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1 Introduction

Opinion dynamics in �nancial markets have been modeled by Kirman
(1993), Lux (1995, 1998) and Alfarano, Lux and Wagner (2008) among oth-
ers. These models make use of epidemic processes of information transmis-
sion between agents that allow for an endogenous formation of expectations.
Markets with such interacting speculators give easily rise to speculative bub-
bles, crashes and excess volatility and, therefore, provide an avenue towards
an explanation of these ubiquitous phenomena. Perhaps even more impor-
tant, a certain number of these agent-based models has also been shown to
exhibit more fundamental statistical properties of �nancial returns: Mod-
els like the ones proposed by Lux and Marchesi (1999, 2000), Iori (2002) or
Pape (2007) generate time series that replicate the well-known stylized facts
like fat tails and clustered volatility, even up to close numerical proximity
of key empirical statistics of �nancial data (cf. Lux, 2009b, for an overview
of this literature).

While this literature has become quite sizable over the last decade, em-
pirical implementations of these models are relatively sparse. This lack of
empirical work concurs more broadly with a dearth of validations of agent-
based models. While a few attempts at an empirical implementation have
been put forth recently (cf. Amilon, 2008; Franke, 2008; Lux, 2009a), there
is certainly a lack of an established general toolbox in this area. Our goal
in this paper is to go one (or two) steps beyond a previous paper (Lux,
2009a) that introduced a method for identi�cation of the parameters of
microscopic opinion processes from aggregate data. This paper, however,
was con�ned to estimation of the parameters of a model for a univariate
time series, namely the di�usion index form (number of optimistic individ-
uals minus number of pessimistic individuals) of a business climate survey.
While the same model and estimation methodology could be applied for
�nancial sentiment data (which often share the format of di�usion indices),
a uni-variate model would only allow to cover one of the building blocks of
the above asset pricing models. As a minimum requirement, however, for
an empirical validation of a stochastic behavioral asset pricing model one
would like to study the joint dynamics of asset prices and sentiment. We
will, therefore, extend our previous model into this direction and provide
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parameter estimates for a simple version of a simultaneous system. Since
our underlying time series cover two sentiment variables, one for the short
horizon and one for the medium-term horizon, we can even go one step
further and study two interacting opinion processes together with the time
development of the asset price. Since this amounts to studying the dynam-
ics of a tri-variate series, we proceed in this paper from the 1D case of Lux
(2009a) to the 2D and 3D cases. As in the previous paper, the methodology
presented below could be applied to a wide variety of hypothesized opinion
dynamics interacting with objective economic variables. In order to demon-
strate the practical use of estimated agent-based models, we also perform
an out-of-sample forecasting experiment based on our estimated models.

The rest of the paper is structured as follows: In sec. 2 we introduce
our stochastic framework of sentiment dynamics and simultaneous price
changes. Sec. 3 provides details on our estimation methodology, maximum
likelihood estimation based on numerical approximation of the transient
density of the underlying stochastic process. Sec. 4 gives details on the
sentiment data we use as well as an overview on previous �ndings on the
interaction between sentiment and returns within a non-behavioral VAR
framework. In sec. 5 we present results for univariate population dynamics
and di�usion processes for each one of our three time series. In sec. 6 and
7 we proceed to various combinations of 2D models and the full-�etched
model of three simultaneous stochastic processes. Sec. 8 summarizes our
�ndings and concludes. An Appendix provides details on the numerical
approximation schemes for the dynamics of the transient density.

2 The Joint Dynamics of Asset Prices and
Sentiment

For the group dynamics that govern the time development of traders' mood,
we adopt the Weidlich model of opinion formation (Weidlich and Haag,
1983, Weidlich, 2000, Lux, 1995): agents have the choice of voicing one of
two opinions, denoted here by "+" and "-" (optimistic, pessimistic). Agents
change their beliefs in continuous time, with a Poisson process formalizing
the switches from the "+" to the "-" group and vice versa within the next
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instant. The pertinent transition rates are denoted by ω↑ and ω↓ and assume
an exponential functional form:

ω↑ = ν exp(U); ω↓ = ν exp(−U). (1)

Here ν is a scale parameter that determines the frequency of transitions,
and the function U covers those determinants that might exert an in�uence
on agents' decisions to change their belief. In our present application we
assume that our two sentiment variables, say x (short-run sentiment) and y

(medium-run sentiment) are both determined via a similar epidemic opinion
process. We denote by ws

↑(w
s
↓) and ωm

↑ (ωm
↓ ) the transition rates for short-run

and medium-run sentiment, respectively. Allowing for cross-dependencies
between both processes as well as for dependency on returns (ret), we specify
the pertinent rates of eq. (1) as:

ωs
↑ = νs exp(U1), ω

s
↓ = νs exp(−U1) (2)

with U1 = α0 + α1x + α2y + α3ret,

for the dynamics governing short-run sentiment and

ωm
↑ = νm exp(U2), ω

m
↓ = νm exp(−U2) (3)

with U2 = β0 + β1y + β2x + β3ret.

for the dynamic evolution of medium-run sentiment.We denote the number
of optimistic (pessimistic) individuals in the short-run index by n+ and n−,
and the optimists (pessimists) in the medium-term index by m+ and m−,
respectively. The empirical series, therefore, correspond to:

x =
n+ − n−

2N
, y =

m+ −m−
2M

(4)

with 2N(2M) the total number of respondents.1 Since we do not have exact
information on response rates, N and M are parameters that will also be
estimated in our empirical exercise.

Note that our agent-based model consists of 2N +2M coupled Markov pro-
cesses for agents' belief dynamics in continuous time. In previous work,
1The factor 2 is introduced for convenience to make sure that the population size is
even allowing for the possibility of a neutral average mood x = 0 or y = 0.
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theoretical results on closely related models have been obtained via ap-
proximate dynamics of mean values and higher moments (Lux, 1995, 1998,
Alfarano, Lux and Wagner, 2008). For a single opinion process, the aggre-
gate outcome of the process hinges crucially on α1 (or β1): if this parameter
(that could be labeled the intensity of herding or interaction) is below 1, the
stationary distribution has a unique maximum, while it becomes bi-modal
under stronger interaction (α1 > 1 or β1 > 1). The later case allows for the
build-up and breakdown of strongly optimistic or pessimistic majorities and
depending on the parameters νs and νm, a rapid change between one type
and the other. With two interacting opinion processes, the picture becomes
more complex and also allows for cyclical behavior besides the uni-modal
and bi-modal scenarios (cf. Weidlich, 2000, c.4).

Since we found some indication that our baseline opinion process could
be overparametrized for the medium-term index, we also tried a model
in which this process was replaced by a simple di�usion equation of the
Ornstein-Uhlenbeck (OU) type:

dyt = κ (ȳ + β1xt + β2rett − yt) dt + σydZ1 (5)

with dZ1 a standard Brownian motion. This variant assumes that medium-
term sentiment is a mean-reverting process that is also in�uenced by the
current state of short-term sentiment and contemporaneous returns. We
add price dynamics in the form of another di�usion:

dpt = (γ0 + γ1xt + γ2yt) dt + σpdZ2. (6)

Note that for γ1 = γ2 = 0, (6) becomes a standard Brownian motion with
drift. Signi�cant parameter estimates of γ1 or γ2 would indicate an in�uence
of sentiment on price changes that could be exploited for prediction of near-
term returns.

3 Estimation Methodology

Lux (2009a) has developed a numerical maximum likelihood approach for
a uni-variate population process. For discrete aggregate observations of an
opinion index, the conditioned likelihood of each observation, conditional
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on last period's realization, can be obtained from numerical solutions of the
so-called Fokker-Planck equation. The Fokker-Planck equation or forward
Kolmogorov equation gives the time evolution of the probability density
function of a stochastic system. For di�usion functions, the Fokker-Planck
equation is the exact law of motion for the transitional density, while it
is obtained as a second-order approximation for many population-based
Markov processes (cf. Gardiner, 2004, c.7, Risken, 1996, c.3). Initiating
the Fokker-Planck equation with the observation of the con�guration of a
system at time t, we can infer the likelihood of the subsequent state of the
system at t+1 from the probability density at t+1 conditional on the initial
state.

