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Abstract
This paper provides a non-steady state general equilibrium foun-

dation for the transactions demand for money going back to Baumol
(1952) and Tobin (1956). In our economy, money competes against
real capital as a store of value. We prove existence of a monetary
general equilibrium in which both real capital and �at money are vol-
untarily held over time. The demand for money is generated by �xed
transactions costs. More precisely, we assume that households have
two physically separated accounts. On the �rst account they �nance
consumption and might want to hold money over time. On the sec-
ond account households receive their wages, hold claims on capital and
earn interest income from renting capital to �rms. Every transfer of
wealth between the two accounts requires �xed resources. In equilib-
rium, households space apart the transaction dates in time. Between
these transaction dates, money is held as a store of value on the �rst
account for transactions purposes. The number of periods over which
money is held is endogenous and the nonconvexity of the problem is
explicitly taken into account.
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1 Introduction
We model a dynamic competitive economy in which �at money competes
against real capital as a store of value. The main result of the paper is
the existence of general equilibria in which the value of money is bounded
away from zero. In every such equilibrium both capital and money are used
as stores of value. The driving force behind this result is not one of the
frictions usually used in monetary economies, e.g. cash-in-advance or money
in the utility function. We rather derive our general equilibrium result in the
spirit of Baumol (1952) and Tobin (1956) by giving money a transactions
costs advantage over real capital. By way of introduction, we subsequently
motivate the study by explaining the relevant doctrinal history before we
then sum up the structure of the model.

In his classical contribution, Frank Hahn (1965) considered a standard
Walrasian �nite horizon economy in which outside money can only be valued
to the extend that it is exchanged for something else. He proved the negative
result that, under an assumption which involves that the utility of money is
zero if money holdings itself is zero, the existence of a Walrasian equilibrium
does not imply the existence of a monetary Walrasian equilibrium. There is
no mechanism which prevents that the value of money may be driven out.
This result has become known as the Hahn problem.1

One possibility to get rid of the Hahn problem is to model money as a
store of value. For instance, in a standard overlapping-generations frame-
work, Grandmont and Laroque (1973) argued that money serves as the store
of value to �nance consumption after retirement. Bewley (1980, 1983) and
Hellwig (1982) model economies where money is held for precautionary rea-
sons as a hedge against stochastic shocks in the value of households endow-
ments. Driven by the convexity of preferences, the same structural result is
also true with purely deterministic �uctuations in income.2

In these papers, however, money is assumed to be the only store of value
in the economy. The main result of the analysis, namely that money has
value because it is held over time, becomes wrong if worthless �at money
has to compete in a frictionless economy against another asset which domi-
nates money in the return characteristics. Even stronger, if there exists an
asset next to money having a higher own rate of return than money but the

1If money does not enter non-satiated utilities at all, then every equilibrium must
involve a zero value of money. This stronger formulation of the Hahn problem is used in
most citations in the literature.

2Of course, this does not give rise to precautionary money demand. There is rather a
demand for a store of value to smooth consumption over time.
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same marketability properties, then the value of money must be zero in ev-
ery rational expectations environment (Hahn (1982), Hellwig (1993)). This
problem is called the modi�ed Hahn problem (Hellwig (1993)).

To derive a positive value of money in the presence of dominant assets, the
latter result implies that money must have advantages in the marketability
properties as compared to the other assets. The �rst and easiest possibility
to achieve this is to model a cash-in-advance constraint. A second possibility,
which we will employ in this paper, is to introduce �xed transaction costs.
The seminal contribution following this idea is Gale and Hellwig (1984, 1988).
Their model economy is populated by a continuum of identical and in�nitely
lived households and each household owns and manages its own �rm. Money
competes as a store of value against capital which can be invested in the �rms.
Assuming that the payments of dividends between the agent's �rm account
and the agent's consumption account require �xed real costs implies that
money survives as a store of value. Indeed, it is held over time to �nance
consumption between the transaction dates.

To use transaction costs as the driving force for money demand in the
presence of dominant assets goes back to Baumol's (1952) and Tobin's (1956)
analysis of the transactions demand for money. They basically argued that
wealth in the form of the interest bearing asset must �rst be transferred at
�xed transactions costs to the money purse, say, before it can be used to
buy consumption goods. Since money can directly be held in the money
purse, it has an advantage in its marketability characteristics. However,
the analysis of Baumol and Tobin does not provide a positive answer to the
modi�ed Hahn problem because it is not an equilibrium analysis. They focus
on an isolated optimization problem of an agent minimizing his cost of cash
management over time.3 The coordination of these microeconomic plans in
the markets, i.e. whether the analysis is consistent with market clearing, is
not analyzed at all. In fact, Baumol and Tobin develop a microeconomic
decision problem taking the value of money for granted and assuming a
constant an exogenous interest rate. Furthermore, the analysis of individual
optimization has deep conceptual problems. The most important critical
points are that the analysis is conducted in terms of the time averages of the
decision variables instead of the decision variables themselves and that the
nonconvexity of the problem is just assumed away.4 It is clear that a model
which proves the validity of Baumol's and Tobin's argument in a general

3These costs are opportunity costs from holding money since there is an asset with a
higher rate of return plus transaction costs which arise from a transfer of asset market
wealth to the money purse.

4A detailed discussion of these issues can be found in Hellwig (1993).
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equilibrium corresponds to a solution of the modi�ed Hahn problem.
Related Literature. There is quite a large literature on Baumol-Tobin

in general equilibrium models focusing on steady-states. In such models,
the problem of market clearing mentioned above, i.e. the coordination of
individual plans in the markets, does not arise by construction. Papers con-
tributing to this literature are Romer (1986), Jovanovic (1982), Grossman
(1987), Chatterjee and Corbae (1992), Grossman and Weiss (1983), Rotem-
berg (1984) or Zeira (2005). They restrict attention to steady-state equilibria
in which the problem of missing trading partners is constructed away, but
cannot be considered as solved. A stylized example could be as follows.
Suppose we have a two period overlapping-generations framework in which
agents start their life with an endowment of money, invest, say, one half of it
in the bond and spend the other half on consumption when they are young.
Once retired, they need to sell their bonds for cash to �nance consumption
when they are old. At the same instant of time when the young genera-
tion turns to get old, a new generation with equal characteristics is born
which just desires as many bonds as the older generation supplies. This con-
struction allows for a constant interest rate and a steady-state equilibrium.
There is no trade in bonds or money at other instants of time. However, a
steady-state analysis where trade is permitted only occasionally to make a
model work should not be considered as an exhausting analysis of this topic.
Another disadvantage of this literature is that the nonconvexity is mostly
neglected or absent by construction.5

Non-steady-state models are Gale and Hellwig (1984, 1988), Shubik and
Yao (1993) or Dréze and Polemarchakis (2000). Dréze and Polemarchakis
(2000) use a �nite horizon framework with inside money only. They do not
address the equilibrium problem mentioned before because they refer to time
averages and a constant and exogenous interest rate within a single Baumol-
Tobin period. Shubik and Yao (1993) model exogenous interest rates and
rely on an analysis in terms of time averages. The latter implies that the
whole structure "within the period" is left open.

Outline of the Model. The model presented here basically builds on
the insights of Gale and Hellwig (1984, 1988) and extends their model. Time
is discrete, the horizon is unbounded and the economy is populated by house-

5Romer(1986), Grossman (1987), Grossman and Weiss (1983) or Rotemberg (1984) are
examples for such an assumption. Grossman and Weiss (1983) and Rotemberg (1984) give
a detailed steady-state analysis but restrict attention to exogenous transaction patterns
of the households. That is, every household is assumed to sacri�ce the �xed costs every
second period, say. This allows them to construct a steady-state equilibrium and also to
get rid of the nonconvexity.
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holds and �rms. In every period, there is a labor market, a market for capital,
a money market and a market for a physical output good. The latter can
be consumed or invested. Households accumulate the claims on capital to
earn a return from renting it to �rms and they supply labor to earn wage
income. A transactions demand for money is generated by the assumption
that households have two physically separated accounts: a cash account and
a checking account. On the latter account they accumulate claims on capital
and earn their labor and rental income. On the cash account, households
may choose to inventory money and to �nance consumption. If households
want to transfer wealth between their two accounts, they have to sacri�ce
some �xed costs because the two accounts are physically separated. These
�xed costs eventually prevent the households from transferring wealth every
period but rather provides for the incentives to hold money as a store of
value on the cash account between two transfer periods.

The transaction patterns of households are endogenous. Equivalently, the
number of periods over which households choose to hold money is determined
by optimization. It can even be zero for a positive measure of households.
The reason is that after �nancing a transfer today, no money holdings be-
tween yesterday and today is required to �nance today's consumption. To
put it di�erently, we not impose an assumption on the timing of markets.
Because goods must be bought with money, but the time period over which
money is held is not exogenously �xed, one can say that this model has a
"�exible cash-in-advance constraint".6

In Section 2.2 we describe the economy, the households and �rms. In
Section 2.3 we de�ne the equilibrium, in Section 2.4 we state our assumptions
and the result of the paper. In Section 2.5 we summarize some properties of
the equilibrium, in Section 2.6 we conclude the paper and in the appendix
to this chapter, Section 2.7, we prove the result.

