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1 Introduction

Long before the formal economic theory of consumer behavior (and the concept of a demand

function) was developed, it was recognized that income is an important explanatory variable

for consumer demand. We refer to Stigler (1954) for the early history of empirical studies.

Certainly, there are other explanatory variables, such as prices and preferences. In order to

derive a complete set of explanatory variables one needs a precise and complete description

of the decision situation. Does the consumer face an a-temporal or inter-temporal decision

with or without uncertainty?

These alternative decision problems are studied in detail in the microeconomic theory of

consumer behavior (e.g., Deaton and Muellbauer, 1980, Romer, 2006; for a concise formula-

tion see Section 5.2 of Hildenbrand and Kneip, 2005). For a given period (e.g., a specified

year) this leads to a relation which generally can be written in the following form:

ch = f(xh, vh),

where ch denotes the expenditure in current prices on a certain category of consumption goods

(such as food or services) of consumer h, xh is disposable income, and vh denotes the vector

of all other explanatory variables. The nature of variables subsumed by vh crucially depends

on the decision situation. In any case vh will contain prices and preference parameters. In

an inter-temporal setting vh will also incorporate suitably formalized future expectations.

In order to measure how sensitive consumer h reacts to an income change under the ceteris

paribus condition that vh remains constant, one considers the elasticity of consumption

expenditure with respect to income, ‘income elasticity’ for short, defined by

β(xh, vh) :=
xh

ch
∂xf(xh, vh) = ∂y log f(ey

h

, vh),

where yh = log xh. Thus, if the consumer’s income increases by one percent then his con-

sumption expenditure increases by β percent.

For economic policy analysis one needs mean (aggregate) consumption expenditure across

a large and heterogeneous population H of households. Let νx,v denote the joint distribution

of the explanatory variables xh and vh across the population H. Then mean consumption

expenditure is equal to Cmean :=
∫
f(x, v)dνx,v ≡ F (νx,v). Therefore the ‘explanatory vari-

able’ for mean demand is the distribution νx,v. The marginal νx is the income distribution,

and Xmean :=
∫
xdνx is mean income.

Consider a change in income on the micro-level, xh → x̃h, under the above ceteris paribus

condition. This leads to a new distribution ν̃x,v and a changed mean income
∫
xdν̃x. If, for

a heterogeneous population, one wants to relate the resulting change in mean consumption

expenditure to the change in mean income, then one has to specify, either on the micro-level
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how the change in mean income is allocated across the households in the population, or on

the distributional level, how the changed distribution ν̃x,v is generated from νx,v.

Throughout this paper we consider a proportional change on the distributional level (a

precise definition is given in Section 2). This corresponds to the concept of “mean scaled” in-

come distributions as introduced by Lewbel (1990, 1992). Thus, relative income distributions

remain unchanged and, hence, income inequality measures such as Gini or the coefficient of

variation are unaffected.

In this setup the elasticity of mean consumption expenditure with respect to mean income,

‘aggregate income elasticity’ for short, is given by (see Section 2)

βagg =
Xmean

Cmean
∂µ

(∫
f(

µ

Xmean

x, v)dνx,v

) ∣∣∣∣
µ=Xmean

.

Hence, if, for example, the income of each consumer increases by one percent, then mean

consumption expenditure increases by βagg percent. We emphasize that βagg will in general

not be equal to the mean of individual elasticities. Indeed, a simple calculation given in

Section 2 leads to

βagg = βmean +
1

Cmean
Cov(f(x, v), β(x, v)),

where βmean denotes the mean of individual elasticities, and Cov(f(x, v), β(x, v)) is the covari-

ance between individual consumption expenditures and individual elasticities with respect

to the distribution νx,v.

What can be said about the sign or the magnitude of the covariance term? Do households

with large demand tend to have large or small elasticities? Under which circumstances can

one expect the covariance term to be negligible? The latter is often implicitly assumed in

applied work when the magnitude of the estimated aggregate elasticity is interpreted in terms

of individual behavior.

Even in the case of a population which is homogeneous in demand behavior, without

specifying the demand function, nothing definitive can be said about the sign of the covari-

ance term. For example, even if the common demand function describes the demand for

a necessity the sign of the covariance term can be positive or negative. Consequently, the

above questions have to be answered by empirical studies.

Many contributions in the literature estimate elasticities based on cross-section and panel

data. The standard approach relies on a parametric modeling of demand or consumption

expenditure. In addition to specifying the functional relationship between consumption ch,

income xh and prices p in the current period, possible dependencies between income level

xh and all remaining household specific explanatory variables in vh have to be taken into

account in parametric modeling. It is standard practice to stratify the population according

to observable profiles ah of household attributes (such as family size, age, etc.). One then

assumes that for a given profile ah = a the corresponding subpopulation is homogeneous in
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the sense that remaining variation in consumption expenditure (e.g. due to heterogeneity in

individual preferences) can be described by an additive error term εh. In our notation such

an approach postulates a mapping vh → (p, ah, εh) and a resulting parametric model may be

written in the form ch = f(xh, vh) = g(p, xh, ah; θ) + εh.1 Here, g is a known model function,

while θ is an unknown vector of coefficients which has to be estimated from the data. Based

on estimates θ̂, one may then compute approximations of individual elasticities.

There is an extensive literature on estimating elasticities based on such parametric ap-

proaches. Some of these estimates correspond to βmean, some to βagg, while others are the

elasticities of g evaluated at mean or median income. For example, Houthakker (1957) as-

sumes a double logarithmic model. In this case the covariance term is zero and hence, βmean

equals βagg. Banks et al. (1997) rely on a more general specification (QUAIDS) and their

concept of income elasticity seems to correspond to βagg, since they compute an expendi-

ture weighted mean of individual elasticities. Blundell et al. (1993) also use a QUAIDS

approach and determine budget elasticities computed at the average shares and household

attributes. For further empirical studies, see, e.g., Jorgenson et al (1982) or Lewbel (1989).

Recently nonparametric techniques have been used to estimate aggregate elasticities βagg by

Chakrabarty et al. (2006).

Another branch of literature deals with the estimation of income elasticities of consump-

tion expenditure using time-series data. In such models aggregate consumption expenditure

is assumed to be a function of aggregate current and past income and other explanatory

variables. Hence, under the implicit assumption that changes over time in the income distri-

bution are captured by changes in mean income one is able to estimate an aggregate income

elasticity. Important contributions in this context are, for example, Davidson et al. (1978)

and Campbell and Mankiw (1990).

In this paper we show that under general, qualitative conditions the various concepts

of elasticities developed in the above sketched theoretical framework can be identified and

estimated from cross-section data (Section 2). In Section 3 -5 we then present an empirical

study based on the microdata from the British Family Expenditure Survey (FES) (1974-

1993). We estimate βmean, βagg, as well as close approximations to individual elasticities and

the covariance term. No functional form specification of the behavioral relations is required,

and no restrictive distributional assumptions have to be made. We use recent identification

results described in Hoderlein and Mammen (2007) as well as nonparametric techniques for

estimating regression and quantile functions as proposed by Li and Racine (2004, 2006).

We emphasize that we analyze elasticities with respect to disposable income which can be

considered as an exogeneous variable. Many estimates in the literature are elasticities with

respect to total expenditure. This situation is also covered by our methodology provided that

1Models may also be formulated with respect to log consumption expenditure, log ch = g(p, xh, ah; θ)+εh,
or budget shares wh = ch/xh, wh = g(p, xh, ah; θ) + εh.
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total expenditure can be considered as an exogeneous variable. Otherwise, more involved

nonparametric instrumental variable techniques may be applied. However, one can show

that under additional assumptions our methodology offers an easy way to circumvent this

problem.

The results of our empirical study are presented in Section 5. In particular, it turns out

that the aggregate elasticity can be very different from the mean of individual elasticities.