Unfortunately, closed-form solutions to the Focker-Planck equation can only
be found for relatively simple cases. The present tri-variate model with one
or two highly nonlinear population processes is too complex to derive its
transient density in an analytical way. However, since the Fokker-Planck
equation is a partial di�erential equation, we can resort to various well-
established numerical integration schemes. Lux (2009a) following an earlier
application along similar lines for pure di�usion processes (Poulson, 1999)
has resorted to the Crank-Nicolson �nite di�erence scheme. The later has
the advantage of unconditional stability and second-order accuracy, at least
in applications with only one space dimension. Monte Carlo simulations
showed that this estimator did, in general, behave well while an alterna-
tive Euler approximation (i.e. approximation of the density over the unit
time step between adjacent observations by a Normal distribution)2 ap-
peared essentially useless. Here we extend this approach to the 2D and
3D case. We consider time series of discrete multi-variate observations,
{xt}T

t=0 = {x1,t, x2,t, ..., xn,t}T
t=0 or subsets thereof. For the Markov popula-

tion processes and di�usion processes de�ned above, the joint dynamics of
the density q(x; t) is given by the Fokker-Planck equation:

∂q(xt; t)

∂t
=

∑
i

∂i [Ai(xt)q(xt; t)] +
∑
i;j

∂i∂j [Bij(xt)q(xt, t)] (7)

with −Ai(xt) the drift function associated with variable xi,t and 2Bij(xt)

2This estimator is also known as quasi maximum likelihood estimator in the literature
(e.g. Ait-Sahalia, 1996). It is perhaps quite plausible that a Normal approximation
should perform poorly for a potentially bi-modal distribution.
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the entries of the matrix of di�usion coe�cients. Numerical solutions of this
equation over a (n + 1)-dimensional grid (n "space" dimensions plus time)
are used in the maximization of the log likelihood function:

log q0(x0|θ) +
T−1∑
s=0

log q(xs+1|xs, θ). (8)

Since we have no predecessor for the �rst observation, x0, its likelihood
should in principle be computed on the base of the limiting distribution
q0 (but because of its negligible in�uence, we will simply discard this ob-
servation in practice). The remaining entries are conditional probabilities
evaluated numerically with our above approach, and θ is the vector of pa-
rameters that we wish to estimate. Note that θ covers all parameters that
appear in the pertinent speci�cations of eqs. (1) to (6). In particular, we
also include the numbers of respondents, N and M , in the set of param-
eters. The reason is that, on the one hand, we only have rough orders of
magnitude for the numbers of participants: According to the provider of our
data set, average response rates are 20 to 25 percent of a pool of about 2000
subscribers. On the other hand, it might well be that our model does not
capture all types of interaction. There might be groups of agents who are
exposed to the same factors of in�uence and might actually exhibit perfectly
synchronous behavior, instead of the conditionally independent transition
rates of eqs. (2) and (3). Note that our goal is more to explore whether the
model provides a good �t of the macroscopic dynamics and not so much
whether it is a good formalization of individual behavior.

Before we move on to applications, a few more words on the numerical imple-
mentation of our approach are in order. While we keep the Crank-Nicolson
approach for 1D applications, we will use other �nite di�erence schemes in
2D and 3D. A number of criteria are relevant when deciding what kind of
scheme to use: stability, accuracy and computational e�ciency of �nite dif-
ference schemes are typically crucial features that guide the choice of the ap-
plied researchers. In our application to the time development of a transient
density, positivity of solutions should also be a concern. Many schemes are
conditionally stable, that is, convergence depends on the parameter values
and discretization steps. Since our goal is to estimate unknown parameter
values, we are interested in unconditional stability. Therefore, we only use
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schemes in this paper that have been shown to be unconditionally stable
for all possible choices of parameters and discretization steps.

Computational e�ciency is another crucial concern. Even with an objective-
oriented language like C++, the repeated application of �nite di�erence
approximations in higher dimension within the maximum likelihood loop
becomes very time consuming. In order to economize on computing time,
the most e�cient di�erence schemes should be used in 2D and 3D. A high
degree of computational e�ciency can be achieved with schemes that lead to
tri-diagonal systems of equations with zero entries o� the main diagonales.
In 1D, the implicit and Crank-Nicolson schemes both boil down to the solu-
tion of tri-diagonal systems. Since the Crank-Nicolson scheme is of higher
accuracy than the purely implicit scheme, it is the method of choice for
uni-variate stochastic processes. However, since the Crank-Nicolson scheme
cannot be cast into a tri-diagonal form in higher dimensions, we have to re-
sort to alternative algorithms in 2D and 3D, potentially sacri�cing accuracy
of the discretization scheme. Fortunately, unpublished Monte Carlo simu-
lations indicate that the accuracy of the discretization may not necessarily
a�ect much the quality of parameter estimates.

Positivity of solutions is less of a concern in the available literature, but is
also important in our application. There are two aspects that are relevant
here: �rst, positivity (and, in fact, accuracy even of otherwise well-behaved
schemes) is problematic in degenerate cases where the di�usion coe�cients
tend to zero. Various corrections have been developed in the literature for
such cases. Luckily, we do not encounter problems of this kind in our present
application. However, a second source of violation of the positivity con-
straint are strong cross-correlations between variables. We, therefore, only
consider constrained models in this paper in which the o�-diagonal terms
of the matrix of di�usion coe�cients are assumed to be zero. This means
that we assume independent innovations of our di�usion processes and in-
dependence between the innovations of the di�usion processes of eqs.(5)
and (6) and the stochastic transitions in the Markov population processes.
Of course, both, the drift and di�usion functions themselves may depend
on the current state of the system. As it turns out, the assuption of inde-
pendence of the �uctuations of the components of our multi-variate process
might be a serious limitation. In the Appendix, we provide details on the
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drift and di�usion components in the Fokker-Planck equations and the �nite
di�erence schemes applied in our empirical study.

4 The Data and Previous Results

4.1 Data

Our data set consists of weekly records of market sentiment for the German
stock market. This series have been obtained from animusX 3, a provider of
technical tools and sentiment data for German investors. Our survey data
start in the 29th calendar week of 2004 and extend until the 22nd calendar
week of 2008, a total of 202 observations. animusX conducts a weekly
email survey among about 2000 private and institutional investors who are
asked among many other items about their prospects for the German stock
market for the next week and the next three months, respectively. The
average responses to both questions are reported in the standard format of
a di�usion index (corresponding to the de�nitions of our variables x and
y above) and are published each Sunday at 8 p.m. The short-term and
medium-term indices (also denoted by S-Sent and M-Sent in the following)
together with weekly closing notations of the German share price index
DAX constitute our sample under consideration.

In a companion paper (Lux, 2008), vector autoregressive (VAR) models
of this trivariate sample showed that this record of sentiment data does
have explanatory power for the DAX and that there are subtle interactions
between short-term sentiment and medium-term sentiment. Our basis aim
in this paper is to explore whether the above simple behavioral model with
social interaction can help to explain the �ndings of the purely statistical
VAR model.