2 The Model
2.1 The Basic Structure
Time is discrete, a period is denoted with t and the set of periods is T := N.
The economy is populated by households and �rms. The generic household
is denoted with h and the set of households, H, is without loss of generality

6In a typical cash-in-advance economy the number of periods over which an agent holds
money is by construction exogenously �xed to one: Households receive their income in
the evening of a day and need to hold it over night to use it for whatever they want at
the next day.
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assumed to be the unit interval, H = [0, 1]. There is a single physical
output good which is produced by �rms using labor and capital as inputs.
Households supply labor every period to earn wage income. At each point in
time, current output of the economy must be divided into gross investment
in the capital stock and consumption. This consumption-saving decision is
made by households. In addition, there is �at money which can be held as a
store of value. The generic �rm is denoted with j and the set of �rms, J , is
without loss of generality assumed to be the unit interval, J = [0, 1]. Firms
have identical production functions F which transform labor and capital into
the single output good of this economy. In every period, competitive labor,
capital, output and money markets meet. The Lebesgue measure is assumed
to be the population measure for both households and �rms.

2.2 Households
The friction which generates a transactions demand of households for money
is as follows. Every household h ∈ H has two separated accounts, a cash
account, or money purse, and a checking account. The latter can be thought
of as being held in an unmodelled bank. Let pt denote the price of the output
good in period t in terms of money and ch

t denote consumption of h ∈ H in
period t ∈ T . h must �nance his consumption expenditure in period t, ptc

h
t ,

on the cash account. To do so, he can either use cash inventoried voluntarily
from the previous period, mh

t−1, or alternatively use a transfer of nominal
wealth from the checking account to the cash account, ∆h

t . Importantly,
the household is not forced to hold any money over time as in a standard
cash-in-advance model. Instead he can use the nominal income he receives
in the same period on the checking account for consumption purposes.

In case of a nominal transfer between his two accounts, household h has
to sacri�ce some �xed transactions costs. These transactions costs consist of
transactions costs in the output good, γc, and transactions costs in time or
labor, γl. As for the labor costs, the transactions costs mapping is denoted
with κl and de�ned by

κl (∆) :=

{
0 if ∆ = 0
γl otherwise.

For the output costs, we de�ne the two mappings κ1
c and κ2

c by

κ1
c (∆)

[
resp. κ2

c (∆)
]

:=

{
γc if ∆ < 0 [resp. ∆ > 0]
0 otherwise.
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If ∆h
t 6= 0 then the household has to "purchase γc on the market" at costs

ptγc. We understand the direction of the transfer such that if ∆h
t > 0 then

household h transfers wealth in period t from the checking account to the
cash account and vice versa for ∆h

t < 0. The two mappings κ1
c and κ2

c are
used to model the circumstance that the transactions costs are paid on the
account from which the transfer is �nanced. So if ∆h

t > 0, the household
has to �nance the expenses for the �xed costs, ptκ

2
c

(
∆h

t

)
= ptγc, on the

checking account and if ∆h
t < 0, he has to �nance ptκ

1
c

(
∆h

t

)
= ptγc on the

cash account.7
Denote with e the time invariant labor time endowment of every h. Since

leisure is no argument of utilities, all the available time is supplied inelasti-
cally as labor as long as the wage is positive. Let wt denote the real wage,
rt be the real rental rate for capital use between t − 1 and t and kh

t ≥ 0 be
the claims on capital household h owns between the periods t− 1 and t. On
the checking account, h earns his wage income, which is ptwt(e−κl(∆h

t )) in
nominal terms, he invests in the capital stock he wants to own at the end of
period t, iht T 0, he receives the nominal return from renting the capital he
owned between t − 1 and t to �rms, ptk

h
t rt, and he �nally receives nominal

dividend payments from �rms, ptD
h
t . The law of motion for capital owned

by household h is linear and takes the usual form kh
t+1 = iht + (1 − δ)kh

t ,
where δ is the constant rate of depreciation, 0 < δ < 1. In period one,
every household h ∈ H is endowed with outside money mh > 0 on the cash
account and with capital k

h
> 0 on the checking account. Let mh

t ≥ 0 be
the money held by h at the end of t on the cash account and nh

t ≥ 0 be the
money held by h at the end of t on the checking account.

Every household has one constraint for each account. The constraints
in the �rst period on the cash account and on the checking account are,
respectively,

mh
1 + p1c

h
1 + p1κ

1
c(∆

h
1) ≤ mh + ∆h

1 (1)
nh

1 +p1k
h
2 +∆h

1 +p1κ
2
c(∆

h
1)≤p1w1(e−κl(∆h

1))+p1k
h
1 (r1+1−δ)+p1D1 (2)

kh
1 ≤ k

h (3)
7This structure is imposed to show that the demand sets of the households are upper

hemi-continuous. If the household would be forced to �nance the transactions costs in the
output from a single account, no matter in which direction the transfer goes, then this
property cannot be shown to be true for every price vector. However, this seems to be an
artifact resulting from the assumption that there is no bond which the household can sell
in order to borrow. So in a more general framework, we conjecture that one can dispense
with this assumption.
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and in every period t ≥ 2,

mh
t + ptc

h
t + ptκ

1
c(∆

h
t ) ≤mh

t−1 + ∆h
t (4)

nh
t+ptk

h
t+1+∆h

t + ptκ
2
c(∆

h
t )≤ ptwt(e−κl(∆h

t )) (5)
+ptk

h
t (rt+1−δ)+nh

t−1+ptDt.

We will assume constant returns to scale which implies that the dividends
are zero if the �rms maximize.8 Notice that we have already plugged in the
law of motion for capital to simplify the presentation.

The interpretation of the capital held in the checking account is as follows:
in period t ∈ T , households choose to own some physical output not for
consumption but for savings reasons. They rent this physical object to �rms
who will pay a rental rate for using it in t + 1. This output to be saved is
called capital and the quantity of capital owned by h in t is denoted with
kh

t+1. Households cannot hold this physical object themselves because they
are not endowed with some kind of storage technology. Instead, they supply
this capital in t to �rms to earn a revenue consisting of two terms in t + 1:
�rst, the rents �rms pay for using capital in production, pt+1k

h
t+1rt+1, and

secondly the revenue from selling on the output market the ownership of what
is left from their capital after �rms have produced with it, pt+1k

h
t+1(1 − δ).

Note that the physical object capital is held in the �rm sector because they
use it in the production process. They pay the rents for using this input
in t + 1, when the production process is �nished, but capital supply and
demand actually meet already in t.

Denote p := (pt)t∈T and use the same notation for w, r and D. An action
of an agent in some period t is a vector (ch

t ,mh
t , nh

t , kh
t+1, ∆

h
t ) ∈ R5, the action

over the lifetime is σh := (ch
t , mh

t , nh
t , kh

t+1, ∆
h
t )t∈T . The vector space which

carries these actions is the countable in�nite product of the vector space R5,

Qh :=
(
R5

)∞
.

The space Qh is endowed with the product topology. Let

S :=
(
R3

+

)∞
8Note that the dividend which household h ∈ H receives does not carry an index h.

The rationale for this simpli�ed notation is as follows: household h ∈ H actually receives a
dividend Dh

t which is the mean value of the dividends h gets from all �rms j ∈ J according
to his shares θh

j ∈ [0, 1]. If Dj
t is the pro�t of �rm j ∈ J in period t, then Dh

t =
R

J
θh

j Dj
t dj.

However, since households are identical, θh
j = θj . The fact that shares sum up to one for

every �rm j,
R

H
θjdh = 1, now implies

R
H

θh
j dh = θj

R 1

0
dh = θj = 1 for all j ∈ J . Since

�rms are symmetric, we know that Dj
t = Dt. It follows Dh

t =
R

J
θh

j Dj
t dj =

R 1

0
Dtdj = Dt.

This equality justi�es the notation.
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be the space carrying price vectors of the form (pt, rt, wt)t∈T and endow it
with the product topology. Since the topological spaces Qh and S endowed
with the product topology are metrizable, we will treat them throughout as
metric spaces.

The budget set of household h is the correspondence Bh : S ⇒ Qh de�ned
by9 Bh(p, r, w) :=

{
σh = (c,m, n, k,∆) ∈ Qh

∣∣ (1)− (5)
}
. The utility func-

tion of household h is Uh : Qh → R, de�ned by σ 7→ Uh(σ). His objective
is to maximize this function by choosing a best element σh∗ ∈ Bh(p, r, w).
Note that the budget set is not convex due to the �xed transactions costs.

