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Abstract

In this paper, we derive two shrinkage estimators for the global minimum variance portfolio
that dominate the traditional estimator with respect to the out-of-sample variance of the
portfolio return. The presented results hold for any number of observations n > d + 2 and
number of assets d > 4. The small-sample properties of the shrinkage estimators as well as
their large-sample properties for fixed d but n — oo as well as n,d — oo but n/d — ¢ < 0o
are investigated. Furthermore, we present a small-sample test for the question of whether

it is better to completely ignore time series information in favor of naive diversification.

Keywords: Covariance matrix estimation, Global minimum variance portfolio, James-

Stein estimation, Naive diversification, Shrinkage estimator

JEL classification: C13, G11



Non-technical summary

The minimisation of the return variance is one of the classical topics of portfolio theory.
One of the main difficulties of variance minimisation is that the necessary input factors —
variances and covariances of the assets of the investment universe — are unknown. Often
these variances and covariances are estimated from time series and one incorporates these
estimates into the optimisation as if they were the true parameters (traditional approach).
This procedure presents some problems. Although the weights estimated in the traditional
approach do not differ systematically from the actual weights of the minimum variance
portfolio, the estimation errors lead to undesirable effects from an economic point of view.
If one uses a time window of past return observations for the estimation and invests one’s
wealth according to the estimated portfolio weights for the following period (out-of-sample
analysis), then the variance of the portfolio return is often considerably higher than the
theoretical minimum, especially if the investment universe is large compared with the

number of observations.

In this theoretical paper, we develop estimators for the weights of the minimum variance
portfolio that dominate the traditional estimators that are often applied, i.e. the new
estimators lead to a smaller out-of-sample return variance than the traditional estimators.
The new estimators are James-Stein estimators. These are estimators that represent a
weighted average of the traditional estimator and of a reference portfolio, for instance of a

portfolio with equal shares for all assets (naively diversified portfolio).

Instead of adjusting the estimators for the portfolio weights, one can directly change the
estimated variances and covariances (which are then integrated into the optimisation as
if they were the true parameters). In this way, one obtains improved estimates for the
variances and covariances. This latter point is important for the management of market and

credit risk because return variances and covariances play a decisive role in risk management.

The theoretical results show that the estimation risk may remain considerable even though
the dominating estimators lead to smaller out-of-sample return variances. A test to assess
the question of whether to choose the naively diversified portfolio instead of investing in
a portfolio based on the dominating estimators is developed. All things considered, the
theoretical results sound a note of caution when estimating return variances and covariances
from time series, especially if the number of assets is large compared with the number of

observations. This statement is valid in an idealised world with identically distributed,



serially independent and normally distributed observations. On real markets, which often
differ from the idealised assumptions, the arguments in favour of naive diversification may

be even more pronounced.



Nichttechnische Zusammenfassung

Die Minimierung der Renditevarianz ist eines der klassischen Themen der Portfoliotheorie.
Eine der Hauptschwierigkeiten bei der Varianzminimierung besteht darin, dass die noti-
gen Inputfaktoren — Varianzen und Kovarianzen der zugrunde liegenden Vermogensgegen-
stdnde — unbekannt sind. H&ufig werden diese Varianzen und Kovarianzen aus Zeitreihen
geschitzt und flieflen dann in den Optimierungsansatz ein, als wiren es die wahren Pa-
rameter (traditioneller Ansatz). Dieses Vorgehen ist nicht unproblematisch: Zwar weichen
die auf diese Art geschitzten Portfoliogewichte nicht systematisch von den tatséchlichen
Gewichten des varianzminimalen Portfolios ab, aber der Schitzfehler fiithrt zu 6konomisch
unerwiinschten Ergebnissen: Nutzt man zur Schitzung ein Zeitfenster aus vergangenen
Rendite-Beobachtungen und legt dann fiir die folgende Periode das Vermogen geméfs der
geschitzten Portfoliogewichte an (out-of-sample Betrachtung), dann ist die Portfoliovari-
anz hdufig deutlich grofer als der theoretisch minimale Wert, besonders dann, wenn das

Anlageuniversum grof ist im Vergleich zur Lénge der Renditezeitreihe.

In diesem theoretischen Papier entwickeln wir Schétzer fiir die Gewichte des varianzmini-
malen Portfolios, die die hdufig verwendeten traditionellen Gewichtsschétzer dominieren,
d.h. die neuen Schétzer fithren zu einer geringeren out-of-sample Renditevarianz als die tra-
ditionellen Schétzer. Bei diesen neuen Schétzern handelt es sich um James/Stein-Schétzer;
dies sind Schétzer, die einen gewogenen Durchschnitt aus dem traditionellen Schétzer und
einem Referenzportfolio darstellen, zum Beispiel dem Portfolio mit gleichen Vermogensan-

teilen fiir alle Vermogensgegenstinde (naiv diversifiziertes Portfolio).

Anstatt die Schitzer fiir die Gewichte anzupassen, kann man die Verinderung auch di-
rekt bei den geschétzten Varianzen und Kovarianzen vornehmen (die dann in den Opti-
mierungsansatz einfliefen, als wiren es die wahren Parameter). Auf diese Weise erhélt
man verbesserte Schitzwerte fiir die Renditevarianzen und -kovarianzen. Dieser zuletzt
aufgefithrte Punkt ist wichtig fiir das Management von Markt- und Kreditrisiken, weil

dort Renditevarianzen und -kovarianzen eine zentrale Rolle spielen.

Die theoretischen Ergebnisse zeigen, dass die dominierenden Gewichtsschitzer zwar zu
einer geringeren out-of-sample Renditevarianz fiithren, aber das Schitzrisiko nach wie vor
hoch sein kann. Wir entwickeln einen Test zur Beurteilung der Frage, ob man besser gleich
das naiv diversifizierte Portfolio wihlen sollte, statt die Portfoliogewichte aus Zeitreihen

zu schitzen. Insgesamt mahnen die theoretischen Ergebnisse zur Vorsicht, wenn Varianzen



und Kovarianzen aus Zeitreihen geschétzt werden, insbesondere dann, wenn die Anzahl
der zugrunde liegenden Vermogensgegenstinde grof ist im Vergleich zu der Anzahl der
Beobachtungen. Diese Aussage gilt in einer idealisierten Welt mit identisch verteilten, se-
riell unabhéngigen und normalverteilten Beobachtungen. Auf realen Mérkten, die ja hiufig
von den idealisierten Annahmen abweichen, diirfte das Pendel noch stérker zugunsten der

naiven Diversifikation ausschlagen.



Contents

1 Introduction

2 Preliminaries
2.1 Notation and Assumptions . . . . . . . . ..
2.2 Important Theorems . . ... ... ... ..

2.3 Out-of-Sample Variance . .. ... ... ..

3 The Dominant Estimators
3.1 Small-Sample Properties . . . . . .. .. ..
3.2 Large-Sample Properties . . . . . . . .. ..

3.3 The Link to Covariance Matrix Estimation .

4 Naive Diversification vs. Portfolio Optimization

4.1 A Small-Sample Simulation Study . . . . .

4.2 Testing the Naive Diversification Hypothesis

5 Conclusion

11

14

16

16

18

20



Dominating Estimators for the Global

Minimum Variance Portfolio?