3Cf. http://www.animusx.de/ for further information on the structure of the survey
and other services provided by this company.
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4.2 Previous Results for the Interaction of Sentiment
and DAX Returns

In order to compare our subsequent results of the bivariate opinion model
with those of Lux (2008), we �rst review the major �ndings of this source.
Starting with the statistical features of our system composed of short-run
sentiment (x), medium-run sentiment (y) and returns (ret), our compan-
ion paper �nds that : (i) all tree time series appear stationary under a
standard ADF test for unit roots, (ii) short-run sentiment exhibits more
volatile movements between extremely positive and negative realizations
while medium-run sentiment performs more moderate swing in the range
of [−0.5, 0.5], (iii) medium run sentiment exhibits more persistence than
short-run sentiment (both features are clearly visible in the pertinent series,
cf. Fig.1)

Figure 1: Sentiment and stock market returns. The time horizon is from
the 29th calendar week of 2006 to the 22nd week of 2008.
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Estimated VAR models with one or two lags only (favored by the BIC
and HQ information criteria) indicate a dominating in�uence of medium-
run sentiment on both short-run sentiment and returns. In total contrast
to previous results for sentiment and returns in the U.S. market, Granger
causality is found from (medium-run) sentiments on returns but not the
other way round4. In a richer VAR (5) framework � favored by the AIC
criterion � only a few additional parameters enter in a signi�cant way. These
appear at lag 5 (while the coe�cient matrices at lags 3 and 4 are completely
insigni�cant) and indicate a negative feedback from short-run sentiment and
a positive one from returns on medium-run sentiment. M-Sent is, therefore,
not exogenous anymore, but dynamic interaction between all variables of
the system is found (this, of course, does not change the �nding for returns
to be endogenous in all speci�cations).

Subsequent experiments on the forecasting capacity show that the more
parsimonious VAR (1) and VAR (2) models only beat the benchmark of
the random walk with drift at long horizons (from 6 weeks) while the VAR
(5) model provides for a signi�cant forecast improvement at all time hori-
zons and a much more pronounced reduction of mean-squared error of out
of sample-forecasts against the benchmark. A trading experiment on the
base of VAR signals con�rms the economic value of the relatively weak
feedbacks from S-Sent and returns on M-Sent: While the VAR (5) achieves
an improvement of 16 percent in cumulative returns (from �0.108 p.a. for
a buy-and-hold strategy to +0.052 for an actively managed portfolio), the
VAR (1) and VAR (2) strategies are not too successful. Bootstrapping tests
con�rm the signi�cance of the performance of the `VAR (5) trader'.

The predictive power of sentiment is hard to square with traditional asset
pricing models: The �nding of Granger causality from sentiment on returns
shows that public information can be used to forecast returns (and trading
experiments underscore the economic value of these forecasts). This stands
in clear contradiction to informational e�ciency of the German stock mar-
ket. However, since the realization of sentiment is public knowledge, its
predictive power is also hard to square with a traditional noise trader ap-

4Previous studies for the U.S. and Shanghai stock markets found causal in�uence from
returns on sentiment, but not in the other direction (cf. Brown and Cli�, 2004; Wang et
al., 2006; Kling and Gao, 2008).
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proach. Following DeLong et al. (1990), noise trading would have to be
erratic and unpredictable in order for the noise traders to `create their own
space' and to provide limits to arbitrage activity against them. Quite in
contrast, our sentiment measure is both highly predictable itself (M-Sent
has an autocorrelation coe�cient of 0.79) and it can be used to predict
returns. Although M-Sent might be viewed as a mixture of fundamental
information and fad components, it is worthwhile to emphasize that it is
neither necessarily new information in itself nor is its news component the
sole driving force in its predictive performance. Overall, the pattern of
results is more in line with a �nancial market populated by boundedly ra-
tional agents whose aggregate behavior could arguably be formalized via a
mass-statistical approach as proposed in sec. 3. Our subsequent estimation
of this framework will reveal in how far we can recover the results of the
simpler VAR models.

In order to follow as closely as possible the approach in our companion pa-
per, we also split our sample into two parts: the �rst 150 observations are
used for in-sample estimation of parameters while the remaining 52 observa-
tions serve to assess the out-of-sample forecasting capability of the estimated
models. In the following we proceed by estimating various components of
our framework. We start with 1D models for univariate series and proceed
via estimations of bivariate series to the �nal case of the complete 3D model.

5 Univariate Dynamics of Sentiment Data
and Asset Prices

We start with uni-variate applications estimating separately the parameters
of our two hypothesized population processes and the di�usion process for
prices. Table 1 exhibits the results of various 1D models. Panels A and
B display parameter estimates and goodness-of-�t measures for the opinion
process of eqs. (1) to (4) for both the short-run and medium-run sentiment
measure. In both cases our list of in�uence factors in the U-function in-
cludes both a cross-dependency on the other index (α2 and β2) as well as
an additional possible in�uence of returns on sentiment (α3 and β3). The
later in�uence appears quite plausible since many agent-based models al-
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low for positive feedback trading (bandwagon e�ects, chartist behaviour)
that presumably would lead to causation from returns on sentiment. Previ-
ous literature on sentiment measures in the U.S. market (Brown and Cli�,
2000) has documented Granger-causality from returns on sentiment, but
not vice versa. Kling and Gao (2008) found a similar causal structure for
the Shanghai stock market. In contrast, our companion paper (Lux, 2008)
�nds causation from sentiment on returns in the present data but not the
other way around. This is consistent with the insigni�cant parameter es-
timates for α3 and β3 in Table 1 (at least as far as meaningful standard
errors could be obtained). Apparently, the in�uence from returns on senti-
ment is also minuscule under our hypothesized opinion dynamics. Dropping
this entry and reestimating the parameters leads to minor changes only of
the signi�cant parameter estimates, while the maximized likelihood changes
only very marginally. Typically, the AIC criterion would prefer the more
parsimonious model whereas the BIC criterion would still favor inclusion of
this apparently insigni�cant factor.

A closer look at the remaining parameter estimates shows the following:
short-run sentiment is characterized by a herding intensity α1 > 1, i.e.
within the bi-modal regime. The frequency of agents' revaluations of their
mood (νs) is very high - about 70 times as high as the corresponding pa-
rameter νm for medium-run sentiment. The impression from Fig. 1 is in
harmony with these �ndings: short-run sentiment appears to change in a
very rapid manner and seems to prefer more extreme positive or negative
values. There is also a small positive bias (α0) as well as a moderate re-
inforcement from medium-run sentiment (α2). Our `e�ective' number of
agents is estimated at about 68, i.e. a model with 2N = 136 independent
agents would get closest to the dynamic structure of the data.

Table 1 about here

Medium-run sentiment with its much smoother dynamics leads to a much
smaller νm. Models I to III in Table 1, Panel B show speci�cations in which
we �rst estimate the complete set of feedbacks and, then, drop �rst β3 and
subsequently also β2 (dependence on x), which both appeared insigni�cant
in the more complete versions of the model. Again, the other parameter
estimates as well as the maximized likelihood are hardly a�ected by these
variations. However, panel B reveals a problem in our estimation exercise:
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in the case of medium-run sentiment, either the covariance of the parameter
estimates failed to invert (models I and III) or, where standard errors could
be obtained, none of the estimates appeared to be signi�cant (model II).
Close inspection shows that the likelihood function is very �at, in particular,
along the M axis. Since standard errors are based on the curvature of the
likelihood surface, the estimated standard errors will be extremely large.
This situation indicates a multi-collinearity problem: the likelihood may be
approximately linear in some parameters (inspection shows that it is not
exactly linear).

Further experimentation shows that practically any variation of M (we var-
ied it from 1 to 200) leaves the likelihood almost unchanged. However, the
number of agents, M , interacts strongly with the parameters νm and β1 that
can change quite remarkably with di�erent M . In the estimates of model
IV, we have �xed M = 68 (in line with the estimate for short-run senti-
ment) which leads to an increase of νm by two to three times and a change
of the estimate of β1 from 0.046 of model I to 0.629 (indicating a much
higher intensity of interactions). Note that �xing M now leads to signi�-
cant parameters for the key ingredients of the model (this actually happens
for any M that we tried). It is, thus, a way to overcome the collinearity
problem. It is worthwhile to emphasize, that (approximate) collinearity
does not necessarily imply misspeci�ation of our model (cf. Kennedy, 2003,
c.11). Di�erent speci�cations might just be observationally nearly equiv-
alent. This actually appears to be the case in our present framework. If
interaction is weak, the opinion dynamics is close to a mean-reverting di�u-
sion process in its time series properties. In this case, di�erent combinations
of the parameters νm, β1 and M lead to very similar aggregate dynamics, at
least for small samples.5

Since it appears plausible that the number of agents is the same for both
sentiment variables (as they come from the same survey in which respon-
dents are asked to provide both their forecast for the short and medium-
term horizon), we proceed in the following mostly with restricted models
obeying M = N . As an alternative, we have also estimated the Ornstein-

5We actually also found the same problem of approximate collinearity in Monte Carlo
experiments with data generated from our population process for cases of weak interac-
tion.
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Uhlenbeck type model of eq. (5), cf. panel C of Table 2. Although we
could have estimated this model via the analytical solution of its transient
density, we used the Crank-Nicolson discretization with the same grid as
before for better comparability. As with the agent-based model, the pa-
rameters for the in�uence of the short-run sentiment and returns are both
insigni�cant. Medium-run sentiment, therefore, appears to evolve like an
exogenous quantity without causal in�uence from the other components of
our data set. This is actually again fully consistent with the results of the
VAR analysis in our companion paper (Lux, 2008). Although the agent-
based model and the OU di�usion process are not nested, it is tempting to
compare their likelihoods.6 As we can see, the �t is practically the same
which underlines our conjecture of the proximity of the agent-based model
to a mean reverting di�usion for moderate levels of interaction.