We will frequently argue in terms of real variables instead of nominal ones.
For later reference let us therefore state the budget restrictions of an agent
h ∈ H in real terms before we continue. Denote the gross rate of de�ation
with πt−1 := pt−1

pt
and let real variables (measured in the consumption good)

be denoted with a tilde. Then the budget constraints read as

m̃h
t + ch

t + κ1
c(∆

h
t ) ≤ ∆̃h

t + m̃h
t−1πt−1, (6)

ñh
t +k2

t+1+∆̃h
t +κ2

c(∆
h
t )≤wt(e−κl(∆h

t ))+kh
t (rt+1−δ)+ ñh

t−1πt−1+Dt. (7)

2.3 Firms
Every �rm j demands labor ljt ≥ 0 and rents capital kj

t ≥ 0 in competitive
labor and capital markets. Denote �rm j's output of the consumption good
with yj

t , the production function with F (·, ·) and the pro�t with Dj
t . j max-

imizes, in nominal terms, ptD
j
t := pty

j
t − ptrtk

j
t − ptwtl

j
t in every period by

choosing ljt , kj
t and yj

t under the restriction yj
t ≤ F (ljt , k

j
t ). In period t the

�rms actions are summarized by (yj
t , l

j
t , k

j
t ) ∈ R3

+. An action vector summa-
rizing the �rm's action over all periods is denoted with σj := (yj

t , l
j
t , k

j
t )t∈T .

The vector σj is an element of
(
R3

+

)∞ endowed with the product topology.
This space can also be treated as a metric space. Finally de�ne Dj := (Dj

t )t.

3 Competitive Equilibria
Before we de�ne a competitive equilibrium, we brie�y describe the interac-
tion of �rms and households in this economy. To understand this interaction,
one can imagine a bank in which all households h ∈ H hold their checking
account. Figure 1 illustrates the �ow of real terms. The �ow of the con-
sumption good is from �rms to households, the labor �ow is in the opposite
direction. Households accumulate the claims on capital as assets in the bank.

9For notational reasons, we suppress the parameters in the notation of the budget set.
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Figure 1: The interactions in this economy: The real side.

The claims on capital �ow in this period into the �rm sector allowing the
�rms to use the physical capital for production. Claims on capital from the
previous period left over after depreciation �ow in this sense back to the
bank. Figure 2 illustrates the money �ow in a period. Every arrow in the
�gure represents a particular �ow of money. Firms pay wages and rents for
capital in money on the checking accounts of households, i.e to the bank.
Every household pays money for consumption reasons from the cash account
to �rms. Some households may choose to transfer some nominal wealth be-
tween his two accounts in this period. However, this need not be true for
every household since they are free to hold money over time to save the
transactions costs.10 This is why the set of households is disassembled in
two subsets, one subset of households with transfers in this period and one
without.

De�ne total transactions costs in the output good by κc(·) := κ1
c(·)+κ2

c(·).
Consumption, labor, capital and money markets clear, if, ∀ t ∈ T ,

∫

H
(ch

t + kh
t+1 + κc(∆h

t ))dh =
∫

J
yj

t dj + (1− δ)
∫

H
kh

t dh,

∫

H
(e− κl(∆h

t ))dh =
∫

J
ljt dj =: ldt ,

∫

H
kh

t dh =
∫

J
kj

t dj =: kd
t ,

∫

H
(mh

t + nh
t )dh =

∫

H
(mh

t−1 + nh
t−1)dh.

10One might wonder how this statement relates to the fact that households are identical.
The nonconvexity of the budget sets, however, implies that there will typically be several
best actions for the household in his budget set. This implies that households of the same
type will be taking di�erent actions among which they are indi�erent.
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Figure 2: The interactions in this economy: The monetary side.

Denote aggregate supply with
∫
J yj

t dj =: yt. Since pt is the price of the
output good in terms of money, p−1

t is the price of �at money in period t
measured in the output good.

De�nition 1 A Competitive Equilibrium for this economy is a tuple{
(σ̄h)h∈H , (σ̄j)j∈J , p̄, w̄, r̄

}
such that

(i) markets clear at the vector
{
(σ̄h)h∈H , (σ̄j)j∈J , p̄, w̄, r̄

}
,

(ii) σ̄h maximizes Uh such that σ̄h ∈ Bh(p̄, w̄, r̄) for almost every h ∈ H,

(iii) σ̄j is a maximizer of Dj given (p̄, w̄, r̄) for almost every j ∈ J .

A Competitive Equilibrium is said to be monetary if the price of �at money
is positive in every period.

4 Existence of Equilibrium
In this Section, we formulate and explain the assumptions we impose to get
existence of a monetary equilibrium. Denote with Fa the partial derivative
of F with respect to argument a.

Assumption 1 (i) F is continuous and strictly increasing on R2
+, con-

tinuously di�erentiable on R2
++, has constant returns to scale and satis�es

F (l, 0) = 0; (ii) For every k > 0, lim
l→0

Fl(l, k) = +∞, lim
l→+∞

Fl(l, k) = 0 and

11



for every l > 0, lim
k→+∞

Fl(l, k) = +∞; (iii) For every l > 0, lim
k→0

Fk(l, k) =

+∞, 0 ≤ lim
k→+∞

Fk(l, k)− δ < 1
β − 1.

Part (i) of this Assumption is a standard regularity assumption. Part (ii)
imposes the standard Inada conditions for labor input. In addition, we
explicitly require that the marginal product of labor diverges as capital input
diverges. In economic terms, if the capital stock becomes in�nite, then the
wage becomes in�nite, too. Part (iii) in the �rst place says that the Inada
condition at zero capital input is true. However, we violate the typical
assumption that the marginal product of capital converges to zero as capital
runs out of bounds. Indeed, we assume that the marginal product of capital
is bounded below by the rate of depreciation. The reason for this is as follows:
In equilibrium, the rental rate equals the marginal product of capital. Hence,
the marginal productivity of capital in this model is always large enough to
make r +1− δ not smaller than one. In an equilibrium, households can then
accumulate their labor income as real wealth on the checking account over
time to a�ord a transfer in some �nite future period. If the interest rate
would be arbitrary close to zero, then the household could perhaps never be
able to transfer some wealth from the checking account to the cash account.11
Finally, lim

k→+∞
Fk(l, k)− δ < 1

β −1 implies that for all large enough k it holds
that β(Fk(l, k) + 1 − δ) < 1. This property is required to argue that the
aggregate capital stock remains �nite in equilibrium.

Assumption 2 Households are identical with respect to their utility func-
tions and endowments. Utilities are given by the function

Uh(σh) =
∑

t∈T

βtu(ch
t ),

where β ∈ (0, 1) is a discount factor and u(ch
t ) = ln ch

t .

The assumption that the one-period utility function is logarithmic is imposed
to simplify some arguments in the proof of the theorem.

Assumption 3 mh > 0 and k
h

> 0.

Assumption 4 De�ne the value k̄ by the equation β
(
Fk(e−γl, k̄)+1−δ

)
=

1. There exists a k̃ > k̄ such that γc = F (e− γl, k̃)− k̃δ.
11In fact, the series which only accumulates the wages in every period on the checking

account could converge to a number which is smaller than the transactions costs in the
output good.
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While Assumption 3 does not require comments, Assumption 4 is crucial and
needs to be discussed: at the level of capital which would be the steady-state
level in the frictionless economy using labor net of transactions costs, k̄, the
net output is strictly less than the transactions costs in output. This as-
sumption is su�cient to avoid the constellation that every household wants
to transfer wealth in every period. This could be consistent with an equilib-
rium in which money has no value at all.

Taking Assumptions (1) and (4) together, they imply that for every k < k̃
we have γc > F (e − γl, k) − kδ, and for every k > k̃ we have γc < F (e −
γl, k) − kδ. Note that the assumption bounds the transactions costs in the
output good below and above.

The next assumption is very unproblematic in that it just says that the
transactions costs in labor must not exceed the endowment of labor:

Assumption 5 e > γl > 0.

It becomes clear that the assumptions we need in order to show the exis-
tence of an equilibrium in this Baumol-Tobin economy cannot be considered
as innocent, in particular Assumptions 1 and 4. Perhaps one can interpret
this fact by saying that the textbook theory of Baumol-Tobin is far too
oversimpli�ed and hence in this sense not very convincing. On the other
hand, note that the set of assumptions is, as always, only su�cient, they
might be quite far from being necessary. For some readers, this might be a
counterargument to the accusation that the assumptions are strong.

Theorem Under Assumptions 1 - 5, there exists a Monetary Competitive
Equilibrium.

The theorem is proven in the appendix. In the next section we remark on
some properties of an equilibrium and interpret the structure of the model.

5 Remarks
Remark 1 In the following list, we summarize some properties of the equi-
librium we show to exist. The proofs of these properties are included in the
proof of the Theorem.

(i) There is a R < +∞ and a c > 0 such that c < πt−1 ≤ rt + 1− δ < R
for every t ∈ T . That is, gross de�ation is uniformly bounded away
from zero, the interest rate is uniformly bounded away from in�nity
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and money is (weakly) dominated as a store of value on the checking
account.12

(ii) For (almost) every h ∈ H, there is a �rst t < +∞ such that ∆h
t > 0,

and for every s ∈ T with ∆h
s > 0 there is a �nite integer τ > 0 such

that ∆h
s+τ > 0. That is, (almost) every household make a �rst transfer

after �nitely many periods and there is no last transfer.

(iii) There are h ∈ H with positive measure having ∆h
t = 0 for in�nitely

many t ∈ T .

(iv) The equilibrium capital stock remains �nite.

