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The Optimality of Simple Contracts:
Moral Hazard and Loss Aversion®

FABIAN HERWEG, DANIEL MULLER,

AND PHILIPP WEINSCHENK!
October 8, 2008

This paper extends the standard principal-agent model with moral hazard to allow
for agents having reference-dependent preferences according to Kdszegi and Rabin
(2006, 2007). The main finding is that loss aversion leads to fairly simple contracts.
In particular, when shifting the focus from standard risk aversion to loss aversion,
the optimal contract is a simple bonus contract, i.e. when the agent’s performance
exceeds a certain threshold he receives a fixed bonus payment. Moreover, if the agent
1s sufficiently loss averse, it is shown that the first-order approach is not necessarily
valid. If this is the case the principal may be unable to fine-tune incentives. Strate-
gic ignorance of information by the principal, however, allows to overcome these

problems and may even reduce the cost of implementation.

JEL classification: D8; M1; M5
Keywords: Agency Model; Moral Hazard; Reference-Dependent Preferences; Loss Aversion

1 Introduction

“The recent literature provides very strong evidence that contractual forms have large effects on
behavior. As the notion that “incentive matters” is one of the central tenets of economists of
every persuasion, this should be comforting to the community. On the other hand, it raises an
old puzzle: if contractual form matters so much, why do we observe such a prevalence of fairly

simple contracts?”

- Bernard Salanié

*In preparing this paper we have greatly benefited from comments made by Patrick Bolton, Jérg Budde,
Paul Heidhues, Martin Hellwig, Botond Koszegi, Patrick Schmitz, and Urs Schweizer. We also thank
seminar participants at University of Bonn, as well as participants at the IMEBE at Alicante (2008),
EEA/ESEM at Milan (2008), and at the annual congress of the Verein fiir Socialpolitik at Graz (2008).
The usual disclaimer applies.

tFabian Herweg, University of Bonn; Daniel Miiller, University of Bonn; Philipp Weinschenk, University
of Bonn and Max Planck Institute for Research on Collective Goods Bonn, Corresponding author.
E-mail address: fherweg@uni-bonn.de (F. Herweg).
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The question asked by Salanié (2003), why observed contracts often display far less
complexity than predicted by economic theory, neither is new nor is the answer fully
understood. While Prendergast (1999) already referred to the discrepancy between theo-
retically predicted and actually observed contractual form about a decade ago, over time
this question was raised again and again, for example recently by Lazear and Oyer (2007).
The most simple incentive contract one can think of is a bonus contract, with a bonus
being a payment made for achieving some level of performance. And indeed, according
to Joseph and Kalwani (1998), bonuses are a form of incentive pay widely used by a
large variety of organizations, in particular within sales organizations. As Oyer (1998),
however, points out, facing an annual sales quota provides incentives for salespeople to
manipulate prices and timing of business to maximize their own income rather than their
firms’ profits. This observation raises “the interesting question of why these nonlinear
contracts are so prevalent. [...] It appears that there must be some benefit of these
contracts that outweighs these apparent costs” (Lazear and Oyer (2007)). Simple con-
tracts are not only common in labor contexts but also in insurance markets. A prevalent
form of insurance contracts is a straight-deductible contract widely used, for example,
in automobile insurance.! As Dionne and Gagné (2001) point out, however, “deductible
contracts can introduce perverse effects when falsification behavior is potentially present”.
With fraudulent claims being a major problem in the car insurance market,?> which is —
at least partially — due to straight deductible contracts, the prevalence of this particular
contractual form seems puzzeling.?

To give one possible explanation for the widespread use of the contractual arrangements
just described, we consider a principal-agent model with moral hazard, framed as an
employer-employee relationship, which is completely standard but for one twist: the agent
is assumed to have reference-dependent preferences according to Készegi and Rabin (2006,
2007), and in consequence is loss averse. In expectations the agent suffers from deviations
from his reference point. By offering a simple contract which specifies only few different
wage payments, the principal can reduce the scope for the agent to experience a loss,
thereby lowering the payment necessary to compensate the agent for ex ante expected
losses. In the extreme case of a purely loss averse agent, this logic leads to a literal bonus
contract being optimal. Put differently, no matter how rich the performance measure, the
principal offers only two different wages, a high wage for “good” performance, and a low

wage for “bad” performance.

1For evidence on deductibles in the automobile insurance see Puelz and Snow (1994) or Chiappori et al.
(2006).

2Caron and Dionne (1997) estimated the cost of fraud in the Québec automobile insurance market in
1994 at $100 million, just under 10% of total claims. For an estimation of the costs of fraudulent
claims in the United States, see Foppert (1994).

3As was shown by Rothschild and Stiglitz (1976), the use of deductibles can theoretically be explained
if the insurance market is subject to adverse selection. Besides adverse selection, however, moral
hazard plays an important role in automobile insurance. Deductibles were found to be optimal under
moral hazard by Holmstrom (1979) if the insured person’s action influences only the probability of an
accident but not its severity. As pointed out by Winter (2000), however, “[d]riving a car more slowly
and carefully reduces both the probability of an accident and the likely costs of an accident should it
occur.” Thus, existing theories cannot explain the prevalence of deductibles in these markets.
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We present our model of a principal-agency which is subject to moral hazard in Section
2. The principal, who is both risk and loss neutral, does not observe the agent’s effort
directly. Instead, he observes a measure of performance which is correlated — though im-
perfectly — with the agent’s effort decision. Our model departs from the classical principal-
agent relationship by assuming that the agent has reference-dependent preferences in the
sense of Kdészegi and Rabin (2006, 2007). This recent concept of reference-dependent
preferences posits that a decision maker — next to intrinsic consumption utility from an
outcome — also derives gain-loss utility from comparing the actual outcome with his ra-
tional expectations about outcomes. More precisely, the sensation of gains and losses
is derived by comparing a given outcome to all possible outcomes. To illustrate this
point consider an employee who receives a wage of $5000 for good performance, a wage
of $4400 for mediocre performance, and a wage of $4000 for bad performance. If the
employee’s performance is bad he experiences the sensation of a loss of $400 and of a loss
of $1000, with the weights on the two losses equal to the probability with which he ex-
pected to perform fairly or well, respectively. If the employee’s performance is mediocre,
this generates mixed feelings, a loss of $600 and a gain of $400.* The key feature of
the K8szegi-Rabin model is that expectations matter in determining the reference point.®
This assumption is based mainly on findings in the psychological literature. For instance,
Mellers et al. (1999) and Breiter et al. (2001) document that both the actual outcome
and unattained possible outcomes affect subjects’ satisfaction with their payoff. Just very
recently two remarkable contributions to the economic literature also provided evidence
that expectations play an important role in the determination of the reference point. In
a real-effort experiment, Abeler et al. (2008) find strong evidence for individuals taking
their expectations as a reference point, rather than the status quo, as was most often
assumed in the wake of Kahneman and Tversky’s original formulation of prospect theory
(1979). Post et al. (2008), on the other hand, analyze decision making in a large-stake
game show and come to the conclusion, that observed behavior “is consistent with the

2

idea that the reference point is based on expectations.” The Kd&szegi-Rabin concept is
successfully applied by Heidhues and Készegi (2008) to provide a theoretical explanation
for an old puzzle from the industrial organization literature known as focal pricing: by
introducing consumer loss aversion into a standard model of price competition with dif-
ferentiated products, they give an answer to the question why non-identical competitors
charge identical (focal) prices for differentiated products.

As a benchmark, in Section 3 we first consider the case of a purely risk averse agent.
This visit to Holmstrom (1979)’s world yields a familiar result: Under the optimal con-
tract signals that are more indicative of higher effort are rewarded strictly higher, thereby
giving rise to a strictly increasing wage profile. We then turn to the analysis of a purely

loss averse agent, who does not exhibit risk aversion in the usual sense. After providing

4For at least suggestive evidence on mixed feelings, see Larsen et al. (2004).

5The feature that the reference point is determined by the decision maker’s forward-looking expectations
is shared with the disappointment-aversion models of Bell (1985), Loomes and Sugden (1986), and
Gul (1991).
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sufficient conditions for the first-order approach to be valid, we establish our main result:
when the agent is loss averse, the principal considers it optimal to offer a bonus contract
which comprises of only two different wage payments. No matter how rich the set of
possible realizations of the performance measure, the optimal contract entails a minimum
of wage differentiation in the sense that the set of all possible signals is partitioned into
only two subsets: signals contained in the one subset are rewarded with a strictly higher
wage than signals in the complementary subset. We already briefly touched the intuition
underlying this finding. With the agent’s action being unobservable, the necessity to cre-
ate incentives makes it impossible for the principal to bear the complete risk. With losses
looming larger than equally sized gains, this ex ante imposes an expected net loss on
the agent. This overall expected net loss equals the sum over the ex ante expected wage
differences weighted with the product of the corresponding probabilities. To illustrate,
let us return to the example introduced above. Suppose the agent expects to perform
well, moderately, or poorly with probability pg, pys and pg, respectively. Then, ex ante,
the agent expects a wage difference — or net loss — of $600 with probability py/pa, a net
loss of $400 with probability pppas, and a net loss of $1000 with probability pgpg. The
agent demands to be compensated for his overall expected net loss, which the principal
therefore seeks to minimize. Consider, for a sake of argumentation, a principal who has
to improve incentives. There are two ways to do so. First, the principal can introduce
a new wage spread, i.e., pay slightly different wages for two signals that were rewarded
equally in the original wage scheme, while keeping the differences between all other neigh-
boring wages constant. Secondly, the principal can increase an existing wage spread,
holding constant all other spreads between neighboring wages. Both procedures increase
the overall expected net loss by increasing the size of some of the expected losses with-
out reducing others. Introducing a new wage spread, however, additionally increases the
overall expected net loss by increasing the ex-ante expected probability of experiencing
a loss. Therefore, in order to improve incentives it is advantageous to increase a partic-
ular existing wage spread without adding to the contractual complexity in the sense of
increasing the number of different wages. In this sense, reference-dependent preferences
according to Kdszegi and Rabin introduce a notion of endogenous complexity cost based
on psychological foundations.

Thereafter, we establish several properties displayed by the optimal contract. Let a
signal that is more likely to be observed the higher the agent’s effort be referred to as
a good signal. We find that the subset of signals that are rewarded with the high wage
contains either only good signals, though possibly not all good signals, or all good signals
and possibly a few bad signals as well.® Moreover, it is shown that, at least under a certain

condition, it is optimal for the principal to order the signals according to their relative

5The theoretical prediction that inferior performance may also well be rewarded with a bonus is in line
with both Joseph and Kalwani (1998)’s suggestion that organizations tend to view the payment of
a bonus as a reward for good or even acceptable performance rather than an award for exceptional
performance, and Churchill et al. (1993)’s prescription that bonuses should be based on objectives
that can be achieved with reasonable rather than Herculean efforts.
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informativeness (likelihood ratio), i.e., the agent receives the high wage for all signals that
are more indicative for high effort than a cutoff signal. Though wage payments are only
weakly increasing in the likelihood ratio, this finding resembles Holmstrom (1979)’s result
for a risk averse agent, where the incentive scheme is strictly increasing in likelihood ratios.
Last, we establish an interesting comparative static property: we show that an increase in
the agent’s degree of loss aversion may allow the principal to use a lower-powered incentive
scheme in order to implement a desired level of effort. The reason is that a higher degree
of loss aversion may be associated with a stronger incentive for the agent to choose a
high effort in order to reduce the probability of incurring a loss. This finding immediately
relates to a train of thought found in Kd&szegi and Rabin (2006), who reason that under
loss aversion the agent’s motivation goes beyond pure monetary incentives. Section 3
concludes with a discussion of the general case where the agent is both risk averse and
loss averse. It is shown that our results are robust towards a small degree of risk aversion.
Moreover, we give a heuristic reasoning why a reduction in the complexity of the contract
is also to be expected to be optimal for a non-negligible degree of risk aversion, and we
back this argument up with a numerical example, which confirms our conjecture.”

Returning to the case of a purely loss averse agent, in Section 4 we relax the assump-
tions that guaranteed validity of the first-order approach. Moreover, to keep the analysis
without first-order approach tractable, we only consider binary measures of performances.
If the agent’s degree of loss aversion is sufficiently high and if the performance measure
is — in an intuitive sense — sufficiently informative, then only extreme actions — work as
hard as possible or do not work at all — are incentive compatible. Put differently, the
principal may face severe problems in fine-tuning the agent’s incentives. These implemen-
tation problems, however, can be remedied if the principal can commit herself to turning
a blind eye from time to time, that is, by stochastically ignoring the low realization of the
performance measure. Besides alleviating implementation problems, turning a blind eye
may also lower the cost of implementing a certain action. An interesting implication of
these findings is that the sufficiency part of Blackwell’s celebrated theorem does not hold
in our model when the agent has reference-dependent preferences.

After briefly summarizing our main findings, in Section 5 we conclude by discussing
robustness of our results with respect to imposed functional assumptions and the equilib-

rium concept applied to solve for the behavior of the loss averse agent.

Related Literature Before presenting our model, we would like to relate our paper to
the small but steadily growing literature that analyzes the implications of loss aversion on

incentive design.® With reference-dependent preferences being at the heart of loss aversion

"This finding also relates to the observation that, within a firm, pay for individuals often seems to be less
variable than productivity, as recently surveyed by Lazear and Shaw (2007). Our model suggests an
alternative explanation for this pay compression outside the realms of inequity aversion, tournament
theory, and influence activities.