It is interesting to remark that the dynamics of S-Sent cannot be captured to
any satisfactory degree by an Ornstein-Uhlenbeck process. Estimates for the
short-run sentiment data turned out degenerate with implausible parameter
values and goodness-of-�t way below that of the agent-based model. We,
thus, see that the practical equivalence between both models only seems to
hold for the unimodal case. This is plausible as one can indeed show that
the agent-based dynamics converges to an Ornstein-Uhlenbeck process in
the limit of a large population (cf. Horst and Rothe, 2008; Lux, 2009a).

We �nally turn to estimates for the price dynamics, eq. (6). In the com-
plete model I we �nd an insigni�cant parameter for short-run sentiment,
but a strongly signi�cant positive in�uence of medium-run sentiment. Skip-
ping the former, the constant γ0 also falls below the usual thresholds for
signi�cance, so that we �nally also tried a model without both γ0 and γ1.
Here γ2 increases somewhat while the estimates of the variance, σp, remain
practically constant over all three speci�cations. The same applies to the
maximized likelihood although both information criteria would favor the
more comprehensive model.

6Since we have used exactly the same grid in (y, t) space in both estimation algorithms,
the likelihoods are comparable in the sense that they result from the assignment of
probability mass to the same cells (intervals) on the base of two di�erent estimated
models.

15



6 Bivariate Dynamics

We proceed by estimating bivariate models for each pair of our three vari-
ables, x, y and p. As indicated above, we adopt a di�erent �nite di�erence
scheme for the 2D case. The main reason is that Crank-Nicolson becomes
computationally burdensome for two "space" dimensions. The most versa-
tile and e�cient approaches in the 2D case appear to be various implementa-
tions of so-called alternative direction implicit schemes (ADI). ADI methods
are a device to reduce the two-dimensional problem to a succession of two
one-dimensional problems. A unit iteration is split into two half-steps, one
in the �rst space dimension keeping the second variable constant and a sec-
ond one in which the variables change their roles. As a consequence, both
half-steps are similar to an iteration of a 1D system and computation time
only increases by a factor roughly equal to 2. From the wide array of ADI
schemes we adopt the so-called Peaceman-Rachford algorithm which is sim-
ply a combination of two implicit half-steps (cf. Strickwerda, 2004, c.7 and
the Appendix).

Our interest is now to explore the robustness of our previous 1D estimates.
This means (i) robustness with respect to inclusion of a second simultaneous
dynamic process and (ii) robustness with respect to di�erent discretization
schemes. Panel A of Table 2 exhibits parameter estimates for a bi-variate si-
multaneous opinion dynamics for the short-run and medium-run sentiment
indices. Model I indicates the unrestricted model whereas Model II stands
for a model with the same restriction on e�ective population sizes as above,
i.e. N = M . Again, we could not obtain standard errors for the former
because of the extremely �at surface of the likelihood function. Taking a
population size of 68 as the starting value in the maximization produces the
results exhibited for Model I, but with di�erent starting values very di�erent
parameters can be obtained with practically equal likelihood. Experiment-
ing with the starting values, we found that the parameters for the short-run
sentiment dynamics were pretty una�ected while those for the medium-term
components showed more variations. This is completely in line with the be-
havior of the pertinent 1D models. Apparently, component-wise estimation
and simultaneous estimation of both dynamic processes leads to pretty much
the same outcome. Fixing N = M allows us to obtain meaningful standard
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errors for all parameters. These indicate that all parameters are signi�-
cant although the signi�cance of the biases (α0, β0) and cross-dependencies
(α2, β2) is more or less marginal. The relatively weak interaction between
S-Sent and M-Sent is again in line with VAR parameter estimates in our
companion paper.

Fig. 2 shows the stationary distribution of our estimated stochastic opin-
ion dynamics. Since an analytical solution is not available for our highly
nonlinear bi-variate Fokker-Planck equation, we have simply integrated the
transitional density over a very long time horizon until it converged to a
stationary distribution in order to obtain Fig. 2. As can be seen, we �nd
a distribution that is at the margin between bi-modality and pronounced
skewness. While probability mass is concentrated around zero along the y

axis, the stationary distribution has a maximum at about 0.6 for S-Sent
together with non-negligible probabilities along the whole range between
about −0.7 and +0.7.

Table 2 about here

Because of the collinearity in the y component, we also combined the opinion
dynamics in x with the OU type di�usion for y (Model III in Panel A). The
pertinent parameter estimates are all signi�cant. While κ and σy correspond
closely to their counterparts in the uni-variate estimation exercises of Table
1, ȳ and β1 show somewhat more variation. Most interestingly, however,
the likelihood of this alternative model is practically the same as the one
for the simultaneous opinion dynamics of Model I and II. The stationary
distribution from Model III is, in fact, entirely undistinguishable from the
one shown in Fig. 2. Again, this conformity underlines our impression that
a population process could be largely equivalent to a simple di�usion model
in the presence of relatively weak interaction.

Panels B and C provide parameters estimates for joint bi-variate dynamic
processes of each one of our sentiment indices and the share index DAX.
For S-Sent, we see that the parameters of the opinion process remain un-
changed, but the sentiment-based component (γ1) of the price dynamics
seems highly signi�cant which is in contrast to the previous result of the
univariate di�usion for prices. For M-Sent, we have again estimated one
model with unrestricted number of agents, one with M �xed at 68 and the
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Figure 2: The limiting distribution of the joint opinion dynamics for S-Sent and M-Sent
(model II of Table 2, Panel A). Note that a plot of the limiting distribution
of model III (opinion dynamics for S-Sent and OU process for M-Sent is
undistinguishable from the one displayed here).

OU di�usion. Parameters are close to previous ones with again almost the
same quality of the �t, but here we encounter an insigni�cant parameter for
the in�uence from medium-run sentiment on prices (γ2) which is in contrast
to the results obtained for the 1D price dynamics of sec. 5.
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7 The Complete 3D Models

We �nally turn to parameter estimates from joint models of all three
varables: x, y and p. Unfortunately, with current computational resources,
the maximum likelihood estimation in the 3D case approaches the limit of
feasible scenarios. Typically, one full estimation takes a couple of days so
that no extensive experimentation with di�erent starting values is possible
anymore.