Remark 2 We call this economy a Baumol-Tobin economy for the fol-
lowing reasons: First, money held on the cash account can be used for con-
sumption at zero costs, where wealth from capital accumulation must be
transferred at �xed costs to the cash account to �nance consumption. This
structure allows money to survive as a store of value since it has advantages
in terms of marketability. Second, households actions show a transactions
pattern which is similar to the original sawtooth pattern since households
visit "the bank" from time to time but not everybody does so in every period
(Parts (ii) and (iii) of Remark 1). Third, Assumption 4 implicitly de�nes a
lower bound on the transactions costs. It is precisely this lower bound which
eventually makes sure that money has a positive value in equilibrium. We
will implicitly show that Assumption 4 is su�cient not to allow everybody
to transfer wealth in every period. Importantly, this means that households
hold money as a store of value on the cash account between two transaction
dates. The only purpose for doing so is the transactions motive.

Remark 3 Romer (1986) called his model with a similar structure a
monetary model with a "�exible Clower constraint" (Romer (1986), p. 666).
He emphasizes that goods must be bought with money, but that the time
period over which money is held is not exogenously �xed. In contrast, in
a typical cash-in-advance economy the number of periods over which an
agent holds money is by construction always one. Households receive their

12The intuition for this is very simple. Suppose that one has an equilibrium with positive
consumption in which the real return on money is strictly larger than the return on capital
in some period. Then, by a simple no-arbitrage argument, no household will hold capital
on the checking account since it is dominated as a store of value. However, this implies
that the capital stock in the next period will be zero. From this we know that the overall
supply of the physical output good will be zero. This is not compatible with positive
consumption in the equilibrium. Condition (i) is hence necessary for the existence of a
non-trivial equilibrium.
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income in the evening of a day and need to hold it over night to use it
either on the asset or on the commodity markets at the next day. The
model presented in this paper can be interpreted similarly as the one in
Romer (1986). The demand for money as a store of value is not derived
by an exogenously imposed structure like the timing of markets. Instead,
households money demand is determined endogenously by portfolio choice.
Thus, households also choose the number of periods over which to hold the
money endogenously. But note that they are not forced to hold the money
over time at all.

Remark 4 The introduction of �xed costs which have to be paid if a
transfer occurs implies that the households optimization problem is not con-
vex. This complicates the analysis of such an economy drastically. Clearly,
the Kuhn-Tucker conditions are not su�cient implying that the simplest ex-
istence argument in a macroeconomic model obviously fails. To get existence,
we aggregate over a continuum of households to get the convexi�cation of
aggregate demand. Notice that it is the non-convex character of the transfer
costs which makes households want to hold money over time to exploit the
economies of scale which are inherent in this transactions technology.

6 Concluding Remarks
We conclude the paper by showing some directions of future research. In the
�rst place, the analysis should be extended to allow for wage payments on the
cash account. This can be done using a paycheck parameter which gives the
fractions of the wages paid on both accounts. If all the wages are paid on the
cash account, then the monetary aggregate which is modelled can be said
to be broader. Indeed, it allows for the interpretation that the aggregate
M1 can be held on the cash account, not only cash. As a consequence,
the possibility to hold money also on the checking account is then not as
meaningful as in the framework chosen here since this account should then
be interpreted as an account for the interest bearing assets only. Second,
the analysis can be extended to include a nominal bond as a second interest
bearing asset in the economy. Households can incur some debt position over
time since they can sell the bond short. This possibility should allow to get
rid of the arti�cial restriction that the transactions costs must be paid on the
account from which a transfer is �nanced, as formalized by the two separate
mappings κ1 and κ2. As a third extension one can imagine a more general
setting with several goods. Leaving the framework of the neoclassical model
with one physical object complicates the analysis drastically since it is not
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clear how to formulate Assumption 4 in a more general economy. Finally,
the analysis should be extended to allow for staggered wage payments. That
is, one can assume that the wages are paid not every period but only from
time to time. In the �rst place it can be analyzed how the interest rate
process reacts to such a payment structure. If �rms have to incur some
debt to pay wages in advance for a whole month, say, then they will have
to compete for the funds from the household sector at this date. One can
suspect that the interest rates will tend to be higher at such points in time.
As a consequence, optimal behavior should then imply that �rms voluntarily
choose heterogeneous wage payment dates over the month. Hence, the date
of wage payments should then be included into the analysis (see Hellwig
1993).

7 Appendix
In this appendix we prove the theorem. The demand correspondence of
household h ∈ H is the mapping φh : S ⇒ Qh de�ned by

φh(p, r, w) := arg max
σh∈Bh(p,r,w)

Uh(σh). (8)

The extended demand correspondence φ̄h is the mapping φ̄h : S ⇒ Qh ×(
R3

+

)∞ de�ned by13

φ̄h(p, r, w) :=
{

σ̄h := (σh, κ1
c(σ

h), κ2
c(σ

h), κl(σh))
∣∣∣σh ∈ φh(p, r, w)

}
. (9)

Let us introduce the numbers v, u ∈ N, and restrict prices p to be in the
set Pvu :=

{
p ∈ R∞+ |∀t ∈ T : pt ∈ [1/v, u]

}
, rental rates r to be in the set

Rvu :=
{
r ∈ R∞+ |∀t ∈ T : rt ∈

[
δ + 1/(vu)2, δ + (vu)2

]}
, and wages to be

in the set Wvu :=
{
w ∈ R∞+ |∀t ∈ T : wt ∈ [1/v, v]

}
. The compact product

space is denoted with

Svu := Pvu ×Rvu ×Wvu. (10)

We treat all product spaces as metric spaces.

13The notation κj(σ
h) is a shortcut for κh

j (∆h
t ) where, for every t, ∆h

t =proj∆tσ
h.
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Step 1 For every �nite v, u, Bh : Svu ⇒ Qh is (i) nonempty, (ii) compact-
valued and (iii) continuous.

Proof. (i) To see nonemptiness, just note that 0 ∈ Bh(p, r, w). (ii) To
prove compactness of Bh(p, r, w) for every �nite v, u, it su�ces to to show
that every sequence in Bh(p, r, w) has a subsequence which converges to a
limit point in Bh(p, r, w). Suppose to the contrary that there is a sequence
σa → σ with σa ∈ Bh(p, r, w) for all a, but σ /∈ Bh(p, r, w). For all t ∈ T ,
σa → σ implies σa

t → σt. From the hypothesis σ /∈ Bh(p, r, w) it follows that
there is a t ∈ T such that at least one of the budget constraints is violated
at σt. This strict inequality of one of the budget constraints implies that the
violation of the budget must be true for all a large enough. We now argue
that this violation of the budget cannot be due to a jump in the �xed costs
term. By de�nition of σt, ∆a

t → ∆t since σa
t → σt. If ∆t 6= 0, then ∆a

t 6= 0
for all a large enough so that the �xed costs cannot jump in the limit. If
∆t = 0 but ∆a

t 6= 0 for all but �nitely many a, then this jump will make the
expenditure terms in the budget constraints jump downwards in the limit,
but never upwards. Hence the hypothesis cannot be due to the �xed costs
terms. It now follows from standard arguments that σ /∈ Bh(p, r, w) cannot
be true if σa → σ with σa ∈ Bh(p, r, w) for all a.

(iii) To see upper hemi-continuity of the budget set, let (pa, ra, wa) →
(p, r, w), σa ∈ Bh(pa, ra, wa) for all a and σa → σ. σ ∈ Bh(p, r, w) fol-
lows from the same argument as given in part (ii). Concerning lower hemi-
continuity, let (pa, ra, wa) → (p, r, w) and σ ∈ Bh(p, r, w). We have to argue
that there is a sequence σa → σ with σa ∈ Bh(pa, ra, wa) for all a large
enough. We make the argument conditional on the vector ∆ which is one
dimension of the limit action σ. Take an arbitrary t ∈ T . We will argue that
there is a sequence of actions in t converging to the limit action such that
the budget constraints in t are satis�ed. Doing so, we take the action from
period t− 1 as given. Since this argument is applied for every t ∈ T , we get
the desired result.

Suppose �rst that ∆t < 0. Then we have in the limit |∆t|
pt

≤ mt−1

pt
−

ct − mt
pt
− γc on the cash account. The hypothesis |∆t| > 0 implies that

the right hand side of the former inequality is strictly positive. Since prices
are �nite, it is immediate that there are sequences ∆a

t → ∆t, ca
t → ct and

ma
t → mt, where ∆a

t < 0 for all a, such that |∆
a
t |

pa
t
≤ ma

t−1

pa
t
−ca

t − ma
t

pa
t
−γc for all

a large enough. Let Rt := rt + 1− δ. On the checking account, kt+1 + nt
pt
≤

wt(e − γl) + ktRt + |∆t|
pt

=: y, where y > 0. Given the sequence ∆a
t → ∆t

constructed to satisfy the cash account constraint, there are now sequences
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ka
t+1 → kt+1 and na

t → nt satisfying ka
t+1 + na

t
pa

t
≤ wa

t (e− γl)+ ktR
a
t + |∆a

t |
pa

t
for

all large enough a.14 That is all we have to show in this case.
Suppose now that ∆t > 0: We get for the checking account in the limit

that 0 < ∆t
pt
≤ wt(e− γl)+ ktRt +−γc− kt+1− nt−nt−1

pt
=: y. We can choose

an appropriate sequence ∆a
t → ∆t with ∆a

t > 0 for all a and have to �nd
sequences of actions such that ∆a

t
pa

t
≤ wa

t (e−γl)+ktR
a
t−γc−kt+1−na

t−nt

pa
t

=: ya.
Clearly, ya → y and y > 0, hence ya > 0 for all a large enough. It follows
that such a sequence exists for a large enough. Given the sequence ∆a

t → ∆t,
the argument concerning the cash account is unproblematic and standard.