8Beside loss aversion there are other behavioral biases that are incorporated into models of incentive
design. For instance, O’Donoghue and Rabin (1999) analyze optimal incentive schemes for time
inconsistent agents, and Englmaier and Wambach (2006) characterize the optimal contract for the
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on the one hand, but with no unifying approach provided how to determine a decision
maker’s reference point on the other hand, it is little surprising that all contributions
differ in this particular aspect. While Dittmann et al. (2007) posit that the reference
income is exogenously given by the previous year’s fixed wage, lantchev (2005), who
considers a market environment with multiple principals competing for the services of
multiple agents, applies the concept of Rayo and Becker (2007). Here, an agent’s reference
point is endogenously determined by the equilibrium conditions in the market. When
focusing on a particular principal-agent pair, however, both the principal and the agent
take the reference point as exogenously given. An exogenous reference point does not
always seem plausible. Starting out from the premise that the reference point is forward
looking and depends on the distributions of outcomes, as suggested by ample evidence,
De Meza and Webb (2007) consider both exogenous as well as endogenous formulations
of the reference point. Concluding that the disappointment concept of Gul (1991), which
equates the reference point with the certainty equivalent of the income distribution, does
yield some questionable implications,” De Meza and Webb propose that the reference
income is the median income. Giving a brief heuristic reasoning why this may be a
reasonable first pass, they argue that making the reference point equal to the median
income captures the idea that the agent incurs a loss at all incomes for which it is odds-
on that a higher income would be drawn. Taking median income as reference income,
however, suffers from the obvious drawback that it is discontinuous in the underlying
probability distribution.!® By weighting each gain or loss with the probability that it
actually occurs, the concept of reference-dependent preferences introduced by Készegi and
Rabin (2006) avoids this kind of discontinuity. With the reference point being determined
by the decision maker’s expectations about outcomes, this most recent approach pursues
the road most consistently that expectations matter in the determination of the reference
point.

All of the aforementioned contributions explore questions of both empirical importance
as well as theoretical interest: Dittmann et al. (2007) find that a loss-aversion model
dominates an equivalent risk-aversion model in explaining observed CEO compensation
contracts if the reference point is equal to the previous year’s fixed wage. Iantchev (2005)
finds evidence for his theoretically predicted results in panel data from Safelite Glass Cor-
poration. Last, by explaining why bonuses are paid for good performance rather than
penalties for poor performance, De Meza and Webb (2007) provide a theoretical under-
pinning for the frequent usage of option-like incentive schemes in CEO compensation.

The contractual form predicted by these papers, however, is rather complex: while the

case of an inequity averse agent in the sense of Fehr and Schmidt (1999). For a review of behavioral
economics of organizations see Camerer and Malmendier (2007).

9De Meza and Webb consider two otherwise identical agents who differ only in their degree of loss
aversion. They point out that with the certainty equivalent as reference point, there are situations
where the less loss-averse agent experiences a loss, but the more loss-averse agent does not.

0For example, suppose that with a probability of .51 a manager earns $1m and with a probability of .49
he earns $2m. With median income as reference point the manager will never suffer a loss because
his reference income is $1m. A small shift in probabilities, however, makes the median income equal
to $2m. Now, the agent suffers a loss in almost 50% of all cases.
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optimal contract typically displays a range where pay is independent of performance, for
performance above this range payment varies with performance in a fairly complex way,
depending crucially on the underlying distribution of signals. Theoretical predictions dif-
fer in whether or not the optimal contract includes punishment for very poor performance
or where in the wage schedule the optimal contract features discontinuities. Thus, none
of these papers provides a rationale for the prevalence of fairly simple contracts, bonus
contracts in particular.!!

To the best of our knowledge, Daido and Itoh (2007) is the only paper that also applies
the concept of reference dependence a la Koészegi and Rabin to a principal-agent setting.
The focus of Daido and Itoh, however, greatly differs from ours. Assuming that the
performance measure comprises of only two signals, two types of self-fulfilling prophecy
are explained, the Galatea and the Pygmalion effects.'?> While sufficient to capture these
two effects, the assumption of a binary measure of performance does not allow one to

inquire into the form that contracts take under moral hazard.

2 The Model

There are two parties, a principal and an agent.!> The principal offers a one-period
employment contract to the agent. If the agent accepts the contract, then he chooses an
effort level a € A = [0,1]. The agent’s action a equals the probability that the principal

receives a benefit B > 0. The principal’s expected net benefit is

T =aB — E[W],

where W is the compensation payment the principal pays to the agent.!4

The principal
is assumed to be risk and loss neutral, thus she maximizes 7. We wish to inquire into the
form that contracts take under moral hazard and loss aversion. Therefore, we focus on
the cost minimization problem to implement a certain action a € (0,1).'

The action choice a € A is private information of the agent and not observable for the
principal. Furthermore, it is assumed that the realization of B is not directly observable.
A possible interpretation is that B corresponds to a complex good whose quality cannot be
determined by a court, thus a contract cannot depend on the realization of B. Instead of

observing the agent’s action a or whether the benefit B was realized or not, the principal

"De Meza and Webb (2007) find conditions under which a simple bonus contract is optimal. For this
to be the case, however, they assume that the reference point is exogenously given and that all wage
payments are in the loss region, where the agent is assumed to be risk-loving.

12Roughly speaking, the former effect refers to empirical findings that an agent’s self-expectation about
his performance is an important determinant of his actual performance, whereas the latter effect refers
to the phenomenon that a principal’s expectation about the agent’s performance has an impact on
the agent’s actual performance.

13The model is similar to the one used by MacLeod (2003) to analyze subjective performance measures.
He does not discuss loss averse agents.

14The particular functional form of the principal’s profit function is not crucial for our analysis. We
assume this specific structure merely for illustrative purposes.

15The second-best action maximizes the principal’s expected benefit, aB, minus the minimum cost of
implementing action a. The overall optimal contract exhibits the same characteristics as the contract
that minimizes the cost of implementing an arbitrary action a.
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observes a contractible measure of performance, with s € & = {1,...,S5} being the
realization of the performance measure or the signal. Let S > 2. The probability of
observing signal s conditional on B being realized is denoted by v2. Accordingly, v~
is the probability of observing signal s conditional on B not being realized. With this
notation, the unconditional probability of observing signal s for a given action a is vs(a) =

ay + (1 — a)yL. For technical convenience, we make the following assumption.
Assumption (A1l): For all s,7 € S with s # T,

(i) YE/NE£1 (informative signals),

(ii) 0 <~yH /4L <00 (full support),
(iit) v vy #f [vr (different signals).

The assumption v /4L # 1 for any s is a technical assumption that holds generically.
It guarantees that any signal s is either a good or a bad signal, in the sense that the
overall probability of observing that signal unambiguously increases or decreases in a.
By assuming that 0 < vH /4L < oo for all s, the standard full support assumption is
satisfied, since for a € A, all signals occur with positive probability. Last, the assumption
Vi JyE £ yH [4E for all s # 7 ensures that the signals can unambiguously be ranked
according to the relative impact of an increase in effort on the probability of observing a
particular signal.!®

The contract which the principal offers to the agent consists of a payment for each
realization of the performance measure, {w,}>_, € RS.17

The agent is assumed to have reference-dependent preferences in the sense of Koszegi

and Rabin (2006): Overall utility from consuming @ = (z1,...,7rx) € RX — when having
reference level 7 = (r1,...,7x) € RE for each dimension of consumption — is given by
K K
v(xlr) =Y mp(z) + Y plm(z) — mi(re).
k=1 k=1

Put verbally, overall utility is assumed to have two components: consumption utility
and gain-loss utility. Consumption utility, also called intrinsic utility, from consuming
in dimension k is denoted by my(zg). How a person feels about gaining or losing in a
dimension is assumed to depend in a universal way on the changes in consumption utility
associated with such gains and losses. The universal gain-loss function p(-) satisfies the
assumptions imposed by Tversky and Kahneman (1991) on their “value function”.'® In
our model, the agent’s consumption space comprises of two dimensions, money income

(1 = W) and effort (z9 = a). The agent’s intrinsic utility for money is assumed to be a

'SFormally, for all a € [0,1], (v = ~F)/vs(a) > (WF —2F) /12 (a) <= AT /vE > A7 /4k.

17"The restriction w, € R for all s € S is standard in the principal-agent literature and also in accordance
with observed practice. In a later section, however, we comment on this assumption.

18Roughly speaking, u(z) is strictly increasing, continuous for all z, twice differentiable for all z # 0 with
1(0) = 0, convex over the range of losses, and concave over the range of gains. For a more formal
statement of these properties, see Bowman et al. (1999).
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strictly increasing, (weakly) concave, and unbounded function. Formally, m; (W) = u(W)
with «/(-) > e > 0, v”(-) < 0. The intrinsic disutility from exerting effort a € [0,1] is
a strictly increasing, strictly convex function of effort, mq(a) = —c(a) with /(1) > 0,
d'(-) > 0, (0) = 0, and lim,—; c(a) = co. We assume that the gain-loss function is

piece-wise linear,

x , forx>0

plx) = Ax, forx <0

The parameter \ characterizes the weight put on losses relative to gains.!® The weight
on gains is normalized to one. When A > 1, the agent is loss averse in the sense that
losses loom larger than equally-sized gains.?’ Last, the agent has an outside employment
opportunity (or reservation utility) yielding expected utility «.

Following K6szegi and Rabin (2006, 2007), the agent’s reference point is determined by
his rational expectations about outcomes. A given outcome is then evaluated by compar-
ing it to all possible outcomes, where each comparison is weighted with the probability
with which the alternative outcome occurs ex-ante. With the actual outcome being it-
self uncertain, the agent’s ex-ante expected utility is obtained by averaging over all these
comparisons.?! We apply the concept of choice-acclimating personal equilibrium (CPE)
as defined in Készegi and Rabin (2007), which assumes that a person correctly predicts
her choice set, the environment she faces, in particular the set of possible outcomes and
how the distribution of these outcomes depends on her decisions, and her own reaction to
this environment. The eponymous feature of CPE is that the agent’s reference point is
affected by his choice of action. As pointed out by Készegi and Rabin, CPE refers to the
analysis of risk preferences regarding outcomes that are resolved long after all decisions
are made. This environment seems well-suited for many principal-agent relationships. For
often the outcome or the return of a project becomes observable, and thus performance-
based wage compensation of the agent feasible, long after the agent finished working on
that project. Under CPE, the expectations relative to which a decision’s outcome is eval-

uated are formed at the moment when the decision is made, and therefore incorporate

19 Alternatively, one could assume that u(z) = nx for gains and p(x) = nAz for losses, where n > 0
can be interpreted as the weight attached to gain-loss utility relative to intrinsic utility. Our implicit
normalization 7 = 1 is without loss of generality due to the applied concept of choice-acclimating
personal equilibrium (CPE). Carrying n through the whole analysis would only replace (A — 1) by
(A — 1) in all formulas.

20The assumption of a piece-wise linear gain-loss function is not uncommon in the literature on incentive
design with loss averse agents, see De Meza and Webb (2007), Daido and Itoh (2007). In their
work on asset pricing, Barberis et al. (2001) also apply this particular functional form, reasoning
that “curvature is most relevant when choosing between prospects that involve only gains or between
prospects that involve only losses. For gambles that can lead to both gains and losses, |...] loss aversion
at the kink is far more important than the degree of curvature away from the kink.”

21Suppose the actual outcome x and the vector of reference levels r are distributed according to distribu-
tion functions F' and G, respectively. As introduced above, overall utility from two arbitrary vectors x
and 7 is given by v(x|r). With the reference point being distributed according to probability measure
G, the utility from a certain outcome is the average of how this outcome feels compared to all other
possible outcomes, U(xz|G) = f (z|r) dG(r). Last, with & being drawn according to probability
measure F, utility is given by E[U(F|G)] = [[v(x|r) dG(r) dF(z). Due to the applied equilibrium
concept, choice acclimating personal equilibrium, we will have F' = G.
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the implications of the decision. More precisely, suppose the agent chooses action a and
that signal s is observed. The agent receives wage w; and incurs effort cost ¢(a). While
the agent expected signal s to come up with probability ~s(a), with probability ~.(a)
he expected signal 7 # s to be observed. If w, > w,, the agent experiences a loss of
AMu(ws) — u(w;)), whereas if w, < wg, the agent experiences a gain of u(wy) — u(w,). If
ws = w,, there is no sensation of gaining or losing involved. The agent’s utility from this

particular outcome is given by

u(wg) + Y ve(@)(wwy) —u(w))+ Y (@) (u(w,) = u(w,)) - c(a).
{7|wr<ws} {T|wr>ws}

Averaging over all possible outcomes yields the agent’s expected utility from choosing

action a:

S

E[U(a)]=ZVS(a){U(ws) + Y wla)(ulw,) = ulw,))

s=1 {T|w-,<ws}

FY @A) - u(w»)} ~ cfa).

{rlwr>ws}

Note that since the agent’s expected and actual effort choice coincide, there is neither a
gain nor a loss in the effort dimension.
We conclude this section by briefly summarizing the underlying timing of the described

principal-agent relationship.
1) The principal makes a take-it-or-leave-it offer {w;}2_; to the agent.

2) The agent either accepts or rejects the contract. If the agent rejects the contract the
game ends and each party receives her/his reservation payoff. If the agent accepts

the contract the game moves to the next stage.

3) The agent chooses his action and forms rational expectations about the monetary
outcomes. The agent’s rational expectations about the realization of the perfor-

mance measure determine his reference point.