Table 3 shows results for two models again using both a second population
process or an OU di�usion for medium-run sentiment. Again, we have not
been able to obtain meaningful standard errors in Model I that estimates
separately the `e�ective' numbers of agents for the two population processes
governing S-Sent and M-Sent. Fixing M = N a priori, meaningful standard
errors are obtained throughout without much variation of parameter esti-
mates and goodness-of-�t. With the Ornstein-Uhlenbeck process replacing
the agent-based opinion dynamics of M-Sent (model IV), parameter esti-
mates of the remaining dynamic components and maximized likelihood are
in line with those of models I and II. While all parameters of the opinion
dynamics are quite homogenous across our various models, the in�uence
from sentiment on prices appears less robust. In models I, II and IV of
Table 3, we �nd signi�cant in�uence from S-Sent, but insigni�cant (or only
marginally signi�cant) in�uence from M-Sent on prices. While this appears
in harmony with the bivariate models of Table 2, it is in contrast to the
univariate di�usion estimated in Panel C of Table 1. It is also in contrast
to the very clearcut results of our previous VAR estimates (Lux, 2008) in-
dicating causality from M-Sent on prices, but not so from S-Sent. In order
to assess the contribution of γ1 to the �t of the models, we also estimated
restricted versions of the 3D framework without an in�uence from S-Sent
on prices. As it turns out (cf. models III and V in Table 3) this leaves
all other parameters more or less unchanged but decreases the likelihood
considerably. So, in principle, there seems no reason to skip this term.

Table 3 about here

Nevertheless, because of our very di�erent results in the companion paper,
we move to an out-of-sample forecasting exercise using both the full 3D
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versions and the restricted models imposing γ1 = 0. Table 4 exhibits root-
mean squared errors relative to the benchmark of a random walk with drift
for the four models II through V of Table 3. Out-of-sample returns comprise
weekly entries for a full year and forecasting horizons of one week up to eight
weeks are investigated. Results are depicted for a single-week returns as
well as for cumulative returns over the pertinent horizon. Because of the bi-
modality of our estimated models (in the S-Sent dimension) we use di�erent
predictors: Besides the mean, we also use the nearest mode of two in the
bimodal case or the global maximum, i.e. the coordinates with the highest
probability mass. This approach follows Creedy et al. (1996) who use a
bi-modal error term in an otherwise linear monetary model of the exchange
rate. The `nearest' and `global' forecast conventions are justi�ed by the
observation that the mean might actually be a very unlikely realisation in a
bi-modal stochastic process. Because of the persistence of the process, there
is a certain chance that the realisation in the near future might remain close
to the previously dominant mode (which justi�es the `nearest' convention).
On the other hand, one might use the global maximum of the predictive
distribution as the most probable single value which also might be quite
remote from the mean.

Table 4 about here

Our results in Table 4, nevertheless, show that the mean is mostly a better
predictor for longer horizons, while the nearest convention is slightly better
than the mean at shorter horizons. The `global' convention mostly ranks
third. What is, however, more remarkable, is the di�erence between the
full and restricted models. While both the full and restricted models start
out fairly similar at one and two-weeks horizons, the full models produce
catastrophic failures at three-to six-week horizons. Interestingly, these fail-
ures are most pronounced in the `global' convention, but less extreme in the
mean forecasts. In the `nearest' convention, the forecasts are pretty close to
the benchmark of the random walk with drift. Apparently, the full model
predicts movements to another mode with ensuing large price increases or
decreases which are not taking place in the data. The restricted models,
in contrast, have much more predictive power � they produce signi�cant
improvements against the random walk at most horizons at least at the 95
percent con�dence level. Hence, if we disregard the apparently signi�cant
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in�uence from S-Sent on returns in our estimated models of Table 3, we ar-
rive at highly signi�cant predictive success of our 3D model. While there is
certainly no compelling reasons to simply skip one signi�cant parameter in
our analysis, consideration of the VAR results of Lux (2008) could provide a
justi�cation to be cautious concerning the in�uence of near-term sentiment
on price changes (it actually was the reason why we tried the restricted
version of our model).

Whether we should interpret the very mixed results of Table 4 as positive
or negative evidence is a moot point. What is perhaps more interesting is
to ask why the behavioral model did pick up the apparently spurious de-
pendency on S-Sent while the VAR estimates have no such channel. One
answer could be that the behavioral model picks up instantaneous correla-
tion between S-Sent and returns which indeed is highly signi�cant in the
VAR estimates of our companion paper. Of course, instantaneous correla-
tion could not be used to forecast returns. It might, thus, be our negligence
of o�-diagonal terms in the di�usion matrix (which in our framework would
measure instantaneous correlation) that urges the estimate of γ1 to become
signi�cant. An extension of our framework allowing for correlations be-
tween innovations would, therefore, be a most worthwhile avenue for future
research. It is also remarkable that the explosion of root-mean squared
errors in Table 4 occurs at horizons of four to six weeks. In our VAR frame-
work, we found a signi�cantly negative feedback from S-Sent on M-Sent at
lag 5 which, of course, is absent in the present continuous-time approach.
Including such a feedback (in the sense of a delay factors) might attenuate
the overshooting of predicted prices at these horizons. Because of the com-
plexity of stochastic partial di�erential equations with delays, we also leave
this question for future research.

8 Conclusions

Given the long lasting interest in sentiment data in �nancial economics, it
might come as a surprise that there is no empirical work estimating and
testing behavioral models for such data. Of course, under an e�cient mar-
ket perspective, such data would represent a relatively unimportant noise
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component. However, evidence exists for a certain impact of sentiment on
prices. While for U.S. data, causality in the short-run seems to run from
returns to sentiment (Brown and Cli�, 2004), our German data indicate a
causal relationship in the opposite direction (Lux, 2008). Even for the U.S.,
however, some predictive power of sentiment has been found for longer hori-
zons (Brown and Cli�, 2005).

The signi�cant in�uence of sentiment on returns in the German data mo-
tivated us to adopt a behavioral, agent-based framework for the dynamics
of short and medium run sentiment. In order to estimate the parameters of
such models, we could take stock of an approach proposed in Lux (2009a)
using a numerical maximum likelihood procedure. In terms of methodology,
the contribution of this paper is the extension of this estimation technique
to higher dimensions. Monte Carlo simulations in Lux (2009a) showed that
this method performed well even in relatively small samples like the present
one. Choosing appropriate methods from the large range of �nite di�erence
approximations for partial di�erential equations allowed an extension of the
univariate approach to 2D and 3D.

Materially, we found evidence for strong social interaction in short-term sen-
timent and only moderate social in�uences in medium-run sentiment. With
moderate interaction, estimation of the agent-based model appears some-
what cumbersome because of almost collinear behavior of some parameters.
As we have seen, in this case, a more parsimonious Ornstein-Uhlenbeck
process provides practically the same �t to the data. One could, therefore,
use a simple macroscopic equation instead of the full microscopic Markov
process. We believe that results like this one are important in that they
provide an indication of the necessary degree of complexity of behavioral
models in di�erent scenarios (an issue very much neglected in economics
where theoretical models are mostly either based on the assumption of a
representative agent or an in�nite population).

Overall most of our results were in nice coincidence with the previous VAR
results of Lux (2008). The social dynamics estimated for S-Sent and M-
Sent, therefore, seems a potential candidate for a data generating process of
our sample. We only encountered somewhat divergent results in the di�u-
sion equation for the price dynamics. While a simple 1D di�usion produced
results in harmony with the previous VAR models, the 2D and 3D dynam-
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ics entailed a supposedly spurious in�uence from S-Sent that distorted our
results. Discarding this in�uence, we found predictive power in line with
the VAR model. We conjecture that this divergence is due to a certain
incompleteness of the present continuous-time framework in which we did
not allow for instantaneous correlation of innovations (which turned out to
be highly signi�cant in the VAR model). Obviously, expanding the model
in this direction and including o�-diagonal terms in the di�usion would be
an interesting avenue for future research.

