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Taking a shower in Youth Hostels:

risks and delights of heterogeneity

Christina Matzke∗ and Damien Challet† ‡

January 1, 2008

Tuning one’s shower in some hotels may turn into a challenging co-
ordination game with imperfect information. The temperature sensitivity
increases with the number of agents, making the problem possibly unlearn-
able. Because there is in practice a finite number of possible tap positions,
identical agents are unlikely to reach even approximately their favorite wa-
ter temperature. Heterogeneity allows some agents to reach much better
temperatures, at the cost of higher risk.

JEL Classification Number: C02, C61, C62, C63, D70, D83
Keywords: coordination, heterogeneity, adaptive learning, non-linear system, feed-
back

1 Introduction

Taking a shower can turn into a painful tuning and retuning game when many

people take a shower at the same time if the flux of hot water is insufficient.

In this fascinating game, it is in the interest of everybody not only to reach an

agreeable equilibrium temperature but also to avoid large fluctuations. These

two goals are difficult to achieve because one inevitably not only has incomplete

information about the behavior and personal preferences of the other bathers,

but also about the non-linear intricacies of the plumbing system.
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2 The Shower Temperature Problem

The central issue of this paper is to find the conditions under which the agents

are satisfied, which depends on the learning procedure and on its parameters.

The need to depart from rational representative agents was forcefully voiced

among others by Kirman (2006) and Brian Arthur, for instance in his El Farol

bar problem (Arthur 1994), subsequently simplified as Minority Game (Challet

and Zhang 1997, Challet, Marsili and Zhang 2005), from which we shall borrow

some ideas concerning the learning mechanism. In these models, the agents try to

behave maximally differently from each other, hence the need for heterogeneous

agents.

The Shower Temperature Problem is different in that the perfect equilibrium is

obtained when all the agents behave exactly in the same optimal, unique way. A

priori, it is a perfect example of a case where the representative agent approach

applies fully. As we shall see, however, because in practice there is a maximum

number of tap tuning settings, it may pay off to be heterogeneous with respect

to the strategy sets. Therefore, the problem we propose in this paper is another

example of a situation where heterogeneity is tempting because potentially bene-

ficial. The intrinsic and strong non-linearity of the temperature response function

prevents the use of the mathematical machinery for heterogeneous systems that

successfully solved the Minority Game (Challet et al. 2005, Coolen 2005), the El

Farol bar problem (Challet, Ottino and Marsili 2004) and the Clubbing problem

(De Sanctis and Galla 2006).

2 The Shower Temperature Problem

One of the problems of poor plumbing systems is the interaction between the

water temperatures of all the people taking a shower simultaneously. If one person

changes her shower setting, she influences the temperature of all the other bathers.

Cascading shower tuning and retuning may follow. A key issue is how people can

learn from past temperature fluctuations how to tune their own shower so as to

obtain an average agreeable temperature T̂ , and also to avoid large temperature

fluctuations.

Some rudimentary shower systems allow only for one degree of freedom, the de-

sired fraction of hot water in one’s shower water, denoted by φ ∈ [0, 1]. Assuming
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2 The Shower Temperature Problem

that H and C denote the maximal fluxes of hot and cold water available to a

shower, and that the total flux at this shower is constant, the obtained tempera-

ture is equal to

T =
φHTH + CTC(1− φ)

φH + C(1− φ)
, (1)

where TH and TC denote the constant temperatures of hot and cold water.

In the following, we shall consider the special case were H = C, TC = 0, and

TH = 1, which amounts to express T in TH units, i. e. to rescale T by TH , which

leads to T = φ.

