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Abstract

We propose two algorithms for deciding if the Walrasian equilibrium inequali-
ties are solvable. These algorithms may serve as nonparametric tests for multiple
calibration of applied general equilibrium models or they can be used to com-
pute counterfactual equilibria in applied general equilibrium models defined by
the Walrasian equilibrium inequalities.
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1 Introduction

Numerical specifications of applied microeconomic general equilibrium models are
inherently indeterminate. Simply put, there are more unknowns (parameters) than
equations (general equilibrium restrictions). Calibration of parameterized numeri-
cal general equilibrium models resolves this indeterminacy using market data from
a “benchmark year”; parameter values gleaned from the empirical literature on pro-
duction functions and demand functions; and the general equilibrium restrictions.
The calibrated model allows the simulation and evaluation of alternative policy pre-
scriptions, such as changes in the tax structure, by using Scarf’s algorithm or one of
its variants to compute counterfactual equilibria. Not surprisingly, the legitimacy of
calibration as a methodology for specifying numerical general equilibrium models is
the subject of an ongoing debate within the profession, ably surveyed by Dawkins et
al. (2002). In their survey, they briefly discuss multiple calibration. That is, choosing
parameter values for numerical general equilibrium models consistent with market
data for two or more years. It is the implications of this notion that we explore in
this paper.

Our approach to counterfactual analysis derives from Varian’s unique insight that
nonparametric analysis of demand or production data admits extrapolation, i.e.,
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“given observed behavior in some economic environments, we can forecast behav-
ior in other environments”, Varian (1982, 1984). The forecast behavior in applied
general equilibrium analysis is the set of counterfactual equilibria.

Here is an example inspired by the discussion of extrapolation in Varian (1982),
illustrating the nonparametric formulation of decidable counterfactual propositions
in demand analysis. Suppose we observe a consumer choosing a finite number of
consumption bundles xi at market prices pi, i.e., (p1, x1), (p2, x2), ..., (pn, xn). If the
demand data is consistent with utility maximization subject to a budget constraint,
i.e., satisfies GARP, the generalized axiom of revealed preference, then there exists a
solution of the Afriat inequalities, U , that rationalizes the data, i.e., if pi · x ≤ pi · xi
then U(xi) ≥ U(x) for i = 1, 2, ..., n, where U is concave, continuous, monotone
and nonsatiated (Afriat, 1967; Varian, 1983). Hence we may pose the following
question for any two unobserved consumption bundles x̄ and x̂: Will x̄ be revealed
preferred to x̂ for every solution of the Afriat inequalities? An equivalent formulation
is the counterfactual proposition: x̄ is not revealed preferred to x̂ for some price
vector p and some utility function U , which is a solution of the Afriat inequalities on
(p1, x1), (p2, x2), . . . , (pn, xn).

This proposition can be expressed in terms of the solution set for the following
family of polynomial inequalities: The Afriat inequalities for the augmented data set
(p1, x1), (p2, x2), ..., (pn, xn), (p, x̂) and the inequality p · x̄ > p · x̂, where p is unob-
served. If these inequalities are solvable, then the stated counterfactual proposition
is true. If not, then the answer to our original question is yes. Notice that n of the
Afriat inequalities are quadratic multivariate polynomials in the unobservables, i.e.,
the product of the marginal utility of income at x̂ and the price vector p.

We extend the analysis of Brown and Matzkin (1996), where the Walrasian equi-
librium inequalities are derived, to encompass the computation of counterfactual
equilibria in Walrasian economies.