4) Both parties observe the realization of the performance measure and payments are

made according to the contract.

3 The Analysis

Let the inverse function of the agent’s intrinsic utility of money be h(-), i.e., h(-) := u™’.
Put differently, the monetary cost for the principal to offer the agent utility us is h(us) =
ws. Due to the assumptions imposed on wu(-), h(:) is a strictly increasing and weakly
convex function. Following Grossman and Hart (1983) we regard w = {uq,...,us} as
the principal’s control variables in her cost minimization problem to implement action

a € (0,1). The principal offers the agent a contract that specifies for each signal a
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monetary payment or, equivalently, an intrinsic utility level. With this notation the

agent’s expected utility from exerting effort a is given by

EU@] =Y v(a)u,—A=1)> > wla)r(a)ur —u,) = c(a). (1)

seS SES {T|ur>us}

From the above formulation of the agent’s utility it becomes clear that A\ captures not
only the weight put on losses relative to gains, but (A — 1) also characterizes the weight
put on gain-loss utility relative to intrinsic utility. Thus, for A < 2, the weight attached
to gain-loss utility is below the weight attached to intrinsic utility. Note that for A = 1
the agent’s expected utility equals expected net intrinsic utility. Thus, for A = 1 we are
in the standard case without loss aversion. For a given contract w, the agent’s marginal

utility of effort amounts to

EU'(a)] = (v = vF)u,

seS

—A=1) 0 Y @Ol =) + (@ = )] (ur = w) = ¢a). (2)

S€ES {7T|ur>us}

Suppose the principal wants to implement action @ € (0,1). The optimal contract mini-
mizes the expected wage payment to the agent subject to the usual incentive compatibility

and individual rationality constraints:

i S ( h S
nin Zv (a)h(us)

seS
subject to  E[U(a)] > u, (IR)
a € arg max E[U(a)] . (IC)

As a first benchmark consider the case where the agent’s action choice is observable and
contractible, i.e., the incentive constraint (IC) is absent. In order to implement action a
in this first-best situation, the principal pays the agent u® = @ + ¢(a) irrespective of the
realization of the performance measure if the agent chooses the desired action, thereby
compensating him for his outside option and his effort cost.

At this point we simplify the analysis by imposing two assumptions. These assumptions
are sufficient to guarantee that the principal’s cost minimization problem exhibits the
following two important properties. First, there are incentive-compatible wage contracts,
i.e., contracts under which it is optimal for the agent to choose the desired action a.
Existence of such contracts is not generally satisfied with the agent being loss averse.
Second, the first-order approach is valid, i.e., the incentive constraint to implement action
a can equivalently be represented as follows: E[U’(a)] = 0. The first assumption that we
introduce requires that the weight attached to gain-loss utility does not exceed the weight

put on intrinsic utility.

Assumption (A2): No dominance of gain-loss utility, A < 2.
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As carefully laid out in K6szegi and Rabin (2007), CPE implies a strong notion of risk
aversion, in the sense that a decision maker may choose stochastically dominated options
when A > 2/ i.e. when his weight attached to the impact of loss aversion exceeds the weight
attached to consumption utility.?? The reason is that, with losses looming larger than
gains of equal size, the person ex-ante expects to experience a net loss. In consequence,
if reducing the scope of possibly incuring a loss is the decision maker’s primary concern,
that person would rather give up the slim hope of experiencing a gain at all in order
to avoid the disappointment in case of not experiencing this gain. In our model, if the
agent is sufficiently loss averse, the principal may be unable to implement any action
a € (0,1). The reason is that the agent minimizes the ex-ante expected net loss by
choosing one of the two extreme actions. The values of A for which this behavior is
optimal for the agent crucially depend on the precise structure of the performance measure.
Assumption (A2) is sufficient, but by far not necessary, to ensure that there is a contract
such that a € (0,1) is incentive compatible. In Section 4, we relax Assumption (A2)
and discuss in detail the implications of A > 2 on the contractual arrangement. Though
calibrationally not inconsistent, the tendency to choose stochastically dominated options
seems counterintuitive.?? Next to ensuring existence of an incentive compatible contract,
(A2) rules out that our findings are driven by such counterintuitive behavior of the agent.

To keep the analysis tractable we impose the following assumption which ensures —
given (A2) holds — that the first-order approach is valid.?!

Assumption (A3): Convex marginal cost function, ¥ a € [0,1] : ¢"(a) > 0.

We want to emphazise that — given (A2) — Assumption (A3) is a sufficient but not neces-
sary condition for the first-order approach to be applicable. For the first-order approach
to be valid it would also suffice to have \ sufficiently small, or the slope of the marginal
cost function sufficiently steep. Our results require the validity of the first-order approach,
not that Assumption (A3) holds. In Section 4 we shed some more light on what happens

when the first-order approach is not valid.

Lemma 1: Given (Al)-(A3), the constraint set of the principal’s minimization problem

is non-empty for all a € (0,1).

Proof: See Appendix.

22Suppose a loss-averse person has to choose between two lotteries: lottery 1 pays x for sure; lottery 2
pays = +y with probability p, where y > 0, and x otherwise. Then, for each A\ > 2, the decision maker
prefers the dominated lottery 1 if p < (A —2)/(A — 1). For further details on this point, see K&szegi
and Rabin (2007).

23The “uncertainty effect” identified by Gneezy et al. (2006) refers to people valuing a risky prospect less
than its worst possible outcome. While this may be interpreted as experimental evidence for people
having preferences for stochastically dominated options, this finding crucially relies on the lottery
currency not being stated in purely monetary terms. Therefore, we believe that in the context of
wage contracts most people do not choose dominated options.

24The validity of the first-order approach under assumptions (A1)-(A3) is rigorously proven in the ap-
pendix. The reader should be aware, however, that the proof requires some notation introduced later
on. We therefore recommend to defer reading the proof until having read the preliminary considera-
tions up to Section 3.1.
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The above lemma states that there are wage contracts such that the agent is willing to
accept the contract and then chooses the desired action. Moreover, we will show that
a second-best optimal contract exists. This, however, is shown separately for the three
cases that are analyzed in this section.

Sometimes it will be convenient to state the constraints in terms of increases in intrinsic
utilities instead of absolute utilities. Note that whatever contract {is}ses the principal

offers, we can always relabel the signals such that this contract is equivalent to a contract

{us}5_, with us_; < u,forall s € {2,...,S}. This, in turn, allows us to write the contract
as uy = u; + ZT:Q b,, where b, = u, — u,_; > 0 is the increase in intrinsic utility for
money when signal 7 instead of signal 7 — 1 is observed. Let b = (bs,...,bg). Using this

notation allows us to rewrite the individual rationality constraint as follows:

u1+Zb [Z%d — ps(As A, d)] >u+c(a), (IR")

where
pa(3 ) = (A — 1) [i%@} [gw(d)] | 3)

Let p(4, A\, a) = (pa(F, A, @), ..., ps(F,A,a)). The first part of the agent’s utility, u; +
S L b(32°_ 4-(a)), is the expected intrinsic utility for money. Due to loss aversion,
however, the agent’s utility has a second negative component, the term ' p(%, A, a). Where
does this term come from? With bonus b, being paid to the agent whenever a signal higher
or equal to s is observed, the agent expects to receive b, with probability Zf:s v (@).
With probability Zf;ll ~i(@), however, a signal below s will be observed, and the agent
will not be paid bonus bs. Thus, with “probability” [ZT (@) 3252 7i(a)] the agent
experiences a loss of Ab,. Analogous reasoning implies that the agent will experience a
gain of b, with the same probability. With losses looming larger than gains of equal size,
in expectation the agent suffers from deviations from his reference point. This ex-ante
expected net loss is captured by the term, b'p(%, A, @), which we will refer to as the agent’s
“loss premium”.?> A crucial point is that the loss premium increases in the complexity
of the contract. When there is no wage differentiation at all, i.e., b = 0, then the loss
premium vanishes. If, in contrast, the contract specifies many different wage payments,
then the agent ex-ante considers a deviation from his reference point very likely. Put
differently, for each additional wage payment an extra negative term enters the agent’s

loss premium and therefore reduces his expected utility.26

250ur notion of the agent’s loss premium is highly related to the average self-distance of a lottery defined
by Készegi and Rabin (2007). Let D(u) be the average self-distance of incentive scheme u, then
[(A=1)/2]D(u) = ¥'p(%, A, a).

26 While the exact change of the loss premium from adding more and more wage payments is hard to
grasp, this point can heuristically be illustrated by considering the upper bound of the loss premium.
Suppose the principal sets n < S different wages. It is readily verified that the loss premium is
bounded from above by (A —1)[(ug — u1)/2] X [(n — 1)/n], and that this upper bound increases as n
increases. Note, however, that even for n — oo the upper bound of the loss premmium is finite.
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Given the first-order approach is valid, the incentive constraint can be rewritten as

S
Z bs 3, (ﬁ/v A, &) = C,(&)7 (IC,)

s=2

where we defined
Bs(§:A,a) = (Z(%{{ —vf)) [1 - (A=1) (i %(d))]
-(A—1) [Z %(&)] (i(%’{ -~ 75)) :

t=1
Here, f(,(-) is the marginal effect on incentives of an increase in the wage payments for
signals above s — 1. Without loss aversion, i.e., A = 1, this expression equals the marginal
probability of observing at least signal s. If the agent is loss averse, however, then the
absolute probability of observing at least signal s also plays a role in determining this
marginal effect. The reason is that the loss premium is a quadratic function of the
probability of observing at least signal s. Let B(%, A, a) = (B2(F, A, a), ..., Bs(H, A, a)).

As in the standard case, incentives are created solely by increases in intrinsic utilities, b.
In consequence, (IR') is binding in the optimum. If this was not the case, i.e., if b satisfies
(IC") but (IR') holds with strict inequality, then the principal can lower payment u; up
to the point where the (IR’) is satisfied with equality. Thus, reducing u; while holding b
constant lowers the principal’s expected wage payment while preserving incentives.

It is obvious that (IC’) can only be satisfied if there exists at least one 5 > 0. If, for
example, signals are ordered according to their likelihood ratios, then (,(-) > 0 for all

s = 2,...,5. More precisely, for a given ordering of signals, under (A2) the following

equivalence follows immediately from the fact that 3771 (v — ) = = 327 (41 — ~L):
s
B(A X\ a) >0 <= > (v =5 >0. (4)

3.1 Two Polar Cases: Pure Risk Aversion vs. Pure Loss Aversion

In this part of the paper we analyze the two polar cases: The standard case where the
agent is only risk averse but not loss averse, on the one hand, and the case of a loss averse

agent with a risk-neutral intrinsic utility function, on the other hand.

Pure Risk Aversion

First consider an agent who is risk-averse in the usual sense, i.e., h”(-) > 0, but does not
exhibit loss aversion. Though not immediately obvious, the latter requirement corresponds
to the case where A = 1. To see this, remember that the agent compares each outcome
with each possible other outcome. Thus the comparison of any two wages enters the

agent’s expected utility exactly twice, once as a loss and once as an equally-sized gain.
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For A = 1, the agent puts equal weights on gains and losses, so all these comparisons just

cancel out, and we are left with

With the agent not being loss averse, the first-order approach obviously is valid even
without Assumption (A3).

Proposition 1: Given (Al), h"(-) > 0, and X = 1. Then there exists a second-best
optimal contract to implement a € (0,1). The second-best contract has the property that

us # u, Vs, 7 €S and s # 7. Moreover, ugy > u, if and only if v2 /yE > 7 /yE.
Proof: See Appendix.

The result in Proposition 1 is not new, since it basically restates the well-known finding
by Holmstrom (1979): With the relative impact of a marginal increase in effort on observ-
ing a signal being increasing in the likelihood ratio v /4L when the agent is risk averse,
signals that are more indicative of higher effort are rewarded strictly higher. Things,

however, look completely different when the agent is not risk averse but loss averse.

Pure Loss Aversion

Having considered the polar case of pure risk aversion, we now turn to the other extreme,
a purely loss averse agent. Formally, intrinsic utility of money income is a linear function,
R"(-) = 0, and the agent is loss averse, A > 1. As we have already reasoned, whatever con-
tract the principal offers, relabeling the signals always allows us to represent this contract
as an (at least weakly) increasing intrinsic utility profile. Therefore we can decompose the
principal’s problem into two steps: first, for a given ordering of signals, choose a nonde-
creasing profile of intrinsic utility levels that implements the desired action a at minimum
cost; second, choose the signal ordering with the lowest cost of implementation. As we
know from the discussion at the end of the previous section, a necessary condition for an
upward-sloping incentive scheme to achieve incentive compatibility is that for the under-
lying signal ordering at least one (4(-) > 0. In what follows we restrict attention to the set
of signal orderings that are incentive feasible in the afore-mentioned sense. Nonemptiness
of this set follows immediately from Lemma 1.

Consider the first step of the principal’s problem, i.e., taking the ordering of signals as
given, find the nondecreasing payment scheme with the lowest cost of implementation.
In what follows, we write the agent’s intrinsic utility in terms of additional payments,
uy = uy +3.°_, by, With h(-) being linear, the principal’s objective function is C'(uy, b) =
u + 30 b3, 7-(a)). Remember that in the optimum, (IR') holds with equality.
Inserting (/R') into the principal’s objective allows us to write the cost minimization

problem for a given order of signals in the following simple way:



BonNN EcoN DiscussioN PAPER 16

PrROGRAM ML:

min  b'p(%, A, a)
belRf;l

subject to  b'B(F, A\, a) = (a) (IC)

The minimization problem (ML) has a simple intuition. The principal seeks to minimize
the agent’s expected net loss subject to the incentive compatibility constraint. Similar
to the case of pure risk aversion, where the principal would like to cut back the agent’s
risk premium, here she is interested in minimizing the agent’s loss premium. Due to the
incentive constraint, however, this loss premium has to be strictly positive.

