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Abstract. This paper develops a bioeconomic Malthusian growth model. By integrat-

ing recent research on allometric scaling, energy consumption and ontogenetic growth, we

provide a model where subsistence consumption is endogenously linked to body size and

fertility. The theory admits a unique Malthusian equilibrium in a two-dimensional state

space characterized by population density and body size (metabolic rate) of the repre-

sentative adult. As a result, the analysis allows us to examine the link between human

biology, economic productivity, body size, and population size. Off the steady-state we

investigate the possibility of cyclical behavior of the size of a population and the size of its

representative member over the very long-run. We also demonstrate that a take-off into

sustained growth should be associated with increasing income, population size and body

size. The increase in the latter is, however, bounded and can be viewed as convergence to

a biologically determined upper limit.
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1. Introduction

The present paper studies the relationship between body size, population size and economic

activity in the long run. Specifically, the paper provides a generalization of the Malthusian

model so as to include the endogenous determination of human body size. In order to study the

bidirectional link between economic activity and human body size we model the biological links

between nutrition during youth, ontogenetic growth, and food requirements during adulthood.

The novel elements of the model are based on deep micro-foundations, as explained below. Nev-

ertheless, the fundamental interaction between body size and economic activity is superficially

very simple. High income families will be able to feed their offspring better, which translates

into larger adults in the future. At the same time, however, larger adults will be more energy

requiring, which provides a bioeconomic constraint on the household decision to spend resources

on child quantity and quality (i.e., nutrition). Since productivity is determined (in part) by labor

supply this mechanism creates a dynamic feed-back loop from body size to economic activity

in a Malthusian economy. The model admits a Malthusian steady-state, where both population

size and body size are endogenously determined, and the theoretical structure allows for a very

transparent analysis of the transitional dynamics leading to the steady-state.

Understanding the historical evolution of human body size is important since data on stature

frequently is invoked as indices for long-run development (e.g., Komlos and Baten, 2004; Clark,

2007 and many others). Yet, this approach is essentially based on casual theorizing; no rigorous

theoretical foundation for this practise exist. Exploring the body size/growth nexus theoretically

is useful in forwarding our understanding of how anthropometric research might assist us in

obtaining a clearer picture of the long-run growth record.

A rigorous analysis of the bioeconomic constraints faced by individual agents is useful as well.

Such constraints are not completely unfamiliar territory to economists; economic analysis often

assumes the existence of a level of “subsistence consumption”. That is, a strictly positive lower

bound on consumption choice.1 From this assumption flows a number of strong predictions.

Subsistence requirements generate the prediction that the savings rate increases with income,

which importantly affects the impact of inequality on growth (e.g. Galor and Moav, 2004) and

may lead to poverty traps (e.g., Azariadis, 1996). In spite of its importance to analytical results,

1The most common way of introducing subsistence consumption into a growth model involves Stone-Geary pref-

erences, i.e. U (c) = (c−c̄)1−σ

1−σ
,where c̄ > 0 is the level of subsistence.
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subsistence consumption is always treated as exogenous in the economics literature. Biologically,

however, minimum consumption requirements, in the sense of basal metabolism, is inescapably

linked to fertility (i.e. pregnancy leads to elevated consumption needs) and body size.2 Treating

minimum consumption as an endogenous variable, rather than exogenously given, has important

implications. For example, it matters for the viability of poverty traps, as demonstrated below.

The model comprises three central elements which generate the novel results of the present

analysis. First, consumption during childhood determines body size as an adult. Accordingly, we

emphasize the non-reversible body size component. The link between child nutrition and body

size has long been recognized by economists (see e.g., Fogel, 1994). Here, however, we derive

the law of motion for body size from fundamental biological and physical principles. Biological

parameters reflecting e.g. the energy costs associated with cell maintenance, will therefore turn

out to matter for the steady-state of the model. In other words, human biology will importantly

affect economic outcomes, such as per capita income, in the Malthusian environment.

Second, body size as an adult and the fertility rate determines subsistence consumption.

Again, the link between subsistence, defined as basal metabolism, and fertility and body size is

firmly grounded in theory and evidence stemming from the field of biology, as explained below.

The fact that child bearing affects energy requirements of an adult (in the model people repro-

duce asexually) introduces a natural quantity-quality trade-off. Parents derive utility from the

number and consumption level of their children; both are conceived to be normal goods. How-

ever, increasing fertility requires the parent to extent her own consumption, to cover enhanced

subsistence needs, which comes at the cost of less consumption and future body size for the

offspring.

Finally, larger individuals are assumed to be more healthy and therefore more productive.

The assumption that “health” matters for labor productivity is not original to this paper (see

e.g., Strulik, 2007). However, since it is a well documented fact that larger individuals are

more healthy and productive, it is important to incorporate this mechanism nevertheless so

as to demonstrate the viability of a Malthusian equilibrium in the presence of “health capital

accumulation”.3

2Metabolism refers to the biochemical processes by which nutrients are transformed into energy, which allows the
organs of the body (i.e. ultimately the cells of the body) to function. The basal metabolic rate is defined as the
amount of energy expended while at rest.
3See Strauss (1986), Fogel (1994, 1997) or Weil (2007) for evidence of the link between health and productivity.
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The model holds a number of steady-state predictions which motivates empirical evidence on

the relationship between body size, population size and prosperity (this evidence is summarized

in the next section). For example, the level of technological sophistication does not influence

steady-state body size in a Malthusian economy; there is an inverse association between (average)

body size and population density, and, the composition of the diet matters for population density

in the long run. The theory also makes clear that a lack of an impact from technology on long-

run body size only holds in an economically stagnant environment. A permanent acceleration

in productivity, as would be associated with a “take-off” into a modern growth regime, will

permanently affect body size. Specifically, during a process whereby countries in this way

emerge from a Malthusian regime, the model predicts rising body size as well as rising population

density and average income. The gain in body size is bounded, however, and can be viewed

as convergence to a biologically determined upper limit. The prediction that body size (and

population growth) rises during the take-off to “modern growth” is consistent with evidence for

Europe during the 19th century and 20th century (e.g., Steckel, 1995). In addition, the theory

holds predictions about the transitional dynamics of body size and population size over time.

Specifically, the model provides a micro-founded explanation for Malthusian cycles in fertility

and body size over the very long run, for which evidence can be found in various regions of

Europe over the last two millenia.

The present paper is related to the literature on growth in the very long run, which models

Malthusian stagnation and the transition to modern growth (Galor and Weil , 2000; Lucas, 2002;

Hansen and Prescott, 2002; see Galor, 2006 for a survey). These theories focus on the intricate

and changing relationship between income and population during long-run development. In

contrast to the present paper, however, these studies ignore the evolution of body size, and

assume the level of subsistence consumption is exogenous. The present paper does not model

the transition to modern growth. Instead we focus on the Malthusian regime, and the process

of “take-off”.

Another related strand of literature fuses biology and economics by introducing evolutionary

pressures into dynamic models. The scope of this literature is broad, ranging from providing

theories of selection generated take-offs to sustained growth (Galor and Moav, 2002), to the long-

run changes in life-expectancy (Galor and Moav, 2005) and size of the human brain (Kaplan and

Robson, 2003). The closest precursor to our work, from the point of view of this related strand
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of literature, is Lagerlöf (2007). Lagerlöf aims to explain why body size seems to have followed a

hump-shaped trajectory over the last 1,000,000 years. In contrast to the present paper, Lagerlöf

(2007) assumes body size is exogenous at the level of the individual, thus fully determined by

the genetic make-up of individuals; changes in the composition of the population is therefore

required to generate changes in average body size.

Our analysis emphasizes the nutritional influence on body size rather than the impact of

selection on body size. The model below links aspects of the human physiology, like certain

properties of the cells in the body, to body size and long-run labor productivity. These char-

acteristics are taken as given in our analysis, however, since we are focusing on processes over

a time span of about two millennia; arguably to short a time frame for selection to be impor-

tant. Nevertheless, while the genetic make-up of the agents in our model is exogenous, it is still

feasible to explore the comparative static consequences for productivity, of differences across

human societies in human physiology, which could have been the consequence of differential

(pre-historical) evolutionary pressures.