1 Introduction

When implementing portfolio optimization according to Markowitz (1952), one needs to
estimate the expected asset returns as well as the corresponding variances and covariances.
If the parameter estimates are based only on time series information, the suggested portfo-
lio tends to be far removed from the optimum. For this reason, there is a broad literature
which addresses the question of how to reduce estimation risk in portfolio optimization. In
a recent study, DeMiguel et al. (2007) compare portfolio strategies which differ in the treat-
ment of estimation risk. It turns out that none of the strategies suggested in the literature
is significantly better than naive diversification, i.e. taking the equally weighted portfo-
lio. Further, the study conducted by DeMiguel et al. (2007) confirms that the considered
strategies perform better than the traditional implementation of Markowitz optimization,

which means replacing the unknown parameters by their sample counterparts.

The global minimum variance portfolio (GMVP) has been frequently advocated in the
literature (Frahm, 2008; Jagannathan and Ma, 2003; Kempf and Memmel, 2006; Ledoit
and Wolf, 2003) because it is completely independent of the expected asset returns, which
have been found to be the principal source of estimation risk (Chopra and Ziemba, 1993;
Merton, 1980). We present two estimators for the GMVP which dominate the traditional
estimator with respect to the out-of-sample variance of the portfolio return. Due to the
arguments set forth by Frahm (2008), the same conclusion can be drawn for estimating
local minimum variance portfolios, i.e. minimum variance portfolios where the portfolio

weights are subject to other linear equality constraints besides the budget constraint.

Okhrin and Schmid (2006), Kempf and Memmel (2006) and Frahm (2008) all explore the
properties of the traditional GMVP estimator by assuming jointly normally distributed
asset returns. They derive the small-sample distribution of the estimated portfolio weights

and give a closed-form expression for the out-of-sample variance of the portfolio return. In

"We would like to thank Alexander Kempf and Julia Nasev for their helpful comments on the manuscript.
The opinions expressed in this paper are those of the authors and do not necessarily reflect the opinions

of the Deutsche Bundesbank.



contrast, Bayesian and shrinkage approaches have a long tradition in the implementation
of modern portfolio optimization. Jobson and Korkie (1979) and Jorion (1986) introduce
shrinkage estimators for the expected returns. Frost and Savarino (1986) generalize these
estimators by also including the variances and covariances. Furthermore, DeMiguel et al.
(2007), Garlappi et al. (2007), Golosnoy and Okhrin (2007) as well as Kan and Zhou (2007)
present some shrinkage estimators for the weights of mean-variance optimal portfolios,
whereas Ledoit and Wolf (2003) introduce a shrinkage estimator for the covariance matrix

of stock returns and apply their results to the estimation of the GMVP.

Our work is related to these shrinkage approaches. However, it differs in two important
aspects. First, we derive feasible estimators, and our dominance results turn out to be
valid even in small samples. The shrinkage approaches presented by the aforementioned
authors can only be justified for a large number of observations. As pointed out by Frahm
(2008), large-sample results can be misleading in the context of portfolio optimization
since, even if the sample size is large, the number of observations can be small compared
to the number of assets. Second, in contrast to Ledoit and Wolf (2003) we do not seek
to obtain a better covariance matrix estimator but instead to reduce the out-of-sample
variance of the portfolio return, which seems to be the major goal when searching for a

minimum variance portfolio.

Another method of alleviating the impact of estimation risk is to impose certain restrictions
on the estimated covariance matrix or portfolio weights. Examples for restrictions on the
covariance matrix are the single index model of Sharpe (1963) and the constant correlation
model suggested by Elton and Gruber (1973). Jagannathan and Ma (2003) show that
imposing short-sales constraints on the GMVP is equivalent to assuming a special structure
of the covariance matrix. Frahm (2008) analyzes linear equality constraints on the portfolio
weights and proves that linear restrictions reduce estimation risk. All these approaches have
in common the fact that the restrictions may be binding and so the true GMVP does not
need to be attained if the length of the time series approaches infinity. Nevertheless, in
an empirical study presented by Chan et al. (1999) it has been shown that the reduction
of estimation risk typically outweighs the loss caused by applying ‘wrong’ restrictions.
Shrinkage estimators reduce the estimation risk as well. However, in addition they have
the appealing property of converging towards the optimal portfolio weights as the sample

size grows to infinity.



Our contribution to the literature is threefold. First, we derive two shrinkage estimators
for the GMVP that dominate the traditional estimator with respect to the out-of-sample
variance of the portfolio return. Second, we present not only the small-sample properties of
the shrinkage estimators and some related quantities, but also their large-sample properties
for fixed d and n — oo as well as n,d — oo and n/d — ¢ < oo. The latter kind
of asymptotic behavior becomes relevant when analyzing the estimators in large asset
universes. Third, backed by the results of DeMiguel et al. (2007), we derive a small-sample
test for the naive diversification hypothesis, i.e. for deciding the question of whether or not

it is better to completely ignore time series information in favor of naive diversification.

2 Preliminaries

2.1 Notation and Assumptions

Suppose that the investment universe consists of d assets and the investor is searching
for a buy-and-hold portfolio which will be liquidated after one period. We will consider
the asset excess returns Ry = (Ryy, ..., Rg) for t = 1,...,n,2 i.e. the asset returns minus
the corresponding risk-free interest rates. Nevertheless we will drop the prefix ‘excess’ for

convenience and make the following assumptions:

A1. The asset returns are jointly normally distributed, i.e. Ry ~ Ny(p, ) fort =1,...,n

with 1 € R? and positive-definite matrix ¥ € R4*¢.

A2. The mean vector y and the covariance matrix ¥ are unknown.
A3. The asset returns are serially independent.
A4. The sample size exceeds the number of assets, more precisely n > d + 2.

A5. There exist at least four assets, i.e. d > 4.

The GMVP w is defined as the solution of the minimization problem

min v'Y v, st.o'l=1. (1)
veR
In the following ‘(x1,...,zq)’ indicates a d-tuple, i.e. a d-dimensional column vector.



Here 1 denotes a vector of ones. Since X is positive-definite, the GMVP is unique and the
solution of this minimization problem corresponds to w = ¥ 711/(1’£~!1). The traditional
estimator wr for the GMVP consists in replacing the unknown covariance matrix ¥ with

the sample covariance matrix f), ie.
(R — R) (B — R)', (2)

where R = 1/n > iy R: represents the sample mean vector of Ry, ..., R, . The variance of
the GMVP return corresponds to 02 = w'Yw = 1/(1’S711) and its traditional estimator
is given by 62 = W, S dp = 1/(1'S711) .

Since the portfolio weights always add up to 1, it is possible to omit one element of the

portfolio weights vector without losing information. We choose to omit the first element

and define w®™ := (wa,...,wq). For convenience we introduce the (d — 1) x d matrix
A :=[1 —I;1]. By using the operator A, we can easily switch between the two notations.
For instance, note that (v; —vg) = —A'(v$* —v§¥) for all vectors vy, v2 € R? whose elements

add up to 1. Moreover, the following relationship will be useful in the subsequent discussion:
(v1 —v2)' A (v1 — v2) = (7" — v5")'B (v)* — v5") (3)

with B := AAA’ for any d x d matrix A. A key note of the present work is that
VY =04 (v—w)E (v —w)=0?+ (V= - wx)Q V™ - w™) (4)

for every vector v € R% with v/1 = 1, where Q is defined as Q := AXA/. The first equality
in (4) can be obtained by noting that Yw = 1/(1’S£711) and thus v'Sw = 1/(1'S711) =

02, The second equality follows from the arguments given above.