The magnitude of this difference varies from commodity to commodity. For expenditure

on ‘food’ and ‘services’, as well as for ‘total expenditure’, aggregate income elasticity is

significantly greater than the mean individual elasticities for almost all sample years. In the

extreme, for expenditure on ‘services’ the difference can be as large as 30% of the aggregate

elasticity. On the other hand, for the commodity groups ‘clothing and footware’ and ‘fuel

and light’ aggregate and mean individual elasticities are quite close.

The outline of the paper is as follows: Section 2 provides precise descriptions of our

theoretical setup and of corresponding identification results. Section 3 contains information

about the FES data set used in our analysis, while nonparametric estimation procedures are

discussed in Section 4. Empirical results and conclusions are presented in Section 5.

2 Individual and aggregate income elasticities

In this section we first define individual and aggregate elasticities for a population of house-

holds. The relation between these concepts is investigated. We then study the question in

how far the quantities of interest can be identified and, therefore, are estimable from cross-

section data. Our setup is based on general, qualitative conditions and avoids restrictive

parametric model assumptions.

As explained in the introduction, a specific household with income x and a vector of

further explanatory variables v determines his consumption c ∈ R of a specific commodity

(e.g. food consumption) by

c = f(x, v),

The function f is assumed to be twice continuously differentiable in x. The individual income

elasticity is then given by

β(x, v) :=
x

c
∂xf(x, v) = ∂y log f(ey, p), (1)

where y = log x.

In a large population heterogeneity in explanatory variables will generate a joint distribu-

tion of (x, v). Let C,X, V be corresponding generic random variables describing consumption

expenditure, income and other explanatory variables of a randomly drawn household. We will

use νx,v to denote the joint probability distribution of (X, V ). νx,v then induces corresponding
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distributions of consumption C = f(X, V ) and individual elasticities β(X, V ) = X
C
∂xf(X, V )

in the population. The mean individual elasticity over the population is then given by

βmean := E(β(X, V )) = E(
X

C
∂xf(X, V )) =

∫
x

f(x, v)
∂xf(x, v)dνx,v (2)

Let Cmean =
∫
f(x, v) dνx,v denote mean consumption, while Xmean =

∫
x dνx,v denotes

mean income. The idea motivating our definition of an aggregate income elasticity may be

expressed as follows: quantify the proportional change of mean consumption in dependence

of the proportion µ
Xmean

, when mean income is changed from Xmean to µ 6= Xmean. For

fixed distribution of (X, V ), one considers the effect of a transformation X → ( µ
Xmean

X).

Obviously, E( µ
Xmean

X) = µ, and resulting mean consumption is given by E
(
f( µ

Xmean
X, V )

)
.

The aggregate income elasticity is then defined by

βagg =
Xmean

Cmean
∂µE

(
f(

µ

Xmean

X, V )

) ∣∣∣∣
µ=Xmean

=
Xmean

Cmean
∂µ

∫
f(

µ

µx
x, v)dνx,v

∣∣∣∣
µ=Xmean

=
1

Cmean

∫
x∂xf(x, v)dνx,v (3)

It is now immediately seen that generally βagg does not coincide with βmean. Obviously,

βagg =
1

Cmean

∫
f(x, v)

x

f(x, v)
∂xf(x, v) dνx,v = E(

1

Cmean
Cβ(X, V ))

=
1

Cmean
CmeanE(β(X, V )) +

1

Cmean
Cov(C, β(X, V )) = βmean +

1

Cmean
Cov(C, β(X, V ))

(4)

Let us now consider the question which of the above quantities are identifiable from

cross-section data. A basic problem is that individual preferences and, hence, the param-

eters v are not directly observable. However, all expenditure surveys provide information

about important household attribute profiles a, as for example household size, employment

status, age of household members, etc. Let us thus analyze the situation that there is an

i.i.d. sample (Ci, Xi, Ai), i = 1, . . . , n, containing information about consumption, income

and household attributes of n randomly selected households. Following the above notation,

the distribution of (Ci, Xi, Ai) corresponds to the distribution of generic variables (C,X,A).

The introduction of attribute profiles is crucial, since generally A will be correlated with

the unobservable random variable V . Let νx,a denote the joint distribution of (X,A), while

νv|x,a stands for the conditional distribution of V given (X,A). Note that in our setup X

denotes disposable income of a household (and not total expenditure). X (and Y = logX)

are thus assumed to be exogeneous variables. A standard assumption which implicitly or

explicitly provides the very basis for almost all theoretical and applied work to be found
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in the literature is as follows:2 If attribute profiles a provide sufficient information about

the characteristics of an household, then for the subgroups of all household with the same

attributes A = a the variation in V only reflects variation in individual preferences which

may be assumed to be independent of income. More formally, further analysis will rest upon

the following assumption:

Assumption (Conditional independence of X and V given A):

For every income level x, νv|x,a = νv|a, where νv|a denotes the conditional

distribution of V given A = a.

Let us now first study identification of βmean and βagg. Set Y = logX,

c̄(y, a) := E(C |Y = y, A = a), c̄log(y, a) := E(logC |Y = y, A = a),

and let νy,a be the joint distribution of (Y,A). Under the above assumption,

βmean = E(β(X, V )) = E(
X

C
∂xf(X, V )) =

∫ (∫
x

f(x, v)
∂xf(x, v)dνv|a

)
dνx,a

=

∫
∂y

(∫
log f(ey, v)dνv|a

)
dνy,a =

∫
∂y c̄log(y, a)dνy,a (5)

and

βagg =
1

Cmean

∫
x∂xf(x, v)dνx,v =

1

Cmean

∫
∂y

(∫
f(ey, v)dνv|a

)
dνy,a

=
1

Cmean

∫
∂y c̄(y, a)dνy,a (6)

The functions c̄(y, a) and c̄log(y, a) are well identified regression functions. Nonparametric

regression procedures can be used to determine estimates ̂̄c(y, a) and ̂c̄log(y, a) by regressing

Ci on (Yi, Ai) and logCi on (Yi, Ai), respectively. By (5) and (6) the elasticities βmean

and βagg then are (suitably scaled) average derivatives of c̄log(y, a) and c̄(y, a), which

may be estimated by 1
n

∑n
i=1

̂∂y c̄log(Yi, Ai) and 1
C̄n

∑n
i=1

̂∂y c̄(Yi, Ai), respectively, where C̄ =
1
n

∑n
i=1 Ci. Details of our estimation procedures are given in Section 4.

Identification of individual elasticities is, of course, a much more difficult problem. Quite

surprisingly, in a general setup it is possible to get some “close” approximations. Our

identification strategy is based on the approach of Hoderlein and Mammen (2007).

