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Abstract

We show that a set of outcomes outside the convex hull of Nash
equilibria can be asymptotically stable with respect to convex mono-
tonic evolutionary dynamics. Boundedly rational agents receive sig-
nals and condition the choice of strategies on the signals. A set of
conditional strategies is asymptotically stable only if it represents a
strict (correlated-)equilibrium set. There are correlated equilibria that
cannot be represented by an asymptotically stable signal contingent
strategy. For generic games it is shown that if signals are endogenous
but no player has an incentive to manipulate the signal generating
process and if the signal contingent strategy is asymptotically stable,
then and only then, the outcome must be a strict Nash equilibrium.
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1 Introduction and Related Literature

Consider a situation of strategic interaction in which agents perceive signals

before they choose their strategy. Restricting the general setup of Aumann

(1974), we demand that all agents share common prior on the distribution of

the signals. Given the own signal and given the conditional distribution of

the opponents’ signals, each agent optimally chooses a strategy. Finally, sup-

pose that there is common knowledge of rationality. According to Aumann

(1987), a resulting outcome must be a correlated equilibrium. Due to the

potential correlation between signals, a correlated equilibrium does not need

to be a Nash equilibrium. Indeed, a situation of strategic interaction without

signals seems artificial – signals are all around us in the real world, we can

hardly avoid perceiving them and then condition our behavior on them in

many situations. For example, in a financial market agents may receive sig-

nals on the value of some asset that are correlated. Several firms competing

on a market for some consumption good may receive correlated information

on the parametrization of the demand function. Consumers observe sig-

nals displaying information on the quality of some good when planning their

consumption. Football fans perceive signals concerning the success of their

favorite team within some tournament and condition their betting behavior

on this information.

Rationality in the sense of Aumann (1987) requires that agents under-

stand the underlying probability space and that this is commonly known.

Here, the concept of correlated equilibrium is supported from the perspec-

tive of bounded rationality. We assume evolutionary dynamics on the game

in which agents receive signals and show that states persisting over time in

the presence of small mutations are correlated equilibria – and therefore may

be non-Nash outcomes. Before the model is described in detail in the next

section, I discuss the concept of evolution. In his survey on adaptive heuris-

tics, Hart (2005) describes evolutionary dynamics as one extreme of bounded
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rationality: individuals’ behavior is completely deterministic. The concept

of evolutionary game theory originates from biology; see Dawkins (1990) or

Björnerstedt and Weibull (1996) for socio-economic interpretations. Ratio-

nality is imposed on an aggregate level: strategies with higher relative success

spread faster. Evolutionary game theory contributes by showing that even

if agents are boundedly rational, certain outcomes predicted by concepts

requiring rationality persist over time.

This paper characterizes the set of correlated equilibria that persist over

time, given boundedly rational agents. The first part of the chapter assumes

an exogenous and stationary process of signal generation. A set of signal

contingent strategies is asymptotically stable with respect to convex mono-

tonic dynamics1, if it is a strict equilibrium set2 of the game with signals.

Given this selection, I consider endogenous signals. A signal generating pro-

cess is robust, if no population has an incentive to manipulate the process,

given equilibrium choice of the signal contingent strategies. I show for generic

games that a signal contingent strategy is asymptotically stable and the sig-

nal generating processs is robust, if and only if the induced outcome is a strict

Nash equilibrium. For the special case of the traditional example that has

an equilibrium outcome with payoffs outside the convex hull of Nash-payoffs,

the Chicken game, I show that a correlated equilibrium has robust signals if

and only if it induces payoffs that lie inside the convex hull of Nash-payoffs.

The remainder of this section classifies this paper to the literature. It is

well understood that the aggregate can display some rationality. Ritzberger

and Weibull (1995) show that only strict Nash equilibria are asymptotically

stable in the multipopulation replicator dynamics. For asymmetric games

(animal conflicts), Selten (1980) shows that evolutionary stable strategies

must be strict Nash equilibria. I make use of a concept introduced by Balken-

borg (1994), strict equilibrium set. Each element of a strict equilibrium set

1Hofbauer and Weibull (1996)
2Balkenborg (1994)
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is a Nash equilibrium, the set is closed under mixed best replies. Balkenborg

and Schlag (2007) show asymptotic stability of restpoints within this set for

general asymmetric games.3 I rely on the concept of strict equilibrium set

to characterize sets of correlated equilibria that are asymptotically stable.

Lenzo and Sarver (2006) build up a model of subpopulations in which agents

are matched according to a distribution over the set of subpopulations. They

show that every interior4 Lyapunov stable state is equivalent to a correlated

equilibrium. Their model is inspired by the work of Mailath et al. (1997)

who show that equilibria in a static model of local interactions coincide with

correlated equilibria in the original game. In both models the correlation

device is a “matching technology” with which agents of different populations

are matched non-uniformly. I show that Lenzo and Sarver (2006) is a special

case of the general model considered here, if one chooses a particular signal

generating process. Cripps (1991) analyzes a two player model in which in a

first stage nature randomly allocates row or column to the players and in a

second step assigns one role of a finite set of roles to each player. He shows

that an ESS in the symmetric game yields a distribution over the set of out-

comes that is a strict correlated equilibrium. I abstain from analyzing the

symmetrization and extend his model to dynamic analysis. Kim and Wong

(2007) define evolutionary stable correlation for symmetric 2×2-games. They

apply a special signal space, I discuss this matter after introducing the static

model. Finally, we consider endogenous signals. I imagine situations, in

which some agents exercise control over the generation of signals. Attention

is not restricted to cheap talk games, situations in which a signal consists

of a message of each player. In such a case, the player can manipulate a

part of the signal. I consider players who can replace a signal entirely and

3Other setwise concepts defined for symmetric one population games are introduced by
Balkenborg and Schlag (2001) and Thomas (1985). Cressman (2003) also elaborates on
the strict equilibrium set.

4Interiority in the subpopulation model means that the state is interior for each sub-
population. It is more stringent than interiority in our case.
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model this by considering the choice of probability distributions over the set

of signal generating elementary events. I characterize the set of strategies in

the original game for evolutionary dynamics of signalcontingent strategies, if

no population has an incentive to manipulate the signal generating process.