In the following x2()\) denotes a noncentral y2-distributed random variable with k¥ € N
degrees of freedom and noncentrality parameter A > 0. This means x7(\) ~ X'X with
X ~ Ni(0,1};) and 0 € R¥, where the noncentrality parameter is defined as A := 6’6/2. By
contrast, Xi stands for a central y2-distributed random variable (i.e. A = 0) and we also
define x.(\) := {Xz()\)}r/2 for any r € Z. Moreover, let x7 (A) and X7, with ki, ky € N
be stochastically independent. Then Fj, r,(X) ~ (k2/k1) (X%I()\)/XiQ) has a noncentral F-
distribution with k1 and ko degrees of freedom as well as noncentrality parameter A > 0.
Now suppose that X7, ..., X, are m independent copies of X ~ N, (0,X), where 0 denotes

a vector of zeros and ¥ is a positive-definite ¢ X ¢ matrix. Then the ¢ x ¢ random matrix



Wy(3,m) ~ > X; X possesses a g-dimensional Wishart distribution with covariance
matrix ¥ and m degrees of freedom. Furthermore, x+ := max{z,0} denotes the positive
part and = := —min{x, 0} the negative part of z € R. Let A be some positive-definite
qxq matrix. Then A3 represents the unique symmetrical ¢ x ¢ matrix such that A = A3 A3

Finally, z o« y means ‘z is proportional to y’ and || - || denotes the Euclidean norm.

2.2 Important Theorems

Let us now provide some important theorems which will come in handy in the following
sections. First, we present some elementary small-sample properties of the traditional
estimator for the GMVP and its related quantities. A proof can be found in Kempf and
Memmel (2006).

Lemma 1 (Kempf and Memmel (2006))
Under assumptions Al to A3 and n > d, the sample covariance matrix Q of AR, the
traditional estimator WY for the GMVP (except for the first portfolio weight), and the

traditional estimator 6% for the minimum variance o2 satisfy the following properties:
P1. nQ ~ Wy_1(Q,n —1), where Q := LS . (AR—AR)(AR - AR)/.

P2. w§| Q~Nyy (w™, 0262’1/71).

P3. nc}?r/cr2 ~ X%fd-

P4. 6% is stochastically independent of Q and W

The following theorem will play the central role in the development of the shrinkage esti-

mator and its dominance property.

Theorem 1

Consider a g X q random matrix W ~ W, (Q, m), where () is a positive-definite q X ¢ matrix,
q >3 and m > q+2, a g-dimensional random vector X with X |W ~ N (w, W‘l), where
w € R? is an unknown parameter, and a random variable x? ~ Xi with k > 2, which
is stochastically independent of W and X. Furthermore, consider a non-stochastic vector
x €RY. Forall0 < c<2(q—2)/(k+2), the shrinkage estimator

XS:x—i_(l_(X:c)?Ii[(f(Xx))(X_x)




dominates the estimator X with respect to the loss function
Loa(@) = (0 -w)Q(@-w), (5)

ie. E{(Xs —w)Q(Xs —w)} <E{(X —w)Q(X —w)}. In case z = w the expected loss

of the shrinkage estimator becomes minimal if and only if c = (¢ —2)/(k +2).

Proof: See the appendix.

Note that Theorem 1 coincides with the well-known result developed by Stein (1956) if W
is substituted by the identity matrix I,. Other extensions of Stein’s theorem, which can
be found in the literature, require that W correspond to a non-stochastic but observable
matrix €, or at least that W be stochastically independent of X where € is unobservable
(Judge and Bock (1978, p. 177), Srivastava and Bilodeau (1989), and Press (2005, p. 189)).
By contrast, we allow X to depend on a Wishart-distributed random matrix W, but the

matrix 2 given in Theorem 1 remains unobservable.

Theorem 1 also clarifies why the shrinkage constant ¢ = (¢ —2)/(k +2) is a natural choice.
Although any constant within the interval given in Theorem 1 would lead to a dominant
estimator, only ¢ = (¢ — 2)/(k 4+ 2) turns out to be the best choice if the reference vector
x corresponds to the unknown parameter w. The same value for ¢ remains optimal in the

variants of Stein’s theorem where W is non-stochastic or stochastically independent of X.

2.3 Out-of-Sample Variance

The out-of-sample variance of the return of a stochastic portfolio ¥ is defined as
Var(9'R) = E{Var(¢'R|0)} + Var{E(0'R|0)} = E(¢'S0) + p'Var(0) .

This means the total variance of the portfolio © can be split into a within variance E(ﬁ’ by @)

and a between variance p/Var(9)p . Due to (4), it holds that
Var(9'R) = 0> + E{(0 — w)'S (6 —w) } + p'Var (d) . (6)

2

Hence, the minimum variance ¢~ is a lower bound for the out-of-sample variance of any

given portfolio ©. Interestingly, the between variance p/’ Var({)) 1 vanishes whenever the



expected asset returns are equal to each other, i.e. 4 = n1 for any n € R. This can be
seen by noting that Var(d) = A'Var(0**)A and Ap=0if p=n1.

Kempf and Memmel (2006) showed that — concerning the traditional estimator w for the
GMVP - the second part of (6) corresponds to

. . d—1

E{(d1 — w)'S (dr —w)} = —a 1 o2,
The factor (d —1)/(n —d — 1) is large whenever the sample size n is small compared to
the number of assets d. For n,d — oo but n/d — ¢ with 1 < ¢ < oo, this factor tends to
1/(¢—1). Hence even in large samples the contribution of the estimation risk to the out-of-
sample variance is not negligible if the ‘effective sample size’ ¢ is small. For instance, given

an investment universe with d = 50 assets and a history of n = 100 monthly observations,

the additional variance caused by the estimation risk is 1/(100/50 — 1) = 100% .

From the small-sample distribution of @ presented by Frahm (2008), it follows that the

third part of (6) corresponds to

2 2
"max — "GMmvP 42

/ N

V. =
Vit = T TCe 2,
where 7., denotes the Sharpe ratio of the tangential portfolio ¥~!y /(1'S7 1) and ranmvp

the Sharpe ratio of the GMVP.? This means it holds that

. d—1 r2. . — T2
Var(w'TR) = <1+n—d—1+ ;_dilvivp) o2,

In most practical situations the difference of 72, and r&,p turns out to be much smaller

than the numerator d — 1 (and even vanishes if p=n71).

Generally, in real-world asset markets the expected returns presumably do not differ so
greatly in the cross-section; the between variance is therefore very small compared to the
within variance. Hence we believe that the between variance p'Var (@)u for any portfolio ©
is negligible in most practical situations and will concentrate in the following on reducing
the within variance E(¢'S¢). Note that each realization of /¥ 0 represents the actual
variance of the return belonging to the portfolio 0, which has been chosen on the basis of
historical observations, for instance. Then due to (4), each realization of (0 —w)'Y (0 — w)
can be interpreted as that part of the actual variance which is caused by estimation risk.

In the subsequent analysis this quantity will be referred to as the loss of ©.

3The Sharpe ratio of a portfolio is the expected excess return divided by the standard deviation.