It is important to realize that the principal’s cost minimization problem for a given
order of signals is a rather simple linear programming problem: minimize a linear objec-
tive function subject to one linear equality constraint. Since we restricted attention to
orderings of signals with Gs(-) > 0 for at least one signal s, a solution to (ML) exists. Due
to the linear nature of problem (ML), (generically) this solution sets exactly one by > 0
and all other by = 0. Put differently, the problem is to find that b, which creates incentives
at the lowest cost.

So far we have seen that, for a given ordering of signals, the principal considers it optimal
to offer the agent a bonus contract: pay a low wage for signals below some threshold, and
a high wage for signals above this threshold. What remains to do for the principal, in a
second step, is to find the signal ordering that leads to the lowest cost of implementation.
With the number of different orders of signals being finite, this problem clearly has a

solution.

Proposition 2: Given (A1)-(A3), h"(-) = 0 and A > 1. Then there exists a second-
best optimal contract to implement action a € (0,1). The second-best optimal incentive
scheme {u*}S_, entails a minimum of (wage) differentiation in the sense that u* = u};
for s € B* C S and u} = uj for s e S\ B*, where uj; > uj.

Proof: See Appendix.

According to Proposition 2, the principal considers it optimal to offer the agent a
bonus contract: the contract specifies a high wage u, = uj; for s € B* and a low wage
us = u} for s ¢ B*, where u} < u}.>" This endeavor to reduce the complexity of the
contract is plausible, since a high degree of wage differentiation increases the agent’s loss
premium: with the employment contract she offers to the agent, the principal determines
the dimensionality of the agent’s reference point. The higher the dimensionality of the

reference point is, the more likely it is that the agent incurs a loss in a particular dimension.

27 As is well-known, without loss aversion, a broad range of contracts — including simple bonus schemes —
is optimal when both the agent and the principal are risk neutral. If, in addition, the agent is protected
by limited liability, Park (1995) and Demougin and Fluet (1998) show that the optimal contract is a
bonus scheme. These findings, however, immediately collapse when the agent is somewhat risk averse.
Our findings, on the other hand, are robust towards introducing a slightly concave intrinsic utility
function, as we will illustrate in Section 3.2.



BonNN EcoN DiscussioN PAPER 17

Therefore, with the concept of reference-dependent preferences developed by Készegi and
Rabin (2006), it truly pains a person to be exposed to numerous potential outcomes. This
disutility of the agent from facing several possible (monetary) outcomes which he demands
for to be compensated, makes it costly for the principal to offer complex contracts. In
consequence, the optimal contract entails only a minimum of wage differentiation. To
provide a more intuitive explanation for this finding, consider a principal who — starting
out from a given wage scheme — has to improve incentives. There are basically two ways
to do so. On the one hand, the principal can introduce a new wage spread, i.e., pay
slightly different wages for two signals that were rewarded equally in the original wage
scheme, while keeping the differences between all other neighboring wages constant. On
the other hand, the principal can increase an existing wage spread, holding constant all
other spreads between neighboring wages. Both procedures increase the loss premium by
increasing the size of some of the the expected losses without reducing others. Introducing
a new wage spread, however, additionally increases the loss premium by increasing the ex
ante expected probability of experiencing a loss. Therefore, in order to improve incentives
for a loss averse agent, it is advantageous to increase a particular existing wage spread
without adding to the contractual complexity in the sense of increasing the number of
different wages. Under the standard notion of a risk averse agent, however, one should
not expect to encounter this tendency to reduce the complexitiy of contracts. The reason
is that increasing incentives by introducing a small new wage spread is basically costless
for the principal because locally the agent is risk neutral. Therefore, under risk aversion
different outcomes are rewarded differently.

Up to now, however, we have not specified which signals are generally included in the
set B*. In light of the above observation, the principal’s problem boils down to choosing
a binary partition of the set of signals, B C &, which characterizes for which signals the
agent receives the high wage and for which signals he receives the low wage. The wages
ur, and uy are then uniquely determined by the corresponding individual rationality and
incentive compatibility constraints. The problem of choosing the optimal partition of
signals, B*, which minimizes the principal’s expected cost of implementing action a is an
integer programming problem. As is typical for this class of problems, and as is nicely
illustrated by the well-known “0-1 Knapsack Problem”; it is not possible to provide a
general characterization of the solution. The “0-1 Knapsack Problem” refers to a hiker
who has to select from a group of items, all of which may be suitable for his trip, a
subset that has greatest value while not exceeding the capacity of his knapsack.?® In
order to highlight that it is not possible to provide a general answer which items should
be taken along, suppose that the hiker is close to exhausting his knapsack’s capacity.
Without further specifications, one cannot tell whether the hiker should take one last
relatively large item of high value, which possibly forces him to leave space unused, or

rather several small items that neatly fill the knapsack, but each of which is of only little

28 SQuppose there are n items, each item j has a value v; > 0 and a weight w; > 0. Let the capacity of
the knapsack be ¢ > 0. The 0-1 Knapsack Problem may be formulated as the following maximization
problem: max 7, vjz; subject to Y37, wjz; < cand x; € {0,1} for j =1,...,n.



BonNN EcoN DiscussioN PAPER 18

value.

Next to these standard intricacies of integer programming, there is an additional diffi-
culty in our model: the principal’s objective behaves non-monotonic when including an
additional signal into the “bonus set” B. This is due to different — possibly conflicting —
targets that the principal pursues when deciding how to partition the set S. From Pro-
gram ML it follows that, for a given “bonus set” B, the minimum cost of implementing

action @ is given by

C,(d)()\ — 1)PB(1 — pB)
D s =il = (A =11 - 2Pp)]

where Pg := > _s7s(a). The above costs can be rewritten such that the principal’s

Cp =1+ c(a) + (5)

problem amounts to
1 1 1

max >0 =) {)\—ngl—PB _FB+1—PB}' (6)
(A —1)Ps( )

seB

This objective function illustrates the tradeoff that the principal faces when deciding how
to partition the signal space. The first term, ZseB(fyf — L), is the aggregate marginal
impact of effort on the probability of the bonus b := uy — uy being paid out. In order
to create incentives for the agent, the principal would like to make this term as large as
possible. This can be achieved by including only good signals in B. The second term,
on the other hand, is maximized by making the probability of paying the agent the high
wage either as large as possible or as small as possible, depending on the exact signal
structure and the action which is to be implemented. Intuitively, by making the event
of paying the high wage very likely or unlikely, the principal minimizes the scope for the
agent to experience a loss that he demands to be compensated for. Depending on the
signal structure, these two goals may conflict with each other, which makes a complete
characterization of the optimal contract very intricate. Nevertheless, it can be shown that

the optimal contract displays the following very plausible property.

Proposition 3: Let ST = {s € S|y —~vF > 0}. The optimal partition of the signals for
which the high wage is paid, B*, has the following property: Either B* C St or ST C B*.

Proof: See Appendix.

Put verbally, the optimal partition of the signal set takes one of the two possible forms:
the high wage is paid out to the agent (i) either only for good signals though possibly
not for all good signals, or (ii) for all good signals and possibly a few bad signals as well.
Loosely speaking, if the principal considers it optimal to pay the high wage very rarely,
she will reward only good signals with the extra payment b. If, on the other hand, she
wants the agent to receive the high wage with high probability, then she will reward at
least all good signals.

Without further assumptions, due to the discrete nature of the problem it is hard to

characterize the signals that are included in B*. Back to the “0-1 Knapsack Problem”,
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here it is well-established for the continuous version of the problem that the solution can
easily be found by ordering the items according to their value-to-weight ratio.?? Even
though our problem is clearly more complex, we can obtain a similar result. Define
K= max{scs |Vs(a) —1(a)|. Assuming that k is sufficiently small makes the principal’s
problem of choosing B* similar to a continuous problem. With this assumption, we can

show that it is optimal to order the signals according to their likelihood ratios.

Proposition 4: Suppose k is sufficiently small, then there exists a constant K such that
B ={seS|v' /v =K}

Proof: See Appendix.

Before moving on to the discussion of the more general case where the agent is both
risk averse and loss averse, we would like to pause to point out an interesting comparative
static result.

Proposition 5: An increase in the agent’s degree of loss aversion (i) decreases the neces-
sary wage spread to implement action a if and only if Pg- > 1/2, given that the change in
A does not lead to a change of B*; (ii) strictly increases the minimum cost of implementing

action a.

Proof: See Appendix.

Part (i) of Proposition 5 relates to the reasoning by Készegi and Rabin (2006) that
if the agent is loss averse and expectations are the driving force in the determination
of the reference point, then “in principal-agent models, performance-contingent pay may
not only directly motivate the agent to work harder in pursuit of higher income, but
also indirectly motivate [him] by changing [his|] expected income and effort.” As can be
seen from (1), the agent’s expected utility under the second-best contract comprises of
two components, the first of which is expected net intrinsic utility from choosing effort
level a, ug + b*) 5. vs(a) — c(@). Due to loss aversion, however, there is a second
component: With expected losses looming larger than equally sized gains, in expectation
the agent suffers from deviations from his reference point. While the strength of this effect
is determined by the degree of the agent’s loss aversion, A, his action choice — together
with the signal parameters — determines the probability that such a deviation from the
reference point actually occurs. We refer to this probability, which is given by Pg«(1—Pg-+),
as loss probability. Therefore, when choosing his action, the agent has to balance off two
possibly conflicting targets, maximizing expected net intrinsic utility and minimizing the
loss probability. The loss probability, which is a strictly concave function of the agent’s
effort, is locally decreasing at a if and only if Pz > 1/2. In this case, an increase in A,
which makes reducing the loss probability more important, may lead to the agent choosing

a higher effort level, which in turn allows the principal to use lower-powered incentives.

29 In the continuous “0-1 Knapsack Problem” the constraints on the variables z; € {0,1} are relaxed to
x;j € [0,1]. The continuous problem was elegantly solved by Dantzig (1957).
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This probably is the effect Koszegi and Rabin had in mind when reasoning that under
loss aversion the agent’s motivation goes beyond pure monetary incentives. The principal,
however, is not able to benefit from the fact that an increase in the agent’s degree of loss
aversion may facilitate the creation of incentives. Even though an increase in A may allow
for implementation of a by means of a lower-powered incentive scheme, according to part
(ii) of Proposition 5, the overall cost of implementation strictly increases in the agent’s

degree of loss aversion.

3.2 The General Case: Loss Aversion and Risk Aversion

We now turn to the intermediate case where the agent is both risk averse and loss averse.
The agent’s intrinsic utility for money is a strictly increasing and strictly concave function,
ie, u'(-) > 0 and u”(-) < 0, which implies that h(-) is strictly increasing and strictly
convex. Moreover, the agent is loss averse, i.e., A > 1. From Lemma 1 we know that
the constraint set of the principal’s problem even in this general case is nonempty. By
relabeling signals, each contract can be interpreted as a contract that offers the agent a
(weakly) increasing intrinsic utility profile. This allows us to assess whether the agent
perceives receiving u, instead of u; as a gain or a loss. As in the case of pure loss aversion,
we analyze the optimal contract for a given feasible ordering of signals.

The principal’s problem for a given arrangement of the signals is given by:

ProGgrAM MG:

s
Jmin > a(a)h(us)
subject to
s S-1 S
D v@us— A =1 ya@)n(@)fue — us] —c(a) = u (IR¢)
S; s=1 t=s+
> (= b,
. S-1 S
A=) > @6 =) +n@0 =9)] [w—u]=d@)  (ICe)
s=1 t=s+1
Ug > Ug—1 = ... > U (OCq)

Note that the objective function is strictly convex and the constraints are all linear in
u = {uy,...,us}. Therefore, the Kuhn-Tucker theorem yields necessary and sufficient
conditions for optimality. Put differently, if there exists a solution to the problem (MG)
the solution is characterized by the partial derivatives of the Lagrangian associated with

(MG) set equal to zero.

Lemma 2: Given (Al)-(A3) and h"(-) > 0, there exists a second-best optimal incentive

scheme for implementing action a € (0,1), denoted w* = {uj, ..., u§}.
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Proof: See Appendix

In order to interpret the first-order conditions of the Lagrangian to problem (MG) it is

necessary to know whether the Lagrangian multipliers are positive or negative.

Lemma 3: The Lagrangian multipliers of program (MG) associated with the incentive
compatibility constraint and the individual rationality constraint are both strictly positive,

i.e., pre > 0 and prr > 0, respectively.

Proof: See Appendix

Having established the sign of these Lagrangian multipliers, we now give a heuristic
reasoning why pooling of information may well be optimal in this more general case where
the agent is both risk averse and loss averse. For the sake of argumentation, suppose there
is no pooling of information in the sense that it is optimal to set distinct wages for distinct
signals, then all the order constraints are slack. Formally, if u, # uy for all s,s’ € S and
s # §', then pop s = 0. In this case, i.e., when none of the ordering constraints is binding,
then the first-order condition of optimality with respect to ug, dL(w)/dus = 0, can be

written as follows:

h (u,) = mﬂmu 1—(A-1) 22% +7s(a) — 1
R 7s(a) g

~

Ul —.