2Parametric models of demand may be written in the form Ci = g(p,Xi, Ai; θ) + s(p,Xi, Ai; θ) · εi (or
logCi = g(p,Xi, Ai; θ) + s(p,Xi, Ai; θ) · εi) for some prespecified functions g and s, where ε1, ε2, . . . are i.i.d
random errors εi with E(εi) = 0 and V ar(εi) = 1 which are assumed to be independent of Xi, Ai. The
function s may be used to account for possible heteroscedasticity, while θ denotes some unknown vector of
parameters that have to be estimated from the data. In such a setup the “error term” εi ≡ ε(Vi) obviously
captures remaining heterogeneity of Ci for given (Xi, Ai). Conditional independence of Xi and Vi given Ai

is an immediate consequence.
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For 0 ≤ τ ≤ 1, let k(τ ; y, a) denote the conditional τ -quantile of logC given Y = y

and A = a. More formally, P (logC 6 k(τ ; y, a)|Y = y, A = a) = τ . We will assume

that k(τ ; y, a) is continuously differentiable with respect to y and that k(τ ; y, a) is strictly

increasing in τ for all (y, a). For any given (c, y, a) there then exists some τc,y,a such that

log c = k(τc,y,a; y, a) Under some mild regularity conditions on the distribution νy,a, the

results of Hoderlein and Mammen (2007) then imply that

βc,y,a := E
[
∂y log f(ey, V, p)|Y = y, A = a, C = c

]
= ∂zk(τc,y,a; z, a)

∣∣∣∣
z=y

. (7)

We will refer to βc,y,a as a “local” elasticity. By definition,

βc,y,a = E (β(X, V ) |Y = y, A = a, C = c) ,

and thus it is the conditional mean of β(X, V ) over a subpopulation of households with

log income y, attributes a and consumption expenditure equal to c. Although households

within such a subpopulation can still be heterogeneous in v, they show the same consumption

behavior given y and a. Consequently, when using i.i.d. data providing information about

consumption Ci , income Xi and household attributes Ai, i = 1, . . . , n, approximating the in-

dividual elasticity β(Xi, Vi) by the conditional mean βi := βCi,Yi,Ai
= E

[
∂y log f(eYi , V, p)|Y =

Yi, A = Ai, C = Ci
]
, i = 1, . . . , n is the best we can do on the basis of the available in-

formation. Local and individual income elasticities will coincide if for given (y, a) there is

a one-to-one relation between consumption c and (preference) parameters v.3 Identification

of demand function under such “monotonicity” constraints has been considered by Matzkin

(2003).

By relying on nonparametric quantile estimation techniques, nonparametric estimates
̂k(τ ; y, a) of conditional quantile functions and their derivatives can be determined from

cross-section data. For any observation (Ci, Yi, Ai) the corresponding conditional quantile

position of logCi given (Yi, Ai) can be computed in a straightforward way which then leads

to estimates β̂i of local elasticities.

Local elasticities provide a mean to estimate Cov(C, β(X, V )). Obviously, E(βi) =

E(βC,Y,A) = E(β(X, V )) = βmean, and

Cov(C, β(X, V )) = E(Cβ(X, V ))− CmeanE(β(X, V )) = E [CE(β(X, V )|Y,A,C)]− Cmeanβmean
= E [CβC,Y,A]− Cmeanβmean = Cov(C, βC,Y,A) = Cov(Ci, βi) (8)

Remark: As mentioned in the introduction many contributions in the literature aim at

estimating elasticities with respect to total expenditure on nondurables, “budget” for short,

3Such an assumption is made in any parametric model of demand. If for example, Ci = g(p,Xi, Ai; θ) +
s(p,Xi, Ai; θ) · εi for some prespecified g, s, then βi = E

[
∂y log f(eYi , V )|Y = Yi, A = Ai, C = Ci

]
=

∂y log(g(p, eYi , Ai; θ) + s(p, eYi , Ai; θ) · εi) equals the individual elasticity β(Xi, Vi) (recall that εi ≡ ε(Vi)).
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which is usually considered as an endogeneous variable. The behavioral relations imply that

Ctot = ftot(X, V ) and C = f(X, V ), where Ctot denotes budget and C refers to consumption

expenditure on another commodity. Assuming monotonicity of ftot in income, C can be

rewritten as a function of budget, C = f̃(Ctot, V ) = f̃(ftot(X, V ), V ). The elasticity with

respect to budget is then given by β̃(Ctot, V ) = Ctot

C
∂ctot f̃(Ctot, V ). Taking derivatives yields

C

X
β(X, V ) =

C

Ctot
β̃(Ctot, V ) · Ctot

X
βtot(X, V ), (9)

where βtot denotes the elasticity of Ctot with respect to income. Under the additional as-

sumption that local elasticities are equal to individual elasticities, we can infer from (9) that

the mean elasticity βmean,tot := E(β̃(Ctot, V )) with respect to budget corresponds to

βmean,tot = E
(
β(X, V )

βtot(X, V )

)
= E

(
βC,Y,A

βtot;Ctot,Y,A

)
, (10)

where βtot;Ctot,Y,A denotes local elasticities of Ctot with respect to income. This elasticity

may then be estimated by β̂mean,tot = 1
n

∑
i

β̂i

β̂tot,i
. Similar arguments may then be used to

show that the corresponding aggregate elasticity βagg,tot can also be determined from local

elasticities.

3 Data Description

Our empirical analysis bases on the British Family Expenditure Survey, which contains

cross-section data on consumption expenditure, income and socioeconomic characteristics of

British households. FES was launched in the late 50s but due to changes in survey design

and the following inconsistency in variable definitions we restrict our analysis to the period

1974-1993.

Annually, FES asks approximately 7000 households to keep a detailed account of their

expenditures on a variety of commodity groups for 14 consecutive days. Depending on how

necessary the good is, one might expect different demand behavior for different categories

of goods. Therefore we perform our analysis for the major four commodity groups: ‘food’,

‘fuel and light’, ‘services’, and ‘clothing and footware,’ as well as for total (nondurable)

expenditure. As far as the income variable is concerned, it is the natural logarithm of the

disposable non-property income, which is obtained by deducting investment income and all

taxes from total income.4

4Following HBAI standards, household incomes are obtained by extracting relevant items from the ele-
mentary database. The task of elaborating the database and specifying consistent variables has mainly been
accomplished by Jürgen Arns and described in Arns (2006) and Arns and Bhattacharya (2005). His careful
work is gratefully acknowledged.
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A correct specification of the econometric model and the need for stratification of the

population on attributes induced by the theoretical model motivates the inclusion of further

explanatory variables for household demand in the empirical analysis. The following vari-

ables5 have been chosen in our analysis: number of adults, children and persons working in

the household, and age as well as employment status of the household’s head.

4 Estimation procedures

In this section we this section we give a detailed description of our procedure for estimating

the quantities βagg, βmean, βi, and Cov(C, β(X, V )) from cross-section data. It is assumed

that for a given time period of interest there are observations (Ci, Xi, Ai) of consumption,

income and attributes, i = 1, . . . , n, for an i.i.d. sample of n households.

4.1 Estimation of βagg and βmean

By definition in (6) and (5) βagg and βmean are average derivatives with respect to the

regression functions c̄(y, a) = E(C|Y = y, A = a) and c̄log(y, a) = E(logCi|Y = y, A = a),

where Y = logX. In other words, in order to estimate βagg we have to regress C on (Y,A),

while for approximating βmean one has to regress logC on (Y,A).

In principle, estimation could be based on valid parametric models for c̄(y, a) and c̄log(y, a),

respectively. A straightforward approach would be to use a model for c̄(y, a), which is

quadratic in log income and age, linear in the number of adults and children and dummies

for employment status and allows for interaction between log income and age. Such a model

could be then estimated by the least squares method and the derivative ∂y c̄(y, a) could be

computed as a function of estimated parameters. However, as shown by Chakrabarty et

al. (2006) for the FES data, such a model suffers from misspecification according to the

Ramsey (1969) RESET test for all commodity groups but for ‘fuel and light’ and ‘clothing

and footware’ for some years.

In this paper we therefore adopt a nonparametric approach for estimating c̄ and c̄log. We

rely on the methodology developed in Li and Racine (2004) which is well-adapted to the

fact that some regressors are continuous (log income and age), while others are categorical

(number of adults and children, employment status).

More precisely, the vector Ai of household attributes is split into the continuous attribute

‘age of household head’, denoted by agei, and a vector Ãi of six discrete variables: three

5For a more detailed exposition of the elementary data set and variable definitions we refer to the FES
Handbook by Kemsley et al. (1980).
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dummies for the employment status of the household’s head ( unemployed/unoccupied, self-

employed, and retired), number of persons in the household, number of children, and number

of persons working). Among the discrete variables we distinguish unordered and ordered

ones. We treat the three employment status dummies as unordered and the remaining

discrete regressors as ordered variables. Following Li and Racine (2004), estimates of the

regression functions are obtained by local linear weighted regressions.