This paper is structured as follows: section 2 sets up the model, section 3

lists propositions which are already available in the literature and which We

transfer to this model to characterize asymptotically stable sets of correlated

equilibria. Section 4 gives some examples. Section 5 shows the generalization

of the subpopulation model of Lenzo and Sarver (2006), section 6 character-

izes the set of stable outcomes that have a robust signal generating process

and the appendix collects the remaining proofs.

2 Model

2.1 Static Model

We give a brief description of the model before we proceed to define it for-

mally. At each point of time, nature randomly and independently draws a

tuple of agents from a fixed set of infinite populations. A signal generat-

ing process reveals information to each of the active agents, this information

may be correlated. Each agent chooses a strategy to interact with the other

agents in a normal form game. Each agent is characterized by a rule that

prescribes the strategic choice given the received signal. The resulting payoff

determines wether the applied rule spreads in the population.

Let Γ = {N , S, f} be a finite game in normal form where N = {1, . . . , N} is

the set of population, S = ×i∈NSi and Si = {si
1, . . . , s

i
mi
} is population i’s

finite set of pure strategies and f : S → RN is a utility or fitness function.

Let Σi = ∆(Si) be the set of probability measures on Si and let Σ̂i be a finite

subset of Σi that contains the vertices of Σi. Let Σ = ×i∈IΣ
i be the set of

product measures on S, define Σ̂ = ×i∈IΣ̂
i accordingly. ∆ = ∆(S) is the set
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of all probability measures on S. Denote by s−i = (s1, . . . , si−1, si+1, . . . , sN)

a vector of strategies without the one of population i and by S−i = ×j∈N\{i}S
j

the Cartesian product of all but i’s strategy spaces. Define Σ−i = ×j∈N\{i}Σ
j

and ∆−i = ∆
(
×j∈N\{i}S

j
)
. I extend f to the space of mixed strategies,

f : Σ → R, defined by f i(σi, σ−i) =
∑

s∈S f i(s)
∏

j∈N σj(sj) ∀ i ∈ N .

A Strategy si ∈ Si is dominated if there exists some mixed strategy σi ∈ Σi

such that f i(si, σ−i) ≤ f i(σi, σ−i) ∀ σ−i ∈ Σ−i, with strict inequality for at

least one σ−i. If the inequality is strict for all σ−i, si is strictly dominated.

It is immediate to show that if si is dominated then there is a dominating

strategy σi with σi(si) = 0.

A strategy tuple σ = (σi, σ−i) is a Nash Equilibrium (NE) in Γ, if ∀ i ∈
N , f i(σi, σ−i)− f i(si

h, σ
−i) ≥ 0 ∀ si

h ∈ Si.

Following Aumann (1987), I define a probability space 〈Ω,A, P 〉 which gen-

erates signals (that are potentially correlated) on which agents can condition

their strategic choices. Both, the original game Γ and the probability space

constitute the primitives of my model. Assume Ω to be a nonempty and

finite set of generic elements ω. Let A be the powerset of Ω and let {Ai}i∈N

be a collection of partitions of Ω. Ai represents an information structure for

population i; if nature draws an elementary event ω ∈ Ω, population i knows

Ai ∈ Ai if and only if ω ∈ Ai. Since for each population i there may be

events ω, ω′ that i cannot distinguish, the agents are not able to ‘learn’ P .

Therefore, I need to assume P to be a common prior on (Ω,A). I regard P

as an objective statistic environment. Without loss of generality, I assume

that P (ω) > 0 ∀ ω ∈ Ω. All subjectivity enters the model via the set of par-

titions {Ai}i∈N . I define the signaling structure I =
{
〈Ω,A, P 〉 , {Ai}i∈N

}
.

I refer to an element ω ∈ Ω as a complete description of a state of the

world while an element Ai ∈ Ai is called a signal for the true state of the

world. I assume that each agent has access to some private randomization
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device that allows for independent mixing, such that any mixed strategy in

Σ̂i is available. Wherever necessary, I assume that Σ̂i is rich enough. Define

Ai(ω) = {Ai ∈ Ai | ω ∈ Ai} the information set available to an agent in

population i if nature draws ω. Throughout the model I make the assump-

tion that the populations’ fitnesses (represented by f : S ⇒ RN) do not

depend on any ω. This is because I want to show that even if information

is payoff-irrelevant, outcomes that are no Nash-equilibra of Γ can be stable

under boundedly rational behavior, if agents perceive correlated signals.

Let a rule be a mapping from the set of states to strategies, ri : Ω → Σ̂i. I

assume for all i that ri is Ai-measurable, that is if for some ω, ri(ω) = σi

then ri(ω′) = σi ∀ ω′ ∈ Ai(ω). In words, agents cannot distinguish states

that are in the same information set A. Define as ri
si(ω) the probability

with which an agent who uses rule ri chooses strategy si given event ω,

that is ri
si(ω) = σi(si), where σi = ri(ω). Denote the finite set of all

rule-profiles by R. I denote the share of agents in population i apply-

ing rule ri by ρi(ri), the set of all shares in population i, ρi by ∆(Ri),

the set of all population shares ρ by ∆R = ×
i∈N

∆(Ri). As before, I de-

note by r−i the vector r without the element ri, and by ρ−i the vector ρ

without the element ρi. Denote by F : ∆R → RN the expected fitness

from the choice of the rules, where the components are defined as follows:

F i(ρ) =
∑
ω∈Ω

P (ω)
∑
r∈R

f i(r(w))
∏

j∈N
ρj(rj). Given the signaling structure I and

the normal form game Γ, I call G(I,Γ) = {N ,R,F} the expansion of Γ.

A rule ri ∈ Ri is strictly dominated if there exists some population share

ρi ∈ ∆(Ri) such that F i(ri, ρ−i) < F i(ρi, ρ−i) ∀ ρ−i ∈ ∆(R−i).

To get a flavor of the model, I begin the analysis with a very straight forward

result that is helpful to show the extinction of dominated strategies.
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Lemma 1

If strategy si is strictly dominated in Γ by some mixed strategy σ̂i ∈ Σ̂i, any

rule ri with ri
si(ω) > 0 for some ω is strictly dominated in the game G(I,Γ), if

Σ̂i is rich enough.