The paper proceeds as follows. Section 2 provides evidence on the relationship between human

body size, population size and economic activity. In Section 3 we present recent research from

the field of allometric scaling and ontogenetic growth, on which basis Section 4 develops a bio-

economic model of Malthusian stagnation. Section 5 provides an extension of the model; we

introduce a lower bound for nutrition requirements below which individuals ceases to be active.

This section demonstrates the robustness of the Malthusian equilibrium which is derived in

the baseline model without imposing such a “participation constraint”. Section 6 analyzes the

impact of a ”take-off” into sustained growth on income, population size and body size. Finally,

Section 7 concludes.

2. Empirical Evidence on Body Size and Population Size across Time and Space

This section presents available evidence on body size, and what appears to be known about

the association between body size, population size and income across households, countries and

time. We view this evidence as stylized facts that a model which attempts to come to grips with

the evolution of body size and population size, needs to be able to motivate.

Below we will be using data on both height and weight as evidence on body size. In theory,

the two measures could lead to different conclusions about an individual’s “size”. In practise,
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however, there is no particular reason why taller individuals should tend to be wasted and short

people obese. As a result, it is not surprising that data on (average) height and BMI (weight-

for-height - the Body Mass Index) exhibits a low correlation. In our cross-country data set

described below the correlation is a mere -0.05.4 From this perspective the – interchangeable –

use of height and weight as measures of body size seems defensible.

2.1. Body Size and Family Size across Households. A key regularity is that there appears

to be a trade-off between the number of offspring in a family and their (mean) body size. In

an early contribution Douglas and Simpson (1964) examined the results from a national survey

of health and development in the UK. Specifically, the survey focused on 1,557 boys and 1,456

girls born in 1946. The physical development of these children was tracked and central health

indictors were collected, including height, date of entry into puberty and age of menace. In

addition socio-economic indicators for the households were obtained, including occupation and

educational background of the parents. This enabled Douglas and Simpson to categorize the

families into social classes, ranging from ”lower manual” to ”upper middle”.5 Figure 1 shows

the association between the mean body size of girls at age of 7 and the number of siblings in

the family, as reported by Douglas and Simpson.6

The general pattern that emerges is one where a large family size is associated with smaller

mean body size of the offspring. In addition, for the size of the family given, the average body

size of the offspring, measured by height, generally increases as the socio-economic circumstances

improves. Douglas and Simpson document that similar patterns persist to the ages of 11 and

15 for both boys and girls.

The 1946 cohort has more recently been analyzed by Kuh and Wadsworth (1989). Their

regression based analysis confirms the general impression conveyed by Figure 1; conditional on

a host of environmental factors, each additional sibling implies a reduction in mean height of

about 6 mm.

4See also Floud (1998) for further documentation of this point.
5In the ”upper middle class” we find parents with a secondary education, families where the father has a non-
manual occupation, and where at least one of the parents was brought up in a middle class family with similar
characteristics. In contrast, the ”lower manual” group is characterized by the father being a manual laborer,
by both parents only having primary education, and by upbringing; both parents were raised in a working-class
family. Between these two extremes we find the ”lower middle class” and ”upper manual class”; these groups are
differentiated from ”upper middle class” and ”lower manual class” mainly by their educational attainment.
6The picture for boys is very similar.
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Figure 1: Body Size of UK Girls at Age 7 and the Number of Siblings
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and Simpson (1964), Table 7.

More broadly, evidence of the inverse relationship between family size and body size has been

recovered on data stemming from both developed and less developed economies, as well as from

hunter-gatherer societies.7 Finally, it is also worth observing that a trade-off between fertility

and body size is not a particularly human characteristic but is known to be operative in other

animals as well (e.g. Smith and Fretwell, 1974).

2.2. Body Size and Population Density: Cross-Country Correlations. In light of the

household level evidence it is of interest to inquire whether a similar association can be detected

at the aggregate level. In this regard it seems reasonable to view population density as the

macro counterpart to “family size”. Hence, to explore the association between body size and

“family size” we need data on population density, and average body size in individual countries.

Data for population density is available from World Development Indicators, and in the present

context we consider the year 2000. Data on body size can be obtained from Demographic and

Health Survey’s 2006. This database has recently been used by Akachi and Canning (2007)

to explore health determinants in Sub-Saharan Africa. In the present context we utilize the

information collected on body size of women, measured by their weight.8 The data pertains to

7See Cole (2000), Silventoinen (2003) and Hagen et al. (2006).
8Using data one height yields similar results, see footnote 13.
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the 1990s, and if multiple surveys were made in a single country we use the data point closest

to 2000. This leaves us with 50 country observations on population density and body size.9 The

countries in our sample are all poor or middle income ones (see Appendix A for a listing).10 The

simple correlation between log body size and log population density is -0.31, significant at the

5% level. Naturally, one may wonder whether this correlation represents the macro counterpart

to the trade-off found at the micro level, or whether it is a spurious correlation due to lack of

control for intervening variables; income, mortality etc.

Table 1, columns 1-4, shows the results from estimating the association between body size

and population density, while conditioning on log income per capita in 2000, infant mortality in

2000 and log calorie consumption per person per day in 2000. The correlation between density

and body size is robust to the inclusion of these covariates.11

While the inclusion of calorie consumption in the specification does provide some control for

diet’s influence on population size, it probably only does so imperfectly. Aside from macronutri-

ents like calorie intake, micronutrients (such as various vitamins) arguably matters for fertility,

as well as for body size. As a result, we also attempt to control for the diet in a more detailed

manner. Specifically, we obtained data from the FAO Statistical Yearbook on the share of var-

ious dietary components of food consumption. The categories are: cereals (CER); vegetable

oils (VEG); sugar and sweeteners (SUG); meat and offals (MEAT); roots and tubers (ROOT);

milk, eggs and fish (MILK); fruits and vegetables (FRU); animal fats (AFAT); pulses (PUL),

and “others”.12 The last category is excluded in the regression, to avoid perfect collinearity.

The results from including this information in the regression are reported in column 5. The

central result is that the negative correlation between body size and population density is robust

to a more rigorous control for diet. In fact, when the composition of the diet is controlled for

the association is strengthened, in the sense that body size is significant at the 1 % level.13

9The survey data is available from http://www.measuredhs.com.
10The formal model below concerns a Malthusian economy, which does not match reality in the developed part
of the world. In contemporary less developed economies, however, where the demographic transition has yet to
fully transpire, Malthusian forces may still be detectable in the data.
11Calorie consumption per person, per day, is obtained from the FAO statistical Yearbook, and refers to the years
2001-2003. Data is found at: http://www.fao.org/ES/ESS/yearbook/vol 1 1/site en.asp?page=consumption.
Data on (PPP) GDP per capita and infant mortality is from World Development Indicators.
12The data can be downloaded from www.fao.org/statistics/yearbook/vol 1 1/pdf/d02.pdf
13Data for height can also be obtained from Demographic and Health Survey 2006. The pure correlation between
this measure of body size, and population density, is slightly higher than that involving weight: -0.4, and significant
at the 1% level. In the multivariate setting the results are slightly weaker. In a specification identical to that of
Table 1, column 5, the coefficient for (log) height is - 13.8, with a p-value of 0.084.
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Table 1. Population Density vs. Body Size in a Cross-Section of Countries

Independent 1b,c,d 2 3 4 5 6e

variablea

Log (body size) -4.26** -5.04** -6.10*** -6.69*** -5.83*** -6.90**
(2.11) (2.51) (1.93) (2.44) (1.53) (3.13)

log y 0.18 -0.31 -0.61
(.32) (.45) (-0.70)

Infant M -0.014** -0.03*** -0.03**
(.001) (.001) (0.01)

LogCal 2.67* 0.94 1.45
(1.40) (1.44) (2.38)

CER 0.03 0.00
(.04) (0.09)

VEG 0.10 0.09
(0.06) (0.13)

SUG 0.04 0.04
(0.05) (0.12)

MEAT -0.18** -0.28*
(0.07) (0.16)

ROOT 0.01 -0.01
(.04) (0.01)

MILK -0.21*** -0.20
(0.05) (0.12)

FRU 0.10 0.08
(0.07) (.14)

AFAT -0.19 -.27
(.21) (0.43)

PUL 0.16* 0.03
(0.08) (.14)

Estimator OLS OLS OLS OLS OLS LAD
R2 0.09 0.1 0.19 0.17 0.74 ..
N 50 50 50 44 43 43

Dependent variable: Log population density 2000. Notes: (a) The variables in the
table are: Body size is measured by weight in kg; log y is log PPP GDP per capita;
Infant M is the mortality rate at birth; LogCal is calorie consumption per person per
day. The remaining variables are dietary shares (in percent) of food consumption.
See text for definitions. (b) All regression include a constant term. (c) ***,**, * refer
to significance at the 1, 5 and 10% level, respectively. (d) Standard deviations (in
parenthesis) are robust to heteroscedasticity. (e) In the LAD regressions standard
deviations are bootstrapped with 1000 repetitions.