Let Zi = (Yi, agei, Ã
T
i )T , i = 1, . . . , n denote the individual vectors of all explanatory

variables. For a given point z = (y, age, ãT )T estimates of c̄(y, a) and ∂y c̄(y, a) are then

determined by ̂̄c(y, a) := ζ̂0 and ̂∂y c̄(y, a) := ζ̂1, respectively, where ζ̂0, ζ̂1, ζ̂2 minimize

n∑
i=1

[
Ci − ζ0 − ζ1(Yi − y)− ζ2(agei − age)

]2
Wi,h(z),

over all possible values ζ0, ζ1, ζ2. Hereby, Wi,h is a kernel weight for household i at point

z, which depends on the bandwidth vector h. These weights are computed as a product of

univariate kernel functions, where the functional forms of the kernels are chosen according to

the nature of the respective variables: Epanechnikov kernels κ(·) for continuous, Aitchison

and Aitken (1976) kernel lu(·) for unordered categorical, and Wang and Van Ryzin (1981)

kernel lo(·) for ordered discrete variables.6 Consistency and asymptotic normality of this

estimators follow from the results of Li and Racine (2004).

Similarly, estimates ̂c̄log(y, a) := ζ̂∗0 and ̂∂y c̄log(y, a) := ζ̂∗1 are calculated from the mini-

mizers ζ̂∗0 , ζ̂∗1 , ζ̂∗2 of

n∑
i=1

[
logCi − ζ∗0 − ζ∗1 (Yi − y)− ζ∗2 (agei − age)

]2
Wi,h(z).

By (6) and (5) this then leads to the estimates

β̂agg =
1

C̄n

n∑
i=1

̂∂y c̄(Yi, Ai), β̂mean =
1

n

n∑
i=1

̂∂y c̄log(Yi, Ai).

The optimal smoothing parameters for estimating c̄ and c̄log, which are denoted by hCV

and h∗CV , respectively, are chosen by a least-squares cross-validation algorithm as described

6More precisely,

Wi,h(z) = κ
(Yi − y

h1

)
κ
(agei − age

h2

) 3∏
s=1

lu(Ãis, ãs,hs)
6∏

s=4

lo(Ãis, ãs,hs),

where κ, lu, and lo are continuous, unordered discrete, and ordered discrete kernels, respectively. They are

defined by κ(u)=

{
3

4
√

5

(
1− 1

5u
2
)
, if u2 < 5

0, else
, lu(Ãis, ãs,hs)=

{
1− hs, if Ãis = ãas

hs/(os − 1), else
,

and lo(Ãis, ãs,hs)=

{
1− hs, if Ãis = ãs

1
2 (1− hs)h|Ãis−ãs|

s , else
, where os is the number of possible outcomes of Ãis.
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in Racine and Li (2004).7 However, recall that we are interested in estimating corresponding

average derivative of the regression function and not the regression function itself. Averaging

reduces variability of the estimate but not bias. In a similar context, Härdle and Stoker (1989)

show that by applying ’undersmoothing’ bandwidths parametric rates of convergence can be

achieved for average derivative estimators. We therefore determine β̂agg and β̂mean by using

bandwidths 0.8hCV,1 and 0.8h∗CV,1 for log income, respectively.8 Additionally, for the sake

of stability of results, while computing the average derivative and the covariance term we

neglect the highest and the lowest 0.5% of the values of the point derivatives.

Separately for each period, standard errors of β̂agg and β̂mean can be obtained by boot-

strap. For i.i.d bootstrap resamples (logC∗1 , Z
∗
1), . . . , (logC∗n, Z

∗
n) the distributions of β̂agg −

βagg, β̂mean− βmean are approximated by the conditional distribution of β̂∗agg − β̂agg, β̂∗mean−
β̂mean given (Ci, Yi, Ai), i = 1, . . . , n. Theoretical support for the use of such a naive boot-

strap in the context of average derivative estimation can be found in Härdle and Hart (1991).

4.2 Estimation of local elasticities and Cov(C, β(X, V ))/Cmean

As already explained in Section 2, the strategy for estimating the individual values of the

local elasticities βi, i = 1, . . . , n, stems from Hoderlein and Mammen (2007). We apply a two-

step procedure. In the first step, we determine estimates τ̂i of the quantiles τi := tauCi,Yi,Ai

with logCi = k(τCi,Yi,Ai
;Yi, Ai), i.e., of the quantile positions of logCi in the distribution of

log expenditure across the subpopulation with log income and attributes equal to (Yi, Ai).

In the second step, one estimates the partial derivative of k(τCi,Yi,Ai
; y, Ai) at y = Yi. As we

do not want to impose any restrictive assumptions on the shape of the conditional quantile

function k(·), our approach again relies on nonparametric procedures. As in the case of

estimation of c̄(y, a) and c̄log(y, a) described above, we have to account for the presence of

both discrete and continuous variables. We therefore apply a general method for quantile

estimation which has been developed in a recent work by Li and Racine (2006).

Consistent estimators of τi, i = 1, . . . , n, are then given by

τ̂i =

∑n
j=1 G

( logCj−logCi

h0

)
Wj,h(Zi)∑n

j=1Wj,h(Zi)
,

where G is the cummulative univariate continuous kernel function, i.e., G(t) =
∫ t
−∞ κ(u)du,

h0 is the bandwidth parameter for C, and Wj,h(Zi) is the kernel weight for the household j

7Numerical search for optimal smoothing parameters was performed using the N library made available by
Jeff Racine. The estimation procedure itself was programmed in MATLAB and the corresponding routines
are available from authors upon request.

8The estimates of β̂agg and β̂mean obtained with this bandwidth vector were very similar to those obtained
when using factors 0.7 or 0.9. This may indicate that we are close to the optimal bandwidth (for the average
derivative estimator).
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at Zi, which has already been defined above. Bandwidth parameters for the estimation of

τi were chosen through a numerical search algorithm presented for conditional density esti-

mation in Hall et al. (2004) method and properly adjusted for the estimation of conditional

cummulative distribution functions as advocated by Li and Racine (2006).

In the second step, we perform a local linear9 quantile regression at the quantile τ̂i. More

precisely, for each i = 1, . . . , n we calculate the values η̂0,i, η̂1,i, η̂2,i minimizing

n∑
j=1

ρτ̂i
[

logCj − η0,i − η1,i(Yj − Yi)− η2,i(agej − agei)
]
Wj,h(Zi), (11)

with respect to all η0,i, η1,i, and η2,i, where ρτ (u) = u[τ − I(u ≤ 0)] is a ‘check function’

typical for quantile regression problems.10 In the above regression η̂1,i estimates the partial

derivative of k(τCi,Yi,Ai
; y, Ai) at y = Yi, and therefore β̂i := η̂1,i. By (8) these estimates β̂i

of local elasticities can then be used to estimate Cov(C, β(X, V )):

̂Cov(C, β(X, V )) =
1

n

n∑
i=1

(Ci − C̄)(β̂i − β̄),

where β̄ = 1
n

∑n
i=1 β̂i. Whereas estimation of average derivatives (as in the case of βagg or

βmean) relies on a smaller bandwidth for log income than the optimal one for estimating the

regression function, point derivatives of quantiles should be estimated using a larger band-

width. Since the direct data-driven bandwidth selection methods in this situation are still

an open question, we proceed as follows. First, we multiply the cross-validated bandwidth

for log income by a factor 1.5 which results in h∗d with h∗d,1 = 1.5h∗CV,1 and h∗d,s = h∗CV,s, for

s > 1.11 Then, as advocated by Yu and Jones (1998), in order to obtain a suitable bandwidth

for quantile derivative estimation we adjust smoothing parameters for log income h∗d,1 and

age h∗d,2 in dependence of τ̂i by multiplying them by a factor
[

τ̂i(1−τ̂i)
φ[Φ−1(τ̂i)]2

]1/6

. Here φ and Φ

are the pdf and the cdf of the standard normal distribution. For discrete variables we use

the same bandwidths as in the mean regression case.12

9From the theoretical point of view local quadratic smoother outperforms the linear one in estimating the
derivative of k(τ ; y, a). However, in our application local quadratic regression (even for large bandwidths)
leads to more instable estimates. In particular, for food expenditure we then obtain an unplausibly high
percentage of negative elasticities.