Proof

Assume without loss of generality that σ̂i(si) = 0. Define for each ω ∈ Ω

the new rule r̂i
s̃i(ω) = ri

s̃i(ω) + ri
si(ω) · σ̂i(s̃i) ∀ s̃i 6= si and r̂i

si(ω) = 0. It is

easy to verify that r̂i(ω) ∈ Σi ∀ ω, however I need to assume that Σ̂i is rich

enough such that r̂i(ω) ∈ Σ̂i ∀ ω. For convenience I define f i(ri(ω), ρ−i(ω)) =∑
r−i f i(ri(ω), r−i(ω))

∏
j 6=i ρ

j(rj). We then have ∀ ρ−i ∈ ∆R−i :

F i(r̂i, ρ−i) = F i(ri, ρ−i) +∑
ω∈Ω

ri
si

(ω)>0

P (ω)ri
si

[
f i(σ̂i, ρ−i(ω))− f i(si, ρ−i(ω))

]
︸ ︷︷ ︸

>0

�

A strategy si is iteratively strictly dominated in Γ if there exists a sequence

{sit , Γt}
n
t=0 such that sit is strictly dominated in Γt, where Γt is obtained

from Γt−1 by removing sit−1 from it−1’s set of pure strategies in Γt−1, Γ = Γ0

and si = si0 . The same definition applies for a rule ri in the game G.

As a consequence of Lemma 1 one can state an analogous statement for

iteratively strictly dominated rules:

Lemma 2

If strategy si is iteratively strictly dominated in Γ by some mixed strategy

σ̂i ∈ Σ̂i, any rule ri with ri
si(ω) > 0 for some ω is iteratively strictly domi-
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nated in the game G(I,Γ), if Σ̂i is rich enough.

Definition Correlated Equilibrium (c.e.)

Given I, a correlated equilibrium in Γ is a mixed rule ρ ∈ ∆R such that for

all i, F i(ρ) ≥ F i(ρ̃i, ρ−i) ∀ ρ̃i ∈ ∆(Ri) . A c.e. is strict, if inequalities hold

strictly for all ρ̃i 6= ρi and i ∈ N .

Here, an equilibrium is a point in the set of mixed rules.

Definition Induced Distribution

Let ρ ∈ ∆R be some distribution over the set of rules. Then I and ρ induce

a distribution over the set of outcomes. Define ∀ s ∈ S:

λ(s) =
∑

ω

P (ω)
∏
i∈N

∑
ri∈Ri

ρi(ri) · ri
si(ω)

Definition Correlated Equilibrium Distribution (c.e.d.)

A distribution λ ∈ ∆ induced by I and a c.e. ρ is a correlated equilibrium

distribution.

Given some expanded game G(I,Γ), there may exist multiple c.e. ρ, some

being strict and some other being non-strict. See Example 4.1 .

Fix some signal generating process I. Then, a mixed rule ρ ∈ ∆R is a

c.e. in Γ, if and only if ρ is a Nash equilibrium of expanded game G(I,Γ).

Note the generality of the signal space. Consider instead the special case

Ω = S and Ai = {{si × S−i}si}, that is each population gets a recommen-

dation to play a particular strategy. Kim and Wong (2007) use this signal

space. With these direct signals, it is optimal to follow the recommendation

if the signals are distributed according to a c.e.d. . However, two problems

come with this approach: firstly, even if the distribution of signals P is a

c.e.d., it might still be an equilibrium if the agents deviate from the recom-
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mendation (see example 4.1). Secondly, if one pins down a special signal

generating process, one can always construct a meta game in which agents

can condition their choice of rules on some extra signals they might receive.

The general formulation of the signal space includes such extra signals.5

Definition Evolutionary Stability (Swinkels (1992))

ρ ∈ ∆R is evolutionary stable in G(I,Γ), if ∃ ε′ > 0 : ∀ ε ∈ (0, ε′) and ρ̃ ∈ ∆R

F i(ρ̃i, (1− ε)ρ−i + ερ̃−i) ≥ F i(ρi, (1− ε)ρ−i + ερ̃−i) ⇒ ρ̃ = ρ .

It follows immediately that a rule is evolutionary stable if and only if it is

a strict Nash equilibrium of G.6 Note that the above definition is for multi-

population (and asymmetric) games.

The definitions of evolutionary stable sets by Thomas (1985), Balkenborg

and Schlag (2001) and Cressman (2003) are all specified for symmetric one

population games. Therefore I do not list them but state a concept for gen-

eral asymmetric games:

Definition Strict Equilibrium set (SEset) (Balkenborg (1994))

A nonempty set F ⊂ ∆R is a strict equilibrium set if it is a set of Nash equi-

libria of G that is closed under mixed-rule best replies by each population i,

i.e. if for some ρ ∈ F , (ρ̃i, ρ−i) ∈ F whenever F i(ρ̃i, ρ−i) = F i(ρ) for each

population i.

Such a set does not need to exist, see Example 5.4.

5I am grateful to Andreu Mas-Colell to scrutinize the special signal generating process
in an earlier version of this paper.

6See Swinkels (1992), Theorem 2.
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Theorem (Balkenborg and Schlag (2007)7, Cressman (2003)8)

If F is an SESet of G, then F is a finite union of faces of ∆R. In particular,

F is closed and contains at least one pure rule r ∈ R.

2.2 Dynamic Model

We assume that at each point in time, agents update their behavior such

that the population shares ρ = (ρ1, . . . , ρn) change according to the regular

differential equation

ρ̇i(ri) = gi(ri, ρ) · ρi(ri), ∀ ri ∈ Ri, ∀ i ∈ N , (1)

where regularity presumes that g = ×i∈N gi is (i) Lipschitz continuous on

∆R = ×i∈N∆(Ri) and (ii) gi(·, ρ) · ρi = 0 ∀ρ ∈ ∆R. By the Picard-Lindelöf

Theorem9, there exists a unique solution ρ̂(·, ρ) for each initial condition

ρ ∈ ∆R.

The following definition is taken from Hofbauer and Weibull (1996):10

(1) is convex monotonic (CM), if it satisfies

F i(ri, ρ−i) < F i(ρi
k, ρ

−i) ⇒ gi(ri, ρ) < gi(·, ρ) · ρi
k ∀ i ∈ N .

(1) is the replicator dynamics, if

gi(ri, ρ) = F i(ri, ρ−i)−F i(ρ) ∀ ri ∈ Ri and i ∈ N .

Clearly, the replicator dynamic is convex monotonic.