3 The Dominant Estimators

3.1 Small-Sample Properties

We now present the shrinkage estimator for the GMVP that dominates the traditional
estimator. Kempf and Memmel (2006) show that the traditional estimator is the best
unbiased estimator in the case of jointly normally distributed asset returns.* However, as
already discussed earlier, this estimator can lead to a huge out-of-sample variance of the

portfolio return compared to o2, i.e. the smallest of all possible portfolio return variances.

In this section we will use the following notation. Let wa be an arbitrary portfolio. Then
03 = W\ Xy is the actual variance of the portfolio return, whereas 63 = QZ)AZA] wa denotes
the corresponding estimator. This notation will be used both for stochastic and non-
stochastic portfolios, i.e. if wa is a non-stochastic portfolio, it holds that ai = whXwa

~2 S
and 63 = W)X wa .

Theorem 2
Suppose that the assumptions Al to A5 are satisfied. Let wr be the traditional estimator
for the GMVP w, whereas wg € R¢ with wi1 = 1 denotes an arbitrary reference portfolio.

Consider the shrinkage estimator

Wy = KSWR + (1 —lis)lf)T (7)
with
d—3 1
AR — —m8M8 —— « ——
S n—d-+2 7A'R’

where 7 = (64 — 6%.)/64 is the estimated relative loss of the reference portfolio wg .
The shrinkage estimator wg dominates wt with respect to the loss function L, x(0) =

(0 —w)'E (0 —w), ie.
E{(ws — w)'E (bs —w)} < E{(d1 —w)'S (@p —w)}.
Proof: See the appendix.

The estimator suggested in Theorem 2 exhibits the typical structure of James-Stein-type
shrinkage estimators. It is a weighted average of a given reference portfolio and the tradi-

tional estimator for the GMVP. The better the reference portfolio fits the actual GMVP,

4 An estimator is called best if its covariance matrix attains the Rao-Cramér lower bound.



the smaller the out-of-sample variance of the shrinkage estimator will be. When it comes to
portfolio diversification without any subjective or empirical information as well as restric-
tions on the portfolio weights, the naive portfolio wx := 1/d can be viewed as a natural
choice for the reference portfolio. Due to the arguments given by DeMiguel et al. (2007),
there are even doubts as to whether time series information can add useful information at

all, and so wr = wn might serve as a rule. We will come back to this point in Section 4.

Theorem 3
Under the assumptions of Theorem 2, the distribution of the relative loss
ag —o?

TS = 5

a

of the shrinkage estimator for the GMVP given by (7) depends only on the number of
observations n, the number of assets d, and the relative loss Tr = (o0& — 02)/0? of the

reference portfolio. More precisely, Ts can be represented stochastically by
_1 2
s = ||ksf — (1 — k) V™~ 2||7, (8)

with any 6 € R such that 0'0 = 7 , € ~ Ng_1(0,I4_1), V ~ W4_1(I4_1,n — 1), and

d—3 Xo_g
n—d+2 (g4+v ) V(O+ViE)

Kg =
Here ¢,V and X%—d are supposed to be mutually independent.

Proof: See the appendix.

Due to Theorem 2, the shrinkage estimator is dominant in the sense that E(Ts) < E(TT),

where 71 = (0%,

— 02)/0? represents the relative loss of the traditional estimator for the
GMVP. It can be shown that the expected relative loss of the shrinkage estimator is a
strictly increasing function of 7 and its infimum is attained if and only if 7 = 0. Note
that 7g = 0 or, equivalently, # = 0 holds if and only if wg = w, since X is positive-definite.

In that case it turns out that

d—3 n—d d—1
E =(1- . .
(7s) < d—1 n—d+2>n—d—1

By contrast, E(ts) — E(r1) for 7r — 00.

Following the arguments given by Judge and Bock (1978, p. 182), we can try to reduce

the out-of-sample variance of the suggested estimator by restricting kg to values smaller



than or equal to 1, i.e. by taking ky := min{xg, 1} instead of kg . Then the corresponding

shrinkage estimator is given by
Wy = KMWR + (1 — HM)UA)T . (9)

The shrinkage constant sy can only attain values between 0 and 1, which prevents wy
from having the opposite sign of wr whenever 7 is small, i.e. whenever the traditional
estimate of the GMVP is close to the reference portfolio. The next theorem states that the

modified shrinkage estimator does, in fact, lead to a better out-of-sample performance.

Theorem 4
Under the assumptions of Theorem 2 and given the notation of Theorem 3, the distribution

of the relative loss

2 2
_O—M_O—

™=
of the modified shrinkage estimator for the GMVP given by (9) depends only on the number
of observations n , the number of assets d , and the relative loss T of the reference portfolio.

More precisely, Ty can be represented stochastically by
™ = ||/<;M9— (1—/{M)V_%£H2, (10)
with ky = min{kgs, 1}, and it holds that
E(tum) < E(7s) <E(77).
Proof: See the appendix.

The stochastic representations (8) and (10) can be used, for instance, for evaluating the out-
of-sample performances of the presented shrinkage estimators by Monte Carlo simulation.
Theorem 4 asserts that the modified shrinkage estimator dominates not only the traditional
estimator but also the simple shrinkage estimator given by (7). Moreover, it can be shown

that the expected relative loss of wy; corresponds to
,__d-3 Xoma\ V| d-1
n—d+2 X3+1 n—d-—1

Our results about the superiority of the presented shrinkage estimators require the asset

E(TM) =E

in the event that 7g = 0.

universe to consist of at least four assets. By contrast, if there are only two or three assets,

10



one should draw on the traditional estimator. It is worth pointing out that the methodology
presented here can be easily applied to the estimation of local minimum variance portfolios.
As has been shown by Frahm (2008), any d-dimensional asset universe can be transformed
into a (d—¢)-dimensional asset universe such that ¢ linear equality constraints (besides the
budget constraint) are implicitly satisfied for each portfolio of the d — ¢ available assets.
In that case assumptions A4 and A5 have to be changed ton >d—q¢+2and d > ¢+ 4.

Furthermore, the chosen reference portfolio must satisfy the given linear restrictions.

3.2 Large-Sample Properties

In the previous section, we investigated the small-sample properties of the relative losses
of the shrinkage estimators wg and ;. Due to Theorem 3 and Theorem 4, it can be
seen that the expected relative losses of the shrinkage estimators as well as the traditional
estimator tend to zero if the number of assets d is fixed but n — oco. However, that does
not mean that the presented shrinkage estimators are always asymptotically equivalent to

the traditional estimator. This is confirmed by the next theorem.

Theorem 5

Under assumptions A1 to A3 it holds that

W — W 1
Vi | s —w | -5 11{m=o}<1— ‘2753) tlgpsoy [AE, n— o0,
+
Nt — d—3
(M Lirp=0} <1 ~ e ) + 1rp>0)

where A is a d x (d — 1) matrix such that AN = o?S! —ww’ and € ~ Ny_1(0,14-1).
Proof: See the appendix.
For instance, from the last theorem it follows that

Vn (bt — w) 4, N (0,072 —wu'), n —s 00,

and the shrinkage estimators are asymptotically equivalent to the traditional estimator,
ie.

Vi (br —g) =0  and v/ (b —im) == 0, n— o0, (11)

11



only if wg # w.® The last theorem also implies that if wr = w and the sample size is large
(compared to the number of assets), the modified shrinkage estimate corresponds to the
true GMVP roughly with probability Fx3_1 (d — 3). Admittedly, this might be regarded as
purely theoretical, since it has to be assumed that wr # w in most practical situations,

with wy then being asymptotically equivalent to w in the sense given above.