Finally, consider ∆t = 0. In the limit we have on the checking account
kt+1− nt

pt
≤ wte+ ktRt +

nh
t−1

pt
=: x. Note that x > 0 because v �nite implies

that the wage is strictly positive. Choose the sequence ∆a
t = 0 for all a.

De�ne wa
t e + ktR

a
t + nt−1

pa
t

=: xa. This implies xa → x and by observation
x > 0 implying xa > 0 for all a large enough. Hence there are ka

t+1 → kt+1

and na
t → nt satisfying ka

t+1 + na
t

pa
t
≤ wa

t e+ktR
a
t + nt−1

pa
t

for all a large enough.
The argument concerning the cash account is standard.

This �nishes the proof for lower hemi-continuity and hence for continuity.

Step 2 For every �nite v, u, it holds that (i) ∀ (p, r, w) ∈ Svu, φh(p, r, w) 6=
∅, (ii) φh is upper hemi-continuous and compact-valued on Svu.

Proof. (i) Nonemptiness follows from the nonemptiness and the compact-
ness of the budget set, as shown in the �rst part of the previous step, and
the continuity of the utility function. (ii) Utility functions are continuous
and, for all �nite v, u, the budget sets have been shown to be continuous
and compact-valued. The Maximum Theorem now immediately implies the
upper hemi-continuity of the demand correspondence and the compactness
of the demand sets on Svu.

14Here we need that output transactions costs are de�ned by the separate mappings κ1

and κ2. If the household would be forced to pay the transactions costs also in the case
∆t < 0 from the checking account, then the argument given in the text fails: instead
of the number y de�ned in the text, we would have y − γc. Nothing prevents us from
supposing that this term is zero in the limit. Along the sequence, using the ∆a

t which
makes the cash account valid, the checking account could perhaps never be satis�ed in
certain circumstances. For suppose that ya−γc converges from below to zero, just because
the prices sequence makes this happen. Since capital and money demand are nonnegative,
there cannot exist such a sequence we are looking for.
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Step 3 For every �nite v, u, it holds that (i) ∀ (p, r, w) ∈ Svu, φ̄h(p, r, w) 6=
∅, (ii) φ̄h is upper hemi-continuous and compact-valued on Svu.

Proof. (i) The �rst statement follows immediately from what we es-
tablished in the previous step. (ii) φ̄h is compact-valued on Svu since
the budget set is compact-valued on Svu. To see that the extended de-
mand correspondence φ̄h is also upper hemi-continuous, take a sequence
(pa, wa, ra) → (p, w, r). In addition, let σ̄a ∈ φ̄h(pa, wa, ra) and σ̄a → σ̄. We
have to argue that σ̄h ∈ φ̄h(p, w, r). By the previous step and the de�ni-
tion of the extended demand, there is a sequence σa ∈ φh(pa, wa, ra) with the
property σa → σ ∈ φh(p, w, r). Thus, it remains to show that the sequence of
�xed costs generated from this action sequence converges, i.e. κ(σa) → κ(σ)
for this sequence of σa, if κ(·) denotes the vector (κ1

c(·), κ2
c(·), κl(·)). Sup-

pose this is not true. Then κ(·) jumps in the limit, but not before, i.e.
κ(σa) = γ for in�nitely many a, but κ(σ) = 0 (if σa would be such that
the limit ∆ was non-zero, then it would be non-zero for every large enough
a and κ(σ) would eventually converge). This contradicts optimality: since
(pa, wa, ra) → (p, w, r) and σa → σh, the budget equations converges with
a. By optimality, they must hold with equality along the sequence. But our
hypothesis implies that we have a strict inequality in the limit.

Denote with St,vu the projection of Svu onto t and let σj
t (pt, wt, rt) :=

(yj(pt, wt, rt), kj(pt, wt, rt), lj(pt, wt, rt)) be �rm j�s supply and demand on
the output, capital and labor markets, respectively, which solve the maxi-
mization problem at prices (pt, wt, rt) ∈ St,vu.15 The aggregate, which is by
symmetry identical, is denoted by σJ

t (pt, wt, rt) := (y(pt, wt, rt), kd(pt, wt, rt),
ld(pt, wt, rt)). Finally, σJ(p, w, r) := {σJ

t (pt, wt, rt)}t∈T . Using Assumption
1, standard arguments immediately imply the following result:

Step 4 For every �nite v, u, σJ : Svu →
(
R3

+

)∞ is bounded and continuous.

For presentational reasons, let QM :=
(
R3

)∞ be the space carrying the ac-
tions on the consumption, labor and capital markets in every period, respec-
tively. Household�s demand on these markets is a mapping Ξh : S ⇒ QM

15The nominal price of the output good does not enter the objective of the �rm. We
include it in the demand correspondence to have a uniform notation.
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de�ned by

Ξh(p, w, r) :=
{

ξh = (ξh
t )t∈T ∈ QM

∣∣∀t ∈ T : ξh
t := (ξh

ct, ξ
h
lt, ξ

h
kt), where

ξh
ct := ch

t + kh
t+1 + κc(∆h

t )− kh
t (1− δ),

ξh
lt := −(e− κl(∆h

t )), ξh
kt := −kh

t , with σ̄h∈ φ̄h(p, w, r)
}

.

Notice that we use the extended demand sets φ̄h(p, w, r) de�ned in (9). De-
�ne �rms market demand by ΞJ : S ⇒ QM by

ΞJ(p, w, r) :=
{

ξJ = (ξJ
t )t∈T ∈ QM

∣∣∀t ∈ T : ξJ
t := (ξJ

ct, ξ
J
lt, ξ

J
kt) where

ξJ
ct := yt, ξJ

lt := −ldt , ξJ
kt := −kd

h,

with (yt, k
d
t , l

d
t )t∈T = σJ(p, w, r)

}
.

Excess demand is the mapping Ξ : S ⇒ QM de�ned by

Ξ(p, w, r) := Ξh(p, w, r)− ΞJ(p, w, r)

with generic element

ξ = (ξct, ξlt, ξkt)t∈T = (ξh
ct − ξJ

ct, ξh
lt − ξJ

lt, ξh
kt − ξJ

kt)t∈T .

Let Kvu ⊂ QM be a compact and convex cube containing the set Ξ(Svu).
The existence of such a set follows for all �nite v and u from what we estab-
lished before. Kt,vu denotes the projection of Kvu onto the t-th component,
i.e. Kt,vu = Kct,vu×Klt,vu×Kkt,vu, where the latter sets are one-dimensional
sets carrying the excess demands on consumption, labor and capital markets
in t, respectively. By Tychono��s Theorem, every coordinate set is a com-
pact subset of R. De�ne for every t ∈ T the mapping ζct,vu : Kct,vu ⇒ [1/v, u]
by

ζct,vu(ξct,vu) := argmax
{

pt,vuξct,vu

∣∣∣ pt,vu ∈ [1/v, u]
}

,

the mapping ζlt,vu : Klt,vu ⇒ [1/v, v] by

ζlt,vu(ξlt,vu) := argmax
{

wt,vuξlt,vu

∣∣∣wt,vu ∈ [1/v, v]
}

,

and the mapping ζkt,vu : Kkt,vu ⇒ [δ + 1/(vu)2, δ + (vu)2] by

ζkt,vu(ξkt,vu) := argmax
{

rt,vuξkt,vu

∣∣∣ rt,vu ∈ [δ + 1/(vu)2, δ + (vu)2]
}

.
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Next, de�ne ζt,vu : Kt,vu ⇒ [1/v, u]× [1/v, v]× [δ + 1/(vu)2, δ + (vu)2] by

ζt,vu := ζct,vu × ζlt,vu × ζkt,vu

and �nally the product mapping ζvu : Kvu ⇒ Svu by

ζvu :=
∏

t∈T

ζt,vu.

Let coΞh denote the closure of the convex hull of Ξh and de�ne the
correspondence

(co Ξh − ΞJ)× ζvu : Kvu × Svu ⇒ Kvu × Svu

by

(ξ, (p, r, w)) 7→
(
coΞh(p, r, w)− ΞJ(p, r, w), ζvu(ξ)

)
.

Step 5 For every (v, u), there is a �xed point

(ξ∗vu, (p∗vu, r∗vu, w∗vu)) ∈
(
coΞh(p∗vu, r∗vu, w∗vu)− ΞJ(p∗vu, r∗vu, w∗vu), ζvu(ξ∗vu)

)
.

Proof. We will show that the map (coΞh−ΞJ)×ζvu : Kvu×Svu ⇒ Kvu×
Svu is upper hemi-continuous, nonempty, compact and convex valued and
that the set Kvu×Svu is a nonempty, compact and convex subset of a locally
convex Hausdor� space. The Kakutani-Fan-Glicksberg Fixed Point Theorem
(Aliprantis, Border, 1999, Corollary 16.51) then implies the existence of a
�xed point for every v, u.