Define ρ+ = {ρ′ ∈ ∆R | ∃ t ∈ R+, ρ′ = ρ̂(t, ρ)}, as the subset of ∆R that is

7Proposition 2, p.299
8Theorem 3.1.2, p.71
9A function φ : X → Rk, where X ⊂ Rk, is (locally) Lipschitz continuous if for every

compact subset C ⊂ X there exists some real number λ such that it holds for all x, y ∈ C:
||φ(x)−φ(y)|| ≤ λ||x− y||. If X ⊂ Rk is open and the vector field φ : X → Rk is Lipschitz
continuous, then the system ẋ = φ(x) has a unique solution x̂(·, x0) : T → X through
every state x0 ∈ X. Moreover, x̂(t, x0) is continuous in t ∈ T and x0 ∈ X. (Weibull (1995)
pp.232)

10Convex monotonicity is implied by aggregate monotonicity, it is not implied by and
does not imply monotonicity (both Samuelson and Zhang (1992), Definition 3, p.369)
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reached if the dynamics start at ρ.

Definition Stability

A closed set Λ ⊆ ∆R is Lyapunov stable if for every neighborhood U ′ of

Λ there exists a neighborhood U ′′ such that ρ+ ⊂ U ′ ∀ ρ ∈ U ′′ ∩∆R.

A closed set A ⊆ ∆R is asymptotically stable if it is Lyapunov stable

and if there exists a neighborhood U of A such that ρ̂(t, ρ) −→
t→∞

A for all

ρ ∈ U ∩∆R.

3 Propositions

This section collects the propositions.

Proposition 1

Let g be convex monotonic. If F ⊂ ∆R is a Lyapunov stable set of rest

points, then each ρ ∈ F is a c.e. .

Proof: see Appendix.

The converse of Proposition 1 is not true in general:

Fix some I and c.e. ρ in which for a population i, the rule ri ∈ Ri : ρi(ri) > 0

is weakly dominated by some mixed rule ρ̃i. Then there exists a neighbor-

hood U of ρ such that ∀ ˜̃ρ = (ρi, ˜̃ρ−i) ∈ U , ˜̃ρ−i ∈ int(∆R−i) it holds that

F i(ri, ˜̃ρ−i) < F i(ρ̃i, ˜̃ρ−i). Therefore, for some ˜̃ρ−i there exists some ri
h ∈ Ri

with ρ̃i(ri
h) > 0 such that F i(ri

h, ˜̃ρ−i) > F i(ri, ˜̃ρ−i). Since (1) is convex mono-

tonic, gi(ri
h, ˜̃ρ) > gi(ri, ˜̃ρ), contradicting Lyapunov stability.

The next propositions specify the relationship of asymptotic stability and

correlated equilibrium:
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Proposition 2 (cf Balkenborg and Schlag (2007), Theorem 6 and Cress-

man (2003), Theorem 4.5.3)

If a non-empty set F ⊂ ∆(R) of rules ρ is an asymptotically stable set of

rest points under the standard replicator dynamic, F is a SEset.

Balkenborg and Schlag (2007) and Cressman (2003) actually show equiv-

alence, if (1) is the replicator dynamic. Balkenborg and Schlag (2007) also

show the reverse for a wide class of other dynamics. I show the reverse for

the distinct class of convex monotone dynamics.11

Proposition 3

Let (1) be convex monotonic. If a set F is a SEset, then F is an asymptoti-

cally stable set of rest points.

Proof: see Appendix A.

If the process does not start in the interior of ∆R, there may exist some

ρ0 ∈ ∆R such that λ(ρ̂(t, ρ0)) is not a c.e.d. for all t > 0, even if an asymp-

totically stable set exists.

Proposition 4 (Hofbauer and Weibull (1996) Theorem 1)

If a rule ri ∈ Ri is iteratively strictly dominated and the process starts in the

interior of the rulespace and if the selection dynamics (1) is convex mono-

tonic, ri gets eliminated.

11In Proposition 13 Balkenborg and Schlag (2007) demand (A) that gi(ri, ρ) ≥ 0 when-
ever ri is a best response to ρ−i, (B) that gi(ri, ρ) > 0 whenever ri is a best response
to ρ−i but ρi is not and (C) that gi(ri, ρ) < 0 whenever ρi is a best response to ρ−i but
ri is not. Neither does convex monotonicity imply (A),(B) and (C) nor vice versa. Con-
sider some ρ, ρ̃i and ri such that F i(ρ̃i, ρ−i) > F i(ρ) > F i(ri, ρ−i). (A),(B),(C) imply
that gi(ri, ρ−i) = 0. From regularity I have ρi · gi(·, ρ) = 0, hence g cannot be convex
monotonic.
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We do not give a statement whether the induced distribution over outcomes

converges. Viossat (2004) shows for symmetric 3×3-games that the multipop-

ulation replicator dynamics eliminates all strategies not used in a correlated

equilibrium (with interior initial conditions), however Viossat (2007) gives

an example of a class of symmetric 4× 4 games for which the replicator dy-

namics eliminates all strategies used in correlated equilibrium along interior

solutions. Lemma 2 and Proposition 4 allow me to pin down a weaker result,

namely to rule out iteratively strictly dominated outcomes in the induced

distribution in the long run.

Corollary

If the process starts in the interior of the rulespace and if the selection dy-

namics (1) is convex monotonic, then lim
t→∞

λ(t) attaches zero probability to

outcomes s that involve strategies that are iteratively strictly dominated, if

Σ̂ is rich enough.

4 Examples

This section demonstrates how the model can be applied to various exam-

ples. The examples are complementary to the propositions of the preceeding

section.

4.1 A Coordination Game

This example illustrates that one signal generating process I allows for multi-

ple stable rules r, r′ that do not induce the same distribution λ over outcomes

S. Even if the signal generating process I itself is a distribution over S and

is regarded as a ‘recommendation’, other strategy choices can well be stable.

Let the game Γ be defined by N = {1, 2}, S = {u, d} × {l, r} and
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f =

l r

u (1,1) (0,0)

d (0,0) (1,1)

.

We specify I with Ω = S,A1 =
{
{ul, ur}, {dl, dr}

}
,A2 =

{
{lu, ld}, {ru, rd}

}
.

A rule for population 1 (row) assigns a strategy for the first and the second

element of A1 respectively. UD means “choose u if ω ∈ {ul, ur} and choose

d if ω ∈ {dl, dr}”. I analogously denote the rules of population 2.