We believe that the present paper and its predecessor (Lux, 2009a) could
provide an avenue to empirical estimation of a broad range of agent-based
models. While we noted that we reached the limits of current computa-
tional power at our 3D applications, we also note that we have only used
a small range of numerical schemes so far. Methods using adaptive adjust-
ment of meshes or parallelisation of tasks might allow us to dramatically
reduce computation time for in future applications. Further research in this
direction should be of high priority.
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Table 1: Parameter estimates for uni-variate models

Panel A: Agent-based model of S-Sent (x) Panel B: Agent-Based Model of M-Sent (y)

Param. Model I Model II Param. Model I Model II Model III Model IV

νs 8.851 8.938 νm 0.126 0.106 0.111 0.305
(2.756) (2.741) (·) (0.118) (·) (0.034)

α0 0.008 0.008 β0 0.069 0.080 0.073 0.033
(0.004) (0.004) (·) (0.074) (·) (0.017)

α1 1.055 1.055 β1 0.046 -0.118 -0.056 0.629
(0.014) (0.013) (·) (1.211) (·) (0.096)

α2 0.062 0.062 β2 -0.011 -0.013 -0.050
(0.025) (0.025) (·) (0.103) (0.057)

α3 -0.014 β3 -0.036 1.092
(0.107) (·) (1.034)

N 68.452 68.402 M 27.935 23.553 24.912 (68)
(14.411) (14.376) (·) (25.640) (·)

LogL -694.738 -694.740 LogL -526.058 -526.071 -526.078 -525.511
AIC 1401.477 1399.481 AIC 1064.116 1062.143 1060.157 1061.022
BIC 1399.416 1399.434 BIC 1062.056 1062.096 1062.124 1060.975
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Panel C: Vasicek-type Model for M-Sent (y) Panel D: Di�usion Model for Prices

Param. Model I Model II Param. Model I Model II Model III

κ 0.234 0.237 γ0 21.270 13.858
(0.065) (0.065) (10.992) (9.616)

y 0.087 0.071 γ1 -33.995
(0.041) (0.033) (24.037)

β1 -0.129 γ2 165.636 164.872 208.240
(0.148) (62.104) (62.579) (55.262)

β2 2.790 σp 102.540 103.241 103.952
(2.704) (5.940) (5.981) (6.022)

σy 0.094 0.095
(0.006) (0.006)

LogL -525.419 -526.010 LogL -895.322 -896.329 -897.345
AIC 1060.839 1058.020 AIC 1798.644 1798.658 1798.689
BIC 1060.792 1062.000 BIC 1800.611 1802.639 1804.683

Note: The models in panels A to C have been estimated via numerical integration of the transitional density, while for
the di�usion models in panel D, the exact solution for the transient density could be used. The discretization of the �nite
di�erence schemes used steps of k = 1

12
and h = 0.01.
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Table 2: Parameter estimates for bi-variate models

Panel A: Interaction of S-Sent and M-Sent

Param. Model I Model II Model III

νs 9.192 9.191 8.897
(·) (2.838) (2.717)

α0 0.010 0.009 0.009
(·) (0.004) (0.004)

α1 1.058 1.058 1.057
(·) (0.013) (0.013)

α2 0.044 0.044 0.045
(·) (0.025) (0.025)

N 67.826 67.809 66.270
(·) (14.127) (13.872)

υm 0.295 0.294
(·) (0.073)

β0 0.053 0.053
(·) (0.022)

β1 0.639 0.639
(·) (0.127)

β2 -0.119 -0.119
(·) (0.056)

M 67.983 M = N
(·)

κ 0.221
(0.063)

y 0.141
(0.049)

β1 -0.314
(0.158)

σy 0.093
(0.006)

lkl -1017.309 -1017.308 -1017.119
AIC 2054.617 2052.616 2052.238
BIC 2044.500 2044.513 2044.136
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Panel B: S-Sent and Prices

Param. Model I

νs 8.976
(2.819)

α0 0.013
(0.004)

α1 1.056
(0.014)

N 64.128
(13.706)

γ0 -4.844
(9.478)

γ1 142.540
(27.741)

σp 93.014
(6.097)

lkl -926.593
AIC 1867.186
BIC 1863.111
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Panel C: M-Sent and Prices

Param. Model I Model II Model III

νm 0.372 0.295
(·) (0.039)

β0 0.023 0.030
(·) (0.015)

β1 0.693 0.606
(·) (0.100)

M 80.648 (68)
(·)

κ 0.240
(0.066)

y 0.073
(0.033)

σy 0.096
(0.006)

γ0 7.685 25.045 19.677
(·) (8.639) (9.831)

γ2 0.701 3.601 74.530
(·) (20.804) (67.139)

σp 103.982 103.859 103.479
(·) (6.280) (6.26)

lkl -768.272 -766.121 -765.406
AIC 1550.544 1544.242 1542.811
BIC 1546.469 1542.181 1540.751

Note: The models in panels A to C have been estimated via numerical
integration of the transitional density using the ADI (alternative direction
implicit) algorithm detailed in the Appendix. The discretization of the �nite
di�erence schemes used steps of k = 1

12
(for time), and h = 0.02 (for S-Sent

and M-Sent). In Panels B and C, the discretization of the second space
dimension (prices) is chosen in a way to generate the same number of grid
points as in the x or y dimension, i.e. Nx = Ny = Np = 100. This amounts
to roughly 43 basis points of the DAX index.
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Table 3: Parameter estimates for tri-variate models

Param. Model I Model II Model III Model IV Model V
νs 9.133 8.847 8.112 8.427 8.222

(·) (2.703) (2.431) (2.600) (2.443)

α0 0.008 0.008 0.009 0.009 0.009
(·) (0.004) (0.004) (0.004) (0.004)

α1 1.058 1.057 1.055 1.055 1.056
(·) (0.013) (0.014) (0.014) (0.014)

α2 0.054 0.055 0.055 0.057 0.054
(·) (0.026) (0.027) (0.027) (0.027)

N 70.039 67.950 64.573 64.832 65.378
(·) (14.135) (13.666) (13.746) (13.677)

νm 0.385 0.273 0.267
(·) (0.069) (0.068)

β0 0.043 0.062 0.060
(·) (0.023) (0.024)

β1 0.758 0.647 0.627
(·) (0.130) (0.136)

β2 0.117 -0.165 -0.148
(·) (0.065) (0.064)

M 95.842 M=N M=N
(·)

κ 0.200 0.206
(0.062) (0.063)

y 0.167 0.154
(0.056) (0.054)

β1 -0.445 -0.377
(0.200) (0.184)

σy 0.089 0.091
(0.006) (0.006)

γ0 -13.595 -13.631 17.140 -12.994 18.015
(·) (10.229) (9.703) (10.055) (9.682)

γ1 150.481 150.819 - 149.994 -
(·) (28.322) - (28.018) -

γ2 106.254 106.271 113.139 99.982 101.224
(·) (60.118) (67.360) (59.707) (67.118)

σp 89.381 89.426 102.330 89.038 102.293
(·) (6.149) (6.404) (6.099) (6.399)

lkl -1337.176 -1337.022 -1350.211 -1336.736 -1350.003
AIC 2702.353 2700.044 2724.422 2699.472 2724.005
BIC 2684.178 2683.884 2710.277 2683.312 2709.860

Note: All models have been estimated via numerical integration of the
transitional density using a tri-variate ADI (alternative direction implicit)
algorithm as detailed in the Appendix. The discretization of the �nite
di�erence schemes used steps of k = 1

8
(for time), and h = 0.02 (for S-Sent

and M-Sent). The discretization of the second space dimension (prices) is
chosen in a way to generate the same number of grid points as in the x or
y dimension, i.e. Nx = Ny = Np = 100. This amounts to roughly 43 basis
points of the DAX index. 32



Table 4: RMSEs of Out-of-Sample Forecasts from Trivariate Models

Panel A: Forecasts from models II and III

Forecasts of single returns

horizon near global mean near global mean

full 3D model (II) restricted model (III)

1 0.972 0.990 0.982 0.967* 0.964* 0.977*
2 1.097 1.004 0.985 0.994 0.956* 0.981
3 1.001 1.055 0.989 1.026 1.163 0.977
4 0.985 554.427 27.473 0.959 0.987 0.968*
5 1.013 386.010 26.375 0.972 1.009 0.970*
6 1.021 632.376 0.984 1.022 1.015 0.972*
7 1.001 0.970 0.984* 1.002 0.999 0.972*
8 1.017 1.033 0.981* 0.975 0.983 0.971*