Moreover, it is worth observing that MEAT, MILK and PUL are significant, conditional on

body size, income, mortality and calorie consumption. The three significant food components

are all high on protein. In the case of pulses there is also a substantial content of essential

amino acid. The findings reported in column 4 and 5 suggests that the composition of the diet
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matters for population size.14 Note also that the specification in column 5 does a fairly good

job at motivating the variation in the data; the R2 is 0.74. As a final check of robustness we

re-estimated the model from column 5 by running outlier robust median (LAD) regressions. The

results are shown in column 6; body size continues to be significantly negatively correlated with

population density.

Similar results are reported in Koepke and Baten, (2005a,b) using archaeological data on

height. Their data is based on skeletal remains and pertain to Europe during the past two

millennia. In order to examine the regional determinants of body size, Koepke and Baten

provide regression results where population density (and a set of additional controls) is regressed

on height; in all cases the coefficient for density is negative, albeit imprecisely estimated in their

relatively small sample.

In sum, this evidence suggests that the trade-off between size and number which can be

observed at the household level is also discernable in the macro data; at least in poorer societies.

Interestingly, this inverse association is found in other mammalian species as well (Damuth,

1981).

2.3. Body Size and Income in a Cross-Section of Countries. In the cross-country data

set discussed above the correlation between body size (measured by weight) and log GDP per

capita in 2000, is 0.54 and significant at the 1% level. This is not a surprising relationship; it is

well known that as income improves, stature tends to increase as well.

Arguably, the main explanation for this association is that a rising level of income allows

for improved nutritional intake, which works to increase body size (Fogel, 1994; Strauss and

Thomas, 1998). Similar considerations almost surely explain the pattern discernable in Figure

1; the offspring of more well off families tends to be bigger. The effect of income and nutrition

is typically viewed as the key explanation for the secular increase in body size throughout the

Western world during the 20th century (e.g., Fogel, 1994).

These considerations testify to the importance of nurture in accounting for the evolution of

long-run body size. Indeed, even within generally well fed populations, differences in socio-

economic circumstances explain as much as 1/5 of the variation in height outcomes; in subsis-

tence economies this number is likely much higher (Silventoinen, 2003). Further support of this

14We also ran regressions where we control for protein and fat intake directly (also available from FAO). Neither
variable was significant, however, conditional on the diet shares. The results with respect to body size are
essentially unaltered.
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assertion is found in the recent work by Akachi and Canning (2007). The authors document, in

particular, a positive link between protein intake (grams per day) and body size on the African

continent.

In sum, while genetics undoubtedly matters as well, the nexus between income-nutrition and

body size seems well founded, and most likely represents the key explanation for the reduced form

positive cross-country correlation between income and body size across contemporary societies.

2.4. Intertemporal Evolution of Body Size and Population Size in the Long Run. The

long-run evolution of population trends are fairly familiar to historians and economists working

on growth in the long run. Briefly, up until somewhere in the 19th century population growth

was slow in Western European countries. Accordingly, for most of the preceding millennia, prior

to the onset of the industrial revolution, the growth trajectory is slightly upward sloping, with

occasional disruptions, for example, those caused by the Black Death (e.g., Galor, 2006).

At a finer level, however, existing evidence reveals that population growth followed an oscil-

latory trajectory. This pattern holds at the level of parishes in rural England (Duncan et al.,

2001), as well as on the macro level (Galloway, 1986; Lee and Loschky, 1987); the cyclicality

appears to be a pervasive phenomenon.

If body size and population size are intimately related, as the evidence from the last section

suggests, one might expect this cyclicality to be observable in the evolution of height as well.

This is indeed what existing studies find.

Figure 2, drawing on data compiled by Kunitz (1987), shows the evolution of height in England

over roughly 2 millennia. The data should be interpreted with care, as they draw on a variety

of archaeological excavations (i.e. are based on skeletal remains), which may not be equally

representative. Moreover, in later periods the data is historical and refers to average size of

army recruits. In addition, the time intervals are somewhat irregular. Nevertheless, the general

impression is one of oscillations around a roughly constant trend level of height (circa 170 cm).

The careful study by Koepke and Baten (2005a), which also draws on height data derived

from skeletal remains, finds strong evidence in favor of cyclicality in body size around a constant

trend, during the last two millennia in Europe as a whole. The sample size is much larger in

Koepke and Baten’s study than that implicit in Figure 2, and statistical tests reveal that the

deviations from trend are significant.
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Figure 2: Evolution of Height in England: 1st to 19th Century
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Komlos and Baten (2004) discuss evidence on body size deriving from historical sources;

their analysis draws on data stemming from army recruits from various regions. This evidence

broadly follows similar regularities compared with the data stemming from skeletons, albeit the

period in question is much shorter (18th and 19th century). Woitek (2003) provides rigorous

time series tests, documenting fluctuations in body size for Americans and Europeans (army

recruits) during the 18th and 19th centuries; Woitek detects cycles of 7-10 year duration, as well

as cycles of higher frequency.

Taken together this evidence suggests that prior to the industrial revolution human societies

witnessed step-wise increases in population (punctuated by occasional declines), while at the

same time height exhibited very little trend in either direction (see also Clark, 2007). Instead,

cyclical movements in height, around a constant trend, seem to have been the norm, in the

very long run. Cyclical adjustment to a (slightly) positive trend has also been the norm for

population.

In light of the relatively short period under consideration, it seems unlikely that these patterns

are driven by evolutionary mechanisms. Instead, variations in living conditions, associated with

nutritional intake, would appear to be a natural candidate explanation.
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3. Allometric Scaling, Energy Consumption, and Ontogenetic Growth

Allometry is a technique used in the biological sciences to describe how a variable of interest

regresses against body mass. The fundamental relationship between energy consumption B and

mass of a mammal m is described by Kleiber’s Law (Kleiber, 1932):

B = B0 ·mb, with b = 3/4. (1)

Here B is the basal metabolic rate and B0 is a species-dependent constant. Thus, drawn on

log-log paper the energy-body mass relationship is linear with slope of 3/4, see Figure 3. A slope

of 3/4 has been verified by Brody (1945) for almost all terrestrial animals yielding the famous

mouse-to-elephant curve.15

Figure 3: Kleiber’s Law

Kleiber’s original Figure as reproduced in West and

Brown (2005).

Biologists have been puzzled by the 3/4 finding for a long time because the most obvious result

from theoretical reasoning would be that b equals 2/3. An animal x times as big as another in

height is x2 larger in terms of surface area and x3 larger in terms of volume, or mass m. Because

15Although there exists still a debate about the exact magnitude of b, it seems to be fair to say that the possible
variance under discussion is trivialized by the precision of parameter estimates found for so called “laws” in the
social sciences. For example, Darveau et al., 2002, found exponents between 0.76 and 0.79 and around 0.82 for
exercising animals.
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heat exchanges through body surface, the metabolic rate should be proportional to x2 which is

itself proportional to m2/3. Recent research has revealed that the fallacy of this reasoning lies in

its application of Euclidian geometry when fractal geometry is appropriate. The beauty of the

new theory, first developed by West, Brown and Enquist (1997), lies in its foundations on first

principles. This makes it very general, and in fact it has already been applied to a multitude

of biological problems from “genomes to ecosystems” (West and Brown, 2005). Some of the

applications and extensions, for example, those on fertility and mortality are in particularly

relevant for economic analysis.