Fi =

LL LR RL RR

UU 1 P ({ul, dl}) P ({ur, dr}) 0

UD P ({ul, ur}) P ({ul, dr}) P ({ur, dl}) P ({dl, dr})
DU P ({dl, dr}) P ({dl, ur}) P ({ul, dr}) P ({ul, ur})
DD 0 P ({ur, dr}) P ({ul, dl}) 1

for

i = 1, 2

The rules (UU, LL) and (DD, RR) are the strict correlated equilibria that

correspond to the pure Nash equilibria of the original game for any P with

full support. Consider P to be a uniform measure over Ω. Then, (UD,LR)

is a non-strict c.e.. For general P , the induced distribution λ does not need

to coincide with P , although it still may be a c.e.d . Suppose P ({ul}) = p

and P ({dr}) = 1 − p. The pair (DU, RL) is a strict c.e. and induces the

following distribution over the set of outcomes: λ(ul) = 1− p and λ(dr) = p.

4.2 Chicken

A non-Nash outcome may be asymptotically stable.

Consider the “chicken game” originally presented in Aumann (1974):

Γ =

l r

u (6,6) (2,7)

d (7,2) (0,0)

15



Let Ω = {ω1, ω2, ω3} and letA1 =
{
{ω1, ω2}, {ω3}

}
andA2 =

{
{ω1}, {ω2, ω3}

}
,

let P (ω) ≡ 1
3
. Given this I, the resulting expanded game is

G(Γ,I) =

LL RL LR RR

UU (6,6) (42
3
, 61

3
) (31

3
, 62

3
) (2,7)

UD (61
3
, 42

3
) (5,5) (22

3
, 41

3
) (11

3
, 42

3
)

DU (62
3
, 31

3
) (41

3
, 22

3
) (3,3) (2

3
, 21

3
)

DD (7,2) (42
3
, 11

3
) (21

3
, 2

3
) (0,0)

(UD,LR) is a strict c.e., hence it is a singleton evolutionary stable rule and

therefore asymptotically stable in any convex monotonic dynamic. As is well

known, the payoffs generated by (UD,LR) lie outside the convex hull of the

Nash equilibria of the original game Γ.

4.3 A SEset of correlated equilibria

The chicken example above shows that a single outcome can be asymptot-

ically stable producing payoffs that lie outside the convex hull of the Nash

equilibrium outcomes. This example does the same for a set of outcomes.

Consider the following game

Γ =

l r

u (0,0) (0,6)

m (3,-6) (0,0)

d (9,9) (-3,6)

.

The pure Nash equilibria are (u, r), (m, r) and (d, l), the unique mixed Nash

equilibrium is (σ1(m) = 1
3
, σ1(d) = 2

3
, σ2(l) = 1

3
). Let Ω = {ω1, ω2, ω3},

A1 = {{ω1, ω2}, {ω3}} ,A2 = {{ω1}, {ω2, ω3}}, P (ω) ≡ 3. Each population

has two signals, the row population therefore has 9 rules, column has 4 rules.

The payoff matrix of the expanded game is given by
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F =

LL LR RL RR

UU (0,0) (0,4) (0,2) (0,6)

UM (1,-2) (0,2) (1,0) (0,4)

UD (3,3) (-1,4) (3,5) (-1,6)

MU (2,-4) (1,0) (0,2) (0,2)

MM (3,-6) (1,-2) (2,-4) (0,0)

MD (5,-1) (0,0) (4,1) (-1,2)

DU (6,6) (2,7) (2,5) (-2,6)

DM (7,4) (2,5) (3,3) (-2,4)

DD (9,9) (1,7) (5,8) (-3,6)

.

In the figure, the shaded triangle is the convex hull of the Nash equilibrium

payoffs of Γ, the thick line connecting the points (2, 5) and (2, 7) represents

the SEset F = {ρ ∈ ∆(R) | ρ1(DM) = 1 − ρ1(DU), ρ2(LR) = 1}, which is

not fully contained in the convex hull.

4.4 Matching Pennies

Non-existence of SEset.
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Consider the original two population game with strategies {h, t}2 and payoff

matrix

Γ =

h t

h (1,-1) (-1,1)

t (-1,1) (1,-1)

Let the information structure be given by a singleton Ω = {ω}, in other words

let there be no signals. Therefore the rules coincide with the strategies. The

set of Nash equilibria of G has only one element which is not strict (and

hence is not closed under mixed-rule best replies). In fact, any information

structure I =
{
〈Ω,A, P 〉 , {Ai}i∈N

}
that has a common prior induces an

expanded game G{I,Γ} which has no SEset. If instead of P there would exist

some subjective priors {P i}i∈I with P i : Ai → R violating the common prior

assumption, it would be straightforward to construct an expansion of Γ with

strict equilibria, see Aumann and Dreze (2005), example 6.5 .

5 Subpopulations

In this section, I illustrate that the model of Lenzo and Sarver (2006) can be

expressed as a special case of the general formulation of the model presented

in this paper. I give a special interpretation of the signals: a signal assigns

one of finitely many subpopulations to each agent. Let each population i have

a set of subpopulations M i = {mi
1, . . . ,m

i
|M i|}, defining M = ×

i∈N
M i. Denote

by xmi

si the share of agents in subpopulation mi that choose strategy si. Let

η ∈ ∆(M) be a probability distribution over M , with η(mi, ·) > 0 ∀mi ∈ M i

and i ∈ N . Note that this distribution may be correlated and that there

may be matches m ∈ M that receive zero-probability.

We show that given a game Γ, for any M, η with state x, there is an I
and a state ρ such that the induced distributions are the same. One can

represent any state x of the subpopulations model by a state ρ of our model

if one gives a particular specification of the signalling structure. Furthermore

18



we show that ρ needs not to be unique and that the dynamic properties of x

and ρ need not be the same.

Let Ω = M , Ai =
{
{mi×M−i}mi∈M i

}
, P = η and ρi(ri) =

∏
mi∈M i

xmi

ri(mi).
12

Firstly we show that
∑

ri∈Ri ρi(ri) = 1. Note that
∑

ri∈Ri

ri(mi
1)=si

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi) =

∑
ri∈Ri

ri(mi
1)=si

h

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi) ∀ si, si
h ∈ Si.