So far we have focused on the expected relative losses of the estimators for the GMVP but,
as already mentioned, these quantities vanish if the sample size tends to infinity. However,
due to the next theorem it is possible to make statements about the relative loss itself if d

is fixed but n tends to infinity.

Theorem 6

Under assumptions A1 to A3 it holds that

TT 1 2
d d—3
nlrg| — | Lrr=0} (1 - Xil) Tl | Xios 00
+52
d—3
™ ]l{’TR:O}{(]' — X3,1> } + ]]-{TR>0}

Proof: See the appendix.

This theorem asserts that the relative losses are super-consistent. It is worth pointing
out that, even if the expected relative losses of the shrinkage estimators presented here
are always smaller than the expected loss of the traditional estimator (which follows from
Theorem 3 and Theorem 4), a given realization of 7g may turn out to be greater than
77 . Surprisingly, Theorem 6 implies that, only if wg = w, the probability of this event
does not vanish (even asymptotically) but tends to Fxﬁ,l{ (d—3)/2} > 0. For example, if
there exist d = 5 assets, this adverse effect occurs with a probability of approximately 9%.
However, the same theorem confirms that 7y > 77 is asymptotically impossible. This is

another advantage of the modified shrinkage estimator over the simple one.

As already discussed earlier, it might be criticized that in many practical applications of
portfolio theory the number of assets is large compared to the number of observations. In
the following we will investigate the asymptotic distribution of the relative loss assuming

that n,d — oo but n/d — ¢ with 1 < ¢ < oco. Here the relative loss of the reference

® Actually, the proof of Theorem 5 reveals that (11) can be even strengthened to almost sure convergence.
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04F — Shrinkage estimator
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Relative loss of the reference portfolio

Figure 1: Expected relative losses of the traditional (blue), simple (red) and modified
(dashed green) shrinkage estimator for n = 300 and d = 100 as well as the relative loss of

the reference portfolio (black) and the asymptotic loss function L(7g,3) (yellow).

portfolio is assumed to be constant; recall that the number ¢ can be interpreted as the
effective sample size. The following theorem asserts that if the asset universe is large, the

relative losses of all GMVP estimators are no longer super-consistent.

Theorem 7

Under assumptions A1 to A3 it holds that

a.s. 1
T — ———
q—1
asn,d — oo but n/d — q with 1 < ¢ < co. Moreover, concerning the shrinkage estimators

for the GMVP it holds that

a.s. 1
e
as well as
a.s. L( ) TR i 1 1 2 1
Ta . ™ — L(T = -
511M R)q (14 qTR)? 14+qrr/) q¢—1

asn,d — oo but n/d — q with 1 < g < o0

Proof: See the appendix.
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n— oo, d< oo n—o0o,d—oc0,n/d—q

g= g < oo q= o0

TR =0 TR>0] 7R=0 TR >0 TR >0
TT 0 0 qf11>0 q%l>0 0
" : 0 0  0<L(tr,g)<g5| O
™ 0 0 0 0<L(TR7Q)<qT11 0
nTT X?l—l X?l—l 00 o -
nTg (1 — )fgj)QX?l,l X34 0 o ~
T {<1 - 53;_31>+}2X3—1 Xa_1 0 00 ~o

Table 1: Large-sample properties of the relative losses of wr, ws, and wy; .

It can be shown that the asymptotic loss function L is increasing in 7R, and it holds that
L(TR, q) < 1/(q¢ — 1) whenever ¢ < oo, i.e. the shrinkage estimators dominate the tradi-
tional estimator with respect to the asymptotic loss if not only the number of observations
but also the number of assets tend to infinity and the effective sample size remains finite.
Moreover, it turns out that L(TR, q) > 7R if and only if
1 2-g

TR < — - .
q q—1

(12)
Therefore, the shrinkage estimators dominate the reference portfolio uniformly if ¢ > 2
(see Figure 1). Conversely, in terms of the asymptotic loss they become uniformly worse
than wg as ¢ tends to 1 from above, since the right-hand side of (12) then tends to infinity.

The large-sample properties of the relative losses of the GMVP estimators wr, wsg, and

wy are sumimarized in Table 1.

3.3 The Link to Covariance Matrix Estimation

Jagannathan and Ma (2003) analyze short-sales constraints as a means of lessening the
impact of estimation errors on the sample covariance matrix. They show that using short-
sales constraints is equivalent to transforming the sample covariance matrix and taking this
quantity for calculating the GMVP on the basis of the unconstrained traditional estimator
for the GMVP. The following theorem states that a similar argument holds for the shrinkage

estimators presented earlier.
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Theorem 8

For any reference portfolio wr there exists a positive-definite d X d matrix Egl such that
WR X El—,_{ll as well as 1’2;{11 = 1@*11, where $ is the sample covariance matrix given
by Eq. 2 and it is assumed that n > d. The shrinkage estimators for the GMVP can be

calculated by using

~

igl = Hszﬁl + (1 — Iis)z 1 and ilﬁl = /{Mzﬁl + (1 — /{M)i_l

for the traditional GMVP estimator, i.e.

P Sl
S and M

wg = —=
1551

Proof: See the appendix.

The random matrices f]s and f]M can be interpreted as shrinkage estimators for the un-
known covariance matrix . However, EM is positive-definite, a trait that does not hold
for f)g in general. Any other matrix which is proportional to f)g or EM would lead to the
same shrinkage estimators for the GMVP, but the expressions given in Theorem 8 satisfy

a convenient scaling condition, i.e. 13311 = 1S = 1US1 = 1US11 =1/62.

Similar shrinkage estimators for the covariance matrix have been already suggested by
Ledoit and Wolf (2001, 2003). However, the estimators given in Theorem 8 differ from the

estimators introduced by Ledoit and Wolf in two aspects:

1. Their shrinkage constants depend on unobservable quantities which have to be es-
timated from empirical data. Even if the suggested covariance matrix estimators
dominate the sample covariance matrix asymptotically, it is not clear why the dom-
inance result should be valid in small samples. By contrast, our shrinkage approach

focuses on the small-sample properties of the resulting portfolio weights.

2. Ledoit and Wolf shrink the covariance matrix itself, whereas our approach is based
on shrinking its inverse. By shrinking the covariance matrix, it is possible to allow
for n < d, i.e. the aforementioned authors are able to apply their approach to asset

universes where the number of assets exceed the number of observations.

So far our methodology consists of shrinking the traditional GMVP estimator towards

some non-stochastic reference portfolio wgr . However, all the presented results remain
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valid if wg is a stochastic portfolio satisfying the budget constraint and being stochastically
independent of the historical observations which are used for calculating @ .6 Nevertheless,

in the following we will concentrate on the special case wg = wy = 1/d.

4 Naive Diversification vs. Portfolio Optimization

4.1 A Small-Sample Simulation Study

DeMiguel et al. (2007) raise the question of whether optimizing a portfolio using time
series information is worthwhile to begin with. They do not even refer to the fact that
asset returns typically exhibit structural breaks, serial correlations in the higher moments,
and heavy tails. According to these authors, the estimation error outweighs the potential
gain of portfolio optimization, even if the asset returns are normally distributed and serially
independent. In this section we address a similar question: Does it pay to strive for the
GMVP by using time series information or is it better to renounce parameter estimation

altogether and put the money straight away into the naive portfolio?