10It is important to note that the presence of this function is the only difference between a typical (mean)
regression and a quantile regression.

11Our estimates of β and Cov(C, β(X,V )) are stable with respect to changes in this multiplier between 1
and 2.

12Numerical search for optimal bandwidths in the first step was carried out by the N library made available
by Jeff Racine. Estimators for both estimation steps were programmed in MATLAB. The solution to (11)
was found by the interior point (Frisch-Newton) algorithm implemented in the RQ.m routine and described
by Portnoy and Koenker (1997). Program codes for these routines are available from authors upon request.
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4.3 Inference about Cov(C, β(X, V ))/Cmean

Having estimated the aggregate elasticity, the mean of individual elasticities, and the covari-

ance term, it is of interest to assess whether the difference βagg − βmean, or equivalently, the

covariance term Cov(C, β(X, V ))/Cmean is significantly different from zero. We propose two

different tests for equality of βagg and βmean.

In the first test, for each year of the sample we test the null hypothesis

H0 : Cov(C, β(X, V ))/Cmean = 0. As there does not exist a closed form for the asymp-

totic standard error of the covariance term, in order to analyze its significance, the test is

based on bootstrap confidence intervals. Bootstrap resamples (logC∗1 , Z
∗
1), . . . , (logC∗n, Z

∗
n)

are generated by drawing independently, with replacements n observations from the orig-

inal sample (logC1, Z1), . . . , (logCn, Zn). For each bootstrap sample corresponding esti-

mates ̂Cov(C, β(X, V ))∗ and C̄∗ = 1
n

∑n
i=1C

∗
i are determined. We then approximate the

distribution of ( ̂Cov(C, β(X, V ))/C̄ − Cov(C, β(X, V ))/Cmean) by the bootstrap distribu-

tion ( ̂Cov(C, β(X, V ))∗/C̄∗ − ̂Cov(C, β(X, V ))/C̄) and obtain 95% confidence intervals for

Cov(C, β(X, V ))/Cmean, which are computed as

C.I. = [ ̂Cov(C, β(X, V ))/C̄ − t∗0.975,
̂Cov(C, β(X, V ))/C̄ − t∗0.025],

where t∗α denotes the α quantile of the distribution of ( ̂Cov(C, β(X, V ))∗/C̄∗− ̂Cov(C, β(X, V ))/C̄).

As shown by Koenker (1994), this type of bootstrap performs very well in quantile regression

problems under heteroscedasticity which is present in our data.

In the second test, we consider the significance of the average difference between βagg and

βmean over the sample period (1974-1993). We obtain two series {β̂agg,t} and {β̂mean,t} for t =

74, . . . , 93 and test their equality by means of the Wilcoxon (1945) test for matched pairs. Ad-

ditionally, we perform the Wilcoxon signed-rank test for zero mean of Cov(C, β(X, V ))/Cmean

based on observations ̂Cov(C, β(X, V ))t/C̄t, t = 74, . . . , 93. All empirical results are given

in the next section.

5 Estimation Results and Conclusions

Tables 1-5 report our estimates of the aggregate elasticity β̂agg (first column) and the mean

individual elasticity β̂mean (second column) for each commodity group. The third and the

fourth column provide corresponding estimates β̄ = 1
n

∑
i β̂i of mean local elasticities and of

̂Cov(C, β(X, V ))/C̄, respectively. In the parentheses next to the estimates we report their

bootstrapped standard errors. Furthermore, in Figures 1-5 we plot the time-series of esti-

mates {β̂agg,t}, {β̂mean,t}, as well as ̂Cov(C, β(X, V ))t/C̄t, t = 74, . . . , 93, with corresponding

95% confidence intervals.

Our estimation results lead to the following conclusions:

14



1) There are large differences in the magnitude of the elasticities among different commod-

ity groups. In particular, an increase in aggregate income of 1% drives up aggregate

expenditure for ‘food’ or ‘fuel and light’ by approximately 0.2%, whereas for expendi-

ture on ‘services’ this increase is of roughly 1%. Total expenditure for all nondurable

goods rises by about 0.5%.

2) From Figures 6-8, where we present kernel density estimates of the distribution of local

elasticities β̂i for different commodity groups in 1993 we see that these distributions

are unimodal and exhibit a significant spread. This last feature indicates a substan-

tial degree of heterogeneity in demand behavior across the population. Furthermore,

according to the Jarque-Bera test, these distributions are very far from being normal

for all years and for all commodity groups.13

3) The estimates of elasticities seem to be fairly stable over time. During the period

1974-1993, one can observe no pronounced trend in the estimates of both the aggregate

elasticity and the mean individual elasticity.

4) The estimates of E(β(X, V )) = βmean obtained by β̂mean and by the average β̄ = 1
n

∑
i β̂i

of local elasticities are of very similar magnitude, which could serve as a support

for the reliability and robustness of these estimates. Further, for most commodity

groups and sample years we can recover the relationship from the proposition saying

that βagg = βmean + Cov(C, β(X, V ))/Cmean, which provides further evidence for the

appropriateness of our crucial assumption and our estimation strategy.

5) The perhaps most interesting empirical result is that aggregate elasticity can be very

different from the mean of individual elasticities. The magnitude of this difference

varies from commodity to commodity. For expenditure on food and services, as well as

for total expenditure, aggregate income elasticity is greater than the mean individual

elasticity for all sample years. In the extreme case of expenditure on services, the

difference can be as large as 30% of the aggregate elasticity. On the other hand, for

the commodity groups ‘clothing and footware’ and ‘fuel and light’ aggregate and mean

individual elasticities are quite close.

As mentioned in the last section, in order to assess whether the discrepancy between βagg

and βmean is statistically significant we expose this difference to several tests. The p-values

from the Wilcoxon test for matched pairs of the hypothesis that the average (over the period

13Note that for a small group of households the elasticity is estimated to be negative. The size of this
group varies by commodity group and year and is of magnitude of one to three percent of the sample.
The explanation for the occurence of negative elasticities is the methodical artefact of the nonparametric
smoother applied in our paper.
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1974-1993) difference between βagg and βmean is zero are given in the last line of the table.

The last line of the first and the second column report p-values based on the comparison of

β̂agg with β̂mean and β̄, respectively. Asterisks in Tables 1-5 denote the significance at the

95% level. According to these p-values, the aggregate elasticity is significantly greater than

the mean of individual elasticities for ‘food’, ‘services’, and total expenditure. For ‘clothing

and footware’ and ‘fuel and light’ the difference between βagg and βmean is not significant.

Similarly, according to the Wilcoxon signed-rank test of the hypothesis Cov(C, β(X, V ))/Cmean =

0, we reject it in favor of Cov(C, β(X, V ))/Cmean > 0 for ‘food’, ‘services’, and total expendi-

ture. For ’fuel and light’ and ‘clothing and footware’ the covariance term is not significantly

different from zero.