2 Economic Models

Brown and Matzkin (1996) characterized the Walrasian model of competitive mar-
ket economies for data sets consisting of a finite number of observations on market
prices, income distributions and aggregate demand. The Walrasian equilibrium in-
equalities, as they are called here, are defined by the Afriat inequalities for individual
demand and budget constraints for each consumer; the Afriat inequalities for profit
maximization over a convex aggregate technology; and the aggregation conditions
that observed aggregate demand is the sum of unobserved individual demands. The
Brown—Matzkin theorem states that market data is consistent with the Walrasian
model if and only if the Walrasian equilibrium inequalities are solvable for the un-
observed utility levels, marginal utilities of income and individual demands. Since
individual demands are assumed to be unobservable, the Afriat inequalities for each
consumer are quadratic multivariate polynomials in the unobservables, i.e., the prod-
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uct of the marginal utilities of income and individual demands.1

We consider an economy with L commodities and T consumers. Each agent has
RL+ as her consumption set. We restrict attention to strictly positive market prices
S = {p ∈ RL++ : L

i=1 pi = 1}. The Walrasian model assumes that consumers have
utility functions ut : RL+ → R, income It and that aggregate demand x̄ = T

t=1 xt,
where

ut(xt) = max
p·x≤It
x≥0

ut(x).

Suppose we observe a finite number N of profiles of income distributions {Irt }Tt=1,
market prices pr and aggregate demand x̄r, where r = 1, 2, ..., N , but we do not
observe the utility functions or demands of individual consumers. When are these
data consistent with the Walrasian model of aggregate demand? The answer to this
question is given by the following theorems of Brown and Matzkin (1996).

Theorem 1 (Theorem 2 (Brown and Matzkin)) There exist nonsatiated, con-
tinuous, strictly concave, monotone utility functions {ut}Tt=1 and {xrt}Tt=1, such that
ut(x

r
t ) = maxpr·x≤Irt ut(x) and

T
t=1 x

r
t = x̄r, where r = 1, 2, ..., N , if and only if ∃

{ûrt}, {λrt} and {xrt}for r = 1, ..., N ; t = 1, ..., T such that

ûrt < û
s
t + λstp

s · (xrt − xst ) (r = s = 1, ..., N ; t = 1, ..., T ) (1)

λrt > 0, (t = 1, 2, . . . T ; r = 1, 2, . . . N) (2)

ûrt > 0 and x
r
t ≥ 0 (r = 1, ..., N ; t = 1, ..., T ) (3)

pr · xrt = Irt (r = 1, ...,N ; t = 1, ..., T ) (4)

T

t=1

xrt = x̄
r (r = 1, ..., N) (5)

(1), (2) and (3) constitute the strict Afriat inequalities; (4) defines the budget
constraints for each consumer; and (5) is the aggregation condition that observed
aggregate demand is the sum of unobserved individual consumer demand. This family
of inequalities is called here the (strict) Walrasian equilibrium inequalities.2 The
observable variables in this system of inequalities are the Irt , p

r and x̄r, hence this
is a nonlinear family of multivariate polynomial inequalities in unobservable utility
levels ûrt , marginal utilities of income λ

r
t and individual consumer demands x

r
t .

The case of homothetic utilities is characterized by the following theorem of Brown
and Matzkin (1996).

1The Afriat inequalities for competitive profit maximizing firms are linear given market data –
see Varian (1984). Hence we limit our discussion to the nonlinear Afriat inequalities for consumers.

2Brown and Matzkin call them the equilibrium inequalities, but there are other plausible notions
of equilibrium in market economies.
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Theorem 2 (Theorem 4 (Brown and Matzkin)) There exist nonsatiated, con-
tinuous, strictly concave homothetic monotone utility functions {ut}Tt=1 and {xrt}Tt=1
such that ut(xrt ) = maxpr·x≤Irt ut(x) and

T
t=1 x

r
t = x̄rt , where r = 1, 2, ..., N if and

only if ∃{ûrt} and {xrt} for r = 1, ..., N ; t = 1, ..., T such that

ûrt < û
s
t

ps · xrt
ps · xst

(r = s = 1, ..., N ; t = 1, ..., T ) (6)

ûrt > 0 and x
r
t ≥ 0 (r = 1, ..., N ; t = 1, ..., T ) (7)

pr · xrt = Irt (r = 1, ...,N ; t = 1, ..., T ) (8)

T

t=1

xrt = x̄
r (r = 1, ..., N) (9)

(6) and (7) constitute the strict Afriat inequalities for homothetic utility functions.