Kvu×Svu is locally convex since it is a metric space. It satis�es the Haus-
dor� Axiom since it is the countable product of Hausdor� spaces. (Folland
(1999), Proposition 4.10). Convexity and nonemptiness of the mapping are
obvious. ζvu and ΞJ are obviously upper hemi-continuous.

co Ξh(p, r, w) is contained in a compact cube which is a subset of QM .
Hence the set co Ξh(p, r, w) is compact since closed subsets of compact sets
are in turn compact. By construction, Ξh is upper hemi-continuous since
φ̄h(p, r, w) is upper hemi-continuous. The upper hemi-continuity of coΞh

now follows from the upper hemi-continuity of Ξh by using the result (Alipran-
tis, Border, 1999, Theorem 16.36) that the closed convex hull of an upper
hemi-continuous correspondence is in turn upper hemi-continuous provided
that the range of the closure of the convex hull of the correspondence is
compact.
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Taking products and summing up upper hemi-continuous and compact
valued correspondences preserves these properties (Aliprantis and Border,
1999, Theorems 16.28, 16.32). From this we infer that (coΞh − ΞJ) × ζvu

is upper hemi-continuous with compact values since coΞh, ΞJ and ζvu have
these properties.

We deal with a sequence of �xed points indexed by v and u. We �rst
hold u �xed and let v → +∞. We can choose subsequences, denoted as the
original sequence, which have a unique limit point as v → +∞. We denote
such a limit by (ξ∗u, (p∗u, r∗u, w∗u)) := lim

v→+∞(ξ∗vu, (p∗vu, r∗vu, w∗vu)). Note that it
is not clear a priori whether the limit of the subsequence is �nite or not.
From now on, we replace the original sequence with such a subsequence. In
the next step, we show that the aggregate capital stock is bounded away
from zero along every such subsequence.

Step 6 De�ne k∗t,vu to be aggregate capital supply in t in the �xed point with
number vu. There exists a b > 0 such that for every t and u, lim

v→+∞k∗t,vu > b.

Proof. Suppose the claim is wrong. Then, for every b > 0, there is a
t(b) and a u(b) such that lim

v→+∞k∗t(b),vu(b) ≤ b. Choose a sequence {bn}n

with bn > 0 for all n such that lim
n→+∞bn = 0. There are corresponding

sequences {t(bn)}n and {u(bn)}n which we denote with {tn}n := {t(bn)}n

and {un}n := {u(bn)}n for better readability. Taking subsequences, if neces-
sary, we may assume that {bn}n, {tn}n and {un}n converge. It follows that
lim

n→+∞ lim
v→+∞k∗tn,vun = 0. By the nonnegativity of capital, lim

n→+∞ lim
v→+∞kh∗

tn,vun

= 0 for almost every h ∈ H.
Note �rst that for every h ∈ H and for every �nite v and u, there is a

sequence {tha
vu}a∈N ⊂ T , such that ∆̃h∗

tha
vu,vu

> 0 and tha
vu →∞ as a →∞. This

simply follows from the positive wage rate for v �nite and the fact that the
real return on capital, r∗t,vu + 1− δ, is always at least one. Hence households
can accumulate real wealth on the checking account to a�ord a transfer after
�nitely many periods. This implies that the constraints on the checking
account bind.

Taking subsequences, if necessary, we may assume that for every �xed
n and u and for all large enough v either π∗tn−1,vun < r∗tn,vun + 1 − δ or
π∗tn−1,vun > r∗tn,vun + 1− δ or π∗tn−1,vun = r∗tn,vun + 1 − δ. In the rest of the
proof, we will distinguish three scenarios according to these possibilities. We
will mostly argue with �xed n and hence implicitly assume that n is large
enough to make the respective argument work.
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Scenario 1: Suppose that, for some large enough n, there is a v1 such that
for all v > v1, π∗tn−1,vun < r∗tn,vun + 1− δ. We can have three constellations:

Case (i): There exists a v2 such that for all v > v2, kd∗
tn,vun < k∗tn,vun .

Hence, as v → ∞, kd∗
tn,vun → kd∗

tn,un ∈ [0, bn] and, as n → ∞, kd∗
tn,un → 0. In

every �xed point, this is only consistent with kd∗
tn,un

ld∗tn,un
→ 0 as n → ∞. For if

there is a subsequence such that kd∗
tn,un

ld∗tn,un
→ x > 0 as n →∞, there must exist

a positive sequence {Ln}n with Ln → 0 as n → ∞, such that ld∗tn,un ≤ Ln.
Hence, for every n, it holds that for every ε > 0, there is a v̄ such that for
all v ≥ v̄, ld∗tn,vun ≤ Ln + ε. Since Ln → 0, there is a N such that for all
n ≥ N , 2Ln < e − γl. Choose ε = Ln and n ≥ N to get that for all v ≥ v̄,
ld∗tn,vun ≤ Ln+ε = 2Ln < e−γl. Then it follows that for all v ≥ v̄, wtn,vun = 1

v .
For arbitrary n and v, pro�t maximization and the linear homogeneity of the
production function imply wtn,vun = Fl

(
ld∗tn,vun , kd∗

tn,vun

)
= Fl

(
1,

kd∗
tn,vun

ld∗tn,vun

)
.

For every n ≥ N , taking limits for v → ∞ and using the continuity of the
derivative implies 0 = Fl

(
1,

kd∗
tn,un

ld∗tn,un

)
. For every large enough n, Assump-

tion 1 implies a contradiction since kd∗
tn,un

ld∗tn,un
is arbitrary close to x, a positive

number. Thus, kd∗
tn,un

ld∗tn,un
→ 0 as n →∞.

Pro�t maximization and the linear homogeneity of the production func-
tion imply rtn,vun = Fk

(
1,

kd∗
tn,vun

ld∗tn,vun

)
or equivalently kd∗

tn,vun

ld∗tn,vun
= F−1

k (1, rtn,vun).
For all v > max{v1, v2}, we get from the excess supply on the capital market
that r∗tn,v,un = δ + 1

(vun)2
. Taking limits as v → ∞, r∗tn,un = δ. However,

from Assumption 1,∞ = F−1
k (1, δ) which contradicts the fact that, for large

enough n, kd∗
tn,vun

ld∗tn,vun
is arbitrary close to zero.

Case (ii): There exists a v′2 such that for all v > v′2, kd∗
tn,vun = k∗tn,vun .

Hence, as v → ∞, both k∗tn,vun → k∗tn,un ∈ [0, bn] and kd∗
tn,vun → k∗tn,un ∈

[0, bn]. It follows kd∗
tn,un → 0 as n → ∞. As argued in Case (i), this implies

that kd∗
tn,un

ld∗tn,un
→ 0 as n →∞. In turn, rtn,un = Fk

(
1,

kd∗
tn,un

ld∗tn,un

)
implies together

with Assumption 1 that rtn,un diverges with n.
In Case (ii), the sequence k∗tn,vunr∗tn,vun must be bounded above. Indeed,

for every �xed n, using Assumption 1, it follows from kd∗
tn,vun → Kn ∈ [0, bn]

that there is a Y n > 0 such that y∗tn,vun → y∗tn,un with y∗tn,un ∈ [0, Y n]. Since
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bn → 0 as n → ∞, it follows that Y n → 0. It is now easy to see that,
for n su�ciently large, a su�ciently large kd∗

tn,vunr∗tn,vun would eventually
contradict pro�t maximization, which is, however, an ingredient of every
�xed point.

(ii.1) Suppose that lim
n→∞ lim

v→∞k∗tn,vunr∗tn,vun = 0. Hence, for every ε > 0,
there exists a N(= N(ε)) such that for all n ≥ N , the following is true: for
every η > 0, there is a V (= V (n, η)) such that for all v ≥ V , k∗tn,vunr∗tn,vun <
ε + η. The latter property must hence also be true for almost every h ∈ H.

Choose ε and η small enough. By a now familiar argument, we can assume
that n is large enough, in particular n ≥ N . Note that for all v ≥ v1 it holds
that for every h ∈ H, ñh∗

tn−1,vun = 0 because π∗tn−1,vun < r∗tn,vun + 1− δ.
(ii.1.a) Suppose that there is a v3 such that for all v > max{v1, v

′
2, V, v3},

∆̃h∗
tn−1,vun > 0 for some H ′ ⊂ H with positive measure. If some h ∈ H ′

chooses, for v > max{v1, v
′
2, V, v3} and n large enough, kh′

tn,vun = ε > 0 in-
stead of letting kh∗

tn,vun → Kn with Kn ∈ [0, bn] (where bn can be chosen arbi-
trary small for large enough n) and takes the ε from the positive ∆̃h∗

tn−1,vun , h
earns ε(r∗tn,vun +1− δ) in tn, which eventually exceeds the transactions costs
in tn. Hence for large enough v, the household can increase his consumption
in tn large enough to compensate for a small consumption loss in tn− 1 due
to the change in transfers ∆̃h∗

tn−1,vun and savings. He must be better o� after
this deviation, implying that this case is not compatible with best responses.