In order to revisit this question, we may focus on the expected relative loss which is caused
by a given GMVP estimator. Due to Theorem 4 and the arguments given in Section
3.2, we will concentrate on the modified shrinkage estimator wy; and choose the naive
portfolio wn as a reference portfolio. Although closed-form expressions for 7y in large
samples and asset universes have been already presented in Section 3.2, the relative loss
can only be simulated, e.g. by using Equations 8 and 10, if the sample is small. Figure
2 contains the expected relative losses of the four different portfolio strategies, i.e. naive
diversification, traditional estimation, as well as simple and modified shrinkage estimation
for n = 20 observations and d = 10 assets. The z-axis denotes the relative loss 7y of the
naive portfolio, whereas the y-axis accounts for the expected relative losses of the different
portfolio strategies depending on 7n. Note that (according to Theorem 3) the expected
relative loss of the traditional estimator does not depend on 7y but only on the number n

of observations and the number d of assets.

It can be seen that the expected relative loss of the traditional estimator corresponds to

100%. Due to Theorem 3 and Theorem 4 it is clear that the expected relative losses

SFor example, wr could be interpreted as a portfolio which has been suggested by a layman.
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Figure 2: Expected relative losses of the traditional (blue), simple (red) and modified
shrinkage (dashed green) estimator for n = 20 and d = 10 as well as the relative loss of

the naive portfolio (black) and the asymptotic loss function L(7R,q) with ¢ = 2 (yellow).

of the shrinkage estimators are always below the expected relative loss of the traditional
estimator. This is also confirmed by Figure 2. Particularly if 7y is small, i.e. the true
GMVP does not differ too greatly from the naive portfolio (which serves as an anchor
point for wg and ), the shrinkage estimators are more favorable than the traditional

estimator.

Figure 2 also indicates the critical relative loss Ty of the naive portfolio with respect to
the modified shrinkage estimator wy . This is that point on the z-axis where the modified
shrinkage estimator leads to the same expected relative loss as naive diversification. As
indicated by Figure 2, this critical value is about 63%. For example if there are 5 years of
quarterly asset returns and 10 stocks on the market, naive diversification would be better as
long as 7N < 63% . Suppose that the standard deviation of the GMVP return corresponds
to 0 = 10%, whereas its counterpart related to the naive portfolio amounts to 11% (per
quarter). In that case, the relative loss of naive diversification is 7y = (0.11/0.10)2 — 1 =
21% , whereas the expected relative loss caused by the modified shrinkage estimator roughly
amounts to E(TM) = 43%. Therefore, it would not pay to use the modified shrinkage

estimator in that case. In contrast, if the naive portfolio leads to a standard deviation
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n\d S 10 25 20 100

12 52% 847%
(550%)  (99261%)

24 16% 40%
(111%)  (334%)

36 9% 19% 152% — —
(59%)  (132%)  (1809%)

60 5% 9% 28% 420% —
(30%)  (58%)  (209%)  (7806%)

120 2% 4% 8% 21% 377%
(13%) (24%) (57%) (161%)  (5202%)

Table 2: Critical relative losses of the naive portfolio with respect to the modified shrinkage
estimator for different combinations of n and d. The parentheses under the critical relative
losses contain the critical thresholds of 7y for testing the naive diversification hypothesis

at a significance level of a = 5% .

of 13%, it holds that 7n = (0.13/0.10)? — 1 = 69% > 7% and so the modified shrinkage
estimator is slightly better than the naive portfolio. Note that traditional estimation is

always worse than naive diversification in all such cases.

Table 2 lists some critical relative losses of naive diversification for different combinations
of n and d. For example, if 10 years of monthly asset return observations are available
(i.e. n = 120) and the stock market consists of d = 50 assets, one should use the modified
shrinkage estimator if and only if the variance of the naive portfolio return is at least 21%
greater than the variance of the GMVP return. Depending on the length of the time series
and the number of assets, the modified shrinkage estimator is able to reduce the relative
loss of naive diversification. However, the table also indicates that, if the number of assets
is large compared to the number of observations, naive diversification is apparently the best

strategy, which reconfirms the naive diversification hypothesis of DeMiguel et al. (2007).

4.2 Testing the Naive Diversification Hypothesis
For applying the decision rule discussed above, one needs two numbers, i.e.

1. the critical relative loss of the naive portfolio with respect to the modified shrinkage

estimator and

2. the relative loss of the naive portfolio.
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The critical relative loss can be calculated by Monte Carlo simulation (as it was done to
obtain Table 2), whereas the actual relative loss of the naive portfolio is not observable
and needs to be estimated from the history. The next theorem provides the distribution

of its empirical counterpart 7y or, more generally, 7R (see also Theorem 2).

Theorem 9
Under assumptions Al to A3 and n > d, the estimator Ty = (&% — &%) /&2 for the relative

loss of the reference portfolio is conditionally noncentrally F-distributed, more precisely

. d—1
TR ~ m : Fd—l,n—d(TRX%fl/Q) .

Proof: See the appendix.

With Theorem 9, it is possible to test whether one should invest in the naive portfolio or

to apply a GMVP estimator, i.e.

Hy: T < 7y Vs,

Hy:mn > 71y

The test statistic is given by 7y = (612\1 — 6%)/&% and according to Theorem 9, Hy can be

rejected whenever the realization of 7n exceeds the upper a-quantile (0 < a < %) of the

cumulative distribution function of

d—1
n—d

. Fd_l,n—d (TT\TX%fl/2) )

which can be also calculated by Monte Carlo simulation.”

Critical thresholds for this hypothesis test at a significance level of & = 5% are presented in
Table 2. For instance, suppose that the asset universe consists of 50 assets and the investor
can observe 10 years of monthly asset returns. Then the naive diversification hypothesis
can be only rejected if 7y > 161%. Note that this is by far greater than the theoretical
value of the critical relative loss 7 = 21%, since the distribution of 7y is considerably

skewed to the right.

We consciously formulate the hypothesis test in such a way that the naive portfolio has to

be rejected but not the portfolio based on some GMVP estimator. Therefore, for typical

"This hypothesis test can be adapted to any GMVP estimator if its expected relative loss E(T) < o0

depends only on n, d, and 7~ and provided 7n — E(7) has only one intersection point with 75 — 7x.
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significance levels like o = 1%, 5%, 10% , our decision rule favors naive diversification. More
precisely, if Hy can be rejected, the considered GMVP estimator significantly leads to a
better out-of-sample performance but if Hy is not rejected, from a statistical point of view
it cannot be assumed that naive diversification is better. However, in that case the naive
portfolio can be justified either empirically, e.g. because of the well-known stylized facts of
financial data, or due to the arguments given by DeMiguel et al. (2007). In other words:
if it is not possible to guarantee that a statistical method will lead to a better result but
it is likely that the outcome will become worse, the naive portfolio can be justified by the

principle of insufficient reason (against naive diversification).