∑
ri∈Ri

ρi(ri) =
∑

ri∈Ri

∏
mi∈M i

xmi

ri(mi)

=
∑
si∈Si

∑
ri∈Ri

ri(mi
1)=si

x
mi

1

si

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi)

=

(∑
si∈Si

x
mi

1

si

)
︸ ︷︷ ︸

=1

∑
ri∈Ri

ri(mi
1)=si

h

∏
mi∈M i

mi 6=mi
1

xmi

ri(mi)

...

=
∑
si∈Si

∑
ri∈Ri

ri(mi
1) = si

h
...

ri(mi
|M i|−1) = si

h

ri(mi
|M i|) = si

∏
mi∈M i

mi 6= mi
1

...
mi 6= mi

|M i|−1

mi = mi
|M i|

x
mi

|Mi|
si

=
∑
si∈Si

x
mi

|Mi|
si · 1

12More precisely: ri(mi) = ri(mi,m−i) for some m−i (ri(mi,m−i) has the same value
∀ m−i).
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To calculate λ(s) for some s ∈ S:

λ(s) =
∑
ω∈Ω

P (ω)
∏
i∈N

∑
ri∈Ri

ri(ω)=si

ρi(ri)

=
∑
m∈M

η(m)
∏
i∈N

∑
ri∈Ri

ri(mi)=si

∏
mi

k∈M i

x
mi

k

ri(mi
k)

=
∑
m∈M

η(m)
∏
i∈N

xmi

si

∑
ri∈Ri

ri(mi)=si

∏
mi

k∈M i

mi
k
6=mi

x
mi

k

ri(mi
k)

From the third line of the calculation of
∑

ri∈Ri

ρi(ri) we know that∑
ri∈Ri

ri(mi)=si

∏
mi

k∈M i

mi
k
6=mi

x
mi

k

ri(mi
k)

= 1 and have the desired result that the distributions over

outcomes are the same. However, there is no one-to-one mapping from one

model to the other model. Consider the following simple example with M =

M1×M2 = {m1
1, m

1
2}×{m2

1, m
2
2}, S = {s1

1, s
1
2}×{s2

1, s
2
2}, η(m) = 1

4
∀m ∈ M ,

x
mi

1

si
1

= x
mi

2

si
2

= 1, in words: for each population i all agents of subpopulation

1 choose their strategy 1 and all agents from subpopulation 2 choose their

strategy 2. If Ω = M , A1 =
{
{(m1

1, m
2
1), (m

1
1, m

2
2)}, {(m1

2, m
2
1), (m

1
2, m

2
2)}
}

(and A2 analogous), P = η and ρ as constructed above, there is probability

mass one on the rule ri : ri(mi
1) = si

1, r
i(mi

2) = si
2. Alternatively, but for

the same Ω, Ai, P , one could assign ρ̃i(ri) = 1
4
∀ ri ∈ Ri. Both ρ and ρ̃

induce the same distribution λ but while ρ is pure, ρ̃ is completely mixed

and therefore ρ and ρ̃ have different dynamic properties.

6 Robust Signals

Until now, it was assumed that the signal generating process is stationary.

This is plausible, if the signals originate from an object that is completely

exogenous, i.e. if they are independent from interaction – a somehow polar

case. The other polar case would be that the agents themselves can choose
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messages that serve as signals. I regard situations in which one population

i can alter the complete signal and consider the case in which population i

can choose a particular probability distribution P . I offer the following inter-

pretation: suppose some institution determines P . Every population knows

the design of the institution and therefore has access to the information how

the institution determines P . Population i can influence the institution, be-

cause – for example – some key positions within the institution are held

by members of population i. In this section we derive conditions such that

population i does not have an incentive to change P in a stable state ρ.

Suppose nature draws a certain elementary event ω ∈ Ω. Then, for a given

distribution of rules ρ = {ρi}i, population i’s expost payoff is f i(ρ(ω)). Pop-

ulation i has an incentive to change P if there is some other event ω′ with

f i(ρ(ω)) < f i(ρ(ω′)). This leads to the following definition:

Definition Robust to Manipulation

Given ρ, P ∈ ∆(Ω) is robust to manipulation if for all populations i

P (ω) > 0 ⇒ f i(ρ(ω)) ≥ f i(ρ(ω′)) ∀ω′ ∈ Ω .

If a distribution P is robust to manipulation given ρ, no population (re-

gardless wether it has the capability to change P or not) has an incentive

to manipulate P . We do not demand that any population can change P .

We characterize those pairs (P, ρ) such that no population wants to change

P given ρ. Nevertheless, we have implicitly assumed some constrained rea-

soning. Suppose there is some mapping g : ∆(Ω) ⇒ ∆(R) such that given

distribution P , agents play an equilibrium ρ ∈ g(P ). In the approach above,

agents believe g to be singlevalued and constant and agents compare the ex-

post payoffs. Alternatively, one could argue that population i does not have

an incentive to change P to P ′ if F i
P (ρ) ≥ F i

P ′(ρ′) ∀ ρ′ ∈ g(P ′). That is, no

population has an incentive to change P , if P maximizes ex-ante payoffs for

all equilibrium choices ρ′, where the equilibrium choice well depends on the
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distribution P . The consequences of this definition are more exclusive in the

sense that it is easy to find a game such that no stable state ρ has a robust

distribution P .13

6.1 Results

Consider again the general setting, with Γ = {N , S, f},
I = {{Ω,P(Ω), P}, {A}i∈N} yielding the expanded game GP = {N ,R,FP}
(making the dependence on P explicit). Define ∆∼

P ⊂ ∆(R) as the set of

rules ρ such that P is robust to manipulation. Define ∆CE
P ⊂ ∆(R) as the

set of correlated equilibria given P . Our first result is immediate:

Proposition 5

∆∼
P ∩∆CE

P 6= ∅ ∀ P ∈ ∆(Ω).

Proof

Consider a Nash equilibrium σ ∈ ∆(S) of the original game Γ. Define the

rule ρ such that for all i ∈ N and si ∈ Si, ρi(ri) = σi(si) for ri : ri(ω) ≡ si.

Clearly, ρ is a correlated equilibrium of Γ given P , hence ρ ∈ ∆CE
P . No

population conditions the choice of strategies on signals, hence f i(ρ(ω)) =

f i(σ) ∀ω ∈ Ω and therefore no population has an incentive to manipulate

the generation of the signals. Hence, P is robust given ρ, ρ ∈ ∆∼
P . �

We argue that there always is a trivial correlated equilibrium in which agents

choose Nash equilibrium strategies ignoring any signals. Since all agents ig-

nore any signals, no agent has an incentive to manipulate the signals.