— pre(A [2 + (v - vf)] - (7)

t=1
N J/
~

=:Ag
For A = 1 we have h/(u,) = H,, the standard “Holmstrém-formula”.3® Note that T’y > 0
for A < 2. More importantly, irrespective of the signal ordering, we have I'y > I';,;. The

third term, Ag, can be either positive or negative. If the compound signal of all signals
below s is a bad signal, then A, < 0.

Since the incentive scheme is nondecreasing, when the order constraints are not binding
it has to hold that h'(us) > h'(us—1). Thus, if pocs—1 = poc,s = poc,s+1 = 0 the following

inequality is satisfied:
Hs er_Asszfl XFS,1—AS,1. (8)

Even when Hy > H, i, as it is the case when signals are ordered according to their
likelihood ratio, it is not clear that inequality (8) is satisfied. In particular, when s and
s — 1 are good signals it seems to be likely that inequality (8) is violated, because then
Ay > Ag_1 and 'y < T'y_1. In summary, it may well be that for a given incentive-feasible
ordering of signals, and thus overall as well, the order constraints are binding, i.e., from
the principal’s point of view it may be optimal to offer a contract which is less complex
than the signal space allows for. We illustrate this conjecture in the following with an

example.

30 See Holmstrom (1979).
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Example:  Suppose h(u) = u", with » > 0 being a measure for the agent’s risk aversion.

More precisely, the Arrow-Pratt measure for relative risk aversion of the agent’s intrinsic
utility function is R =1 — % and therefore constant. First, we show for the case of this
intrinsic utility function of the CRRA type that the optimal contract is still a bonus

contract when the agent is not only loss averse, but also slightly risk averse.

Proposition 6: Given (Al)-(A3), h(u) = u" with r > 1, and A > 1. Generically, for r
sufficiently small the optimal incentive scheme {u*}S_, is a bonus scheme, i.c., u’ = u}y
for s € B* C S and u’ = uj for s € S\B* where uj < uj.

Proof: See Appendix

Next, we demonstrate that pooling of signals may well be optimal even for a non-
negligible degree of risk aversion. Suppose the agent’s effort cost are c¢(a) = (1/2)a* and

the effort level to be implemented is @ = 1. Moreover, we assume that the reservation

2
utility % = 10, which guarantees that all utility levels are positive.?! To keep the example
as simple as possible, it is assumed that the agent’s performance can take only three
values, i.e., the agent’s performance is either excellent (E), satisfactory (S) or inadequate
(I). We consider two specifications of the performance measure. In the first specification
the satisfactory signal is a good signal, whereas in the second specification it is a bad

signal. Formally, in the first specification the conditional probabilities take the following

values:
e =5/10 g = 1/10
78 = 4/10 75 = 3/10
vH =1/10 P =6/10 .

The structure of the optimal contract for this specification and various values of r and A

is presented in Table 1.

A
1.0 1.1 1.3 1.5

1.5 ur < U < Us

ur < Uz = Ug

U1 < Uy = Ug

U1 < Uy = Ug

U < U < us

U < up < ug

U1 < Uy = Ug

U < Uy = Ug

u < ug < usg

U < Uy < Ug

U1 < Uy = Ug

U1 < Uy = Ug

Table 1: Structure of the optimal contract with two “good” signals.

Table 1 suggests that the optimal contract typically involves pooling of the two good
signals, in particular when the agent’s intrinsic utility is not too concave, i.e., if the agent
is not too risk averse. Table 1 nicely illustrates the trade-off the principal faces when the

agent is both, risk and loss averse: If the agent becomes more risk averse pooling is less

31Tncreasing @ makes the agent less risk averse and thus is similar to a reduction in 7.
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likely to be optimal. If, on the other hand, he becomes more loss averse, pooling is more
likely to be optimal.?
In the second specification we assume that there are two bad signals. The conditional

probabilities are as follows:

e = 6/10 75 = 1/10
s = 2/10 s = 4/10
v =2/10 vk =5/10.

The results for this case are presented in Table 2.

A 1.0 1.1 1.3 1.5

1.5

u < ug < usg

U = Uz < Usg

Up = Uy < Ug

Up = Uy < Ug

u < ug < usg

U = Uz < Ug

Up = Uy < Ug

Up = Uy < Ug

ur < U < Ug

U = U < Ug

Uy = Uy < U3

Up = Uy < Ug

Table 2: Structure of the optimal contract with two “bad” signals.

In this specification, a binary statistic that pools the two bad signals seems to be optimal
almost always. The reason behind this observation is that the two bad signals are very
similar. In consequence, paying the same wage for satisfactory as well as inadequate
performance increases the risk premium only slightly. On the other hand, by pooling
satisfactory and inadequate performance it becomes less likely for the agent ex-ante to
experience a loss, i.e., the loss premium is reduced. Therefore, it is optimal for the

principal to use a bonus scheme even when the agent’s degree of loss aversion is small.

4 Implementation Problems, Turning a Blind Eye, and Stochastic Contracts

In this section we do not impose assumptions that guarantee the validity of the first-
order approach. In particular, in order to explore the implications of a higher degree of
loss aversion, we relax (A2). We restrict attention to two simplifications of the former
model. First, we return to the assumption of a purely loss averse agent. Second, only
binary measures of performance are considered. This latter assumption seems natural
in the light of the previous section: there it was shown that, when intrinsic utility is a
linear function and the agent’s degree of loss aversion is not too high, it is optimal for the

principal to construct a binary measure of performance by offering a bonus contract.

32For a given 7, the degree of pooling does not monotonically increase in A\. As discussed at the end of
Section 3.1, a higher degree of loss aversion of the agent may help the principal to create incentives.
If this is the case, a contract that contains less pooling is preferred from an incentive point of view.
If this positive effect of less pooling on incentives outweighs the negative effect on the agent’s loss
premium, then the optimal contract consists of more distinct wage payments when A increases. This
can, however happen only locally, that is, at some point the degree of pooling increases in .
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4.1 The Case of a Binary Measure of Performance

As before, the principal cannot observe the agent’s action a or whether the benefit B
was realized or not. Instead she observes a contractible binary measure of performance,
i.e., S = {1,2}. For notational convenience , let (1 — ) and v# denote the probabil-
ities of observing signal s = 1 and s = 2, respectively, conditional on B being realized.
Accordingly, (1 — %) and v* are the probabilities of observing signal s = 1 and s = 2,
respectively, conditional on B not being realized.?® Thus, the unconditional probability
of observing signal s = 2 for a given action a is y(a) = ay + (1 —a)yL. Let 4 = (vH,~%).

We reformulate (A1) for the binary case as follows.
Assumption (A4): 1>~ >~L>0 .

With only two possible signals to be observed, the contract takes the form of a bonus
contract: the agent is paid a base wage which yields intrinsic utility « if the bad signal
is observed, and he is paid the base wage plus a bonus b resulting in intrinsic utility
u + b if the good signal is observed. For now assume that b > 0.3% For expositional
purposes we assume that the agent’s intrinsic disutility of effort is a quadratic function,
c(a) = (k/2)a*.3® The agent’s expected utility from choosing effort level a then is
k

EU(a)] = u+y(a)b = 5a* = (A = Dy(a) (1 = ()b (9)
As before, the first component is expected net intrinsic utility from choosing effort level
a, that is, expected wage payment minus effort cost. The second component is the loss

premium, with v(a)(1 — v(a)) denoting the loss probability.

4.2 Invalidity of the First-Order Approach

The first derivative of expected utility with respect to effort is given by

E[U'(a)] = (4" =79)b[2 = A+ 29(a)(A = D)] - ka, . (10)
ME(a) MC(a)

While the marginal cost, MC/(a), obviously is a straight line through the origin with slope
k, the marginal benefit, M B(a), also is a positively sloped, linear function of effort a. An
increase in b unambiguously makes M B(a) steeper. Letting ao denote the intercept of

M B(a) with the horizontal axis, we have
A—2—29L(A—1)
2y =1 (A - 1)

The cases for ag < 0 and ag > 0 are depicted in Figures 1 and 2, respectively. Implemen-

ag =

tation problems in our sense refer to a situation where there are actions a € (0,1) that

are not incentive compatible for any bonus payment.

33In the notation introduced above, we have v =1 — yH Al = AH AL =1 — 4L and 4f = 4L
34The assumption b > 0 is made only for expositional purposes, the results hold true for b € R.

35This functional form does not fit exactly the assumptions on ¢(-) that we imposed above, but is made
for expositional convenience. Allowing for more general effort cost functions does not qualitatively
change the insights that are to be obtained.
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A MC(a) MB(a) A MB(a) MC(a)

> : >
> >

A~

agp a a ap g a

Figure 1: M B(a) and MC(a) for ag < 0.  Figure 2: M B(a) and MC(a) for ag > 0.

Proposition 7: Given (A4), effort level a € (0,1) is implementable if and only if ay < 0.
Proof: See Appendix.

Implementation problems arise when ag > 0, or equivalently, when v < 1/2 and
A > 2(1—~5)/(1—2vL) > 2. Somewhat surprisingly, this includes performance measures
with v% < 1/2 < ~#, which (possibly) are highly informative. Informative in this context
means that it is more likely to observe the bad signal if benefit B was not realized |,
whereas it is more likely to observe the good signal if B was realized. So, why do these
implementation problems arise in the first place? Remember that the agent has two
targets: First, as in classic models, he seeks to maximize net intrinsic utility, v 4+ by(a) —
(k/2)a*. When the agent cares only about this net intrinsic utility (e.g., he is loss neutral)
then each action can be implemented by choosing a sufficiently high bonus. Due to loss
aversion, however, the agent has a second target which is minimizing the expected loss.
How can the agent pursue this goal? He can do so by choosing an action such that the loss
probability, v(a)(1—~(a)), becomes small. The crucial point is that these two targets may
conflict with each other in the sense that an increase in effort may increase net intrinsic
utility but at the same time also increases the loss probability. First of all, note that
implementation problems never arise when v~ > 1/2 or A < 2. For 4L > 1/2, the loss
probability is strictly decreasing in the agent’s action. Consequently, with both targets
of the agent being aligned, an increase in the bonus unambiguously leads to an increase
in the agent’s action. For A < 2, the weight put on gain-loss utility, A\ — 1, is lower
than the weight put on intrinsic utility, so the agent is more interested in maximizing
net intrinsic utility than in minimizing the loss probability. With loss aversion being not
that important, an increase in the bonus therefore always leads to an increase in effort,
irrespective of whether the loss probability locally increases or decreases in the agent’s
action. For v < 1/2, on the other hand, implementation problems do arise when A is
sufficiently large. Roughly speaking, being sufficiently loss averse, the agent primarily
cares about reducing the loss probability. With the loss probability being inverted U-
shaped, the agent achieves this by choosing one of the two extreme actions a € {0, 1}.
Therefore, the principal cannot motivate the agent to choose an action a € (0,1) when

vl < 1/2 and the agent’s loss aversion is sufficiently severe.
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4.3 Turning a Blind Eye

As we have seen in the preceding analysis, the principal faces implementation problems
whenever ag > 0. Omne might wonder if there is a remedy for these implementation
problems. The answer is “yes”, there is a remedy, and in fact a surprisingly simple one.
The principal can manipulate the signal in her favor by not paying attention to the signal
from time to time but nevertheless paying the bonus in these cases. Formally, suppose the
principal commits herself to stochastically ignoring the signal with probability p € [0,1).3°
Thus, the overall probability of receiving the bonus is given by v(a;p) = p+ (1 — p)y(a).
This strategic ignorance of information gives rise to a transformed performance measure
A(p) = (v (p),v*(p)). As before, v (p) denotes the probability that the bonus is paid to
the agent conditional on benefit B being realized. Given that B is realized, this happens
either when the performance measure is ignored, or - if the principal pays attention to the
performance measure - when the good signal is realized. Hence, v (p) = p + (1 — p)y*.
Analogously, the probability of the bonus being paid out conditional on B not being
realized is given by v*(p) = p+ (1 —p)yL. As it turns out, ignoring the whole performance
measure with probability p is formally equivalent to ignoring only the bad signal with
probability p.3” For this reason, we refer to the principal not paying attention to the
performance measure as turning a blind eye on bad performance of the agent. It is readily
verified that under the transformed performance measure 4(p) the intercept of the M B(a)
function with the horizontal axis,
A=2=-2[p+(1-pn](r-1)

a0(p) = 21 =p)(vH =) (A=1) 7

not only is decreasing in p but also can be made arbitrarily small, in particular, arbitrarily

negative. Formally, dag(p)/dp < 0 and lim,_,; ap(p) = —oo. In the light of Proposition
7 this immediately implies that the principal can eliminate any implementation problems
by choosing p sufficiently high, that is, by turning a blind eye sufficiently often.

Besides alleviating possible implementation problems, turning a blind eye on the bad
signal can also benefit the principal from a cost perspective. Using the definition of
~(a;p) it can be shown that the minimum cost of implementation of action @ under the
transformed performance measure, C'(a;p), takes the following form:

k.o ka(A—1)(1 —~(a)) (@) +p(1 —y(a))

Clasn) =T+ 5 + == e e e . Y

Differentiating the principal’s cost with respect to p reveals that sign{dC(a;p)/dp} =

sign{2 — A\}. Hence, an increase in the probability of ignoring the bad signal decreases the

cost of implementing a certain action if and only if A > 2. Hence, whenever the principal

36 Always ignoring the signal, i.e., setting p = 1, would be detrimental for incentives because then the
agent’s monetary payoff is independent of his action. Hence, he would choose the least cost action
a = 0. Therefore, we a priori restrict the principal to choose p from the interval [0, 1).