The Brown—Matzkin analysis extends to production economies, where firms are
price-taking profit maximizers. See Varian (1984) for the Afriat inequalities charac-
terizing the behavior of firms in the Walrasian model of a market economy.

3 Algorithms

An algorithm for solving the Walrasian equilibrium inequalities constitutes a spec-
ification test for multiple calibration of numerical general equilibrium models, i.e.,
the market data is consistent with the Walrasian model if and only if the Walrasian
equilibrium inequalities are solvable.

In multiple calibration, two or more years of market data together with empirical
studies on demand and production functions and the general equilibrium restrictions
are used to specify numerical general equilibrium models. The maintained assumption
is that the market data in each year is consistent with the Walrasian model of market
economies. This assumption which is crucial to the calibration approach is never
tested, as noted in Dawkins et al. (2002).

The assumption of Walrasian equilibrium in the observed markets is testable,
under a variety of assumptions on consumer’s tastes, using the necessary and sufficient
conditions stated in Theorems 1 and 2 and the market data available in multiple
calibration. In particular, Theorem 2 can be used as a specification test for the
numerical general equilibrium models discussed in Shoven and Whalley (1992), where
it is typically assumed that utility functions are homothetic.

If we observe all the exogenous and endogenous variables, as assumed by Shoven
and Whalley, then the specification test is implemented by solving the linear program,
defined by (1), (2), (3), (4) and (5) for utility levels and marginal utilities of income
or in the homothetic case, solving the linear program defined by (6), (7), (8), and (9)
for utility levels.

If individual demands for goods and factors are not observed then the specification
test is implemented using the deterministic algorithm presented here.
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Following Varian, we can extrapolate from the observed market data available in
multiple calibration to unobserved market configurations. We simply augment the
equilibrium inequalities defined by the observed data with additional multivariate
polynomial inequalities characterizing possible but unobserved market configurations
of utility levels, marginal utilities of income, individual demands, aggregate demands,
income distributions and equilibrium prices. Counterfactual equilibria are defined as
solutions to this augmented family of equilibrium inequalities.

In general, the Afriat inequalities in this system will be cubic multivariate poly-
nomials because they involve the product of unobserved marginal utilities of income,
the unobserved equilibrium prices and unobserved individual demands. If the ob-
servations include the market prices then the Afriat inequalities are only quadratic
multivariate polynomials in the product of the unobserved marginal utility of in-
come and individual demand. We now present the determinisitic algorithm for the
quadratic case.

3.1 Deterministic Algorithm

The algorithm is based on the simple intuition that if one knows the order of the
utility levels over the observations for each consumer, then all we have to do is to
solve a linear program. We will enumerate all possible orders and solve a linear
program for each order. An important point is that the number of orders is (N !)T ,
where, N is the number of observations and T the number of agents. Hence the
algorithm will run in time bounded by a function which is polynomial in the number
of commodities and exponential only in N and T . In situations involving a large
number of commodities and a small N , T , this is very efficient. Note that trade
between countries observed over a small number of observations is an example.

Consider the strict Afriat inequalities (1), (2) and (3) of Theorem 1.
Since the set of ûrt for which there is a solution to these inqualities is an open set,

we are free to add the condition: No two ûrt are equal. This technical condition will
ensure a sort of “non-degenracy”. Under this condition, using the concavity of the
utility function, it can be shown that (1) and (2) are equivalent to

ûrt > û
s
t ⇒ ps · xrt > psxst (r = s = 1, ...,N ; t = 1, ..., T ). (10)

The system (10) is not a nice system of multivariate polynomial inequalities. But
now, consider a fixed consumer t. Suppose we fix the order of the {ûrt : r = 1, 2, . . . N}.
Then in fact, we will see that the set of feasible consumption vectors for that consumer
is a polyhedron. Indeed, let σ be a permuation of {1, 2 . . . N}. σ will define the order
of the {ûrt : r = 1, 2, . . . , N}; i.e., we will have

û
σ(1)
t < û

σ(2)
t < · · · < ûσ(N)t . (11)

Then define P (σ, It) to be the set of x = (x1t , x
2
t , ..., x

N
t ) satsifying the following:

xrt ∈ RL++ (12)

pσ(s) · xσ(r)t > pσ(s)x
σ(s)
t N ≥ r > s ≥ 1 (13)
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pr · xrt = Irt 1 ≤ r ≤ N (14)

Lemma 3 P (σ, It) is precisely the set of (x1t , x
2
t , ..., x

N
t ) for which there exist λ

r
t , û

r
t

satisfying (11) so that ûrt , λ
r
t , x

r
t together satisfy (1), (2), (3) and (4).