Forecasts of cumulative returns

1 0.972 0.990 0.982 0.967* 0.964* 0.977*
2 1.012 0.990 0.952 0.949* 0.928* 0.960*
3 1.017 1.042 0.952 0.942* 0.979* 0.984*
4 1.018 95.730 5.206 0.930* 1.011 0.933*
5 1.034 80.868 0.952 0.921* 0.952* 0.919*
6 1.024 1.049 0.938 0.910* 0.944* 0.905*
7 1.041 1.055 0.933 0.896** 0.927* 0.894**
8 1.032 1.035 0.927 0.886** 0.912* 0.883**

33



Panel B: Forecasts from models IV and V

Forecasts of single returns

horizon near global mean near global mean

full 3D model (IV) restricted model (V)

1 0.972 0.973 0.983 0.961* 0.957* 0.976*
2 1.097 0.995 0.986 0.985 0.954* 0.981
3 1.001 72.752 0.990 1.040 1.020 0.977
4 1.014 391.874 30.942 0.973 0.978 0.968*
5 1.009 236.388 29.790 1.006 1.006 0.970*
6 1.012 781.600 0.986 1.023 1.032 0.972*
7 1.003 1.064 0.985* 0.976 0.989 0.972*
8 1.028 1.036 0.982* 1.003 1.004 0.971*

Forecasts of cumulative returns

1 0.972 0.973 0.983 0.961* 0.957* 0.976*
2 1.012 0.990 0.954 0.958 0.928* 0.959*
3 1.017 21.756 0.954 0.950* 0.947* 0.947*
4 1.024 102.791 5.775 0.922* 0.922* 0.932*
5 1.035 96.392 0.957 0.919* 0.919* 0.918*
6 1.026 1.021 0.944 0.907** 0.911* 0.904**
7 1.038 1.038 0.940 0.894** 0.894** 0.893**
8 1.028 1.030 0.934 0.888** 0.889** 0.882**

Note: The table shows relative MSEs of the forecasts under the pertinent
convention (i.e., original MSE divided by that of Brownian motion with
drift).* and ** identify cases of signi�cant improvement by the behavioral
model against the nested alternative of Brownian motion with drift using the
one-sided 5 and 1 percent adjusted Diebold-Mariano test statistic for equal
predictive accuracy of nested models. To compute this statistics we used
Newey-West autocorrelation and heteroscedasticity consistent estimator of
the standard deviation with automatic lag selection by Andrew's method.
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Appendix: Finite Di�erence Schemes for the
Fokker-Planck Equation

(1) FP Equation in 1D

In the case of a univariate series, the FP equation for the density q(x; t) of
a variable xt reads:

∂q(x; t)

∂t
=

∂

∂x
(A(x, θ)q(x)) +

∂2

∂x2
(B(x, θ)q(x))

with θ the set of parameters we wish to estimate.

The �rst and second order terms of our candidate processes are:7

• for the Weidlich model with transition rates given in eqs. (1) to (3):

A(x) = −(υ(1− x)eα0+α1x − υ(1 + x)e−α0−α1x),

B(x) =
1

2N
(υ(1− x)eα0+α1x + υ(1 + x)e−α0−α1x),

• for the Ornstein-Uhlenbeck model:

A(x) = −k(ȳ − y), B(x) =
1

2
σ2

y,

• for a di�usion with constant drift (e.g. as in eq. (6) with γ1 = γ2 = 0):

A(x) = −γ0, B(x) =
1

2
σ2

p.

The additional in�uence from exogenous variables in the U function or in
the drift of a di�usion process can be easily added without changing the
basic steps of our algorithm presented below.

De�ning the �ux F (x), the FP equation can be more compactly written as:

7The drift is −A(x), while the di�usion is 2B(x).
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∂q(x; t)

∂t
=

∂F (x, t)

∂x
(A1)

with
F (x) = B(x)

∂q(x; t)

∂x
+ (A(x) +

∂B(x)

∂x
)q(x; t)

Denote by Qi
j a discrete evaluation of the transient density at space and

time coordinates (xj, ti), with grid points xj = x0 + jh; j = 0, 1, . . . Nx

and ti = ik with i = 0, . . . , Nt. Di�erent possibilities exist to discretize eq.
(A1). The Crank-Nicolson scheme approximates the �ux at intermediate
points (i + 1

2
)k which can be interpreted as a arithmetic average between a

forward (explicit) and backward (implicit) approximation. We, thus, obtain
the following �nite di�ence approximation to (A1).

Qi+1
j −Qi

j

k
=

1

h
(
F i+1

j+ 1
2

+ F i
j+ 1

2

2
−

F i+1
j− 1

2

+ F i
j− 1

2

2
). (A2)

Note that on the right hand side of of (A2), the discrete approximation of
the derivative with respect to x has also used the central di�erence over the
cell mid points x0 + (j − 1

2
)h and x0 + (j + 1

2
)h. Since the discretization of

the �ux implies :

F i
j = B(xj)

Qi
j+ 1

2

−Qi
j− 1

2

h
+ (A(xj)Q

i
j + B′(xj)Q

i
j) (A3)

we arrive at:

Qi+1
j −Qi

j

k
=

1

2h
{Bj+ 1

2

Qi+1
j+1 −Qi+1

j

h
+ (Aj+ 1

2
+ B′

j+ 1
2
)Qi+1

j+ 1
2

+Bj+ 1
2

Qi
j+1 −Qi

j

h
+ (Aj+ 1

2
+ B′

j+ 1
2
)Qi

j+ 1
2

−Bj− 1
2

Qi+1
j −Qi+1

j−1

h
− (Aj− 1

2
+ B′

j− 1
2
)Qi+1

j− 1
2

−Bj− 1
2

Qi
j −Qi

j−1

h
− (Aj− 1

2
+ B′

j− 1
2
)Qi

j− 1
2
}. (A4)

Using averages Qj+ 1
2
≡ 1

2
(Qi

j+1 + Qi
j) as well as another �nite di�erence

approximation to B′ (i.e. B′
j+ 1

2

=
Bj+1−Bj

h
) we can rearrange the system

into the form:
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ajQ
i+1
j−1 + bjQ

i+1
j + cjQ

i+1
j+1 = djQ

i
j−1 + ejQ

i
j + fjQ

i
j+1. (A5)

Since this derivation applies to all values j = 0, 1, . . . , Nx on our grid, we
end up with a computationally convenient tri-diagonal system of equations
that approximates the continuous-time dynamics of the transient density
q(x; t):

VQi+1 = ri (A6)

with V =




b0 c0 0 · · ·
a1 b1 c1 · · ·

· · · aNx−1 bNx−1 cNx−1

· · · 0 aNx bNx




,

Qi+1 = (Qi+1
0 , Qi+1

1 , . . . , QNx)
′ and

ri = (e0Q
i
0 + f0Q

i
1, d1Q

i
0 + e1Q

i
1 + f1Q

i
2, . . . , dNxQ

i
Nx−1 + eNxQ

i
Nx

)′.

Note that the de�nition of our grid from x0 to x0 + j ·Nx implies that at the
edges of our system of equations, coe�cients outside the (Nx +1)× (Nx +1)

matrix V are indeed equal to zero (e.g. for j = 0, the term a0Q
i
−1 vanishes

for all i). While this would impose a certain arbitrariness in truncation of
the underlying state space in certain applications (e.g. when evaluating the
Black-Scholes partial di�erential equation), in our case of a �nite state space
for the sentiment data this truncation would be quite natural. In order to
conserve overall probability mass (or number of particles) additional `no-
�ux' conditions have to be imposed. Going back to (A1), these can be
simply de�ned as:

F i
− 1

2
= F i

Nx+ 1
2

= 0 ∀i.
This keeps all the mass within the con�nes of the range [x0, x0 + jNx].
Keeping track of these boundary conditions, we obtain slightly di�erent
de�nitions of the coe�cients aj, bj, cj at j = 0 and j = Nx at the edges
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of the matrix V . The Crank-Nicolson scheme is known to be of accuracy
O(k2) + O(h2) at the grid points.