37In this latter case, the agent receives the bonus either when the good signal is observed, which happens
with probability v(a), or when the bad signal is observed but is ignored, which happens with probabil-
ity (1—~(a))p. Hence, the overall probability of the bonus being paid out is given by v(a)+(1—~(a))p.
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turns a blind eye in order to remedy implementation problems, he will do so to the largest

possible extent.?®3? We summarize the preceding analysis in the following proposition.

Proposition 8: Suppose the principal can commit herself to stochastic ignorance of the
signal. Then each action a € [0,1] can be implemented. Moreover, the implementation

costs are strictly decreasing in p if and only if A > 2.
Proof: See Appendix.

We restricted the principal to offer non-stochastic payments conditional on which signal
is observed. If the principal was able to do just that, then he could remedy implementation
problems by paying the base wage plus a lottery in the case of the bad signal. For instance,
when the lottery yields b with probability p and zero otherwise, this is just the same as
turning a blind eye.?® This observation suggests that the principal may benefit from
offering a contract that includes randomization, which is in contrast to the finding under

conventional risk aversion in Holmstrém (1979).4!

4.4 Blackwell Revisited

We conclude this section by briefly pointing out an interesting implication of the above
analysis. Suppose the principal has no access to a randomization device, i.e., turning a
blind eye is not possible. Then the above considerations allow a straight-forward compar-
ison of performance measures ¢ = (¢, ¢F) and 4 = (v, +%) if ¢ is a convex combination
of ¥and 1 = (1,1).

Corollary 1: Let ¢ = pl + (1 — p)y with p € (0,1). Then the principal at least weakly

prefers performance measure é to A if and only if A > 2.
Proof: See Appendix.

The finding that the principal prefers the “garbled” performance measure é’ over per-
formance measure 4 is at odds with Blackwell’s theorem. To see this, let performance

measures 4 and f be characterized, respectively, by the stochastic matrices

1 — H H 1— H H
P, = 7o) amd Pe= <<
e 1-¢ ¢

38Formally, for A > 2, the solution to the principal’s problem of choosing the optimal probability to turn
a blind eye, p*, is not well defined because p* — 1. If the agent is subject to limited liability or there
is a cost of ignorance, however, the optimal probability of turning a blind eye is well defined.

39This is in the spirit of Becker and Stigler (1974), who show that despite a small detection probability
of malfeasance, incentives can be maintained if the punishment is sufficiently severe.

40In this case, the agent receives the bonus when the good signal is observed, which happens with
probability 7(a), or when the bad signal is observed and the realization of the lottery is b, which
happens with probability (1 — «(a))p. Hence, the overall probability of the bonus being paid out is
given by v(a) + (1 — y(a))p, which is nothing but y(a;p) from turning a blind eye on the bad signal.

4IThe finding that stochastic contracts may be optimal is not novel to the principal-agent literature.
Haller (1985) shows that in the case of a satisficing agent, who wants to achieve certain aspiration
levels of income with certain probabilities, randomization may pay for the principal. Moreover, Strausz
(2006) finds that deterministic contracts may be suboptimal in a screening context.
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According to Blackwell’s theorem, any decision maker prefers information system 4 to é’
if and only if there exists a non-negative stochastic matrix M with ;m4; = 1 such that
P, = P,M.* Tt is readily verified that this matrix M exists and takes the form

M:(l_pp).
0 1

Thus, even though comparison of the two performance measures according to Blackwell’s
theorem implies that the principal should prefer 4 over 6 , the principal actually prefers the
“garbled” information system ¢ over information system 4. While Kim (1995) has already
shown that the necessary part of Blackwell’s theorem does not hold in the agency model,
the sufficiency part was proven to be applicable to the agency framework by Gjesdal
(1982).%30ur findings, however, show that this is not the case anymore when the agent is

loss averse.

5 Robustness, Extensions and Concluding Remarks

In this paper we explore the implications of reference-dependent preferences on contract
design in an otherwise standard model of principal-agency. We find that introducing
loss aversion on the agent’s side leads to a reduction in the complexity of the optimal
contractual arrangement. In the extreme case of a purely loss averse agent, the optimal
contract takes the form of a simple bonus contract: some realizations of the performance
measure are rewarded with a bonus payment, while others are not. Thus, loss aversion
provides a theoretical rationale for bonus contracts, the wide application of which is hard
to reconcile with obvious drawbacks — as seasonality effects or insurance fraud — that come
along with this particular contractual form.

In the rest of the section we consider the robustness of our results. After a brief and
semi-formal analysis of an alternative equilibrium concept, we explore the consequences
of nonquadratic effort costs for implementation problems. Finally, we conclude by dis-
cussing diminishing sensitivity of the gain-loss function. Throughout the whole analysis
we adopted the concept of choice-acclimating personal equilibrium (CPE). As already
pointed out in Section 2, for higher degrees of loss aversion this concept has the question-
able property that a decision maker may prefer stochastically dominated options. Kdoszegi
and Rabin (2006, 2007) provide another concept, called unacclimating personal equilib-
rium (UPE), under which such behavior cannot occur. The major difference between UPE
and CPE is the timing of expectation formation and actual decision making. Under UPE
a decision maker first forms his expectations, which determine his reference point, and
thereafter, given these expectations, chooses the optimal action. To rule out that people

can systematically cheat themselves, for action a to be an UPE, it must be optimal for

42G8ee Blackwell (1951, 1953).

43Tn order to avoid confusion: The necessary part of Blackwell’s theorem states that the principal being
better off implies that she uses a more informative performance measure. The sufficiency part con-
versely states that making use of more informative performance measure implies that the principal is
better off.
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the decision maker to choose a given that he expected to do so. In the following we will
argue that applying UPE instead of CPE does not change our main findings. For the sake
of argumentation, consider the case of a purely loss averse agent, i.e., intrinsic utility is

linear. The agent’s ex-ante expected utility from choosing action a when expecting action

S s—1 S
E[U(ala)] =Y 7s(a) [us+ Z%‘(&)(Us —ug) = A Y (@) (u - uy)

—c(a) + p(c(a) — cfa)) .

On the equilibrium path expectation and actual action coincide. Therefore, the agent’s ex-
ante expected utility, and in consequence the individual rationality constraint, takes the
same form under both equilibrium concepts, CPE and UPE. The incentive compatibility
constraint, on the other hand, depends on the applied equilibrium concept. Given the

agent expected to choose a, his marginal utility from choosing a is

S S s—1
B[U'(ala)] = D (0" = Yus + D0 D (@) (" = ) (s — wy)
N s s
=23 Z @) (v =5 (= ug) — ¢ (a) + 1 (c(a) — c(a)) -

Note that either p/(-) = 1 or ¢/(-) = A, depending on whether a is greater or lower
than a. Even though E[U(ala)] is a strictly concave function in the agent’s actual action
choice a for all values of A > 1, under UPE there arises the problem of multiplicity of
equilibria. More precisely, for a given incentive scheme wu, there exists a range of actions
a € [a(u),a(u)] all of which constitute a UPE. This problem can easily be circumvented by
assuming that the agent chooses the highest action which constitutes a UPE. In this case,
there is no need to impose additional assumptions on the cost function or to assume that A

1‘44

is sufficiently small.** By imposing this alternative assumption the incentive compatibility

constraint can be rewritten as

S s s—1 s s—1
> o, { (Z(%H - 75)) (1 + Zw(@) — A <Z %(@) (Z(%H - vf)) } = 2¢(a) .
5=2 t=s j=1 t=s j=1
Clearly, the incentive compatibility constraint is a linear constraint in the bonus payments
b = (by,...,bs). Thus, our bonus contract result is robust with respect to this change of
Assumptions (A2) and (A3).

There is another way to resolve the multiplicity problem under UPE. Ko6szegi and

Rabin (2006, 2007) define a preferred personal equilibrium (PPE) as a decision maker’s

4For given expectations a, let EU, and EU; denote the agent’s expected utility given that p(z) = z
and p(x) = Az, respectively. Both EU, and EU; are strictly concave functions, with EU, achieving
its maximum at a strictly higher action than EU;. EU, and EU,; intersect at a. Action a is an UPE
if it lies between the maximizing actions of EU, and EU,;. Therefore, expecting to choose the action
which maximizes EU, not only constitutes an UPE, but also is the highest possible UPE.
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ex-ante favorite plan among those plans he actually will follow through. Put differently,
given incentive scheme w, the agent chooses the action af’?¥ € [a(u), a(u)] that maximizes
expected utility among those actions that constitute a UPE. If for all incentive-compatible
incentive schemes we have a””F € (a(u), a(u)) then PPE and CPE coincide, i.e., a”"F is
determined by the first-order condition that characterizes the agent’s action under CPE.
Thus, by imposing the PPE-analogue of (A2) and (A3) we can derive results identical to
those under CPE. If a"? € {a(u),a(wu)} for all incentive-compatible incentive schemes,
the optimal contract also is a bonus contract since both boundary actions are determined
by functions linear in b = (b, . .., bs).*®> In the intermediate case, however, where a”’tF €
(a(u),a(u)) for some incentive-compatible incentive schemes but a??* € {a(u),a(u)} for
others, the optimal contract is not necessarily a bonus scheme.

If the agent’s action is characterized by PPE, for all actions a € (0,1) to be imple-
mentable we still need the assumption that A\ is not too high. Put differently, imple-
mentation problems as discussed in Section 4 also arise under PPE. Compared to CPE,
however, these implementation problems are less severe. For instance, actions close to
zero are always implementable under PPE.

For the discussion of implementation problems in Section 4, we restricted attention to
quadratic effort costs. The finding that implementation problems are an important issue,
however, holds true for a wide variety of cost functions. Depending on the particular
functional form of the corresponding marginal costs, these implementation problems may
be more or less severe. For instance, the result that there are implementation problems
if ag > 0 holds true for all strictly increasing and strictly convex cost functions with
d(0) = 0. As for strictly concave marginal costs with ¢/(0) = 0, no action a € (0,1) is
implementable if ag > 0; and even for ay < 0 there may be actions, in particular actions
close to 1, that are not implementable.

Moreover, we kept the whole analysis simple by ignoring diminishing sensitivity, that
is, by considering a piece-wise linear gain-loss function. A more general gain-loss function
makes the analysis by far more complicated: Both the incentive compatibility constraint
and the individual rationality constraint are no longer linear functions in the intrinsic
utility levels, and thus the Kuhn-Tucker conditions are not necessarily sufficient. Nev-
ertheless, we expect that a reduction in the complexity of the contract may benefit the
principal in this case as well. Diminishing sensitivity of the agent’s utility implies that
the sum of two net losses of two monetary outcomes exceeds the net loss of the sum of
these two monetary outcomes. Therefore, in addition to the effects discussed in the paper,
under diminishing sensitivity there is another channel through which melting two bonus
payments into one “big” bonus affects, and in tendency reduces, the agent’s expected net
loss. There is, however, an argument running counter to this intuition. As we have shown,
loss aversion may help the principal to create incentives. Therefore, setting many different

wage payments, and thereby — in a sense — creating many kinks, proximity to which the

4The case of a’PF = a(u) corresponds to the alternative assumption to (A2) discussed above. If

aPE = g(u), on the other hand, then a”’*? maximizes EUj, as defined in the previous footnote.
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agent strongly dislikes under diminishing sensitivity, may have favorable incentive effects.
Exploring the effects of diminishing sensitivity in a principal-agent relationship with moral

hazard is therefore an open question for future research.

A Appendix: Proofs of Propositions and Lemmas

Proof of Lemma 1
Suppose that signals are ordered according to their likelihood ratio, that is, s > s if and

only if v /L > 45 /~L Consider a contract of the form

U if s<&§
Us = . A )
u+b if s>3
where b > 0 and 1 < § < S. Under this contractual form and given that the first-order

approach is valid, (IC) can be rewritten as
S 51
b{ [Z(Vf - %L)] (1 —(A-1) Z%(&)>
5—1 s
-(A-1) (Z(%H - vL)> (Z %(&)) } = (a).

s=1 5=3§
Since signals are ordered according to their likelihood ratio, we have 3% (v —~L) > 0
and 32571 (7H —~%) < 0 for all 1 < § < S. This implies that the term in curly brackets

is strictly positive for A < 2. Hence, with ¢/(a) > 0, b can alway be chosen such that (IC)

is met. Rearranging the participation constraint,

S §—1
u>u+c(a) —b (Z Ma)) [1 —(A—1) (Z Ma))] :

reveals that (IR) can be satisfied for any b by choosing u appropriately. This concludes
the proof. ®

Proof of Proposition 1

It is readily verified that Assumptions 1-3 from Grossman and Hart (1983) are satisfied.
Thus, the cost-minimization problem is well defined, in the sense that for each action
a € (0,1) there exists a second-best incentive scheme. Suppose the principal wants to
implement action @ € (0,1) at minimum cost. Since the agent’s action is not observable,

the principal’s problem is given by

min Y y.(@)h(us) (MR)



BonNN EcoN DiscussioN PAPER 32

subject to
S
> (@), —c(a) >, (IRz)
s=1
S
> (v =Abyu,— @) =0. (ICR)
s=1

where the first constraint is the individual rationality constraint and the second is the
incentive compatibility constraint. Note that the first-order approach is valid, since the
agent’s expected utility is a strictly concave function of his effort. The Lagrangian to the

resulting problem is

S

S S
L= v(@h(us) = o {Z%(a)us —c(a) - U} ~ {Z(%H — 7 Jus — C’(a)} :

s=1 s=1

where po and p; denote the Lagrange multipliers of the individual rationality constraint
and the incentive compatibility constraint, respectively. Setting the partial derivative of

L with respect to ws equal to zero yields

oL ~H _ AL
— 0 h/ s — S S
9. — h'(us) = po+ ul—%(d) ;

Irrespective of the value of py, if p13 > 0, convexity of h(-) implies that us > uy if and only

Vs e S. (A.1)

if (7" =) /vs(@) > (v —~%)/7(a), which in turn is equivalent to 77 /vy > v /5.
Thus it remains to show that p is strictly positive. Suppose, in contradiction, that p; < 0.
Consider the case j; = 0 first. From (A.1) it follows that u, = u/ for all s € S, where
ul satisfies h'(u') = po. This, however, violates (ICR), a contradiction. Next, consider
p < 0. From (A.1) it follows that u, < uy if and only if (v —~EF) /~vs(a) > (vH—~E5) /7w (a).
Let ST = {s]y? -+ >0}, S = {sh# — L <0}, and @ = min{u,|s € S~}. Since

@ > ug for all s € ST, we have

S
S O =A== P u+ ) (v = by
s=1 S— S+
< (W =Aha+ ) (v - 4ba
S— S+
S
=iy (=)
s=1
— 0’

again a contradiction to (ICg). Hence, py > 0 and the desired result follows. B

Proof of Proposition 2
The problem of finding the optimal contract w* to implement action a € (0,1) is de-

composed into two subproblems. First, for a given incentive feasible ordering of signals,
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we derive the optimal nondecreasing incentive scheme that implements action a € (0, 1).
Then, in a second step, we choose the ordering of signals for which the ordering specific
cost of implementation is lowest.