A living organism needs to feed its cells. For that purpose energy and material is transported

through hierarchically branching networks like blood vessels in mammals. The network in use,

however, is not of arbitrary structure. Given that organisms have evolved through natural

selection, it must be one that minimizes energy used for transport i.e. one that minimizes

hydrodynamic resistance. West et al. (1997) have shown that organisms that minimize energy

dissipation naturally fulfil Kleiber’s law. A sketch of the proof can be found in Appendix B.

Ultimately, Kleiber’s law conveys an important piece of information: Larger animals are more

energy efficient. The theory of West et al. provides a deep foundation of this fact: energy

dissipation per cell decreases with body mass. Thus, as an organism gets smaller each single cell

is forced to work harder. This basic insight can explain a multitude of biological phenomena

like, for example, why a mouse has a faster heartbeat, sleeps more, and lives shorter than an

elephant. It also provides the deep determinant of some phenomena discussed by the economics

profession like, for example, why human health and productivity are positively correlated with

body size (see Fogel, 1994).

One of the major applications of the theory is ontogenetic growth (West, Brown, and Enquist,

2001).16 To see how Kleiber’s law affects growth of organisms, consider the energy flow in a

human body. This is generally given by

B(t) = BcN(t) + EcṄ(t) (2)

where N(t) is the number of cells at time t, Bc is the metabolic rate of a single cell (inclusive

maintenance and replacement) and Ec is the metabolic energy required to create a new cell. If

we insert the fact that body mass consists of the mass of a single cell m̄ times the number of

16“Ontogeny” describes the origin and the development of an organism from the fertilized egg to its mature form.

13



cells, i.e. m(t) = m̄N(t), and solve for the change in body mass we get:

ṁ =
(

m̄

Ec

)
B −

(
Bc

Ec

)
m.

Finally, insert (1) to get a differential equation for body mass:

ṁ = a ·mb − d ·m (3)

where a ≡ B0m̄/Ec and d ≡ Bc/Ec.17

Equation (3) is a simple Bernoulli equation with explicit solution(
m(t)
ms

)1/4

= 1−

[
1−

(
m0

ms

)1/4
]
· e−

1
4
dt, (4)

where m = ms ≡ (a/d)1/(1−b) implying ms = (a/d)4 using Kleiber’s law. If we take a and d as

species-specific biological constants, determined by the genetic make-up, how can we then explain

the variation in body mass among adult humans? One possibility would be that reproduction

and death occurs before maximum body mass is (asymptotically) reached. While this argument

certainly applies to some species like, for example, cod, it is less convincing for humans. For a

more sensible interpretation of (4) in the context of humans, it is important to note that it does

not preclude an adult size well below the asymptotic size (Charnov, 2001). Two channels are

possible.

First, imagine that maximum adult height (mass) is reached at a genetically predetermined

age t = T . It is then determined by m0, the birth-weight or, more specifically, child mass after

weaning. Yet m0 is individual-specific and depends in particular on the biological and economic

condition of the mother.

Alternatively, one may observe that equation (4) specifies unconstrained growth or, in other

words, the demand side for energy. If energy, i.e. food, is in limited supply, new body tissue will

be accumulated with less speed than the biological maximum, growth will be slower and so will

be mass at time T . In other words, while the average Korean born 1980 is taller and heavier than

his father (see Steckel, 1995) both have grown according to (4) and thereby fulfilled Kleiber’s

17Ontogenetic growth according to (3) should look very familiar to economists. In fact, “accumulation” of body
tissue is structurally equivalent to accumulation of capital in the neoclassical growth model (which would be given

by k̇ = skα−δk in standard notation; Solow, 1956). New body tissue is produced with decreasing returns whereas
existing tissue depreciates at a constant rate. Recalling Solow’s model we know that there exists a unique and
stable equilibrium.
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law. Only, the new generation started out better initially and consumed more energy (more or

better food) in childhood. It is through these channels of initial child mass, child nutrition, and

its consequences for adult productivity, where economics interacts with biology.

4. A Bio-Economic Malthusian Model

4.1. Intergenerational Evolution of Body Size and Subsistence Consumption. Life is

separated into two periods: childhood (after weaning) defined as the period of body growth and

dependence on food provided by the parent, and adulthood defined as the period of constant

body size and reproduction. Integrating (2) over the period of childhood one gets

ε · ct = BcNt + Ec(Nt+1 −Nt). (5)

Here, Bc denotes the energy required to maintain a cell through childhood, and Ec is energy

costs associated with cell generation.

The compound ε · ct is the total energy used for ontogenetic growth of a child, comprising

consumption during childhood and the “energy exchange rate”, ε, which is measured in kcal.

per consumption good (or per dollar). While consumption expenditure is a control variable for

parents, the energy extracted from a unit of consumption depends on the food available, which

we treat (similar to technological progress) as exogenous at the individual level. Later we will

vary ε parameterically to investigate exogenous shifts in human diet (as would be caused, for

example, by the Neolithic revolution).

To obtain the size of a grown up child we substitute the definition of body mass mc,t = m̄Nt

into (5).18

εct =
Bc

m̄
mc,t +

Ec

m̄
mc,t+1 −

Ec

m̄
mc,t ⇒ mc,t+1 =

m̄

Ec
εct +

(
1− Bc

Ec

)
mc,t.

This gives a relationship between the size of a child after weaning mc,t and as a grown up

mc,t+1. To establish the intergenerational link between body sizes we use the fact the a child

after weaning equals µ times the size of the mother (Charnov, 1991, 1993).

mt+1 = a · ε · ct + (1− d) · µ ·mt, (6)

18From now on we refer to mt as body size rather than body mass. Recalling the explanations in the introduction
on the interchangeability of height and weight it is clear that the change in terminology is made purely for semantic
reasons. The term body size is closer to the the literature in anthropology and economic history, which focusses
on human height. It also avoids confusion with the body mass index, a measure of obesity, which we do not
address.
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where mt is the size of the child’s parent, mt+1 is the size of the former child when it becomes

itself a parent; the parameter d is defined as in the last section and the parameter a is redefined

as a ≡ m̄/EC . Thus adult body size is a compound of energy intake during childhood and

“inherited” body size.

The size of an adult is predetermined, and remains constant for the remaining part of his or

her life. Hence, we are focusing on the irreversible component of body size. During adulthood,

individuals are subject to subsistence requirements. Subsistence consumption depends on body

size and on fertility. In particular, we use the fact that rearing up a child from conception to

weaning requires a fraction ρ of the mother’s metabolic energy Et (Prentice and Whitehead,

1987; Sadurkis et al., 1988). Thus with Bt denoting energy used up by the mother’s own body

and nt denoting the number of children,

Et = ρ · nt · Et + Bt ⇒ εc̄t = Et =
Bt

1− ρnt
=

B0m
b
t

1− ρnt
. (7)

The last equality follows from employing Kleiber’s law, Bt = B0m
b
t . Here, c̄t is subsistence

consumption, measured in terms of goods. In contrast to the existing literature in economics,

subsistence consumption is not a constant but depends on the individual size inherited from

one’s parent through birth and nourishment in childhood as well as on fertility in adulthood.

Subsistence consumption is thus generation-dependent and indexed by t.

4.2. Individual’s Optimization. A parent maximizes utility U derived from child quality

and quantity, where quality is in the Beckerian (1960) sense measured by total expenditure for

consumption (i.e. nutrition) of children, Ct. For simplicity we impose a logarithmic form for the

utility function:

U(Ct, nt) = log(Ct) + γ log(nt) (8)

with γ denoting the weight of child quantity in utility. Child expenditure is constrained by

parental income y and subsistence consumption c̄t, i.e. yt = c̄t + Ct. Combining the budget

constraint with equation (7 ) leads to a single constraint:

yt − Ct −
Bom

b
t

ε(1− ρnt)
= 0. (9)

Accordingly, parents maximize (8) s.t. (9), by choosing Ct and nt.
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The first order conditions can be condensed to a single equation describing the quantity-quality

trade-off:
γ

nt
=

1
Ct

· ρ ·Bom
b
t

ε(1− ρnt)2
. (10)

Subsequently, equations (9) and (10) can be solved for optimal child quantity and quality:

Ct = yt +
1
2

[zt + (γ − 1)st] , (11a)

nt =
1
ρ
− 1

2γρyt
[zt + (γ − 1)st] , (11b)

for yt > st, with st ≡ B0m
b
t/ε denoting consumption needs of a childless (non-pregnant) adult

and zt ≡
√

s2
t (1− γ)2 + 4γstyt. If yt < st income is not sufficient to fuel adult’s metabolism

and at the corner solution where nt = 0 the population becomes extinct within a generation. If

yt > st we see immediately that Ct > 0. For consistency we need, in addition, nt > 0. That

is, whenever there is child consumption there is also a family. To that end we have to impose

γ ≥ 1, i.e. the utility-weight has to be not smaller for having children than for child expenditure.