Now, fix a set of T permutations – σ1,σ2, . . . ,σT , one for each consumer. We
can then write a linear system of inequalities for P (σt, It) for t = 1, 2, . . . , T and the
consumption total (5). If this system is feasible, then there is a feasible solution with
the utilities in the given order. Clearly, if all such (N !)T systems are infeasible, then
there is no rationalization.

Remark If for a particular consumer t,

p1

I1t
≥ p

2

I2t
≥ · · · ≥ p

N

INt
,

then, by Lemma 1 of Brown—Shannon (2004), we may assume that the urt are non-
decreasing. For such a consumer, only one order needs to be considered. Note that
the above condition says that in a sense, the consumer’s income outpaces inflation
on each and every good.

A more challenging problem is the computation of counterfactual equilibria. For-
tunately, a common restriction in applied general equilibrium analysis is the assump-
tion that consumers are maximizing homothetic utility functions subject to their
budget constraints and firms have homothetic production functions. A discussion of
the Afriat inequalities for cost minimization and profit maximization for firms with
homothetic production functions can be found in Varian (1984). Afriat (1981) and
subsequently Varian (1983) derived a family of inequalities in terms of utility levels,
market prices and incomes that characterize consumer’s demands if utility functions
are homothetic. We shall refer to these inequalities as the homothetic Afriat inequal-
ities.

Following Shoven and Whalley (1992), see page 107, we assume that we observe
all the exogenous and endogenous market variables in the benchmark equilibrium
data sets, used in the calibration exercise. As an example, suppose there is only
one benchmark data set, then the (strict) homothetic Afriat inequalities for each
consumer are of the form:3

U1 < λ2p2 · x1 and U2 < λ1p1 · x2
U1 = λ1I1 U2 = λ2I2

where we observe p1, x1 and I1. Given λ1 and λ2 we again have a linear system of
inequalities in the unobserved U1, U2, x2, p2 and I2. A similar set of inequalities can
be derived for cost minimizing or profit maximizing firms with production functions
that are homogenous of degree one.

3Here we assume utility functions are homogenous of degree one.
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3.2 VC algorithm

For the general case (with no assumptions on homotheticity or knowledge of all price
vectors) , we propose the “VC algorithm”; here we give a brief description of this with
details to follow. First, let y be a vector consisting of marginal utilities of income and
utility levels of each consumer in each observation (so y ∈ Rk, where k = 2NT ). Let x
be a vector comprising the consumption vectors for each consumer in each observation
(so x ∈ Rn, where n = NTL). Finally, let z be a vector comprising the unknown
price vector in the case of the counterfactual proposition. Then our inequalities are
multivariate polynomials in the variables (x, y, z); but they are multi-linear in the
x, y, z. We would like to find a solution (x, y, z) in case one exists. Suppose now that
the proportion of all (x, y, z) which are solutions is some δ > 0. A simple algorithm
for finding a solution would be to pick at random many (x, y, z) triples and check if
any one of these solve the inequalities. The number of trials we need is of the form
1/δ, In general, δ may be very small (even if positive) and we have to do many trials.
Instead consider another parameter – ε defined by

ε = Maxy (proportion of (x, z) such that (x, y, z) solve the inequalities.)

Clearly, ε is always at least δ, but it is typically much larger. Using the concept of
Vapnik-Chervonenkis (VC) dimension, we will give an algorithm which makes O(d/ε)
trials, where d is the VC dimension of the VC class of sets defined by our inequalities.
We elaborate on this later, but remark here that d is O(NT (logNTL)). Thus when
at least one y admits a not too small proportion of (x, z) as solutions, this algorithm
will be efficient.