The discussion above regards the average difference between the aggregate elasticity and

the mean individual elasticity over the sample period of 20 years. We perform a bootstrap

to assess the statistical significance of this difference for each year of the sample. The

figures in the last column of the Tables 1-5 are the 95% bootstrap confidence interval for
̂Cov(C, β(X, V ))/C̄, which we can use to test H0 : Cov(C, β(X, V ))/Cmean = 0. The main

result of this test is that for expenditure on ‘food’, ‘services’, and ‘total expenditure’ the

covariance term is significantly positive for almost all sample years. For the remaining

commodity groups ‘clothing and footware’ and ‘fuel and light’ the covariance term is not

significant.

It is important to note that estimation results in Tables 1-5 are elasticities with respect

to income. However, under additional assumptions described in Section 2 our methodology

allows estimation of elasticities with respect to budget. For the sake of completeness and

comparability with other studies we present estimates of the mean of individual budget

elasticities βmean,tot for several commodity groups in Table 6. It is not surprising that these

estimates are substantially greater than the corresponding mean of income elasticities as

the latter do not take the savings behavior into account. Indeed, β̂mean,tot is roughly twice

as large as the corresponding β̂mean, which seems intuitive as β̂mean for total expenditure is

approximately equal to 0.5.

To sum up, we found strong empirical evidence for aggregate elasticity to be greater

than the mean of individual elasticities for commodity groups ‘food’, ‘services’ and total

expenditure. In contrast, for commodity groups ‘fuel and light’ and ‘clothing and services’

the aggregate elasticity seems neither to overestimate, nor to underestimate the average

individual elasticity.

The above result has extensive implications for both policy makers and applied re-

searchers. As for the former, the knowledge of the relationship between the aggregate

elasticity and the distribution of individual elasticities is crucial for correct evaluation of

economic reforms. For instance, if one wants to assess possible changes in demand due to

an income tax reform, one should take heterogeneity in income elasticities into account. For
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the latter, it is important to know that one must not interpret the aggregate elasticity in

terms of mean individual elasticities, since the difference between them can be of magnitude

of even 30% of the aggregate elasticity.
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Figure 1: Estimates for ‘food expenditure’
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Figure 2: Estimates for ‘fuel and light expenditure’
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Figure 3: Estimates for ‘services expenditure’
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Figure 4: Estimates for ‘clothing and footware expenditure’
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Figure 5: Estimates for ‘total (nondurable) expenditure’
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Figure 6: Distribution of β̂i for expenditures on ‘food’ and ‘fuel and light’ in 1993.
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Figure 7: Distribution of β̂i for expenditures on ‘services’ and ‘clothing and footware’ in

1993.

24



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

β̂i

total 1993

Figure 8: Distribution of β̂i for expenditures on ‘total (nondurable) expenditure’ in 1993.

25



year β̂agg β̂mean β̄ ̂Cov(C, β(X, V ))/C̄ C.I.

1974 0.177 (0.017) 0.151 (0.017) 0.148 (0.020) 0.020 (0.008) *[0.004,0.037]
1975 0.204 (0.020) 0.180 (0.019) 0.173 (0.021) 0.017 (0.009) [-0.002,0.035]
1976 0.195 (0.017) 0.167 (0.018) 0.161 (0.020) 0.015 (0.009) [-0.001,0.033]
1977 0.150 (0.019) 0.130 (0.019) 0.132 (0.022) 0.019 (0.009) *[0.002,0.035]
1978 0.208 (0.018) 0.201 (0.018) 0.194 (0.023) -0.003 (0.009) [-0.020,0.014]
1979 0.192 (0.021) 0.150 (0.020) 0.156 (0.022) 0.018 (0.010) [-0.002,0.037]
1980 0.185 (0.019) 0.157 (0.021) 0.161 (0.022) 0.027 (0.010) *[0.007,0.049]
1981 0.180 (0.017) 0.139 (0.017) 0.140 (0.020) 0.012 (0.008) [-0.003,0.028]
1982 0.170 (0.017) 0.145 (0.018) 0.141 (0.024) 0.011 (0.009) [-0.008,0.028]
1983 0.192 (0.017) 0.154 (0.018) 0.160 (0.021) 0.024 (0.009) *[0.008,0.042]
1984 0.204 (0.016) 0.150 (0.019) 0.146 (0.023) 0.023 (0.010) *[0.003,0.042]
1985 0.212 (0.017) 0.177 (0.019) 0.179 (0.021) 0.021 (0.009) *[0.003,0.040]
1986 0.193 (0.020) 0.181 (0.020) 0.188 (0.021) 0.026 (0.010) *[0.006,0.045]
1987 0.203 (0.018) 0.149 (0.019) 0.132 (0.020) 0.053 (0.010) *[0.034,0.072]
1988 0.195 (0.015) 0.165 (0.018) 0.165 (0.023) 0.024 (0.009) *[0.006,0.041]
1989 0.196 (0.018) 0.159 (0.019) 0.161 (0.021) 0.021 (0.010) *[0.001,0.039]
1990 0.194 (0.014) 0.156 (0.017) 0.161 (0.019) 0.025 (0.009) *[0.010,0.042]
1991 0.182 (0.016) 0.152 (0.017) 0.161 (0.021) 0.018 (0.010) [-0.001,0.037]
1992 0.195 (0.015) 0.173 (0.016) 0.165 (0.019) 0.024 (0.009) *[0.006,0.043]
1993 0.214 (0.017) 0.207 (0.017) 0.201 (0.019) 0.011 (0.009) [-0.006,0.029]

MEAN 0.192 0.162 0.161 0.020
p-value 0.000* 0.000* 0.000*

• C.I. denotes the confidence interval for Cov(C, β(X,V ))/Cmean

• Last line of the table contains p-values for the hypotheses: (on average over 20 years) βagg−βmean = 0,

βagg − β = 0, and Cov(C, β(X,V ))/Cmean = 0, respectively.

• Asterisks denote rejection of equality of the aggregate elasticity and the average individual elasticity

at the 5% level.

Table 1: Income elasticities of demand for ‘food expenditure.’
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year β̂agg β̂mean β̄ ̂Cov(C, β(X, V ))/C̄ C.I.

1974 0.187 (0.043) 0.164 (0.031) 0.165 (0.036) 0.016 (0.017) [-0.017,0.049]
1975 0.193 (0.048) 0.165 (0.033) 0.177 (0.033) -0.010 (0.019) [-0.046,0.025]
1976 0.128 (0.035) 0.158 (0.026) 0.158 (0.032) -0.003 (0.015) [-0.034,0.027]
1977 0.087 (0.033) 0.131 (0.028) 0.145 (0.030) -0.022 (0.015) [-0.052,0.011]
1978 0.195 (0.035) 0.195 (0.034) 0.205 (0.039) 0.002 (0.017) [-0.035,0.035]
1979 0.173 (0.032) 0.167 (0.028) 0.163 (0.033) -0.016 (0.014) [-0.047,0.009]
1980 0.131 (0.041) 0.158 (0.030) 0.167 (0.031) -0.014 (0.014) [-0.042,0.010]
1981 0.097 (0.030) 0.109 (0.023) 0.114 (0.029) -0.001 (0.013) [-0.024,0.027]
1982 0.196 (0.032) 0.180 (0.027) 0.174 (0.030) 0.015 (0.013) [-0.011,0.037]
1983 0.189 (0.027) 0.188 (0.025) 0.195 (0.027) 0.001 (0.012) [-0.021,0.026]
1984 0.241 (0.030) 0.241 (0.023) 0.239 (0.028) 0.000 (0.012) [-0.023,0.024]
1985 0.226 (0.028) 0.204 (0.024) 0.194 (0.027) 0.019 (0.011) [-0.004,0.041]
1986 0.194 (0.031) 0.144 (0.025) 0.138 (0.028) 0.009 (0.012) [-0.017,0.032]
1987 0.196 (0.023) 0.179 (0.022) 0.184 (0.022) -0.004 (0.010) [-0.024,0.018]
1988 0.174 (0.025) 0.163 (0.021) 0.172 (0.022) 0.005 (0.010) [-0.015,0.024]
1989 0.176 (0.022) 0.170 (0.019) 0.173 (0.021) -0.010 (0.009) [-0.027,0.010]
1990 0.153 (0.024) 0.150 (0.019) 0.156 (0.022) -0.001 (0.010) [-0.021,0.019]
1991 0.131 (0.020) 0.121 (0.017) 0.118 (0.022) 0.002 (0.009) [-0.016,0.019]
1992 0.154 (0.023) 0.142 (0.023) 0.154 (0.021) 0.001 (0.009) [-0.015,0.017]
1993 0.176 (0.020) 0.158 (0.020) 0.154 (0.021) 0.004 (0.009) [-0.013,0.019]