(2) FP Equation in 2D

Note, that for bivariate and trivariate systems, the Fokker-Planck equation
(7) has drift and di�usion components consisting of the pertinent functions
of the various models as we have presented them above. To write down the
multivariate Fokker-Planck equations is, therefore, straightforward.

While it is feasible to apply the Crank-Nicoloson scheme to higher dimen-
sions, it is problematic from the computational point of view. The reason
is that the resulting system of equations can not be cast into the form of
sparse, tridiagonal systems of equations anymore. A popular alternative
that preserves the tridiagonal forms for higher dimensions is the class of
alternative direction implicit schemes (ADI schemes). In our numerical ap-
proximation of bivariate and trivariate FP equation, we apply two particular
variants from the rich class of ADI schemes.

To set the stage for the 2D and 3D applications, let us �rst explain the
implicit scheme in 1D. This scheme is obtained by approximating the �ux
in eq.(A1) at points (i + 1)k so that instead of (A2) we arrive at:

Qi+1
j −Qi

j

k
=

1

h
(F i+1

j+ 1
2

− F i+1
j− 1

2

).

Inserting (A3) we derive:

Qi+1
j −Qi

j

k
=

1

h
{Bj+ 1

2

Qi+1
j+1 −Qi+1

j

h
+ (Aj+ 1

2
+ B′

j+ 1
2
)Qi+1

j+ 1
2

−Bj− 1
2

Qi+1
j −Qi+1

j−1

h
− (Aj− 1

2
+ B′

j− 1
2
)Qi−1

j− 1
2

}.

Rearranging the components of this system, we arrive at a linear system of
equations similar to the one obtained for the Crank-Nicolson scheme:

ajQ
i+1
j−1 + bjQ

i+1
j + cjQ

i+1
j+1 = Qi

j.

Instead of (A6) we now have a tridiagonal system:
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VQi+1 = Qi

with appropriate boundary conditions. Note that in 1D the simpli�cation
of the expression on the right-hand side is negligible in terms of computa-
tional demand. Since the computational demands of the (fully) implicit and
Crank-Nicolson scheme are practically the same, and the implicit method
is of �rst-order accuracy only, we would typically prefer Crank-Nicolson (so
that the later was our natural choice for univariate problems).

In 2D computational demands make a di�erence. Both a direct adaptation
of the fully implicit and Crank-Nicolson schemes would lead to broadly
banded matrix equations that lack the tridiagonal charm of those derived
in 1D. A way to preserve this convenient form is to use an indirect scheme
in an alternating way �rst performing a half (or auxiliary) step into one
space dimension and subsequently another half (auxiliary) step into the
second space dimension. To provide more details, let us denote the space
variables as x1 and x2 with grids: x1,j = x1,0 + j · h1, j = 0, 1, . . . , Nx1 and
x2,l = x2,0 + l · h2, l = 0, 1, . . . , Nx2 .

The bivariate FP equation can be rewritten using the concept of �uxes in
both the x1 and x2 direction as:

∂q(x1, x2, t)

∂t
=

∂F1(x1, x2, t)

∂x1

+
∂F2(x1, x2, t)

∂x2

with Fr(x1, x2; t) =
∑

s

Brs(x1, x2, t)
∂q(x1, x2, t)

∂xs

+ (Ar(x1, x2) +
∑

s

∂Brs(x1, x2)

∂xs

)q(x1, x2; t).

As it turns out, inclusion of the o�-diagonal terms, B12(·) and B21(·) is
potentially problematic for a number of reasons: First, in terms of our bi-
variate opinion process, we would have to make explicit the dependence
between respondents' opinion on the short and medium run. While it is
perfectly reasonable to assume some dependency, to come up with a formal
framework for this dependent opinion formation would be demanding. We
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are, therefore, tempted to maintain the assumption of independent Markov
processes as data-generating processes for S-Sent and M-Sent. By this as-
sumption, Brs = 0 for r 6= s follows as a consequence of the model set-up.
In addition, setting the o�-diagonal terms of the di�usion matrix equal to
zero is computationally convenient as certain results on the accuracy of
ADI schemes only apply in the absence of cross-derivatives and a strong
o�-diagonal in�uence could also jeopardize positivity of our solutions.

Our method of choice for the 2D case without cross-derivatives is the ADI
scheme proposed by Peaceman and Rachford (cf. Strikwerda, c.7; Thomas,
c.4). Denoting the �nite di�erence approximation of the transient density in
2D by Qi

j,l, i.e. q(x1, x2; t) evaluated at x1,j, x2,l and ti, one �rst evaluates
the derivative with respect to x1 implicitly and that with respect to x2

explicitly using a time step k/2:

Q
i+ 1

2
j,l −Qi

j,l

k/2
=

1

h1

(F
i+ 1

2

1,j+ 1
2
,l
− F

i+ 1
2

1,j− 1
2
,l
) +

1

h2

(F i
2,j,l+ 1

2
− F i

2,j,l− 1
2
).

For the next half step, the order is changed leading to:

Qi+1
j,l −Q

i+ 1
2

j,l

k/2
=

1

h1

(F
i+ 1

2

1,j+ 1
2
,l
− F

i+ 1
2

1,j− 1
2
,l
) +

1

h2

(F i+1
2,j,l+ 1

2

− F i+1
2,j,l− 1

2

).

As can easily be seen, both half-steps lead to a tri-diagonal system of equa-
tions with the explicit expressions all entering into the term on the right-
hand side. Boundary conditions are easily imposed by setting F i

1,− 1
2
,l

=

F i
1,Nx+ 1

2
,l

= 0 for all i, l and F i
2,j,− 1

2

= F i
2,j,Ny+ 1

2

= 0 for all i, j. Like the
implicit scheme in 1D, the Peaceman-Rachford scheme is unconditionally
stable. It is also second-order accurate in ∆t, ∆x1 and ∆x2 (although the
1D implicit scheme is only of �rst-order accuracy) as long as the cross-
derivatives are all equal to zero (Strikwerda, c.7).

(3) FP Equation in 3D

A generalization of the Peaceman-Rachford scheme to three space dimen-
sions (xi, i = 1, 2, 3) can be found in Morton and Mayers (1994, c.3).
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With our FP equation expressed in �uxes:

∂q(x; t)

∂t
=

∑
r

∂Fr(x : t)

∂xr

, r = 1, 2, 3

and the approximation to the transient density at (ti, x1,j, x2,l, x3,m) de-
noted by Qi

j,l,m, this scheme amounts to the following sequence of systems
of equations:

Qi+∗
j,l,m −Qi

j,l,m

k
=

1

h1

(F i+∗
1,j+ 1

2
,l,m

− F i+∗
1,j− 1

2
,l,m

)

+
1

h2

(F i
2,j,l+ 1

2
,m
− F i

2,j,l− 1
2
,m

)

+
1

h3

(F i
3,j,l,m+ 1

2
− F i

3,j,l,m− 1
2
),

Qi+∗∗
j,l,m −Qi+∗

j,l,m

k
=

1

h2

(F i+∗∗
2,j,l+ 1

2
,m
− F i+∗∗

2,j,l− 1
2
,m

)

− 1

h2

(F i
2,j,l+ 1

2
,m
− F i

2,j,l− 1
2
,m

),

Qi+1
j,l,m −Qi+∗∗

j,l,m

k
=

1

h3

(F n+1
3,j,l,m+ 1

2

− F n+1
3,j,l,m− 1

2

)

− 1

h3

(F n
3,j,l,m+ 1

2
− F n

3,j,l,m− 1
2
).

Here, the intermediate steps i + ∗ and i + ∗∗ are better interpreted as
auxiliary rather than fractional steps since the second and third system of
equations is more of an error-correction form. Unfortunately, Morton and
Mayers do not mention the order of accuracy of this scheme. This approach
has been used to solve three-dimensional conduction equations. Within this
simpler setting, it has been demonstrated to be unconditionally stable and of
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�rst-order accuracy in ∆t (Marschak, 1990, sec. 28). Most importantly for
our purposes it seems to be the method with least computational demands
among the many variants of ADI and related �nite di�erence methods for
higher dimensions.
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