To develop the algorithm, we construct an ε-net – a small set S of (x, z) such that
with high probability, every set in the (x, z) space containing at least ε proportion of
the (x, z) ’s has an element of S. This ε-net is derived from the VC-property of the
Walrasian equilibrium inequalities. That is, Laskowski (1992) has shown that any
finite family of multivariate polynomial inequalities in unknowns (x, y, z), defines a
VC-class of sets. As is well known in computational geometry, VC-classes imply the
existence of “small” ε-nets.

In our setting, at each point in the ε-net, the Walrasian inequalities define a
linear program in the y ’s , since the Walrasian equilibrium inequalities are a system
of multilinear polynomial inequalities. One of these linear programs will yield a
solution to our system. Of course, ε as defined above is not known in advance. We
just try first 1 as a value for ε and if this fails, we half it and so on until we either
have success or the value tried is small enough, whence we may stop and assert with
high confidence that for every y, the proportion of (x, z) which solve the inequalities
is very small. (This includes the case of an empty set of solutions.)

More generally our “VC-algorithm” is a decision method for any finite family of
multilinear polynomial inequalities, e.g., testable restrictions of strategic games –
see Carvajal et al. (2004). This algorithm is polynomial in the number of variables
and 1/ε. Now the details.

A collection C of subsets of some space χ picks out a certain subset E of a finite
set {x1, x2, ..., xn} ⊂ χ if E = {x1, ..., xn} ∩ A for some A ∈ C. C is said to shatter
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{x1, ..., xn} is C picks out each of its 2n subsets. The VC-dimension of C, denoted
V (C) is the smallest n for which no set of size n is shattered by C. A collection C of
measurable sets is called a VC-class if its dimension, V (C), is finite.

Let y be a vector consisting of marginal utilities of income and utility levels
of each consumer in each observation (so y ∈ Rk, where k = 2NT ). Let x be a
vector comprising the consumption vectors for each consumer in each observation
(so x ∈ Rn, where n = NTL). Finally, let z be a vector comprising the unknown
price vector in the case of the counterfactual proposition (so z ∈ RL). The Walrasian
equilibrium inequalities (1) through (5) define a Boolean formula Φ(x, y, z) containing
s ∈ O(N2T +NTL) atomic predicates where each predicate is a polynomial equality
or inequality over n+ k+L variables – x, y, z. Here Φ is simply the conjunction of
the inequalities (1) through (5). For any fixed y, let Fy ⊆ Rn+L be the set of (x, z)
such that Φ(x, y, z) is satisfied then this is a VC-class of sets by Laskowski’s Theorem.
Let ε = Maxy (proportion of (x, z) such that (x, y, z) solve the inequalities.) Note
that if the set of solutions has measure 0 (or in particular is empty), then ε = 0.

Theorem 4 (Goldberg—Jerrum (1995)) The family {Fy : y ∈ Rk} has VC-dimension
at most 2k log2(100s).

The next proposition is a result from Blumer et.al. (1989).

Theorem 5 If F is a VC-class of subsets of X with VC-dimension d, and ε, δ are
positive reals and m ≥ (8d/εδ2) log2(13/ε), then a random4 subset {x1, x2, ..., xm} of
X (called a ε-net) satisfies the following with probabilty at least 1− δ:

S ∩ {x1, ..., xm} = φ ∀S ∈ F with μ(S) ≥ ε.

For fixed x̄, z̄, the Walrasian equilibrium inequalities define a linear program over
y ∈ Rk+. Hence each point in the ε-net defines a linear program in the y’s. Now, the
random algorithm is clear: we pick a random set of m(x, z) pairs, where ε is defined
above and solve a linear program for each. For the correct ε, we will succeed with
high probability in finding a solution. We do not know the ε a priori, but we use a
standard trick of starting with ε = 1 and halving it each time until we have success
or we stop with a small upper bound on ε.

A preliminary version of the VC-algorithm was introduced in Brown and Kannan
(2003). But the bound here on the VC dimension using Theorem 5 and hence the
running time are substantially better than those derived in that report.
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