MEAN 0.170 0.164 0.167 0.000
p-value 0.117 0.478 0.941

• C.I. denotes the confidence interval for Cov(C, β(X,V ))/Cmean

• Last line of the table contains p-values for the hypotheses: (on average over 20 years) βagg−βmean = 0,
βagg − β = 0, and Cov(C, β(X,V ))/Cmean = 0, respectively.

• Asterisks denote rejection of equality of the aggregate elasticity and the average individual elasticity
at the 5% level.

Table 2: Income elasticities of demand for ‘fuel and light.’
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year β̂agg β̂mean β̄ ̂Cov(C, β(X, V ))/C̄ C.I.

1974 0.953 (0.059) 0.845 (0.038) 0.814 (0.046) 0.077 (0.034) *[0.015,0.143]
1975 1.042 (0.070) 0.883 (0.039) 0.855 (0.047) 0.084 (0.040) *[0.004,0.167]
1976 0.936 (0.058) 0.811 (0.043) 0.804 (0.043) 0.025 (0.030) [-0.036,0.089]
1977 0.903 (0.063) 0.806 (0.039) 0.799 (0.045) 0.070 (0.039) [-0.005,0.147]
1978 0.900 (0.057) 0.805 (0.039) 0.780 (0.052) 0.061 (0.038) [-0.009,0.129]
1979 1.129 (0.087) 0.823 (0.040) 0.775 (0.048) 0.084 (0.041) *[0.008,0.171]
1980 0.875 (0.063) 0.653 (0.040) 0.622 (0.049) 0.133 (0.033) *[0.068,0.207]
1981 0.989 (0.058) 0.773 (0.033) 0.745 (0.043) 0.056 (0.033) [-0.011,0.122]
1982 0.872 (0.085) 0.715 (0.037) 0.697 (0.047) 0.119 (0.034) *[0.052,0.184]
1983 1.018 (0.056) 0.771 (0.037) 0.735 (0.043) 0.122 (0.033) *[0.051,0.184]
1984 0.935 (0.056) 0.759 (0.041) 0.750 (0.048) 0.151 (0.036) *[0.079,0.223]
1985 1.052 (0.055) 0.734 (0.037) 0.706 (0.044) 0.195 (0.032) *[0.138,0.262]
1986 1.031 (0.081) 0.689 (0.040) 0.671 (0.047) 0.176 (0.034) *[0.108,0.240]
1987 0.894 (0.051) 0.707 (0.033) 0.692 (0.047) 0.262 (0.034) *[0.195,0.327]
1988 0.990 (0.057) 0.747 (0.035) 0.731 (0.037) 0.264 (0.040) *[0.192,0.342]
1989 0.964 (0.072) 0.708 (0.030) 0.690 (0.039) 0.144 (0.035) *[0.084,0.207]
1990 0.939 (0.046) 0.758 (0.033) 0.746 (0.041) 0.124 (0.031) *[0.057,0.189]
1991 1.103 (0.069) 0.773 (0.033) 0.754 (0.041) 0.181 (0.038) *[0.111,0.260]
1992 1.079 (0.062) 0.679 (0.030) 0.653 (0.041) 0.117 (0.038) *[0.047,0.196]
1993 0.988 (0.069) 0.725 (0.034) 0.716 (0.037) 0.163 (0.039) *[0.083,0.243]

MEAN 0.980 0.758 0.737 0.130
p-value 0.000* 0.000* 0.000*

• C.I. denotes the confidence interval for Cov(C, β(X,V ))/Cmean

• Last line of the table contains p-values for the hypotheses: (on average over 20 years) βagg−βmean = 0,
βagg − β = 0, and Cov(C, β(X,V ))/Cmean = 0, respectively.

• Asterisks denote rejection of equality of the aggregate elasticity and the average individual elasticity
at the 5% level.

Table 3: Income elasticities of demand for ‘services.’
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year β̂agg β̂mean β̄ ̂Cov(C, β(X, V ))/C̄ C.I.

1974 0.805 (0.065) 0.828 (0.073) 0.810 (0.070) -0.003 (0.052) [-0.104,0.094]
1975 0.845 (0.069) 0.777 (0.074) 0.766 (0.072) 0.059 (0.062) [-0.062,0.171]
1976 0.912 (0.099) 0.826 (0.072) 0.821 (0.081) -0.084 (0.064) [-0.204,0.037]
1977 0.822 (0.068) 0.902 (0.074) 0.883 (0.078) -0.085 (0.061) [-0.204,0.041]
1978 0.814 (0.065) 0.893 (0.070) 0.864 (0.075) -0.033 (0.058) [-0.138,0.082]
1979 0.714 (0.070) 0.716 (0.076) 0.725 (0.079) -0.003 (0.062) [-0.120,0.112]
1980 0.690 (0.061) 0.776 (0.070) 0.753 (0.073) -0.061 (0.050) [-0.157,0.044]
1981 0.646 (0.060) 0.613 (0.067) 0.607 (0.081) 0.022 (0.053) [-0.085,0.127]
1982 0.757 (0.060) 0.749 (0.067) 0.732 (0.074) 0.023 (0.053) [-0.077,0.126]
1983 0.688 (0.060) 0.666 (0.071) 0.651 (0.072) 0.049 (0.056) [-0.064,0.162]
1984 0.786 (0.066) 0.733 (0.070) 0.733 (0.076) 0.008 (0.053) [-0.094,0.111]
1985 0.760 (0.060) 0.696 (0.068) 0.701 (0.073) 0.034 (0.057) [-0.067,0.152]
1986 0.785 (0.068) 0.721 (0.066) 0.720 (0.068) 0.008 (0.052) [-0.090,0.110]
1987 0.716 (0.051) 0.691 (0.058) 0.691 (0.060) 0.030 (0.045) [-0.058,0.118]
1988 0.700 (0.053) 0.669 (0.057) 0.670 (0.064) -0.027 (0.046) [-0.114,0.058]
1989 0.720 (0.054) 0.670 (0.059) 0.679 (0.064) -0.009 (0.049) [-0.109,0.088]
1990 0.651 (0.054) 0.538 (0.055) 0.545 (0.064) 0.008 (0.048) [-0.097,0.100]
1991 0.640 (0.052) 0.696 (0.056) 0.707 (0.065) -0.048 (0.050) [-0.146,0.052]
1992 0.594 (0.052) 0.593 (0.054) 0.597 (0.064) 0.008 (0.048) [-0.084,0.103]
1993 0.737 (0.057) 0.638 (0.056) 0.648 (0.059) 0.066 (0.048) [-0.029,0.159]

MEAN 0.739 0.720 0.715 -0.002
p-value 0.145 0.086 0.911

• C.I. denotes the confidence interval for Cov(C, β(X,V ))/Cmean

• Last line of the table contains p-values for the hypotheses: (on average over 20 years) βagg−βmean = 0,
βagg − β = 0, and Cov(C, β(X,V ))/Cmean = 0, respectively.

