<br>N | |-----------------------------|---------|-----------------------| | Industry growth | 16.348 | 114.025 | | Industry concentration (C5) | 0.039 | 0.063 | | Churn | 9.831 | 14.279 | | MES | 9,361 | 14,832 | | Median industry wage (£100) | 200.906 | 586.114 | | Size of firm at start-up | 5.17 | 40.03 | Source: own calculations based on ONS data Table 4 HAZARD FUNCTIONS FOR DYNAMIC AND STABLE MARKETS | STRATIFIED COX HAZARD MODEL: FAILURE OF A START-UP = 1 | | | | | | |--------------------------------------------------------|--------------------------|--------------------------|--|--|--| | | (1)<br>Pooled Regression | (2)<br>Pooled Regression | | | | | Size of firm at start-up | 0.9997<br>(0.0002) | 0.9997<br>(0.0002) | | | | | Industry concentration (C5) | | 1.008<br>(0.0019)*** | | | | | Industry growth | 0.9994<br>(0.0002)*** | 0.9996<br>(0.0002)** | | | | | Median wage | 1.000<br>(0.0000) | 0.9999<br>(0.0000) | | | | | Sector dummies | yes | yes | | | | | Obs<br>Firms<br>Wald ratio | 554,738<br>179,143 | 554,890<br>179,144 | | | | | Wald (p-value) | (0.0000) | (0.0000) | | | | **Source**: Observations calculated from Inter-Department Business Register (IDBR) data at Office for National **Statistics**. Industry level data calculated from Annual Respondents' Database (ARD) at same source **Notes**: Stratified by industry sector (SIC92 2-digit). Coefficients are hazard ratios. Also report robust standard errors: errors clustered within plants across time. \*, \*\*, \*\*\* denotes statistical significance at 10, 5 and 1 % level respectively. Table 5 SURVIVAL AND CONTINUAL MARKET DYNAMISM | STRATIFIED COX HAZ | ARD MODEL | : FAILURE OF A | START-UP = 1 | L | |-----------------------------|------------|----------------|--------------|---------------| | | | | | | | | INDUSTRY A | ALWAYS STATIC | INDUSTRY A | LWAYS DYNAMIC | | | (1) | (2) | (3) | (4) | | Size of firm at start-up | | 1.022 | | 0.998 | | | | (0.007)*** | | (0.001)* | | Industry concentration (C5) | 0.999 | 0.999 | 1.002 | 1.002 | | | (0.001) | (0.001) | (0.001)*** | (0.001)*** | | Industry growth | 0.999 | 1.000 | 0.999 | 0.999 | | | (0.001) | (0.001) | (0.001) | (0.001) | | Median wage | 0.999 | 0.999 | 0.999 | 0.999 | | | (0.000) | (0.001) | (0.001) | (0.001) | | Sector dummies | yes | yes | yes | yes | | obs | 286386 | 286386 | 17736 | 17736 | | firms | 98800 | 98800 | 6338 | 6338 | | Wald (p-value) | 30.38 | 35.41 | 48.11 | 44.94 | **Source**: Observations calculated from Inter-Department Business Register (IDBR) data at Office for National **Statistics**. Industry level data calculated from Annual Respondents' Database (ARD) at same source **Notes**: Stratified by industry sector (SIC92 2-digit). Coefficients are hazard ratios. Also report Robust standard errors: errors clustered within plants across time. \*, \*\*, \*\*\* denotes statistical significance at 10, 5 and 1 % level respectively. Figure 1 Estimated using data from ONS, UK Figure 2 Estimated using data from ONS, UK # **APPENDICES** # **Appendix 1 CORRELATION MATRIX** | | death | start_~e | ind_gr~h | mes | wage_med | sales_~d | |------------|----------|----------|----------|----------|----------|----------| | | | | | | | | | death | 1 | | | | | | | start size | 0.0066* | 1 | | | | | | ind_growth | 0.0066* | -0.0054* | 1 | | | | | mes | -0.0030* | -0.0059* | -0.0053* | 1 | | | | wage_med | 0.0098* | 0.1107* | -0.0260* | -0.0755* | 1 | | | sales med | 0.0246* | 0.1221* | -0.0272* | 0.0153* | 0.5912* | 1 | | entry_r | -0.0135* | 0.0228* | -0.0079* | -0.1486* | 0.1573* | 0.0965* | | churn | 0.0503* | 0.0388* | -0.0099* | -0.1937* | 0.3295* | 0.2822* | Estimated using data from ONS, UK # Appendix 2 LIST OF VARIABLES | death = 1 | Enterprise has exited | |---------------|-----------------------------------------------------------| | start size | Employment size at time of start-up | | ind growth | Annual growth from ARD of 3-digit sector | | mes | Log of median employment size in sector (ARD data 3-digit | | | aggregation level) j in the model | | wage med | Median wage from ARD in 3-digit sector | | entry r | Entry rate from IDBR in 3-digit sector | | churn | Entry and exit rates from IDBR in 3-digit sector | | high_churn =1 | Dynamism greater than 20 percent | | high_entry =1 | Entry rate greater than 11 percent | | id | Local unit identifier (single-plant) | Source: Estimated using data from ONS, UK #### **Notes:** ARD denotes that the variable (an aggregate variable matched on sector) was calculated from selected firms within the data captured from the annual survey of respondents (selected sample). IDBR denotes the wider frame of data comprising firms from within the selected as well as non-selected database. Appendix 3 INDUSTRY CONCENTRATION AND DYNAMISM | | 5-FIRM CONCENTRATION (C5) | | | DYNAMISM (CHURN) | | | |-------------------------------------|---------------------------|------|-----------|------------------|-------|-----------| | | Number of firms | mean | std. dev. | Number of firms | mean | std. dev. | | Manufacture of Food (15) | 6,556 | 20.2 | 11.1 | 6,556 | 26.4 | 7.7 | | Tobacco (16) | 101 | 95.5 | 3.5 | 101 | 50.4 | 6.9 | | Textiles (17) | 3,849 | 15.5 | 6.0 | 3,849 | 23.5 | 5.5 | | Clothing (18) | 3,660 | 5.7 | 10.5 | 3,660 | 32.9 | 7.8 | | Footwear (19) | 455 | 22.9 | 12.1 | 455 | 21.5 | 7.7 | | Timber products (20) | 3,078 | 6.5 | 6.3 | 3,078 | 17.4 | 4.5 | | Paper products (21) | 1,233 | 9.0 | 6.7 | 1,233 | 19.1 | 4.1 | | Publishing (22) | 13,861 | 6.8 | 7.6 | 13,861 | 24.0 | 7.7 | | Oil and refining (23) | 392 | 61.4 | 11.3 | 392 | 27.3 | 8.7 | | Chemicals (24) | 3,262 | 22.3 | 11.5 | 3,262 | 24.6 | 4.9 | | Rubbers and plastics (25) | 2,570 | 6.6 | 9.0 | 2,570 | 16.5 | 4.5 | | Glass and ceramics (26) | 3,851 | 23.6 | 16.4 | 3,851 | 24.1 | 6.3 | | | | 21.1 | 9.8 | | 22.4 | 6.7 | | Iron and steel (27) | 2,213 | 4.1 | | 2,213 | | 8.9 | | Metal products (28) | 10,368 | | 6.1 | 10,368 | 17.5 | | | Machinery (29) | 4,706 | 11.1 | 11.3 | 4,706 | 16.7 | 5.2 | | Computers and office machinery (30) | 877 | 32.8 | 2.5 | 877 | 37.2 | 10.1 | | Electrical equip. (31) | 2,011 | 19.8 | 10.7 | 2,011 | 19.9 | 8.9 | | Radio and TV equip. (32) | 1,143 | 29.9 | 6.8 | 1,143 | 22.2 | 6.6 | | Electronic and optical devices (33) | 2,104 | 17.3 | 9.5 | 2,104 | 20.4 | 8.4 | | Motor vehicles (34) | 1,235 | 23.5 | 18.3 | 1,235 | 20.9 | 5.9 | | Other transport equip. (35) | 1,484 | 44.5 | 9.7 | 1,484 | 30.8 | 9.9 | | Furniture (36) | 9,729 | 7.1 | 5.5 | 9,729 | 25.0 | 7.7 | | Recycling (37) | 625 | 12.7 | 4.2 | 625 | 32.8 | 7.6 | | Electricity (40) | 415 | 68.1 | 12.0 | 415 | 58.6 | 12.4 | | Water (41) | 100 | 78.6 | 11.9 | 100 | 60.0 | 5.1 | | Construction (45) | 71,233 | 2.2 | 1.6 | 71,233 | 0.7 | 5.2 | | Vehicle retail (50) | 25,836 | 2.1 | 2.5 | 25,836 | 20.0 | 5.5 | | Other wholesale (51) | 48,991 | 3.2 | 1.2 | 48,991 | 23.7 | 6.7 | | Retail (52) | 161,901 | 3.2 | 3.3 | 161,901 | 3.4 | 10.5 | | Hotels and restaurants (55) | 51,012 | 1.4 | 2.9 | 51,012 | 2.8 | 8.6 | | Transport (60) | 18,075 | 3.2 | 9.0 | 18,075 | 0.6 | 4.5 | | Other transport (61) | 828 | 26.1 | 27.3 | 828 | 27.3 | 5.6 | | Air transport (62) | 737 | 42.8 | 42.8 | 737 | 29.1 | 8.3 | | Travel agents (63) | 6,642 | 15.6 | 15.6 | 6,642 | 25.4 | 6.4 | | Post (64) | 11,345 | 22.1 | 22.1 | 11,345 | 46.7 | 8.7 | | Banking (65) | 701 | 91.4 | 91.4 | 701 | 100.0 | 0.3 | | Insurance (66) | 103 | 46.1 | 46.1 | 103 | 53.0 | 0.0 | | Other finance (67) | 181 | 39.1 | 39.1 | 181 | 75.0 | 2.4 | | Real estate (70) | 30,575 | 2.8 | 1.0 | 30,575 | 24.8 | 5.5 | | Rental (71) | 8,668 | 6.8 | 5.2 | 8,668 | 28.8 | 8.1 | | Consultancy (72) | 110,641 | 2.6 | 3.2 | 110,641 | 4.7 | 14.2 | | R&D (73) | 1,066 | 2.6 | 9.1 | 1,066 | 20.7 | 5.4 | | Professional (74) | 1,000 | 3.6 | 3.1 | 1,000 | 5.9 | 14.2 | | | | | | | | | | Education (80) | 19,270 | 7.0 | 4.6 | 19,270 | 31.6 | 12.9 | | Nursing (85) | 28,095 | 2.7 | 1.6 | 28,095 | 22.7 | 12.1 | | Refuse (90) | 798 | 24.3 | 14.5 | 798 | 31.6 | 7.4 | | Organisations (91) | 86,022 | 3.2 | 2.5 | 86,022 | 7.9 | 3.8 | | Cinemas (92) | 31,944 | 6.6 | 6.8 | 31,944 | 14.7 | 14.2 | | Other services (93) | 43,089 | 0.9 | 0.1 | 43,089 | 0.0 | 0.0 | # **Notes:** Numbers in parentheses refer to the United Kingdom Standard Classification Codes (1997).