4.3. Production. Total income, Y , is determined at the macro-level by a body size adjusted

technology:

Yt = Amφ
t XαL1−α

t = yt · Lt, φ ∈ (0, 1) , α ∈ (φ, 1) . (12)

Here, φ is thought of parameterizing the return on body size. L denotes population size and X

land. Since land is assumed to be constant (and α > φ) the technology implies stagnation in

the long-run at an equilibrium population density L/X unless general productivity A is growing

without bound.

4.4. Steady-state. Generally, population evolves according to

Lt+1 = ntLt, (13)

where nt is given by equation (11b). At a stationary Malthusian equilibrium we observe n∗ = 1

and thus from (11)

y∗ =
γ + (1− γ)ρ
εγ(1− ρ)2

·B0m
∗b. (14)
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Equilibrium consumption per child is obtained as c∗ = C∗/n∗ = ρy∗/[γ +(1−γ)ρ]. Substituting

energy consumption per child into (6) and solving for equilibrium body size we get

m∗ =
aερ

[γ + (1− γ)ρ] [1− (1− d)µ]
· y∗. (15)

The model therefore predicts a positive correlation between body size and income per capita,

in keeping with the empirical evidence (see Section 2.3). In addition, the diet matters (as

captured by ε), as well as (genetically determined) aspects of human biology (a and d) along

with preferences (γ). These properties are broadly consistent with the findings of Akachi and

Canning (2007), cited in Section 2, who finds that diet and income per capita both influences

body size in Africa. They also find significant fixed effects in their panel regression, which is

consistent with a genetic contribution to the cross-country variation in body size, on the African

continent. The present model would support such an interpretation.

Inserting (14) into (15) provides equilibrium body size as pinned down solely by preferences

and biological fundamentals:

m∗ =
[

aρB0

γ [1− (1− d)µ] (1− ρ)2

]1/(1−b)

. (16)

Observe that the solution implies that technology A does not matter for m∗. This is a

useful result, since archaeological evidence suggests a lack of trend in body size over the last

two millennia. Since the level of technological sophistication undoubtedly progressed over this

period, long-run body size must be independent of technology in the Malthusian regime. The

model delivers this result.

From equations (14) and (16) we observe that equilibrium income does not depend on general

productivity (A) either. It is pinned down by metabolic constants, family preferences, and the

energy exchange rate. Accordingly, steady-state GDP per capita depends on human biology and

geographic circumstances (in as much as they determine the diet and thus ε). The root cause

of the zero impact from A on y is that technology manifests itself in a different way. Using (15)

and (12) we obtain equilibrium population density:(
L

X

)∗
=
{

aερA

[γ + (1− γ)ρ] [1− (1− d)µ]
·m∗φ−1

}1/α

. (17)

In keeping with standard Malthusian models, a higher level of technological sophistication leads

to higher population density. This is why A does not affect steady-state labor productivity.
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Notice also that, consistent with our empirical results (Table 1), the model predicts an in-

verse association between population density and body size. Indeed, (17) can be viewed as a

bioeconomic counterpart to Damuth’s (1981) law in biology; bigger species have lower average

population density. Specifically, the allometric equation estimated by Damuth is that L/X =

constant·m−3/4. For humans (17) shows a similar association founded on the access to technol-

ogy. Indeed, it could be stated as L/X = constant·m(φ−1)/α, i.e. metabolic requirements are

”just” showing up in the constant while technology shapes the scaling parameter. In terms of

our basic calibration (Table 2 below) our model suggests that L/X = constant∗m−3.9, close to

the point estimate obtained in Section 2 (see Table 1, column 1).

4.5. Comparative Statics. Let’s first consider an improvement of technology. This could

originate from a change towards higher productivity A, lower dependence on limited land, i.e.

lower α, or higher efficiency in using brawn, i.e. increasing φ. In any case it “only” eventually

leads to a higher population density without any effect on body size and – according to (15) – on

income. Initially, a positive productivity shock increases income and parents have more children

and nourish them better. The next generation of adults is therefore bigger and more numerous.

Since they are more numerous, their average productivity is lower (α < 1). Because they are

bigger, their energy cost of fertility is larger. Both effects together imply that the bio-economy

adjusts to the original values of income, fertility, and body size from above. The only long-run

consequence is more densely populated land caused by the temporarily higher fertility rates.

Intuitively, we would expect that human stature depends on the type of food consumed, via

ε, i.e. the calories that can be extracted from a unit of food consumption. The energy exchange

rate (ε) changes when new forms of diet occur because, for example, new plants or animals are

cultivated or imported so that more (or less) energy can be extracted from a unit of consumption.

Interestingly, inspection of (16) shows that ε does not affect equilibrium body size.19 The model

predicts that an improving energy exchange rate makes people not bigger in equilibrium but

– as shown by (14) – poorer. The intuition for this seemingly puzzling effect becomes clear

through inspection of (17) showing that population density rises, when energy intake (ε) goes

up, a prediction of the model which is consistent with our cross-country findings (see Table 1,

column 4).

19However, conditional on income diet does correlate with y (cf. equation (15)). Hence, this result is not at
variance with Akachi and Canning (2007), who do document a correlation between aspects of the diet and body
size, conditional on y and variables correlated with prosperity.
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The chain of effects is as follows. When ε rises, people of the next generation become larger

and thus more productive. With higher income they expand their family, and population grows

temporarily. With the population growing, however, productivity is decreasing. The produc-

tivity loss increasingly circumvents the initial efficiency gain through the energy exchange rate.

In the long-run the demo-economy stabilizes at a constant population and lower income. A

lower level of income resulting from the production side is nevertheless sufficient to support a

larger population because of the improved energy exchange rate. In other words, the standard

of living in terms of calories consumed – and thus body size – is the same as at the initial state

before the change in diet. Yet population size is higher and income is lower than before. This

result demonstrates that measuring subsistence needs in terms of income can be misleading.

Different levels of income can support different equilibria of subsistence c̄t. The natural unit of

measurement for subsistence needs is the amount of calories, proteins, vitamins etc. consumed,

which are in the model summarized in the compound εc̄t.

The model reveals also some interesting comparative statics with respect to γ. Suppose that

the weight for child quantity increases permanently reflecting permanent change of preferences

in favor of larger families. From (16) we observe immediately that body size is lower at the new

long-run equilibrium, ∂m∗/∂γ < 0. Using this result and taking the derivative of (15) we obtain

that income at the new equilibrium is also lower, ∂y∗/∂γ < 0.

The chain of effects is the following. With γ going up, family size (nt) increases temporarily

and population density increases permanently. With higher expenditure for child quantity par-

ents spend less (calories) for child quality and the next generation of adults is more numerous but

shorter. These adults have lower productivity and smaller children at birth which both affects

adult size, productivity, and birth weight for the subsequent generation negatively. Again, the

next generation will have lower income and for that reason prefer to adjust fertility downwards.

The negative income effect operates until nt approaches its equilibrium again and population

stays constant. Thus the model predicts that an intrinsicly higher preference for large families

makes people shorter and poorer and land area more densely populated.