• Asterisks denote rejection of equality of the aggregate elasticity and the average individual elasticity
at the 5% level.

Table 4: Income elasticities of demand for ‘clothing and footware.’
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year β̂agg β̂mean β̄ ̂Cov(C, β(X, V ))/C̄ C.I.

1974 0.538 (0.023) 0.476 (0.019) 0.474 (0.023) 0.038 (0.011) *[0.014,0.058]
1975 0.551 (0.021) 0.486 (0.017) 0.482 (0.022) 0.041 (0.012) *[0.019,0.064]
1976 0.528 (0.025) 0.458 (0.019) 0.453 (0.023) 0.072 (0.011) *[0.049,0.092]
1977 0.488 (0.022) 0.432 (0.019) 0.441 (0.021) 0.051 (0.011) *[0.028,0.073]
1978 0.540 (0.023) 0.497 (0.019) 0.497 (0.024) 0.027 (0.013) *[0.002,0.053]
1979 0.526 (0.023) 0.465 (0.019) 0.464 (0.023) 0.033 (0.012) *[0.011,0.058]
1980 0.510 (0.021) 0.435 (0.018) 0.434 (0.023) 0.059 (0.011) *[0.038,0.081]
1981 0.517 (0.021) 0.423 (0.018) 0.423 (0.019) 0.044 (0.011) *[0.023,0.068]
1982 0.509 (0.028) 0.432 (0.018) 0.434 (0.021) 0.054 (0.011) *[0.033,0.075]
1983 0.509 (0.023) 0.432 (0.019) 0.435 (0.024) 0.062 (0.011) *[0.038,0.086]
1984 0.546 (0.026) 0.472 (0.019) 0.470 (0.025) 0.054 (0.011) *[0.031,0.075]
1985 0.564 (0.020) 0.467 (0.018) 0.456 (0.021) 0.079 (0.011) *[0.057,0.101]
1986 0.568 (0.025) 0.451 (0.018) 0.438 (0.024) 0.071 (0.014) *[0.046,0.101]
1987 0.550 (0.019) 0.443 (0.016) 0.441 (0.019) 0.072 (0.012) *[0.051,0.094]
1988 0.573 (0.020) 0.477 (0.016) 0.465 (0.021) 0.063 (0.010) *[0.046,0.082]
1989 0.517 (0.022) 0.452 (0.017) 0.454 (0.021) 0.050 (0.011) *[0.029,0.073]
1990 0.520 (0.017) 0.436 (0.015) 0.435 (0.019) 0.055 (0.010) *[0.035,0.075]
1991 0.540 (0.018) 0.463 (0.015) 0.453 (0.020) 0.050 (0.011) *[0.028,0.072]
1992 0.509 (0.034) 0.449 (0.015) 0.449 (0.020) 0.038 (0.016) *[0.013,0.076]
1993 0.568 (0.024) 0.455 (0.018) 0.459 (0.020) 0.086 (0.013) *[0.061,0.109]

MEAN 0.534 0.455 0.453 0.055
p-value 0.000* 0.000* 0.000*

• C.I. denotes the confidence interval for Cov(C, β(X,V ))/Cmean

• Last line of the table contains p-values for the hypotheses: (on average over 20 years) βagg−βmean = 0,
βagg − β = 0, and Cov(C, β(X,V ))/Cmean = 0, respectively.

• Asterisks denote rejection of equality of the aggregate elasticity and the average individual elasticity
at the 5% level.

Table 5: Income elasticities of demand for ‘total (nondurable) expenditure.’
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year food fuel services clothing

1974 0.328 (0.038) 0.346 (0.062) 1.863 (0.095) 1.742 (0.111)
1975 0.379 (0.042) 0.331 (0.061) 1.9431 (0.098) 1.656 (0.099)
1976 0.384 (0.039) 0.340 (0.072) 2.0446 (0.110) 1.979 (0.118)
1977 0.304 (0.032) 0.430 (0.070) 2.0289 (0.126) 2.052 (0.125)
1978 0.393 (0.045) 0.390 (0.057) 1.922 (0.127) 1.812 (0.126)
1979 0.287 (0.046) 0.435 (0.056) 1.7942 (0.110) 1.784 (0.098)
1980 0.366 (0.040) 0.369 (0.053) 1.681 (0.122) 1.827 (0.123)
1981 0.359 (0.053) 0.291 (0.052) 2.1376 (0.112) 1.686 (0.140)
1982 0.279 (0.047) 0.390 (0.063) 1.7013 (0.086) 1.773 (0.143)
1983 0.329 (0.049) 0.404 (0.066) 2.0172 (0.114) 1.594 (0.139)
1984 0.313 (0.042) 0.490 (0.063) 1.7483 (0.113) 1.818 (0.145)
1985 0.357 (0.048) 0.382 (0.045) 1.6626 (0.115) 1.645 (0.123)
1986 0.463 (0.048) 0.376 (0.075) 1.9541 (0.086) 1.957 (0.135)
1987 0.312 (0.061) 0.487 (0.073) 1.6134 (0.130) 1.593 (0.112)
1988 0.261 (0.042) 0.346 (0.046) 1.796 (0.109) 1.726 (0.121)
1989 0.390 (0.045) 0.363 (0.056) 1.556 (0.104) 1.659 (0.103)
1990 0.382 (0.048) 0.329 (0.050) 1.8716 (0.095) 1.452 (0.096)
1991 0.388 (0.030) 0.260 (0.046) 1.7051 (0.086) 1.744 (0.093)
1992 0.387 (0.044) 0.311 (0.051) 1.6847 (0.081) 1.514 (0.104)
1993 0.308 (0.041) 0.283 (0.048) 1.6436 (0.092) 1.613 (0.094)

MEAN 0.348 0.368 1.818 1.731

Table 6: Estimates of βmean,tot for various commodity groups.

31



References

Aitchison, John and C. G. G. Aitken, “Multivariate Binary Discrimination by Kernel Method,”

Biometrika 63:3 (1976), 413–420.

Arns, Jürgen, “Evolutions of Age and Income Distributions in the UK: Empirical Analysis

of Data Consistency and Functional Modelling,” PhD Dissertation, Universität Mainz (2006).

Arns, Jürgen and Kaushik Bhattacharya, “Modelling Aggregate Consumption Growth with

Time-Varying Parameters,” Bonn Econ Discussion Papers 15/2005, Universität Bonn (2005).

Banks, James, Blundell, Richard W., and Arthur Lewbel, “Quadratic Engel Curves, Indirect

Tax Reform, and Welfare Measurement,” Review of Economics and Statistics 79:4 (1997),

527-539.

Blundell, Richard W., Pashardes, Panos, and Guglielmo Weber, “What do we Learn About

Consumer Demand Patterns from Micro Data?” American Economic Review 83:3 (1993),

570–597.

Campbell, John Y. and Gregory Mankiw, “Permanent Income, Current Income, and Con-

sumption,” Journal of Business and Economic Statistics 8:3 (1990), 265–279.

Chakrabarty, Manisha, Schmalenbach, Anke, and Jeffrey S. Racine, “On the Distributional

Effects of Income in an Aggregate Consumption Relation,” Canadian Journal of Economics

39:4 (2006), 1221–1243.

Davidson, James E.H., Hendry, David F., Srba, Frank, and Steven Yeo, “Econometric Mod-

elling of the Aggregate Time-Series Relationship between Consumers’ Expenditure and In-

come in the United Kingdom,” Economic Journal 88:352 (1978), 661-692.

Deaton, Angus S. and John Muellbauer, Economics and Consumer Behavior. Cambridge

University Press (1980).

Hall, Peter, Racine, Jeffrey S., and Qi Li, “Cross-Validation and the Estimation of Condi-

tional Probability Densities,” Journal of the American Statistical Association 99:2 (2004),

1015–1026.
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