5 Conclusion

We present two shrinkage estimators for the GMVP that dominate the traditional estimator
under the assumption of serially independent and identically normally distributed asset
returns. Their small-sample and their large-sample properties alike have been investigated.
The presented shrinkage estimators considerably reduce the out-of-sample variance of the
portfolio return compared to the traditional estimator, especially if the asset universe is
large. In addition, we provide a hypothesis test to decide whether one should invest in
a portfolio based on estimators for the GMVP or in the naive portfolio. This decision
depends only on three quantities: the number of observations, the number of assets, and
the relative loss (compared to the GMVP) caused by naive diversification. Further research

could include, for instance, an empirical investigation of the presented shrinkage estimators.
Appendix

Lemma 2

For any A\ > 0 it holds that

and if ¢ > 3,

(q—2) E{X;2(A)} — (g2 E{Xq—fQ(A)} 42N E{X;f4 ()\)} . (14)
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Proof: Eq. 13 follows immediately from Theorem 2 in Judge and Bock (1978, p. 322) by
setting ¢(z) = 72, A= 1, and § € R? such that A = '6/2. Similarly, with ¢(z) = 271,

1= qE{X;fQ ()\)} + 2\ E{quil()\)} =(¢g—2) E{X(I_Q()\)} + 2\ E{X;fz ()\)}

for any ¢ > 3, which leads to (14). Q.E.D.

Lemma 3
Consider a q x ¢ random matrix V ~ W, (Iq, m) with ¢ > 3 and m > q+2 . Further, define
A:=0'0/2 and X := 0'V0/2 for some 6 € RY. Then it holds that

E trV_l—é-q E{X;f2(;\)|V} :%-E (g—2)-
A q
and

Bl (wr =30 Bl v} = w2 n{gr o) vy -

m—q

Lll E [2/\ E{X;fz (M) V}] '

m—q—

-E{X;Q(X) |V}]

> >

Proof: Consider the function h(25\) = E{XQ_JEQ(;\) |V} and note that, after rotating 6, it
holds that 2\ = 6’2 for some random variable y2 ~ x2,. Then, due to Theorem 6 in
Judge and Bock (1978, p. 324),

B{ (rv")n(2)) } = a(m =2) -E{hm)}Jr 2(¢—1) E{00n'(2))},

m—q—1 X2 m—q—1

where h/ denotes the first derivative of h with respect to 2X. Since A/X = 1/x2,

E{ <trV1 _ i . q>h(25\)} - ’rnq—_ql—l : [qE{h(jj) } + 20’9E{h’(25\)}] . (15)

where

. dE{x 2\ |V . .
vy = 1 B (2N - Bl B0 V)]

which follows from the derivative rule on page 327 in Judge and Bock (1978). After

substituting A/(2)) in (15) and some re-arrangement, we obtain

EKtr vl i : q> E{X;fQ(S\) yv}] -

A

g—1 3 [(q —2}) E{x;fg (M) V} + QXE{XJE“(S‘) | V}]

1t - R
m—q—1

Now the first statement of the lemma appears immediately after applying (14). Similarly,
by allowing for the function h(25\) = E{X;fQ(S\) |V} and using (13), the second statement

of the lemma becomes valid. Q.E.D.
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Proof of Theorem 1

The loss function £, o can be re-formulated as

~ A~

Loa(@)=(0-w)Q(@—-w)=(0-0)(0-0)=Ly(8),

where f 1= Q2 (W—x)and 0 := Q2 (w—z). Accordingly, the random vector X is transformed

into Y := Q3 (X — 2) |V ~ Ny (6, V™)) with V := Q"2 WQ ™2 ~ W, (I, m) and similarly

2
1 C
Ys = Q3(Xg — ) = <1 — Y,"ﬁy)y.

After some elementary transformations, it turns out that

), Y'Y -0) vy Y'Y }

EG(YS) = EG(Y) - {2CX Y'VY - (Ylvy)Q

This means the random variable Yg dominates Y if and only if
E{Ly(Y) — Lo(Ys)} = 2ckE1 — Pk (k+2)E >0, (16)

where

Y'Y — 6) Y'Y
= E —_— = E .
& { YVY } and & { Y'VY)? }

Hence, the dominance result is satisfied for all ¢ with 0 < ¢ < 2/(k 4 2) - £&1 /&2 and, to
prove the theorem, it has to be shown that £ /& > (¢ —2). Now we define Z := Vay
and ¢ := V320 so that Z |V ~ N,(C,1,). Then it holds that

Y'(Y - 0) Z'VYZ - ) Y'Y ZV-1z

Y SV and s [V T |V

[V~ Y'VY) (Z2'7)

By setting ¢(x) = 27! in Theorem 1 and Theorem 2 of Judge and Bock (1978, pp. 321-322)
and allowing for A = §/6/2 and A = 0'V0/2 it follows that

B[ T0S 2 v = (07 ) p{ a0 V] a2 V)2 (G R 0) V]

Similarly, by setting ¢(z) = =2 in Theorem 2 given by Judge and Bock (1978, p. 322),
we find that

Y'Y 1 4 3 —4 (3
{1V} = (v Rl v} s ety v}
After some re-arrangement and an application of (14) we obtain

E<Y/(Y_9)|V> :(q—2)-;-E{X;2(5\)|V}+

Y'VY
1A —2 (}
trV'— T q) E{quz(A) !V} :
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Moreover, with an application of (13) it also turns out that

Y,Y >\ 72 o 71 )\ _4 2
E<(Y,Vy)2 yv) =< B () 1V} + <trV -5 q> Bl v}
Now, from Lemma 3 it follows that & = (¢ — 2) & + ¢ with

(¢—1)(g—2)

o= 2/\E[E{Xq‘j_12(A) yv}} > 0.

Since & > (¢ — 2) & with & > 0 it follows that & /& > (¢ —2). For x = w it holds
that A = 0 and thus & = (¢ — 2) & . This means the optimal constant ¢ of the quadratic

function given by (16) does not depend on & or & . Further, it is unique and corresponds

toc=(q—2)/(k+2). Q.E.D.

Proof of Theorem 2

Lemma 1 and Theorem 1 can be brought together by the following substitutions: m = n—1,
g=d—1,W =nQ/o%, X =0, x2 = né2/o% k =n—d, and z = wi. Then the

constant
q—2 d—3
CcC = =
k+2 n—d+2

leads to a dominating shrinkage estimator wg* for w®, viz

W = w4+ (1 - -3 o1 (W — w) .
n—d+2 (9 - wg)QWF - wg)
Note that
(W — wg)Q (B — wg) = (br — wr)'S (Wr — wg)
and thus

~9 )
or O o

(W — wg)Q (g — wg)  (r —wr)S (r —wr) Ok —0F TR
Due to ws = e; — A'wg* it follows that

d—3 1 . .

Q.E.D.
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Proof of Theorem 3
After some calculations we find that

TS = TR — 2(1 - /is)a + (1 — Hs)Zb,
where

d—3 né2/o?

nodE 2 (g - wR) (/o) ([ — wf)

R =

o O
g

With 6 = Q2 /o (™ —w) , € ~ Ny_1(0,15_1), and V ~ Wy_;(I_1,n—1), the shrinkage

(05 — w§)'Q (@5 — w)
2 |

a

constant kg can be represented by

d—3 ‘ Xi_d
n—d+2 (94 v3e)V(0+ Vi)

RS =

as well as a = 9/(0 + V_%g) and b = (9 + V_%g)l(ﬁ + V_%f), where £, V, and X%—d are
mutually independent. Hence, 7g is equal to the expression given on the right hand side

of (8). Moreover, it holds that
rs = [Ofnst — (1 —rs)V 26} " = |[msn — (1 — ns)OV 3¢

with n := 00 for any orthogonal (d — 1) x (d— 1) matrix O; note also that xg is a function

of V_%f only through the quadratic form
0+ V2 V(0 +V3E) = (n+ OV 26) (OVO') (n + OV 3¢) .