Step 1: Remember that the ordering of signals is incentive feasible if G4(-) > 0 for
at least one signal s. For a given incentive feasible ordering of signals, in this first step
we solve Program ML. First, note that it is optimal to set by = 0 if Gs(-) < 0. To see
this, suppose, in contradiction, that in the optimum (IC’) holds and bs > 0 for some
signal s with Gs(-) < 0. If Bs(-) = 0, then setting b; = 0 leaves (IC’) unchanged, but
leads to a lower value of the objective function of Program ML, contradicting that the
original contract is optimal. If f4(-) < 0, then setting bs = 0 not only reduces the value of
the objective function, but also relaxes (IC’), which in turn allows to lower other bonus
payments, thereby lowering the value of the objective function even further. Again, a
contradiction to the original contract being optimal. Let Sg = {s € S|fs(-) > 0} denote
the set of signals for which f,(-) is strictly positive under the considered ordering of
signals, and let Sz denote the number of elements in this set. Thus, Program (ML) can

be rewritten as

ProGrAM ML™:

subject to (i) Y buBu(4, A, a) = c/(a) (ICH)

SESB

(ii) by >0, VseSs.

Program ML™ is a linear programming problem. It is well-known that if a linear program-
ming problem has a solution, it must have a solution at an extreme point of the constraint
set. Generically, there is a unique solution and this solution is an extreme point. Since the
constraint set of Program ML*, M = {{bs}scs, € R“_gﬂ D ses, UsBs(§, A, a) = (@)}, is

closed and bounded, Program ML™ has a solution. Hence ) bsps(%, A, a) achieves its

s€S,
greatest lower bound at one of the extreme points of M. With /\fl describing a hyperplane
in Rff , all extreme points of M are characterized by the following property: by > 0 for
exactly one signal s € Sz and by = 0 for all ¢t € S, t # s. It remains to determine for
which signal the bonus is set strictly positive. The size of the bonus payment, which is
set strictly positive, is uniquely determined by (IC*):

bR M) = (@) = b= D (A2)

B:(¥, A, a)

Therefore, from the objective function of Program ML™ it follows that, for the signal
ordering under consideration, the optimal signal for which the bonus is set strictly positive,
3, is characterized by
c(a)

1 5 7~ \ ~\Ms A7)\7d .
s€5p 68(’77/\7a)p <7 )
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Step 2: From all incentive feasible signal orders, the principal chooses the one which
minimizes her cost of implementation. With the number of incentive feasible signal orders

being finite, this problem clearly has a solution. Let s* denote the resulting cutoff, i.e.,
. u* it s<s”
Us = * * : *
u*+b" if s>s

where b* = (a)/fs (%, \,a) and u* = u + c(a) — b* [Zf:s* V(@) — pse (A, A, &)] Letting
u; =u, uly =u*+ 0", and B* = {s € S|s > s*} establishes the desired result. B

Proof of Proposition 3
B* maximizes X (B) := [>  s(vF —1E)] x Y(Pg), where

1 1 1
(A= 1) Ps(1—Ps) Ps  1—Ps’

Y(PB) =

Suppose for the moment that Pg is a continuous decision variable. Accordingly,

dY (Pg) 1
dPs  P3(1— Pg)?

92—
2P + A—_)l\(QPB —1) . (A.3)

It is readily verified that dY (Pg)/dPs < 0 for 0 < Pg < P()\) and dY (Pg)/dPs > 0 for
P(\) < Ps < 1, where

p()\)z)\—2+\/)\(2—>\)‘

2\ — 1)

Note that for A < 2 the critical value P(\) € [0,1/2). Hence, excluding a signal of
B increases Y (Pg) if Pg < P()\), whereas including a signal to B increases Y (Pg) if
Ps > P()\). With these insights the next two implications follow immediately.

(i) Pg- < P(\) = B*C St
(ii) Pg- > P(\) = St C B

We prove both statements in turn by contradiction. (i) Suppose Pg- < P(A) and that there
exists a signal § € S~ which is also contained in B*, i.e., § € B*. Clearly, > 5. (77 —7L) <
ZSQB*\{é}@f—VSL) because § is a bad signal. Moreover, Y (B*) < Y (B*\{5}) because Y ()
increases when signals are excluded of B*. Thus X (B*) < X(B*\{s}), a contradiction to
the assumption that B* is the optimal partition. (ii) Suppose Pg- > P()) and that there
exists a signal § € S that is not contained in B*, i.e., B*N{§} = (). Since § is a good signal
Dsen (W =) < Xsepus (0 = %) Ps- > P()) implies that Y/(B* U {3}) > Y/(B).
Thus, X(B*) < X(B*U{5}) a contradiction to the assumption that B* maximizes X (5*).

Finally, since for any B* we are either in case (i) or in case (ii), the desired result follows. B

Proof of Proposition 4

Suppose, in contradiction, that in the optimum there are signals s,t € S such that s € B*,

t ¢ B* and WZZJ)L < vi(—&v)f' We derive a contradiction by showing that exchanging signal
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s for signal t reduces the principal’s cost, which implies that the original contract cannot
be optimal. Let B = (B*\ {s}) U {t}.It suffices to show that X (B) > X (B*), where X (B)
is defined as in the proof of Proposition 3. X (B) > X (B*) is equivalent to

(Z(vf—vf)ﬂvf—vf) —(75—75)) [1_@_)1)(1_2]3’;)} >

jeB (A—=1)Ps(1 — Pg)
(e ) [t ]
Rearranging yields
(v =) = (v =A5)] {1& (_Al_ﬂig — ;];f)}
(o) [frpau=n 10 b2,

With Y (Pg) being defined as in the proof of Proposition 3, we have to consider two cases,
(i) dY (Pg.)/Ps > 0, and (i) dY (Ps-)/Ps < 0.

Case (i): Since v5(a) — v(a) < k, we have Pg- < Pg+ k. With Y (Pg) being (weakly)
increasing at Pp-, inequality (A.4) is least likely to hold for Pz« = Pg + k. Inserting
Pg- = Pz + r into (A.4) yields

(" =) = (V=48] {1(_ L _);)8:?3:;3)
1

v (A~ 1)(1— 2P; — 2%) - (A—1)(1-2Py)
(ZW ‘””) {u—nwgu— Pg) + w(1—2Pg)] —r2 (A~ 1)Pg(1— Pp)

jeB*
(A.5)

The right-hand side of (A.5) becomes arbitrarily close to zero for  — 0, thus it remains
to show that

1-(A

68 =) = Gl =) |- =2
- 17

(1—Pg)

>0. (A.6)

For (A.6) to hold, we must have (v —~L) — (v —~E) > 0. From the proof of Proposition
3 we know that St C B* if Y(Pg) is increasing at B*. Since the principal will end up
including all good signals in the set B* anyway, the question of interest is whether she
can benefit from swapping two bad signals. Therefore, we consider case s,t € S, where
S™ ={se S — L <0}. With s, € S, we have

H L\ (. H _L a N 1%H_%L_ 1 VE_VS,L
[(7t %t) (73 Vs )} zfyt( )75( ) f)/s(d) 'Yt(d) ’}/S(d>+li 73(@) ) (A7)

where the inequality holds because (@) —vs(a) < k. Note that for K — 0 the right-hand
side of (A.7) becomes strictly positive, thus (v/7 —~vF) — (v — L) > 0 for kK — 0. Hence,
for k sufficiently small, X (B*) < X(B), a contradiction to B* being optimal.
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Case (ii): Since y(a) —vs(a) < K, we have Pg- > Pg—r. With Y (Pg) being decreasing
at Pg-, inequality (A.4) is least likely to hold for Pg« = Pg—k. Inserting Pg« = Pg—k into
(A.4), and running along the lines of case (i) allows us to establish that, for x sufficiently
small, X(B*) < X(B), a contradiction to B* being optimal.

To sum up, for x sufficiently small we have

max {0 = 7)/7%(@)} < min{(%" —)/%(@)}

or equivalently,

Jnax {7,'/7,} <min{y"/%7

Letting K = mingep- {7 /7L} establishes the desired result. W

Proof of Proposition 5
(i) Suppose that a small change in A leaves the optimal partition B* of the set of all signals
unchanged. Rearranging (IC’) yields

= ¢(a)
" e (VT =) = A= 1) [Saese (0 =75 [1 - 2Ps-]” (A.8)

Straight-forward differentiation reveals that
v (@) [ yep (Y =25 1 — 2Pg:]
A S (0 =70 = (A= 1) [Soew (0 = 5] [L - 2P}
Since under the second-best contract Y . (v —~%) > 0, the desired result follows.
(ii) Let BT = {B C S| X, cs(7 —~F) > 0}. For any B € B, let
c(a)

s =98 = (A= 1) [Eeg (v = v5)] [L — 2Py]

b =

and
U = U+ C(d) — bBPB + ()\ — 1)P3<1 — PB)bB'
The cost of implementing action @ when paying wug for signals in S\ B and ug + by for
signals in B is given by
(@)X —=1)Ps(1 - Pg)

[ses(V =) 1= (A =1)(1 —2P3)]
Differentiation of Cz with respect to A yields

ng . C/(&)(A — 1)PZ§<1 — PB)

dA [0 —ab)] 1= (A= 1)(1 - 2P))"

Obviously, dCg/d\ > 0 for all B € B*. Since the optimal partition of S may change as A

Csz = uz+bzgPs = u+cla)+

(A.9)

changes, the minimum cost of implementing action a is given by

C(a) = érel}gri Cp.
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Put differently, C'(a) is the lower envelope of all Cj for B € B*. With Cp being continuous
and strictly increasing in A for all B € B*, it follows that also C'(a) is continuous and

strictly increasing in A\. This completes the proof. B

Proof of Lemma 2

We show that program (MG) has a solution, i.e., 25:1 vs(@)h(us) achieves its greatest
lower bound. First, from Lemma 1 we know that the constraint set of program (MG) is
not empty for action @ € (0,1). Next, note that from (IRg) it follows that 3% ,(a)u,
is bounded below. Following the reasoning in the proof of Proposition 1 of Grossman
and Hart (1983), we can artificially bound the constraint set — roughly spoken because
unbounded sequences in the constraint set make Zle vs(@)h(us) tend to infinity by a
result from Bertsekas (1974). Since the constraint set is closed, the existence of a minimum

follows from Weierstrass’ theorem. B

Proof of Lemma 3

Since (IRg) will always be satisfied with equality due to an appropriate adjustment of
the lowest intrinsic utility level offered, relaxing (IRg) will always lead to strictly lower
costs for the principal. Therefore, the shadow value of relaxing (IR¢) is strictly positive,
so prr > 0.

Next, we show that relaxing (ICq) has a positive shadow value, p;c > 0. We do this by
showing that a decrease in ¢’(a) leads to a reduction in the principal’s minimum cost of
implementation. Let {u}}cs be the optimal contract under (the original) Program MG,
and suppose that /(@) decreases. Now the principal can offer a new contract {u¥ },cs of

the form
s
u =+ (1- ) o (@) (A.10)
=1

where o € (0,1), which also satisfies (IR¢), the relaxed (ICg), and (OCg), but yields
strictly lower costs of implementation than the original contract {u’}ses.

Clearly, for & € (0,1), uY <« if and only if u* < u},, so (OC¢) is also satisfied under
contract {ul}.es.

Next, we check that the relaxed (ICg) holds under {u},cs. To see this, note that for
a = 1 we have {ul},cs = {u’}.es. Thus, for a = 1, the relaxed (ICg) is oversatisfied
under {u" },cs. For a = 0, on the other hand, the left-hand side of (ICg) is equal to zero,
and the relaxed (ICs) in consequence is not satisfied. Since the left-hand side of (IC¢) is
continuous in o under contract {u},cs, by the intermediate-value theorem there exists
& € (0,1) such that the relaxed (ICg) is satisfied with equality.