(ii.1.b) Suppose that there is a v′3 such that for all v > max{v1, v
′
2, V, v′3},

∆̃h∗
tn−1,vun = 0 for almost every h ∈ H. We know that ñh∗

tn−1,vun = 0 and
that the budget constraint on the checking account binds. From this we get

kh∗
tn,vun =kh∗

tn−1,vun(r∗tn−1,vu + 1− δ)+w∗tn−1,vun(e− κl(∆h∗
tn−1,vun)) (11)

+ñh∗
tn−2,vuπtn−2,vu.

Since kh∗
tn,vun → kh∗

tn,un ∈ [0, bn] and bn → 0 as n →∞, we infer from (11) that
the successive limit of kh∗

tn−1,vunr∗tn−1,vu is also zero. From r∗tn,vun diverging
with n, we know that there is a sequence {b̄n} ≥ 0, b̄n → 0 as n → ∞,
such that, as v → ∞, kh∗

tn−1,vun → kh∗
tn−1,un ∈ [0, b̄n], i.e. kh∗

tn−1,vun must
eventually converge to zero as well. This argument is true for almost every
h ∈ H. To summarize, we get h-almost surely that after taking successive
limits, kh∗

tn−1,vun converges to zero, r∗tn−1,vu diverges, but kh∗
tn−1,vunr∗tn−1,vu

converges to zero. We can now proceed by going one period backwards
where we know that, for all h ∈ H,

kh∗
tn−1,vun + ñh∗

tn−2,vun + ∆̃h∗
tn−2,vun + κ2

c(∆
h∗
tn−2,vun) = kh∗

tn−2,vun (12)
×(r∗tn−2,vu + 1− δ) + w∗tn−2,vun(e− κl(∆h∗

tn−2,vun)) + ñh∗
tn−3,vuπtn−3,vu.
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We have to distinguish another three subcases here:

(1) First suppose that there is a v4 such that for every v > max{v1, v2, V, v′3, v4},
∆̃h∗

tn−2,vun = 0 for almost every household. Then, for every
v > max{v1, v2, V, v′3, v4},

kh∗
tn−1,vun + ñh∗

tn−2,vun = kh∗
tn−2,vun(r∗tn−2,vu + 1− δ) (13)

+w∗tn−2,vun(e− κl(∆h∗
tn−2,vun)) + ñh∗

tn−3,vuπtn−3,vu

holds h-almost surely.

(1a) Assume lim sup
n→∞

lim
v→∞

∫
H ñh∗

tn−2,vundh > 0. This implies that there
is a N ′ such that for all n ≥ N ′, there is a V ′(= V ′(n)) such that
for all v ≥ V ′,

∫
H ñh∗

tn−2,vundh > 0. Necessarily, for all n ≥ N ′ and
for all v ≥ V ′, r∗tn−1,vun +1−δ = π∗tn−2,vu. Thus, ñh∗

tn−2,vunπ∗tn−2,vu

must diverge in tn − 1, i.e. lim inf
n→∞ lim

v→∞
∫
H ñh∗

tn−2,vunπ∗tn−2,vudh =
∞. Since income on the checking account is becoming arbitrary
large, an argument given in Gale and Hellwig (1984)16 directly
implies that mean consumption in tn−1 is becoming large for large
n ≥ N ′ and v ≥ V ′. But in tn− 1, total supply converges to zero,
as seen before. Hence p∗tn−1,vun = un which implies π∗tn−2,vun ≤ 1,
a contradiction.

(1b) Assume lim
n→∞ lim

v→∞
∫
H ñh∗

tn−2,vundh = 0 which implies that
lim

n→∞ lim
v→∞ñh∗

tn−2,vun = 0 for almost every h ∈ H. Hence for ev-
ery small ε > 0, there is a N ′′ such that for all n ≥ N ′′, it is
true that for every small η > 0 there is a V ′′ such that for all
v ≥ V ′′, ñh∗

tn−2,vun ≤ ε + η. By (13), for almost every h ∈ H,
the term kh∗

tn−2,vun(r∗tn−2,vu +1− δ)+w∗tn−2,vun(e−κl(∆h∗
tn−2,vun))

+ñh∗
tn−3,vuπtn−3,vu has the same convergence behavior, i.e. the

successive limit is zero. In particular, there is a positive sequence
{Wn}n with Wn → 0 such that w∗tn−2,vun → w∗tn−2,un ∈ [0,Wn].

Taking limits of the equation w∗tn−2,vun = Fl

(
1,

kd∗
tn−2,vun

ld∗tn−2,vun

)
im-

plies w∗tn−2,un = Fl

(
1,

kd∗
tn−2,un

ld∗tn−2,un

)
which implies kd∗

tn−2,un

ld∗tn−2,un
→ 0.

This is only consistent with kd∗
tn−2,un → 0 for if kd∗

tn−2,un

ld∗tn−2,un
→ 0 is

16See Footnote 9 in Gale and Hellwig (1984).
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induced by ld∗tn−2,un →∞ but kd∗
tn−2,un 9 0, we get excess demand

on the labor market which implies an unbounded wage, a contra-
diction. r∗tn−2,un = Fk

(
kd∗

tn−2,un

ld∗tn−2,un
, 1

)
implies in turn that r∗tn−2,u

diverges. Using (13), the successive limit of kh∗
tn−2,vun must be

zero. Hence we can go one period backwards and start the same
kind of arguments again. That is, this case is consistent at this
point and we proceed with it below.

(2) Suppose next that, for some large enough n, there is a v′4 such that
for every v > max{v1, v2, V, v′3, v

′
4}, there is a H ′′ ⊂ H with positive

measure such that for all h ∈ H ′′ ∆̃h∗
tn−2,vun > 0. This case eventually

leads to a contradiction, as argued in (ii.1.a).

(3) Suppose �nally that, for some large enough n, there is a v′′4 such that
for every v > max{v1, v2, V, v′3, v

′′
4}, there is a there is a H ′′′ ⊂ H with

positive measure such that for all h ∈ H ′′′, ∆̃h∗
tn−2,vun < 0. We only

sketch the argument at this point: If on the one hand, for some large
enough n and for all large enough v, r∗tn−1,vun +1−δ > π∗tn−2,vun , then
money demand on the checking account is zero. But then capital sup-
ply in tn−1 cannot become small, as argued in (ii.1.a), a contradiction.
If on the other hand, the interest rate is equal to the de�ation rate for
some large enough n and all large enough v, then ñh∗

tn−2,vuπ∗tn−2,vu must
diverge. As argued above, consumption in tn− 1 will then be growing,
while supply converges to zero, inducing p∗tn−1,vun = un which implies
π∗tn−2,vun ≤ 1, a contradiction.

(ii.1.c) Suppose �nally that there is a v′′3 such that for all
v > max{v1, v2, V, v′′3}, there is a H ′ ⊂ H with positive measure such that
for all h ∈ H ′, ∆̃h∗

tn−1,vun < 0. It is easy to see that the same arguments as
above imply a contradiction.

Hence the only consistent case is subcase (1b) of subcase (ii.1.b). Re-
peating the argument eventually implies that, for almost every household, it
holds that the successive limit of kh∗

1,vun is zero, of r∗1,vun it is in�nite, but of
the term kh∗

1,vunr∗1,vun it is zero. However, every household is endowed with
kh

1 > 0 units of capital. It is not hard to see that supplying kh∗
1,vun = kh

1

is the best response for a household given this constellation since the in-
tertemporal utility approaches the supremum with this strategy.17 This is a
contradiction.

17Again, the precise argument can be found in Footnote 9 in Gale and Hellwig (1984).
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(ii.2) Suppose now that lim sup
n→∞

lim
v→∞k∗tn,vunr∗tn,vun > 0, a subsequence

converges to a strictly positive and �nite number. Then, for a large enough
chosen n, there must be a H ′ ⊂ H such that for all h ∈ H ′, kh∗

tn,vun becomes at
least as fast arbitrary small as v →∞ as r∗tn,vun becomes large. In whatever
subcase we are, the same arguments as above apply.

Case (iii): There is a v′′3 such that for all v > v′′3 we have kd∗
tn,vun > k∗tn,vun .

It su�ces to sketch the proof here. By de�nition of ζktn,vun , we get r∗tn,vun =
δ + (vun)2 for all large enough v. If de�ation becomes large we get the same
contradiction as before. If not, then the same arguments as above reveal that
households maximization implies that k∗tn,vunr∗tn,vun becomes large, hence
kd∗

tn,vunr∗tn,vun becomes large even though r∗tn,vun = δ +(vun)2 implies kd∗
tn,vun

becoming small. This obviously contradicts �rms maximization.
Scenario 2: Suppose there is a v′2 such that for all v > v′2, π∗tn−1,vun >

r∗tn,vun + 1− δ for some n. For all v > v′2, no household accumulates capital,∫
H kh∗

tn,vun dh = 0. Hence ξ∗ktn,vun > 0 because capital demand is positive
for �nite interest rates, from what r∗tn,vun = δ + (vun)2. It follows from
the hypothesis and our �xed point construction that vun ≥ p∗tn−1,vun

p∗tn,vun
=

π∗tn−1,vun > r∗tn,vun + 1 − δ = δ + (vun)2 + 1 − δ = (vun)2 + 1, from which
1 > vun + 1

vun , a contradiction.18
Scenario 3: Suppose that, for some large enough n, there is a v′′2 such

that for all v > v′′2 , π∗tn−1,vun = r∗tn,vun + 1− δ.
(i) If, for all large enough v, we have kd∗

tn,vun < k∗tn,vun , then the same
argument as in Scenario 1 shows that this cannot be consistent. (ii) If for
all large enough v, kd∗

tn,vun > k∗tn,vun then r∗tn,vun = δ + (vun)2. As in in the
previous scenario, vu ≥ p∗tn−1,vun

p∗tn,vu
= π∗tn−1,vun = r∗tn,vun + 1− δ = (vun)2 + 1,

from which 1 ≥ vun + 1
vun a contradiction. (iii) If there is a ṽ3 such that

for all v > ṽ3 we have kd∗
tn,vun = k∗tn,vun , both terms converge with v to a

number in [0, bn] by the hypothesis of the step. As in Case (ii) of Scenario 1
we get that for all large enough v, r∗tn,vun + 1− δ must diverge with n. For
v > max{v′′2 , ṽ3}, π∗tn−1,vun = r∗tn,vun + 1− δ implies then that π∗tn−1,vun has
the same convergence behavior. We continue with this case.