The situation may become more complex however if many people take a shower

at the same time. Indeed, it sometimes happens that altogether the N bathers

ask for a larger hot water flux than the plumbing system can provide, a feature

more likely found in old-style youth hostels than in more upmarket hotels (hence

the title). Assume that the total available hot water flux for all bathers together

is H while the cold water flux available at each single shower is C = H. We

denote by Φ =
∑N

i=1 φi the total fraction of asked hot water. If Φ > 1, each agent

will only receive φi/Φ instead of φi and the total flux of hot water she obtains is

smaller than expected.1 Finally, agent i obtains

Ti =
φi

φi + Ψ(1− φi)
, (2)

where Ψ = max(1, Φ). Clearly, Ti(φi = 0) = 0 and Ti(φi = 1) = 1. When Φ ≤ 1,

this equation reduces to the no-interaction case Ti = φi. Therefore, provided that

Φ > 1, the agents interact through the temperature they each obtain, that is, via

Φ. Assuming no inter-agent communication, the global quantity Φ is the only

means of interaction. Therefore, this model is of mean-field nature. Henceforth,

we consider the more involved case of interaction, i. e. Φ > 1.

1The fraction of cold water in this case is still 1 − φi, according to the agent’s choice, since
cold water is assumed to be unrestricted.
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3 Tuning one’s shower
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Figure 1: Individual temperature as a function of φ in the homogeneous case for

increasing N (from top to bottom).

3 Tuning one’s shower

3.1 Equilibrium and sensitivity: the homogeneous case

Before setting up the full adaptive agent model, we shall discuss the homogeneous

case where φi = φ.

Assuming that all the agents have the same favorite temperature (T̂i = T̂ ≤ 1),

they do not interact if N ≤ 1/T̂ , in which case φ = T̂ . If N > 1/T̂ the equilibrium

is reached when

φ = φeq = 1− 1

N

(
1

T̂
− 1

)
. (3)

Hence, there is always a φ that satisfies everybody (for instance, setting T̂ = 1/2

leads to φeq = 1−1/N). In equilibrium each agent actually gets φeqH/(N ·φeq) =

C/N hot water instead of φeqH and thus a total water flux of C/N +(1−φeq)C =

C/(NT̂ ). Hence, indeed the desired temperature T̂ is reached for every agent,

but the total water flux per agent is quite small for large N .

The sensitivity of T to φ, defined as χ = dT
dφ

= N
[1+N(1−φ)]2

is an increasing function

of φ and maximal at φ = 1 (a similar result also holds for Ti = φi

φi+Φ(1−φi)
). The
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3 Tuning one’s shower

problem is that χ(φeq) = NT̂ 2 ∝ N ; therefore, as N increases, tuning φ around

φeq becomes more and more difficult, suggesting already that the agents might

experience difficulties to learn how to tune their shower. Figure 1 illustrates this

phenomenon: as N increases, the region in which most of the variation of T

occurs shrinks substantially.

This problem is made worse by the fact that, in practice, there is only a finite

number Smax of φs that can be effectively used by the agents, mostly because

of internal tap static friction—the larger the friction, the smaller the number of

different achievable φs. Assuming that the resolution in φ is δφ, or equivalently

that S = 1/(δφ) values of φ are usable, it becomes impossible to tune one’s shower

if |T (φeq ± δφ)− T̂ | ' χ(φeq)δφ is larger than some acceptable value. As χ ∝ N

around φeq, S ∝ N is needed; as a consequence, the ideal temperature is not

learnable beyond a number of agents, which is for a large part pre-determined by

the plumbing system.

3.2 Learning

The question is how to reach φeq. In this model, it is hoped that the agents

have a common interest to avoid large fluctuations of Ti around their favorite

temperature T̂i: the Shower Temperature Problem is a repeated coordination

game (cf. Crawford and Haller (1990) and Bhaskar (2000)) with many agents

and limited information.

The dynamics of the agents are fully determined by their possible tap settings,

thereafter called strategies, and by the trust they have in them. Each agent i

has S possible strategies φi,s with s = 1, ..., S chosen in [0, 1] before the game

begins and kept constant afterwards (how to choose the φs is discussed in the

next section). The typical resolution in φ is 1/S; for the same reason, the typical

maximal φi over all the agents is of order 1− 1/S. This paper follows the road of

inductive behavior advocated by Brian Arthur: to each possible choice φi,s agent

i attributes a score Ui,s(t) (where t denotes the time step of the game), which

describes its cumulated payoff at time t. The agents choose probabilistically their

φi,s according to a logit model P (φi(t) = φi,s) = exp(ΓUi,s(t))/Z, where Z is a

normalization factor and Γ is the rate of reaction to a relative change of Ui,s.
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3 Tuning one’s shower

If one were to follow blindly El Farol bar problem and Minority Game literature,

one would write

Ui,s(t + 1) = Ui,s(t) + φi,s

[
T̂i − Ti(t)

]
.