Suppose that in the wake of the Neolithic revolution, the weight on children in utility rose

permanently because settled people can support a larger family.20 The model then predicts a

permanent decrease of body size after Neolithic revolution, a result that is confirmed empirically

20Or, alternatively, that people with a large weight on n chose to be farmers, whereas individuals with a more
modest preference for child quantity chose to remain hunter-gatherers.
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(see e.g. Clark, 2007). The result is robust against a more detailed modelling of a Neolithic revo-

lution including also effects of settlement on human productivity (φ) and technology innovations

(A). As already shown, productivity improvements will only further push up population density

without any long-run effect on deteriorated income and body size.

4.6. Subsistence Dynamics. In order to go as far possible with analytical results we begin

by focusing on the special case of equal weights in parental utility. In a later section numerical

experiments for the general case will complement our results. With γ = 1 the model simplifies

tremendously. From equation (14) we get a particularly simple expression for consumption per

child: ct = ρyt. Using it in (6) we see that body size evolves according to

mt+1 = aερyt + (1− d)µmt. (18)

Inserting (11b) and (12) into (18) and (13) provides a reduced form of the model in terms of

two-dimensional dynamical system for the evolution of body size and population size (land, X,

has been normalized to one).

mt+1 = aερAmφ
t L−α

t + (1− d)µmt (19a)

Lt+1 =
Lt

ρ
− 1

ρ

√
B0m

b−φ
t

εA
· L1+α/2

t . (19b)

For phase diagram analysis we calculate the isoclines where ∆m ≡ mt+1 −mt = 0, i.e.

L =
(

aερA

[1− (1− d)µ]m1−φ

)1/α

, (20)

and where ∆L ≡ Lt+1 − Lt = 0, i.e.

L =
(

(1− ρ)2eAε

B0mb−φ

)1/α

. (21)

The isoclines intersect once at the unique equilibrium and the ∆m = 0-locus lies above the

∆L = 0-locus iff
(1− ρ)2εA
B0mb−φ

<
aερA

[1− (1− d)µ]m1−φ
⇒ m < m∗. (22)

The isoclines and the implied arrows of motion are shown in Figure 4. From inspection of

the figure one is tempted to immediately conclude global stability, and the equilibrium to be a
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focus. Yet, because time is discrete, adjustment dynamics are less obviously assessed. Besides

monotonous convergence towards the equilibrium there exist two other possibilities.

One is adjustment in damped cycles as illustrated by the gray trajectory in Figure 4.21 Here,

the first move out equilibrium is in southeastern direction. It may have resulted, for example,

after a society resting at equilibrium experienced a negative shock of A (a natural disaster,

a crop failure). As a consequence of low birth rates and malnutrition the next generation of

adults is smaller in stature and less numerous. With less than equilibrium population and the

Malthusian mechanism at work, however, these people show productivity and thus income above

equilibrium level. As a consequence of their relatively well-being the next generation is large

and well fed. As drawn in the Figure, overshooting occurred so that the next generation is

situated above the ∆L = 0-line. Adjustment is in damped cycles initially and then followed by

monotonous convergence towards the equilibrium.

These patterns shed light on the empirical evidence discussed in Section 2. During the last

2 millennia both fertility, and body size, have undergone cyclical adjustment. In the present

context these patterns emerge because of the dynamic feedback from body size to nutritional

requirements.

Figure 4: Subsistence Dynamics: Phase Diagram

∆m = 0

∆L = 0

m

L

m∗

L∗

A second possibility, which unfortunately cannot be generally ruled out in discrete time, is that

overshooting causes instability of the subsistence equilibrium so that the bio-economy leaves the

21Strictly speaking only the endpoints at the kinks of the trajectory are values assumed in discrete time. We have
connected them with a continuous line for better visibility.
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equilibrium in explosive cycles after a shock. In the Appendix C we thus show analytically that

the equilibrium is indeed stable when model parameters are selected from empirically plausible

ranges.

In order to draw the implied adjustment dynamics we proceed with a calibration of the model.

We start with the biological part of the model. For any given t = τ we can extract d from (4).

d = − log

(
1− (mτ/ms)1/4

1− (m0/ms)1/4

)
· 4
τ
. (23)

For calibration we use standardized weight-for-age curve for US males and females as provided

by the WHO.22 Both sexes hit the 50 kg-line by the age of τ = 14 implying mτ = 50. A female

grown up weighs on average ms = 59 kg. Child weight after weaning is m0 = 9 kg (implying

µ = 0.15). Inserting the data in (23) provides d = 0.63 and thus a = d ·m∗1/4 = 1.69. Following

Prentice and Whitehead (1987) we set ρ = 0.15 implying that a woman pregnant with one child

must consume 1.2 times the energy of a non-pregnant woman. We set b = 0.75 according to

Kleiber’s law.

Given these values we adjust the metabolic constant B0 so that m∗ in (16) equals 56 kg, which

is the mean female weight in our sample of less developed countries (Table 1). For the economic

part of the model we set α = 0.25 according to Clark’s (2007) estimates. We use Weil’s (2007)

data to approximate φ = 0.025. To get at ε we do the following. Suppose equilibrium income

is 400 (international Dollars) per year. In that cases, during the period of adulthood measured

by the length of the fecundity period (assumed as 20 years), equilibrium income is $ 8000. This

pins down ε to 0.026. We have one further parameter, A, which could be used to calibrate

a particular equilibrium population size (or density). Yet, we found it more informative to

report population density as relative deviation from stationary population (and thus normalized

A = 1). Parameters and steady-state values are summarized in Table 2.

Table 2: Parameters of the Bio-Economy

a b d µ ρ ε

1.69 0.75 0.63 0.15 0.15 0.026

α φ A X m∗ y∗

0.25 0.025 1 1 56 400

22http://www.who.int/nutgrowthdb/reference/en/.
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Our first numerical experiment is a permanent rise of productivity A by 10 percent. This could

have been the result of introducing a new agricultural technique (e.g. fertilizer), or a shock to

climate (e.g. the end of the little ice age). Adjustment dynamics are qualitatively identical for a

permanent rise of the energy exchange rate ε, which could arise due to the cultivation or import

of a new crop. In a phase diagram the parameter change leads to an upward shift of both the

∆m = 0-locus and the ∆L = 0-locus leaving the intersection at m∗ star unchanged. The old

equilibrium lies south east of the new equilibrium capturing the fact that people are too short

and too few with respect to the improved conditions. As a result the next generation of children

will have more nourishment at their disposal. Adjustment dynamics explained in connection

with Figure 4 set in.

Figure 5: Adjustment Dynamics: Permanent Technology Shock
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Parameters from Table 2 and γ = 1 (solid lines), γ = 1.5 (dashed lines), and γ = 2

(dotted lines). A higher value for γ makes adjustment more volatile but otherwise

structurally similar.

Solid lines in Figure 5 show the resulting adjustment dynamics for benchmark parameters.

Sensitivity analysis with respect to γ is represented by dotted and dashed lines. It reveals that

the result is structurally stable against variation of the preference parameter. Generally, higher

productivity or cultivation of more energy- providing food leads to a temporary rise in body size

and a permanent rise of population size (and density). Over the first five generations (100 years)

we observe cyclical adjustment behavior.

At a more detailed level the data series for height, as depicted in Figure 2, exhibits considerable

persistence while population was growing at a low but positive rate during the middle ages. To
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capture these phenomena with a simulation of our model we conduct a business-cycle-cum-

growth experiment by introducing discretionary productivity shocks. Specifically we assume

that At+1 = At with probability 0.75, At+1 = 1.03 · At, i.e. a positive productivity shock with

probability 0.15, and At+1 = 0.93 · At, i.e. crop failure or technological regress (Aiyar et al.,

2006), with probability 0.1. After simulating we have transformed the scale of variables for

better comparison with the empirical time series. In particular, we converted body mass (i.e.

weight) to height using a constant body mass index such that average height is 1.57 m, i.e. the

average height of females in our sample of less developed economies; and we converted time from

generations to years using the length of the fecundity period (20 years). The initial population

density is normalized to one.