We cannot give a full characterization of ∆∼
P ∩ ∆CE

P , the set of correlated

equilibria given P that induce P to be robust against manipulation. How-

13For example, the chicken game, the battle of the sexes game,...
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ever, I suspect that it is a subset of rules that induce a distribution λ on

the set of outcomes S that lies in the convex hull of Nash equilibria (see the

Chicken Game example below). I leave this characterization to future work.

We can give a full characterization of ∆∼
P ∩ FP , FP being an asymptoti-

cally stable set of rules given P if we impose a further assumption on the

payoffs of the original game Γ. Suppose Γ has the generic property that

fi(s) 6= fi(s
′) ∀s, s′ ∈ S, s 6= s′. Then all asymptotically stable sets are

singleton. In this case, I can state that a probability measure P is robust

to manipulation given ρ if and only if ρ puts probability one on rules that

choose one strict Nash equilibrium.

Proposition 6

Suppose for each population i, the frequency ρi(ri) updates according to (1)

and that (1) is convex monotonic. Suppose further that the original game

Γ is generic. A set FP ⊂ ∆(R) is asymptotically stable given (1) and a

distribution P with full support on Ω, and P is robust given a ρ ∈ FP , if and

only if ρ attaches probability one to a rule that maps all signals to the same

strict Nash equilibrium.

Proof

Suppose FP is asymptotically stable and suppose P is robust given any

ρ ∈ FP . According to Proposition 2, FP is a SEset, from genericity follows

that FP is singleton, i.e. ρ = FP puts probability one to a strict correlated

equilibrium r ∈ R. Because no population has an incentive to manipulate

P given r, it must be that f i(r(ω)) = f i(r(ω′)) ∀ω, ω′ ∈ Ω,∀ i. Since Γ is

generic, it must be r(ω) = r(ω′) = s ∀ ω, ω′ ∈ Ω and some s ∈ S. Since

r is a strict correlated equilibrium, F i(r(ω)) > F i(r̃i(ω), r−i(ω)) ∀ r̃i 6=
ri,∀ ω,∀ i ⇒ f i(s) > f i(s̃i, s−i) ∀ s̃i ∈ Si, ∀ i. s is a strict Nash equilbrium

of Γ. �
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Suppose ρ attaches probability one to a rule r ∈ R that maps all sig-

nals to a strict Nash equilibrium s ∈ S of Γ, r(ω) = s ∀ ω ∈ Ω. Then

f i(r(ω)) = f i(r(ω′)) ∀ ω, ω′ ∈ Ω,∀ i and no population has an incentive to

manipulate P . Further F i(r) > F i(r̃i, r−i)) ∀r̃i ∈ Ri ∀ i, ie r is a strict

correlated equilbrium. From Proposition 3, r is asymptotically stable. �

Proposition 6 claims that if the game Γ is generic, i.e. if one considers

the payoffs as random draws and disregards those payoffs that appear with

probability zero, if the agents update their rules boundedly rational and if no

population would have an incentive to change the signal generating process

if it could, then there is nothing we can learn from the concept of corre-

lated equilibrium. Strict Nash equilibria sufficiently explain behavior under

such conditions. The proof makes use of the fact that in generic games no

two outcomes provide the same payoff. If a population has the capacity to

choose certain signals at will, the population will do so as to maximize ex

post payoffs.

6.2 Example: Chicken Game

We elaborate on this subject for the Chicken example, for which we can char-

acterize ∆∼
P∩∆CE

P . Let Ω = {ω1, ω2, ω3} andA1 = {{ω1, ω2}, {ω3}} andA2 =

{{ω1}, {ω2, ω3}}. Consider a P ∈ ∆(Ω) with full support. The Chicken game

is generic, all asymptotically stable sets are singleton and therefore strict cor-

related equilibria. We list the expected payoffs and the best replies in Ap-

pendix B. For any P , there exist two strict correlated equilibria: (uu, rr) and

(dd, ll). If P (ω1) > max
{
1− 3P (ω3),

1
3
− 1

3
P (ω3)

}
, also (ud, rl) is a strict

correlated equilibrium. If further P (ω1) > max
{
1− 3

2
P (ω3),

2
3
− 2

3
P (ω3)

}
,

there exists a fourth strict correlated equilibrium: (du, lr). The equilibria

(uu, rr) and (dd, ll) correspond to the two strict Nash equilibria of Γ. In these

equilibria, ex ante payoffs F equal ex post payoffs f(ω) for any signal ω, no
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population has an incentive to manipulate the generation of signals. Suppose

P is such that (ud, rl) is a strict equilibrium. Then, the ex ante payoffs for

population 1 are 6−4P (ω1)+P (ω3). Population 1 has an incentive to increase

P (ω3) at the expense of P (ω1). After the manipulation, either P is outside

the region in which (ud, rl) is a strict correlated equilibrium or the incentives

to manipulate P are still intact. Note that population 2 also has incentives

to manipulate P in the equilibrium (ud, rl). Analogous arguments hold for

the equilibrium (du, lr). Wrapping up we get that P is robust given the rules

r ∈ {(uu, ll), (dd, rr)} and that these are the only states that are asymptot-

ically stable. Note that there are other correlated equilibria, that are not

asymptotically stable, that are generated by a robust P : ∆∼
P ∩∆CE

P = {ρ ∈
∆(R) |ρ1 = (1

3
+ ρ1(rr), 1

3
− ρ1(dd), 1

3
− ρ1(dd), ρ1(dd)), ρ2 = (1

3
+ ρ2(rr), 1

3
−

ρ2(rr), 1
3
− ρ2(rr), ρ2(rr)), ρ1(dd), ρ2(rr) ∈ [0, 1

3
]} ∪ {(uu, rr), (dd, ll)}. For

any mixed correlated equilibrium ρ with a robust P , each population gets

a payoff of 42
3
, which is the outcome of the mixed Nash-equilibrium of the

original Chicken game. To conclude for the Chicken game: if agents have the

capability to influence the signal generating process, and if the distriution P

and the distribution of rules ρ is such that agents do neither have an incen-

tive to manipulate the signals nor to change their behavior, the outcome is

a Nash outcome.