Last, consider (IRg). The left-hand side of (IR¢g) under contract {u¥ },cs with a = &
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amounts to

s S-1 S
S @ — =13 (@@ [ — ]
s=1 . s—léii+ls
= Z%(&)us — (A — 1)2 Z Vs(a) (@) [ug — ug]
sg Sj; t=s+
> @)l — (A—1) Vs(@)ye(a) fuy — ug]
i+ (@) o (A11)

where the last equality follows from the fact that {u!}cs fulfills the (IR,) with equality.
Thus, contract {ul}.cs is feasible in the sense that all constraints of program (MG)
are met. It remains to show that the principal’s costs are reduced. Since h(-) is strictly
convex, the principal’s objective function is strictly convex in o, with a minimum at oo = 0.
Hence, the principal’s objective function is strictly increasing in « for o € (0,1]. Since

{uN}ies = {ut}ses for a =1, for a = & we have

S S
Do s@h(uy) > s@h(ul),

which establishes the desired result. B

Proof of Proposition 6
For the agent’s intrinsic utility function being sufficiently linear, the principal’s costs are

approximately given by a second-order Taylor polynomial about » = 1, thus
~ Y vs(@)us + Qulr) (A.12)
seS
where
Qulr) =) 7.(a) [(us Inwg)(r — 1) + (1/2)us(Inu,)?(r — 1)2] . (A.13)
sES

Relabeling signals such that the wage profile is increasing allows us to express the incen-
tive scheme in terms of increases in intrinsic utility. The agent’s binding participation

constraint implies that

S

=t o) - Yb, {i%@ SIETEY {iw)} [jz;f%(a)] } = () (A1)

s=2

and us = u1(b) + > ;_, b = us(b) for all s =2,...,S. Inserting the binding participation
constraint into the above cost function and replacing Q(u|r) equivalently by Q(b|r) =
Q(ur(b), ..., us(b)|r) yields

C(blr) ~ @+ c(a) + (A= 1)> b, [Z %(&)] [i v(a)

+Q(b|r) . (A.15)
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Hence, for a given increasing wage profile the principal’s cost minimization problem is:

PrROGrRAM ME:

min  b'p(§, A, @) + Q(blr)

S-1
beR+

subject to  b'B(F, A, a) = (a) (IC)

If r is sufficiently close to 1, then the incentive scheme that solves program ML also solves
program ME. Note that generically program ME is solved only by bonus schemes. Put
differently, even if there are multiple optimal contracts for program ML, all these contracts
are generically simple bonus contracts. Thus, from Proposition 2 it follows that generically
for r close to 1 the optimal incentive scheme entails a minimum of wage differentiation.
Note that for A = 1 the principal’s problem is to minimize Q(b|r) even for r sufficiently
closeto 1. &

Proof of Proposition 7
First consider b > 0. We divide the analysis for b > 0 into three subcases.
Case 1 (ap < 0): For the effort level a to be chosen by the agent, this effort level has

to satisfy the following incentive compatibility constraint:

a € arg ;2[%,)1(] u+vy(a)b—y(a)(1 —v(a))b(A —1) — gaQ (IC)

For a to be a zero of dE [U(a)] /da, the bonus has to be chosen according to

ka
(=" 2=A+ 2@ - 1]

For a > ag, b*(a) is a strictly increasing and strictly concave function with 6*(0) = 0.

b (a) =

Hence, each a € [0,1] can be made a zero of dF [U(a)] /da with a non-negative bonus.
By choosing the bonus according to b*(a), a satisfies, by construction, the first-order
condition. Inserting b*(a) into the d*F [U(a)] /da® shows that expected utility is strictly
concave function if ay < 0. Hence, with the bonus set equal to b*(a), effort level a satisfies
the second-order condition for optimality and therefore is incentive compatible.

Case 2 (ag = 0): Just like in the case where ag < 0, each effort level a € [0, 1] turns out

to be implementable with a no-nnegative bonus. To see this, consider bonus
k
207 PO 1)

For b < by, dE [U(a)] /da < 0 for each a > 0, that is, lowering effort increases expected

by =

utility. Hence, the agent wants to choose an effort level as low as possible and therefore
exerts no effort at all. If, on the other hand, b > by, then dE[U(a)] /da > 0. Now,
increasing effort increases expected utility, and the agent wants to choose effort as high as

possible. For b = by, expected utility is constant over all a € [0, 1], that is, as long as his
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participation constraint is satisfied, the agent is indifferent which effort level to choose.
As a tie-breaking rule we assume that, if indifferent between several effort levels, the agent

chooses the effort level that the principal prefers.

Case 3 (ap > 0): If ap > 0, the agent either chooses a = 0 or a = 1. To see this, again
consider bonus by. For b < by, dE [U(a)] /da < 0 for each a > 0. Hence, the agent wants
to exert as little effort as possible and chooses a = 0. If, on the other hand, b > by, then
d*E [U(a)] /da® > 0, that is, expected utility is a strictly convex function of effort. In
order to maximize expected utility, the agent will choose either a = 0 or @ = 1 depending
on whether F [U(0)] exceeds E [U(1)] or not.

Negative Bonus: b < 0
Let b~ < 0 denote the monetary punishment that the agent receives if the good signal is

observed. With a negative bonus, the agent’s expected utility is

E[U(a)] = u+~(a)b” +7(a)(1 —v(a))Ab” + (1 —v(a))y(a)(=b") — ga? (A.16)

The first derivative with respect to effort,

dE[U(a)]

=0 Do 2@0 - D))=

MB- (a) MC(a)

reveals that M B~ (a) is a positively sloped function, which is steeper the harsher the
punishment is, that is, the more negative b~ is. It is worthwhile to point out that if bonus
and punishment are equal in absolute value, [b~| = b, then also the slopes of M B~ (a)
and M B(a) are identical. The intercept of M B~ (a) with the horizontal axis, a, again is

completely determined by the model parameters:

A—=29E(N=1)
29" =" (A= 1)
Note that a; > 0 for ¥* < 1/2. For & > 1/2 we have q; < 0 if and only if A >

27 /(2vF —1). Proceeding in exactly the same way as in the case of a non-negative bonus

CLO:

yields a familiar results: effort level a € [0,1] is implementable with a strictly negative
bonus if and only if a; < 0. Finally, note that ap < a;. Hence a negative bonus does not

improve the scope for implementation. W

Proof of Proposition 8

Throughout the analysis we restricted attention to non-negative bonus payment. It re-
mains to be shown that the principal cannot benefit from offering a negative bonus pay-
ment: implementing action a with a negative bonus is at least as costly as implementing
action a with a positive bonus. In what follows, we make use of notation introduced in
the paper as well as in the proof of Proposition 7. Let ao(p), aq (p), b*(a;p), and u*(a;p)
denote the expressions obtained from ag, ay, b*(a), and u*(a), respectively, by replacing

v(a), vF, and v# with ~y(a;p), v*(p), and v (p). From the proof of Proposition 6 we
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know that (i) action @ is implementable with a non-negative bonus (negative bonus) if
and only if ag(p) < 0 (aq (p) < 0), (ii) ag (p) < 0 implies ap(p) < 0. We will show that,
for a given value of p, if a is implementable with a negative bonus then it is less costly to
implement a with a non-negative bonus.

Consider first the case where a, (p) < 0. The negative bonus payment satisfying incen-

tive compatibility is given by

ka
(Y () = () [A = 2v(@;p) (A = D]

It is easy to verify that the required punishment to implement a is larger in absolute

b= (a;p) =

value than than the respective non-negative bonus which is needed to implement a, that
is, b*(a;p) < |b~(a;p)| for all a € (0,1) and all p € [0,1). When punishing the agent with a
negative bonus b~ (a; p), u~(a; p) will be chosen to satisfy the corresponding participation

constraint with equality, that is,

k
u”(a;p) =+ 5a*

5@ =@ p)b(ap) [ —~(a,p)(A = 1)].
Remember that, if a is implemented with a non-negative bonus, we have

ng — (@ )b (@ p) [2 — A + (@ p) (A — 1)].

~

u*(a;p) = u+

It follows immediately that the minimum cost of implementing a with a non-negative

bonus is lower than the minimum implementation cost with a strictly negative bonus:

C™(a;p) = u (a;p) +v(a;p)b (a; p)
— 4 56— @ (@p) - (@) 1) -
>+ R @ ) (@) [\ — (@ p) (A~ 1)~ 1
=+ 2 (a5 p)b (@) [L— A (i) (A~ 1)
k

=0+ 5a” —y(@p)b (a;p) [2 = A+ (@ p)(A = 1)) + y(a; p)b* (@ p)

[\

= u*(a;p) + 7(a; p)b"(a; p)
= C(a;p)-
The same line of argument holds when a; = 0: the bonus which satisfies the (IC) is
k
by d,p = — )
P = G P D

and so b*(a;p) < |by (a;p)| for all @ € (0,1) and all p € [0,1).

Proof of Corollary 1
Let p € (0,1). With ¢ being a convex combination of 4 and 1 we have (CH, ¢t =
p(L, 1)+ (1 —p)(YH,vF) = (47 + p(1 — +H), 4% + p(1 — ~4%)). The desired result follows
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immediately from Proposition 3: Consider A > 2. Implementation problems are less likely
to be encountered under é than under 4. Moreover, if implementation problems are not
an issue under both performance measures, then implementation of a certain action is
less costly under é than under 4. For A = 2 implementation problems do not arise and
implementation costs are identical under both performance measures. Last, if A < 2,
implementation problems are not an issue under either performance measure, but the

cost of implementation is strictly lower under 4 than under é .

B Validity of the First-Order Approach

Lemma 4: Given (A1)-(A3), the incentive constraint in the principal’s cost minimization

problem can be represented as E[U'(a)] = 0.

Proof: The proof proceeds in two steps. Consider a contract (uy, {bs}5_,) with b, > 0 for
s =2,...,5, that implements action a € (0,1). First, we show that it is never optimal for
the principal to set by > 0 if 5, < 0, where we write [, instead of Gs(%, A, a) to cut back
on notation. Thereafter, it is shown that for a given contract with b, > 0 if and only if
Bs > 0, all actions that satisfy the first-order condition of the agent’s utility maximization
problem characterize a local maximum of his utility function. Since the utility function
is continuous and all extreme points are local maxima, there exists a unique action that
fulfills the first-order condition. This action corresponds to the unique maximum.

Step 1: Irrespective of the first-order approach being valid or not, a necessary condition
for a € (0,1) to be incentive compatible is that (IC’) is satisfied. Note that if (IC’) holds
for a € (0,1), then there exist at least one signal ¢ with 5; > 0. If there exists by > 0
with (8, < 0, then the principal can reduce both b, and also another bonus b, with 3; > 0,
without violating (IC"). Next, we show that increasing any spread, say bs, always increases

the principal’s cost of implementation.

S s
Cb) = D v(a)h <u1(b) + st> , (B.1)
! ;:2 S S s—1
where ur(b) =+ c(a) — » by [Z ve(a) — (A —1) (Z Ma)) (Z Ma))] .

The partial derivative of the cost function with respect to an arbitrary by is

k-1 5 5 -
0 S <U1 +Y bs) B—Z’j +3 (@’ <ul(b> > bs> [Z—ZQ ¥ 1} |

s=1 s=k
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Rearranging yields

+ Y (@) (uy) [(A -1 <Z %(&)> <i %(@) = > @) +1

s=k 7=k
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+ ) vala)h (ug) [(A - 1) Z%@)) (Z %(@) =Y @ +1) . (B3)
s=k r=k t=1 =k

The above inequality can be rewritten as follows

0 > ww) [(A 1) <Z wo) (Z %@))] -v

Since reducing any bonus lowers the principal’s cost of implementation, it cannot be
optimal to set by > 0 for g, < 0. This completes the first step of the proof.

Step 2: The second derivative of the agent’s utility with respect to a is

S
ElU"(a)] = =2\ —1) ) b0, —'(a) , (B.4)

where o, := (3202 7 — 'yiL)(Zf:S vH —~F) < 0. Suppose action a satisfies the first-order

condition. Formally

S S ﬁs C/(d)
D b =d(a) = stgz — (B.5)
s=2 s=2

Action a locally maximizes the agent’s utility if

—2A = 1) byo, < (a) . (B.6)

Under Assumption (A3), we have ¢’(a) > c(a)/a. Therefore, if

S

> b [-2(A = 1)o, — B./d] <0, (B.7)

s=2

then (B.5) implies (B.6), and each action a satisfying the first-order condition of the

agent’s maximization problem is a local maximum of his expected utility. Inequality
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(B.7) obviously is satisfied if each element of the sum is negative. Summand s is negative

if and only if

s—1 S

=20 =) (D (=) (Do =) | a

=1 i=s
S s—1 S s—1
(D =) | 1= =) [ D@ ) [—(=1) | D (@) ("= ] <0,
T=S t=1 T=sS t=1
Rearranging of the above inequality yields
S s—1 s—1
DO =) axt20=1) [ad (W =ah) =) @)y > 0
i=s i=1 i=1
S s—1 s—1
=D O =AM 1= DA 2= A > 00 (B
i=s i=1 i=1

The term in curly brackets is positive, since A < 2 and Zf;l vl < 1. Note that 3, < 0 if
and only if Zis(%H —~E) < 0. As we have established in step 1 of this proof, in this case

it is always optimal for the principal to set by = 0. Thus, if by > 0 then ZZ.S:S (v —~EF) >0,

which completes the proof. B
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