When S > 2, such payoffs are not suitable any more, as the agents switch be-

tween their highest and smallest φi,s, the intermediate ones being sometimes used

only because of fluctuations induced by the stochastic strategy choice. A payoff

allowing for a gradual increase of φi,s is necessary. Absolute value-based payoffs

are fit for this purpose1: mathematically,

Ui,s(t + 1) = Ui,s(t)−
∣∣∣T̂i − Ti(t)

∣∣∣ .

This payoff however does not depend on φi,s. As a consequence, all the strategies

have the same payoff. Therefore, one has to give more information to the agents.

An agent that has perfect information about the plumbing system, the temper-

atures and fluxes of hot and cold water — for instance the plumber that built

the whole installation — may know precisely which temperature she would have

obtained, had she played φi,s′ instead of her chosen action φi,si(t). Such people

are probably not very frequent amongst the general population, however. This is

why we shall consider an in-between case, where the agents’ estimation of Ti,s(t)

is a linear interpolation between the temperature of the strategy currently in use,

i. e. Ti(t) = Ti,si(t) and its correct virtual value. The payoff is therefore

Ui,s(t + 1) = Ui,s(t)(1− λ)− λ
∣∣∣T̂i − (1− η)Ti(t)− ηTi,s(t)

∣∣∣ , (4)

where η ∈ [0, 1] encodes the ability of the agents to infer the influence of φi,s

on the real temperature and 0 ≤ λ < 1 introduces an exponential decay of

cumulated payoffs, with typical score memory length ∝ 1/λ. The parameter η

is related to the difference between naive and sophisticated agents as defined by

(Rustichini 1999). The first kind of agents believe that they are faced with an

external process, i. e. that they do not contribute to Φ, whereas sophisticated

agents are able to compute Φ−i = Φ − φi. In this model, perfect sophisticated

agents have η = 1.

1Quadratic payoffs, albeit mathematically sound, are more problematic for performing numer-
ical simulations.
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4 Results

4 Results

It is natural to measure two collective quantities, the average temperature T ob-

tained by the agents and its average distance from ideal temperature averaged

over all the agents, denoted by ∆T = T − T̂ ; this characterizes the average tem-

perature obtained by the agents, or how far the agents are collectively from their

goal. The individual dissatisfaction is the distance from the ideal temperature

for a given agent; one therefore measures it with |δT | = 1
N

∑N
i=1 |Ti − T̂i|; it is a

measure of the average risk.

All the quantities reported here are measured in the stationary state over 10, 000

time steps for T̂ = 0.5, η = 1, λ = 0.001 and if not stated differently N = 20,

after an equilibration time of 30/(λΓ). The stationary state does not depend

much on λ. On the other hand, the performance of the population is of course

improved as η increases and saturates for η > 0.5. The role of Γ is discussed

below.

4.1 Homogeneous population

Since the equilibrium is reached when all the agents tune their shower in exactly

the same way, trying first homogenous agents (or equivalently a representative

agent) makes sense a priori. We shall therefore set φi,s = φs = s
S+1

, s = 1, ..., S

so that the agents avoid using only hot or cold water.

Agents with homogeneous strategies have a peculiar way of converging to their

ideal temperature as S increases. Figure 2 displays the oscillations of the reached

temperature with decreasing amplitude as a function of S. The asymmetric

upward and downward slopes are due to the asymmetry of T around φeq, as seen

in Figure 1. Theoretically, this can easily be explained by assuming that all the

agents select the same s that gives T as close as possible to T̂ . If s was a real

number, ŝ = [1 − 1/N(1/T̂ − 1)](S + 1). The choice of the agents therefore is

limited to [ŝ] and [ŝ] + 1 where [x] is the integer part of x (one may need to

enforce [ŝ] < S when S < N). T ([ŝ]) and T ([ŝ] + 1) are alternatively closest to