The random matrix V has a radial distribution, i.e. OV O’ ~ V as well as OV 1O’ ~ VL.

1

Similarly, & has a spherical distribution, i.e. O¢ ~ £. It follows that OV=20 ~ V™% and
thus (’)V_%é ~ V_%é. This means for any rotation 7 of 6 it holds that

s~ [lwsn - (1 - ns)VHel.

Ergo, the distribution of g depends only on n, d, and 7 = 6'6. Q.E.D.
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Proof of Theorem 4

From the proof of Theorem 3 it follows that the distribution of 7y, too, is only a function
of n, d, and 7. To prove that E(7y) < E(7g), the relative loss of the simple shrinkage

estimator can be written as
Ts=TR 20V (1 —ks)(VI0+ ) + (1—rs)* V20 + |3

Since (1 - ns) = (1 - K;S)+ — (1 - ns) ~, the relative loss of the modified shrinkage estimator

becomes
=75 — 20V 3 (1—kg) (V20 +&) — {(1—ks) } V2O +£|I3.

Here it holds that
E[{(1- ) FIVEO+ ] >0

and from Theorem 1 given by Judge and Bock (1978, pp. 321) it follows that

>0.

DR B o d-3 Xp—d B
E{GV 2(1 - ks) (V29+§)}—TRE[{1 n—d+2 X?Hl(TRX%—l/Q)}

That means E(TM) < E(TS). The second inequality E(Ts) < E(TT) is a direct consequence
of Theorem 2. Q.E.D.

Proof of Theorem 5

The traditional estimator for the GMVP without the first portfolio weight can be rep-
resented by W = w™ + O'Q_%V_%f, where V' ~ Wy _1(I4_1,n — 1) is stochastically
independent of £ ~ Ny_1(0,15-1). Since \/ﬁvfé = (V/n) 223
that

NI

2% 1,1 as n — oo, it holds

\/ﬁ(w%"—wex)&aﬁ_%ﬁ, n — oo.

The presented expression for the asymptotic normality of wt = e; — A’w$ follows from the
relationship 02A’Q"'A = ¢2%~! — ww' (Frahm, 2008). Further, the shrinkage estimator

can be represented by

R d—3 Xo 11
wex — wex + 1 _ . n wex o wex + Q B) V 3 ,
S R { n—d+2 (9+V‘§£)'V(0+V‘5§)}{( W) +o 5}
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where § = Q%/U (W™ —w§) and §'60 = 7r . Following the proof of Theorem 3 it can be

assumed that 0 = (\/T ,O) without loss of generality. Since

=2 (v/mbe/vn 0, S0 e,

n

0'vo X3 as 20'V 3¢
=TR" — TR,
n
it follows that (9 + V_%ﬁ)/V(G + V_%f)/n 2% 7R as well as X2 _4/n L lasn — .
Hence, in the event that 7g > 0 it holds that

\/ﬁ- d—3 . X?zfd/n
n—d+2 (g4 V-26)V(0+V28)/n

(wg —w™) 20, n— o0o.

Further, as already mentioned above, v/no Qfévféf 4 anéﬁ and so
{1_ d—3 ‘ Xi_d/n

n—d+2 (g4 Vv-26)V(0+V28)/n

as n — oo. By contrast, if Tr = 0 and thus 6 = 0 as well as w™ = wg",

d—3 X2_4 d=3  Xaa

n—d+2 (g1v-ie)v(e+ Vo) n—d+2 €€

}\/ﬁg QO 2V 2 2 o0 e

and since x2_,/(n —d+2)*3 1asn — oo,

¢am$_wwyﬁs@_d;f

Similar arguments hold for the modified shrinkage estimator, since
d—3 2 /n .
min< /n - . IX," d/ - Ay =20, n — oo,
n—d+2 (g+V=2)V(0+V2E)/n

if 7r > 0 and otherwise

. d—3 X%,d as. . [d—=3
min . 15 — min 10, n — 00.

)O’Qéf, n — o0.

n—d+2 ¢&¢’
QE.D.

Proof of Theorem 6

Due to Eq. 3 it will suffice to concentrate on the GMVP estimators without the first

portfolio weight for calculating the relative losses, e.g.

V(5 — w) QR (65 — w)
2 |
g

nTT =

Now the theorem follows immediately by applying the Continuous Mapping Theorem to

the results which are given in the proof of Theorem 5 and noting that

2
2
L=y X + Lprpsoy | = Lrp=0p X7 + Lrps0)

for any random variable X. Q.E.D.
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Proof of Theorem 7

Due to the proof of Theorem 5 it holds that

WEX — IQ WEX — X
TT:(T )2(T ):flv—lgz

g

2
Xd—1

2
Xn—d+1

with x2 | := ¢’¢ and xifdﬂ = x2_,/&€VI¢. Note that (n —d) — oo as n,d — oo and

n/d — q. That means

d X3 ,/d as. 1
n—d x5 g.1/(n—d) q—1

T , n,d — oo, n/d — q.

For proving the almost sure convergence of the shrinkage constants kg and xyr, consider

0= (\/TR , 0) and suppose that V3 is the Cholesky root of V| i.e.

0'V2E = /TR Xn161 -
Furthermore, note that (d —3)/(n—d+2) —1/(¢ — 1), X%—d/(n —d) =

0'vVe X?L—l n as. TR 20/‘/%5 Xn—lgl a.s
— ) s —9 /. as.,
a_ 'R n—d TR d

n— n n-—d g—1’

as well as

§'¢ §'¢ d_as 1 n,d oo, n/d
= —- — — —q.
n—d _ d n—-d q—1’ ’ ’ 4

Now, by applying the Continuous Mapping Theorem, we obtain kg, sy — 1/(1 4 ¢TR) as

n,d — oo and n/d — ¢ . Similarly, note that

6,

n—d 51 n a.s.
R L 7
Xn—d+1 Xn—d+1 T N —

20V "3 = 2/7R - 250

and &V 3 1/(¢ — 1) as n,d — oo and n/d — ¢q. By relying on (8) and (10) it turns
out that

TR

1 ! + (1 ! i + !
— — T - T — .
14+ qgrR 14+ qgrr R 14+ qgrR R qg—1

After a little calculation it can be found that the limit corresponds to the asymptotic loss

a.s.
TS, TM

function L(TR, q) which is given in the theorem. Q.E.D.
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Proof of Theorem 8

Since w1l = 1 > 0, the angle between wg and 1 is acute. Therefore, there exists an
orthogonal d x d matrix O such that both Qwg and O1 belong to the set {x € R?: z >
0}. That means there also exists a positive-definite diagonal d x d matrix A such that
01 = AOwg, i.e. wr = Al with A := O’A~'O being positive-definite. The matrix Z;{l
can be obtained by re-scaling A such that the condition 1'S3'1 = 1'S711 > 0 is satisfied.
Now the rest of the theorem can be verified by substituting St by the given expressions

for f)gl and ii/f within the traditional GMVP estimator. Q.E.D.

Proof of Theorem 9

Due to the proof of Theorem 3 it can be seen that

(V2 +9) (V20 +¢)
TR = P ;
and

note that V0 = Trx2_; . Q.E.D.
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