Figure 6: Female Body Size and Population Size from Year 0 to Year 1800
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Parameters as for Figure 5. Productivity shocks as explained in the text. Conversion of time from

generation to years using the fecundity period and of body size from weight to height using the

body mass index

Figure 6 shows an example of a trajectory for our benchmark economy from Table 2. We

simulated the economy for 90 generations, which yields the demo-metabolic history of a society

from year 0 to year 1800. The result corresponds quite well with the actually observed history,

as discussed in Section 2.4. That is, the trajectory displays long periods of smooth development,

interrupted by abrupt changes and cyclical recovery. The fact that positive productivity shocks

occur slightly more often than negative ones allows the population to grow on average. During

the period under investigation it has approximately quintupled (in accordance with the empirical

facts, Kremer, 1993). At the same time there are cyclical fluctuations but no positive trend of
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body size discernable. Body size goes up after positive shocks and down after negative ones and

returns to its long-run equilibrium afterwards. This way, our theory explains why body size is

justifiably used by anthropologists and economic historians as a measure of economic well-being

although – on average – positive productivity shocks in history have not manifested themselves

in – on average – rising body size.

5. Convex-Concave Production and the Malnutrition Trap

One seeming criticism of our modelling so far could be that the production function does not

take into account a lower limit of energy intake below which productive (or any other) activity

becomes impossible and labor supply goes to zero. This assumption is visualized in Figure 7

where the per-capita production function y(m,A, L, X), hits the m axes at a positive value.

The figure shows the most frequently discussed case in the literature (see e.g. Leibenstein, 1957,

Bliss and Stern, 1978) where production is convex-concave, or s-shaped in m although this is

not essential. The essential feature is that output produced lies below output (energy) needed

to feed a given body size for m below a critical m̃. Production required is found from energy

intake according to Kleiber’s law divided by the energy exchange rate. It is thus unambiguously

concave over the whole range of m.

Figure 7: Output Produced and Production (Energy) Required

y = f(m, A, L, X)

y = B0m
b/ε

m

y

m∗m̃0 m∗∗

The sad fact visible in Figure 7 is that people with initial size below m̃ are not capable to

produce the energy required in order to maintain their own body shape. They emaciate up
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to a lower bound m∗∗. If they don’t starve, they survive living off the commons or begging.

Although Figure 7 is a time-less graph, it suggests two stable equilibria at m∗ and m∗∗. From

this observation some authors have argued in favor of a malnutrition-driven poverty-trap.

Here, we are not questioning the view that such poverty-traps exist at the individual level.

The indirect empirical evidence for this is overwhelming (see e.g. Fogel, 1994, who argues that

one-fifth of the population was situated close to m∗∗ in 18th- hundred England and France).

Yet, we will challenge the possibility of a general equilibrium at m∗∗. In order to get this argu-

ment straight it is helpful to introduce the following definitions. An equilibrium of subsistence

(Malthus, 1798) is defined by zero population growth. An equilibrium of destitution (Dasgupta,

1993) is defined by zero labor supply.

From these definitions one may already suspect that destitution cannot be a stable general

equilibrium. It will now be proven. The new convex-concave production function changes the

shape of the isoclines. In particular, both are now upward sloping at low m hitting the m axes

at a some finite equilibrium of destitution m∗∗. The equilibrium of subsistence is observed at

the intersection at some m∗ > m∗∗. The crucial element of the proof is that it remains to be

true that the ∆m = 0-locus lies above the ∆L = 0-locus iff

m∗∗ < m < m∗.

To see this replace mφ in (22) by a general f(m) with f(m∗∗) = 0 and note that the condition

is independent from any positive transformation of f(m).

With (22) still being valid the phase diagram of Figure 8 results. The equilibrium of desti-

tution is unstable. The intuition why a situation where the whole society is destituted cannot

be a dynamic equilibrium is straightforward and follows from the Malthusian mechanism. The

destitute people will only have few children. This will make the next generation (of low popu-

lation density) small in body size but productive. As a result, they can afford to nourish their

children comparatively well so that the following generation of adults has body size above m∗∗.

An adjustment process towards m∗ (possibly cyclical) is initiated. Thus, while the static-micro

textbook model of the malnutrition trap suggests that there are two equilibria attainable, a

dynamic-macro reformulation supports only one of these as a attainable in the long-run. Sub-

sistence as a general equilibrium phenomenon can prevail over centuries, whereas destitution

cannot.
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Figure 8: Subsistence Dynamics with Convex-Concave Production: Phase Diagram
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6. The Take-Off from Subsistence

While our two-dimensional model of the Malthusian equilibrium can be fruitfully applied to

the evolution of human history it does not – like Malthus original one-dimensional theory –

hold for industrial and modern societies. Modelling the full transition towards such a society is

beyond the scope of this paper. We can, however, show that our model captures one particular

feature of the take-off from subsistence: A permanent yet bounded increase of human body size

(i.e. height, see Steckel, 1995, Clark, 2007).

The take-off is initiated by the introduction of permanent productivity growth (instead of

discretionary shocks). For simplicity we assume At+1 = (1 + g)At where g is a constant rate of

TFP growth. Assuming g > 0 renders the Malthusian equilibrium unstable. In order to discuss

the new dynamics we introduce the auxiliary variable xt ≡ Lα
t /At and thus

xt+1 =
Lα

t+1

At+1
=

nα
t

1 + g
· xt. (24)

with an equilibrium where nt = (1 + g)1/α, which is larger than one for g > 0. Permanent

technological progress triggers population growth.
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In order to obtain the new two-dimensional dynamic system we insert the definition of xt into

yt and nt from (11b) into (24). Thus (18) and (24) are rewritten as

mt+1 =
aερmφ

t

xt
+ (1− d)µmt (25a)

xt+1 =
1

(1 + g)ρα
·

1−

√
B0m

b−φ
t xt

ε

α

· xt. (25b)

The ∆m = 0 and ∆x = 0 loci are given by

x =
aερ

1− (1− d)µ
·mφ−1

x =
ε
[
1− (1 + g)1/αρ

]2
B0

·mφ−b.

Inspection of these two equations reveal that the implied phase diagram is structurally identical

to the L – m diagram in Figure 3. In particular, there exists a unique non trivial positive

intersection at some (x∗,m∗∗∗) which is stable for standard parameters. A permanent increase

of g, however, shifts the equilibrium to the south-west reflecting higher labor productivity (lower

x = Lα/A) and larger body size m. Perpetual technological progress and income growth leads

to a permanent yet finite increase of body size. Equilibrium size is obtained as

m∗∗∗ =
[

aρB0

γ [1− (1− d)µ] (1− (1 + g)1/αρ)2

]1/(1−b)

. (26)

Body size is increasing with the growth rate and is – as comparison with (16) shows – larger

than at the Malthusian equilibrium of economic stagnation.

Figure 9 shows adjustment dynamics implied by our benchmark parameterization after a

permanent rise from g = 0 to g = 0.01. Implied fertility change is recovered from (11b). The

Figure shows that technological progress triggers a monotonous increase of body size and an

initially cyclical and then monotonous increase of population growth. The first (generation-)

periods of transition correspond well with the empirical facts for Europe in the 19th. Economic

growth is accompanied by a gradual but steady increase of body size, i.e. height (see Steckel,

1995, 2001) and an initially steep and later flattening increase of population growth (Kremer,

1993). At later periods, however, results become less plausible because population growth fails

to revert its trend. This result occurs because the model neglects that perpetually rising income

triggers a change of fertility behavior thereby initiating a demographic transition (Galor, 2006).
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Figure 9: Take-Off from Subsistence
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The variable gL denotes annual population growth per generation in percent.

7. Conclusion

The present paper has developed a bioeconomic model with the aim of studying the growth

process during “Malthusian stagnation” and the process of “take-off” (Galor and Weil, 2000).

In particular, the model contributes to the literature by describing the long-run evolution of

the representative individual’s body size, and her subsistence requirements. The links between

childhood nutrition, adult body size and subsistence requirements are based on deep microfoun-

dations, drawing on recent work in the field of biology. The theory involves a two-dimensional

Malthusian equilibrium concept, featuring a constant number and size of individuals.