T̂ , therefore this actual optimal temperature Tth (whichever T ([ŝ]) or T ([ŝ] + 1))

oscillates around T̂ , as seen in Figure 2. The period of the oscillations is N , and

their amplitude decreases as 1/S. As expected, a very large value of Γ replicates
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Figure 2: Temperature T reached by homogeneous agents as a function of S for

various Γ. Inset: T vs. (S + 1)/N , showing the scaling property of T ,

with N = 10, 20, 40 (asterisks, triangles, crosses).

closely the dented nature of the value of Tth, in which case all the agents take

the same choice even close to the peak of Tth. Generally, smaller Γs (at least

to a certain degree) lead to better average temperatures as it allows to play

mixed strategies, and thus combine two temperature so as to achieve a collective

average result closest to T̂ . From that point of view. Γ = 50 is a better choice

than Γ = 1000. Hence, there exists an optimal global value of Γ, leading to a

mixed-strategy equilibrium. This is because taking stochastic decisions is a way

to overcome the rigid structure imposed on the strategy space, whose inadequacy

is reinforced by the strong non-linearity of T (φ). A too small Γ is detrimental as

it allows for using φ further away from φeq; because of the shape of T (φ), those

with smaller φ are more likely to be selected.

The individual dissatisfaction |δT | unsurprisingly mirrors |∆T | since all the play-

ers are identical. Both quantities are the same for large Γ as everybody plays

the same fixed strategy. |δT | also decreases as 1/S (see Figure 5). However, the

larger Γ, the smaller |δT |, as each agent manages to get closer to the optimal

choice.

It is easy to obtain analytical insights by solving the stationary state equations
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4 Results
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Figure 3: Temperature T reached by homogeneous agents as a function of S for

Γ = 100. Squares: theory, circles: numerical simulations. Inset: aver-

age deviation I from T̂ versus Γ (same parameters); the dotted lines

are for eye guidance only.

for Ui,s. For the sake of simplicity, assuming that η = 1 and that only the two φs

surrounding φeq, i. e. [ŝ] and [ŝ] + 1, denoted by − and + respectively, are used,

one obtains the set of equations (independent from λ and i)

Ui,± = U± = −|T± − T̂ | (5)

where

Ti,± = T± =
1

1 + N+φ++N−φ−
φ±

(1− φ±)
(6)

with N± = N ·P (s = ±), where P (s = +) =
exp(ΓUi,+)

exp(ΓUi,+)+exp(ΓUi,−)
and P (s = −) =

1−P (s = +) is a Logit model for the two-strategy case S = 2. Figure 3 shows the

good agreement between numerical simulations and this simple theory, especially

in the convex part of the oscillations, as long as Γ is large enough (about 50) to

prevent the use of more than 2 strategies.

Being faced with oscillations is problematic since the agents do not know N a

priori and because N may vary with time. In addition, since all the agents select

the same φ for large Γ, not a single agent is ever likely to reach a temperature

close to T̂ . The agents do not know whether on average they will overheat
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4 Results
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Figure 4: Absolute temperature deviation |∆T | reached by homogeneous

(squares) and heterogeneous (circles) agents as a function of S for

Γ = 100. Average over 500 samples for heterogeneous agents.

or chill. A way to measure this uncertainty is to measure the average |∆T |
over S in numerical simulations, for instance with I =

∑5N
S=N |∆T |/(4N).2 The

inset of Figure 3 reports that the minimum of I is at Γ ' 42 for the chosen

parameters, which shows the existence of an optimal learning rate. Since the

individual satisfaction is maximal in the limit Γ → ∞ (see above) there is no

minimum of a similar measure for |δT |.

4.2 Heterogeneous populations

There are many ways for agents to be heterogeneous. One could imagine to vary

S, Γ, η, λ or T̂ amongst the agents. Here we focus on strategy heterogeneity,

i. e. the agents face showers with different tap settings: the strategy space of agent

i is no longer 1
S+1

, . . . , S
S+1

, but now each agent has an individual strategy space

where each strategy φi,s, s = 1, . . . , S, is assigned a random number from the

uniform distribution on [0, 1] before the simulation.