7 Conclusions

In Aumann (1987), section 3, a player receives a signal and conditions her

strategic choice within a normal form game on this signal. She takes into

account that other players receive signals that are potentially correlated to

hers and calculates conditional beliefs. Aumann (1987) shows that, if players

have a common prior on the signal space and if players choose strategies opti-

mally given their beliefs, the equilibrium outcome is a correlated equilibrium.

There are correlated equilibrium outcomes that lie outside the convex hull
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of the Nash outcomes. In this chapter I pursue the question whether agents

can achieve a correlated equilibrium without being capable to calculate con-

ditional expectations, indeed even without being able to optimize. For this

purpose, given a signal generating process and a game in strategic form, I

define an “expanded game” whose strategies are mappings from the set of the

signals to the set of the strategies of the original game. For this expanded

game I transfer existing and well established results on regular monotonic

dynamics, including the replicator dynamic. Applying a result of Samuel-

son and Zhang (1992), it follows that an outcome which supports a strictly

dominated strategy of the original game receives zero weight in the limit.

Analogous to results of Weibull (1995) and Ritzberger and Weibull (1995) I

show that a Lyapunov stable state of the expanded game represents a corre-

lated equilibrium of the original game and that such a state is asymptotically

stable if and only if it represents a strict correlated equilibrium (also Swinkels

(1992)). Furthermore, I make use of the setwise concept “strict equilibrium

set” introduced by Balkenborg (1994) and provide a result for convex mono-

tonic dynamics that is analogous to Cressman (2003) and Balkenborg and

Schlag (2007): a set of restpoints is asymptotically stable if and only if it is a

strict correlated equilibrium set. Therefore I can give a positive answer to the

initial question: even if agents are extreme boundedly rational a non-Nash

outcome can be robust to random perturbations if agents use simple rules

that condition their behavior on observed signals. Finally I discuss endoge-

nous signals. If behavior of the agents can be modelled by convex monotonic

dynamics and if the game is generic, I show that an asymptotically stable

state has a robust distribution of signals if and only if it corresponds to a

strict Nash equilibrium of the original game. I suspect that if the (potentially

only Lyapunov stable) state is a correlated equilibrium and if the distribution

of signals is robust, then the expected payoffs lie in the convex hull of those

produced by Nash equilibria. I illustrate this claim for the Chicken game.

This is not the first attempt linking evolutionary concepts to that of
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correlated equilibria. Cripps (1991) constructs a model in which nature ran-

domly assigns roles to players in bi-matrix games. Analyzing the statics of

the model, he shows that ESS in the symmetrized game represent strict cor-

related equilibria. Lenzo and Sarver (2006) define a model of subpopulations

in which an agent of some subpopulation is non-uniformly matched to agents

in other subpopulations. I show that any kind of their subpopulation match-

ing may be represented by a particular signalling structure of our model.

Kim and Wong (2007) define an evolutionary stable correlated strategy for

symmetric 2× 2 games.

Appendix

Proposition 1

Let g be convex monotonic. If F ⊂ ∆R is a Lyapunov stable set of rest

points, then each ρ ∈ F is a c.e. .

Proof: Since ρ ∈ F is a restpoint, gi(ri, ρ) = 0 ∀ ri ∈ supp (ρi). Sup-

pose ∃ri
l , r

i
k ∈ supp(ρi) such that F i(ri

l , ρ
−i) > F i(ri

k, ρ
−i). Then, by convex

monotonicity, gi(ri
k, ρ) < gi(ri

l , ρ) ·1, a contradiction. Therefore F i(ri
l , ρ

−i) =

F i(ri
k, ρ

−i) ∀ ri
l , r

i
k ∈ supp(ρi). If ρ is in the interior of F with respect to

∆R, we are done. Suppose instead that for some i there exists ri
k 6∈ supp(ρi)

and suppose that F i(ri
k, ρ

−i) > F i(ρ). Then, again by convex monotonicity,

gi(ri
k, ρ) >

∑
ri∈Ri gi(ri, ρ) · ρi(ri) = 0. Since g is (Lipschitz–)continuous,

there exists a neighborhood U of ρ such that gi(ri
k, ρ̃) > 0 ∀ ρ̃ ∈ U ∩ ∆R.

Define U ′ = {ρ̃ ∈ U ∩ ∆R | ρ̃i(ri
k) > 0}. It holds that ρ̂i

ri
k
(t, ρ̃) is strictly

increasing in t for any ρ̃ ∈ U ′. However, Lyapunov stability implies that

ρ̂(t, ρ̃) ∈ U ′ ∀ t ≥ 0 and ρ̃ ∈ U ′′ for some neighborhood U ′′, which can

only be the case if ˙̃ρi(ri
k) ≤ 0 for some ρ̃ ∈ U ′, because ρi(ri

k) = 0. Since

gi(ri
k, ρ̃) > 0 ∀ ρ̃ ∈ U ′ this is not true for any subset of U ′ and U ′′ does not

exist. Therefore, the existence of some ri
k ∈ Ri for some i ∈ N such that
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F i(ri
k, ρ

−i) > F i(ρ) contradicts Lyapunov stability of F and we have estab-

lished the claim. �

Proposition 3

Let (1) be convex monotonic. If a set F is a SEset, then F is an asymptoti-

cally stable set of rest points.

Proof: Suppose F is an SEset and suppose that F 6= ∆R. Each point

in F is a restpoint of (1). Further we have that F is a finite union of

faces of ∆R and therefore is closed. Consider some ρ∗ on the boundary

of F with respect to ∆R. For some population there is a pure rule ri such

that F i(ri, ρ−i
∗ ) < F i(ρ∗). Since gi(·, ρ) · ρi = 0 ∀ ρ ∈ ∆R it follows that

gi(ri, ρ∗) = 0 ∀ ri ∈ supp(ρi
∗). From convex monotonicity we have that

gi(ri, ρ∗) < 0 ∀ ri 6∈ supp(ρi
∗) and from continuity follows that there exists

some neighborhood U : U ∩ int(∆R) 6= ∅ of ρ∗ such that gi(ri, ρ) < 0 ∀ ri 6∈
supp(ρi

∗), ρ ∈ U . Therefore ρ̇i
ri(ρ) < 0 ∀ri 6∈ supp(ρi

∗),∀ ρ ∈ U \ F and from

gi(·, ρ)·ρi = 0 I have for at least one ri ∈ supp(ρi
∗) that ρ̇i

ri(ρ) > 0 ∀ ρ ∈ U\F ,

which establishes the result. �
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