The model demonstrates how human biology and preferences determine long-run body size. In

a Malthusian state, and without evolutionary changes, the model predicts an absence of a secular

trend in body size over time. Yet, if the economy is perturbed by shocks (be that technological,

climatic, or diet related) oscillatory adjustment to steady-state, in body size and population, may

prevail. The state of stagnation in body size comes to an end, however, if technological progress

accelerates. In response to such a change in the economic environment, average body size rises

gradually towards a biologically determined upper limit. These predictions are consistent with

available evidence pertaining to body size (height) from 1 A.D. to the 19th century. In addition,

the model predicts an inverse association between body size and population density, as well as

an influence from diet on density, for body size given. Both predictions are consistent with

available evidence.
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The model does not allow for a full demographic transition whereby fertility ultimately de-

clines. Such an extension could, however, be provided by incorporating another dimension of

“child quality”: human capital. Following Galor and Weil (2000), this extension would involve

the feature that if the underlying productivity growth rate accelerates, investments in human

capital eventually rises and fertility declines. The associated rise in income per capita would

support increases in body size, which elevates subsistence consumption; declining fertility works

in the opposite direction however. Studying subsidence dynamics during (and after) the demo-

graphic transition, in a bio-economic setting as developed above, is left for future research.

The framework could also be fruitfully extended to include the impact of disease on sub-

sistence requirements and body size. There is considerable evidence to suggest that illness

importantly affect basal metabolism; reconvalescence is energy intensive, and thus elevates sub-

sistence requirements. Hence, the frequency of disease shocks could prove to be an important

determinant of body size, population size and productivity in a Malthusian regime. Further-

more, this extension would allow for a comparative analysis of mortality and morbidity; in the

end, morbidity (associated with disease shocks) may have had a much larger impact on the

trajectory for productivity in pre-industrial times than changes in mortality. This extension is

not straightforward, however. While bodily temperature (fever) should work so as to speed up

biochemical processes, and among them metabolism, diseases differ in terms of their impact on

metabolism nonetheless. Currently there appears to be little consensus in the context of how

this link is to be modeled in a unifying manner (Hoffer, 2003).

Introducing endogenous subsistence, in the manner described above, may also be important in

addressing more contemporary issues. For example, it may inform the ongoing convergence de-

bate. That is, the debate as to whether data support the club- convergence hypothesis, or rather

conditional convergence. The former view involves a vision of the growth process where multiple

equilibria arise while the latter is associated with a unique steady-state equilibrium. A promi-

nent explanation for multiple equilibria involves the introduction of subsistence consumption

into a neoclassical growth framework (e.g. Azariadis, 1996). Recently, this approach has been

criticized on quantitative grounds in an interesting paper by Kraay and Raddatz (2007). The

authors demonstrate that the “s-shaped” association between average savings and per capita

income, which should arise due to a minimum consumption threshold, is not borne out in the

data. However, if the threshold is better conceived as a structural characteristic, which should
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be controlled for in the analysis, their tests are no longer conclusive. The present theory implies

that subsistence consumption is to be conceived as a structural characteristic, and that this

level may be subject to substantial variation across countries and time. Of course, it is an open

question whether allowing subsistence to be endogenous still admits multiple equilibria to arise

in otherwise standard neoclassical growth models. These issues also appear to be worthwhile

topics for future research.
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Appendix A

The 50 countries for which we have data on body weight are: Armenia (ARM); Benin (BEN);
Burkina Faso ( BFA ); Bangladesh (BGD); Bolivia (BOL); Brazil (BRA); Central African Re-
public (CAF); Cote d’Ivoire (CIV) ; Cameroon (CMR) ;Colombia (COL); Comoros (COM );
Dominican Republic (DOM); Egypt, Arab Rep.( EGY); Eritrea (ERI); Ethiopia(ETH); Gabon
(GAB); Ghana (GHA); Guinea (GIN); Guatemala (GTM); Haiti (HTI); India (IND); Jor-
dan (JOR); Kazakhstan (KAZ); Kenya (KEN); Kyrgyz Republic (KGZ); Cambodia (KHM);
Morocco(MAR); Madagascar (MDG); Mali (MLI); Mozambique (MOZ); Mauritania (MRT);
Malawi (MWI ); Namibia (NAM); Niger (NER ); Nigeria (NGA); Nicaragua (NIC); Nepal
(NPL); Peru (PER); Rwanda (RWA); Senegal (SEN); Chad (TCD); Togo (TGO); Turkmenistan
(TKM) ; Turkey (TUR); Tanzania (TZA); Uganda (UGA); Uzbekistan (UZB); Yemen, Rep.
(YEM); Zambia (ZMB); Zimbabwe (ZWE).

Appendix B

The basic fact exploited by West et al. (1997) is that the terminal branches of the network
(the capillaries) are size-invariant units. From this and the conservation of the fluid as it flows
through the system follows that the total number of capillaries is proportional to the metabolic
rate. Consider a network of branching vessels with ν levels of branching and η branches per
node. Let k ∈ {1, . . . , ν} indicate the level of branching. Nature optimizes through choice of the
radii rk and lengths lk of the vessels at every level k. West et al. have solved the optimization
problem given the hydrodynamic and elasticity equations for blood flow and a space-filling
condition (requiring that all cells are served). They have shown that the optimal network is a
self-similar fractal with two characteristics. (i) It is volume preserving so that νkl

3
k ≈ νk+1l

3
k+1

where νk is the number of branches at level k. (ii) It is area preserving so that πr2
k = ηπr2

k+1,
i.e. the cross-sectional area of a branch at level k equals the sum of the cross-sectional area of
branches at the next (lower) level. Noting that νk+1/νk = η one gets two invariant scale factors,
β ≡ rk+1/rk = η−1/2 and γ ≡ lk+1/lk ≈ η−1/3. For example, as blood flows down through a
bifurcating hierarchy (η = 2) the radii of vessels decrease with factor 1/

√
2 whereas the length

of vessels decreases at rate 1/ 3
√

2.
Finally, West et al. showed that the total volume of blood in an energy minimizing network

is proportional to body mass m. This feature combined with the fractal nature of the network
implies scaling according to (1). To see this calculate the total volume of blood.

Vb =
ν∑

k=0

πrk
2lkη

k =
1− (ηγβ2)−(ν+1)

1− (ηγβ2)−1
ηνVc ≈

(γβ2)−ν

1− (ηγβ2)−1
Vc

with Vc denoting the volume of a capillary, an invariant unit. Conclude that blood volume and
thus mass is proportional to (γβ2)−ν implying that log(ν) is proportional to − log(m)/ log(γβ2).
The metabolic rate is proportional to the number of capillaries nν implying that log(B) is
proportional to ν log(n) and thus to − log(m) · log(n)/ log(γβ2). Insert β and γ to find that
log(B) is proportional to 3/4 log(m) which is Kleiber’s law.
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Appendix C

The elements of the Jacobian matrix J of dynamic system (19) evaluated at the steady-state
are given by

J11 = φ [1− (1− d)µ] + (1− d)µ

J12 = − α

L∗
[1− (1− d)µ]m∗

J21 = −(1− ρ)L∗

2ρm∗ (b− φ)

J22 = 1− 1− ρ

ρ

α

2
.

Stability requires that the eigenvalues of J are less than one in absolute terms, or alternatively
that |det(J)| < 1 and |tr(J)| < 1 + det(J). The trace and determinant are computed as

tr(J) = φ [1− (1− d)µ] + (1− d)µ + 1− 1− ρ

ρ

α

2

det(J) = [1− (1− d)µ]
[
φ− 1− ρ

ρ

α

2
b

]
+ (1− d)µ

(
1− 1− ρ

ρ

α

2

)
The condition that |tr(J)| < 1+det(J) simplifies after some algebra to (1−b) [1− (1− d)µ] > 0
and is thus always fulfilled. The condition that |det(J)| < 1 can be written as∣∣∣∣1− ρ

ρ

α

2

(
b +

(1− d)µ
1− (1− d)µ

)
− φ

∣∣∣∣ < 1.

Given the biological parameters, it requires that α must not be too large as compared to φ.
Intuitively, if α were too large, there would be too little Malthusian forces in the model, i.e.
the positive effect of body size on productivity would overcompensate the negative effect of
population size. When we plug in the biological parameters of the calibrated model, stability
requires

α < αcrit ≡ 0.49 + 0.44φ.

Our calibration of economic parameters, α = 0.25 and φ = 0.025 thus renders an equilibrium
safely within the range of stable equilibria.
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