2Simulations show that the average temperature is in fact a function of (S + 1)/N (cf. Figure
2) (instead of a function of S and N), i. e. Figure 3 would look the same if S was fixed and
N varied. Hence we may take the average over S instead of over N .
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5 Discussion and conclusions
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Figure 5: Individual dissatisfaction |δT | reached by homogeneous (empty squares)

and heterogeneous agents (full circles) as a function of S for Γ = 1000.

Average over 500 samples for heterogeneous agents. Dashed line: the-

oretical predictions.

Intuitively, the effect of heterogeneity is to break the structural rigidity of the

strategy set of a representative agent. Figure 4 reports that |∆T | does not os-

cillate, but converge (from below) faster than S−1 to zero. Homogeneous agents

might achieve a better average temperature depending on N and S, but on the

whole clearly perform collectively worse. In addition, heterogeneous agents ex-

pect to have a smaller than ideal temperature, but on average predictably smaller,

with no strong dependence on S. Thus, the expectation over the temperature of

the agents is much improved by heterogeneity.

However, looking at the average absolute individual deviation from T̂ reveals

that the uncertainty brought by heterogeneity is considerably worse on average.

Plotting |δT | for both types of agents shows that |δT | is always smaller for homo-

geneous agents (Figure 5). This means that if being heterogeneous is more risky.

Which agent (or equivalently, shower) performs better depends not only on N ,

but also on the tuning settings of all the agents.
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5 Discussion and conclusions
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Figure 6: Fraction of the runs for which a single heterogeneous agent is worse

off than the other N − 1 homogeneous agents; Γ = 1000 (crosses) and

Γ = 30 (circles). Average over 2000 samples.

5 Discussion and conclusions

Heterogeneity may be tempting as it suppresses the systematic abrupt oscillations

experienced by homogeneous populations and is collectively better on average.

However, it seems that heterogeneous showers are potentially more risky. In

other words, the agents must consider the trade-off between the temptation of an

expected better temperature and a potentially larger deviation.

The situation discussed above is only global. Does it pay to be heterogeneous for

a single agent? An answer comes from a system consisting of N−1 homogeneous

agents as defined above and a single random one with random φi,ss. The fraction

f of the runs at fixed S that give a better δTi to the homogeneous showers is

reported in Figure 6; this quantity indicates that the majority of heterogeneous

agents are not worse off for about a quarter of the values of S. This finding

is not in contradiction with the fact that the average personal dissatisfaction of

heterogeneous agents is always larger than that of homogeneous agents: |δT | is

much influenced by large deviations contributed by a minority of agents because

of large temperature sensitivity to small deviations in φ. Finally, the advantage
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5 Discussion and conclusions

of the homogeneous population increases with Γ, as a large learning rate helps

only using one’s best strategy.

As a final note, minimizing |∆T | is equivalent to solving a number partitioning

problem (Garey and Johnson 1979) in which one splits a set of N numbers ai > 0

into two subsets, so that the sums of the numbers in the subsets are as close as

possible, which amounts to minimize C = |∑i siai| where si = ±1; it is an NP-

complete problem; in other words, the only way to find the absolute minimum of

C is to sample all the 2N configurations. Let us consider an even simpler version

of the Shower Temperature Problem that makes more explicit its NP-complete

nature. Each agent i is given ai and plays φeq + siai, si = ±1. Neglecting the

self-impact on the resulting temperature and the non-linearity of the temperature

response, the analogy between the Shower Temperature Problem and the num-

ber partitioning problem is straightforward. Methods borrowed from statistical

mechanics show that the average optimal C scales as 2−N , which requires to enu-

merate the 2N possible configurations (Mertens 1998). This is much better than

what the agents achieve; the reason for this discrepancy is that the agents do

not reach a stationary state in O(exp N) time steps, hence, they cannot sample

all the possible configurations. Another reason is that the optimal solution may

require some agents to use a strategy that would yield a worse temperature than

their optimal choice.

In conclusion, the Shower Temperature Problem shows the subtle trade-offs be-

tween a homogeneous population with equally spaced actions and a fully random

one. In a system where the agents’ action space is not likely to include the opti-

mal equilibrium choice, heterogeneity is a way to solve more robustly, with less

systematic deviation this kind of problem, at the expense of a higher risk for

individual agents.
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