First, if for large enough n there is a ṽ4 such that for all
v > max{v1, v

′′
2 , ṽ3, ṽ4}, there is a H ′ ⊂ H with positive measure such that

18This contradiction follows purely mechanically from the construction of the �xed point.
It is possible to give another construction of the �xed point such that this contradiction
arises from economic reasoning instead of pure mechanics. We use our construction just
for simplicity.
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∆̃h∗
tn−1,vun > 0 for all h ∈ H ′, then π∗tn−1,vunm̃h∗

tn−1,vun must be unbounded for
all h ∈ H ′ in tn implying again that

∫
H ch∗

tn,vundh is growing away from zero.
By a now familiar argument, this implies ptn,vun = un and thus π∗tn−1,vun ≤ 1,
a contradiction to the hypothesis that gross de�ation is large.

Second, suppose there is a ṽ′4 such that for all v > max{v1, v
′′
2 , ṽ′′3 , ṽ′4}

∆̃h∗
tn−1,vun = 0, for almost every h ∈ H. The same arguments as in (ii.1.b), (1a)

and (1b) apply.
Third, if there is a v′′4 such that for all v > max{v1, v

′′
2 , ṽ′′3 , ṽ′′4}, ∆̃h∗

tn−1,vun <

0 for a positive measure of households, then
∫
H ch∗

tn−1,vundh must be bounded
away from zero since agents forgo consumption. Without going into details, it
is easy to see that it su�ces in this case to consider m̃h∗

tn−1,vun being bounded
away from zero for these agents for all v > max{v1, v

′′
2 , ṽ′′3 , ṽ′′4}. This implies

π∗tn−1,vunm̃h∗
tn−1,vun running out of bounds and the same contradiction arises

as before since a positive excess demand implies a de�ation rate of at most
one.

Step 7 For every t, π∗t,vu ≤ r∗t+1,vu + 1− δ for all v and u.

Proof. This follows from the construction of the �xed point as argued in
the second Scenario of the previous proof.

Step 8 For any given t ∈ T , the sequence p∗t,vu is bounded away from zero.
In addition, for all t ∈ T and for all v large enough, ξ∗ct,vu ≥ 0.

Proof. Suppose there is a t and a u such that the sequence p∗t,vu converges
to zero. By Step 7, π∗t−1,vu ≤ r∗t,vu + 1 − δ for all v, u and t. There must
be a �nite R which bounds r∗t,vu + 1− δ above for all u, all t < +∞ and all
large enough v. Indeed, we saw that k∗t,vu > b for some positive b, all u and
t < +∞ and for all v large enough. Hence, if such a R does not exist and
r∗t,vu → +∞ with v for some t and u, we get excess supply on the capital
market (capital demand goes to zero by Assumption 1) eventually implying
r∗t,vu = δ + 1/(vu)2, a contradiction from which we infer that the upper
bound R exists. Thus, π∗t−1,vu < R for all t. Since p∗t,vu becomes arbitrary
small, we infer that p∗t−1,vu must also be very small since otherwise π∗t−1,vu

becomes very large. By the same token p∗1,vu must be very small. Since
mh > 0, real wealth on the cash account in t = 1 can be made arbitrary
large. This eventually implies that consumption in period one is growing
out of bounds19 and hence ξ∗c1,vu > 0 - a contradiction since the price player

19The precise argument is exactly as given in Footnote 9 in Gale and Hellwig (1984).
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then chooses a price of u in t = 1. ξ∗ct,vu ≥ 0 for all v large enough and for
all t follows now from the de�nition of ζct,vu.

Step 9 For every t and u, lim
v→∞ξ∗lt,vu = 0 and lim

v→∞ξ∗kt,vu = 0.

Proof. Suppose there is a �nite t and u with lim
v→∞ξ∗lt,vu or lim

v→∞ξ∗lt,vu being
nonzero. We distinguish cases:

1. If both limits are strictly negative, then, as v → ∞, w∗t,vu → 0 and
r∗t,vu → δ. The �rst order conditions are

w∗t,vu = Fl

(
ld∗t,vu

kd∗
t,vu

, 1

)
(14)

and

r∗t,vu = Fl

(
1,

kd∗
t,vu

ld∗t,vu

)
. (15)

(14) implies together with Assumption 1 that kd∗
t,vu

ld∗t,vu
→ 0, but (15) implies

together with Assumption 1 that kd∗
t,vu

ld∗t,vu
→∞, a contradiction to �rms maxi-

mization.
2. If lim

v→∞ξ∗lt,vu < 0 and lim
v→∞ξ∗kt,vu > 0, then, as v → ∞, w∗t,vu → 0 and

r∗t,vu → ∞. (14) and (15) imply that kd∗
t,vu

ld∗t,vu
→ 0. If kd∗

t,vu → 0, then for all
large enough v, ξ∗kt,vu < 0 because capital supply is positive, a contradiction.
If ld∗t,vu →∞, then for all large enough v, ξ∗kt,vu > 0, a contradiction.

3. If lim
v→∞ξ∗lt,vu < 0 and lim

v→∞ξ∗kt,vu = 0, then, as v → ∞, w∗t,vu → 0. (14)

implies kd∗
t,vu

ld∗t,vu
→ 0. We claim that ld∗t,vu → Ld∗

t,u > e. If not, then kd∗
t,vu → 0,

which contradicts lim
v→∞ξ∗kt,vu = 0 since capital supply remains positive. Hence

eventually ξ∗lt,vu > 0, a contradiction.
4. If both limits are positive, then, as v → ∞, w∗t,vu → ∞ and r∗t,vu →

∞. (14) implies together with Assumption 1 that kd∗
t,vu

ld∗t,vu
→ ∞, but (15)

implies together with Assumption 1 that kd∗
t,vu

ld∗t,vu
→ 0, a contradiction to �rms

maximization.
5. If lim

v→∞ξ∗lt,vu > 0 and lim
v→∞ξ∗kt,vu < 0, then, as v → ∞, w∗t,vu → ∞ and

r∗t,vu → δ. (14) and (15) imply that kd∗
t,vu

ld∗t,vu
→ ∞. Suppose that kd∗

t,vu → ∞.
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As argued in Step 8, p∗t,vu 9 0 for all t, r∗t,vu is �nite for all large enough v
and π∗t,vu is at most equal to r∗t,vu + 1 − δ ≤ R < +∞. Hence, all returns
in the economy are �nite. It follows easily that the households demand sets
are contained in a compact cube. In particular, we get that capital supply
is bounded above. Hence ξ∗kt,vu > 0 for large enough v, a contradiction. It
follows that for all large enough v, ξ∗kt,vu > 0 which implies a contradiction.
Suppose now that ld∗t,vu → 0. Then for all large enough v, ξ∗lt,vu < 0, a
contradiction.

6. If lim
v→∞ξ∗lt,vu > 0 and lim

v→∞ξ∗kt,vu = 0, then, as v →∞, w∗t,vu →∞. (14)

implies kd∗
t,vu

ld∗t,vu
→∞. It follows ld∗t,vu → 0 for if not, then kd∗

t,vu →∞. Using the
same arguments as in 5., it is easily seen that this contradicts the hypothesis
lim

v→∞ξ∗kt,vu = 0. However, ld∗t,vu → 0 contradicts lim
v→∞ξ∗lt,vu > 0.

7. If lim
v→∞ξ∗kt,vu < 0 and lim

v→∞ξ∗lt,vu = 0, then, as v → ∞, r∗t,vu → δ. (15)

implies kd∗
t,vu

ld∗t,vu
→ ∞. It follows kd∗

t,vu → ∞ for if not, then ld∗t,vu → 0 which
contradicts lim

v→∞ξ∗lt,vu = 0. Using the same arguments as in 5., kd∗
t,vu → ∞

eventually implies ξ∗kt,vu > 0.
8. If lim

v→∞ξ∗kt,vu > 0 and lim
v→∞ξ∗lt,vu = 0, then, as v → ∞, r∗t,vu → ∞. (15)

implies kd∗
t,vu

ld∗t,vu
→ 0. It follows kd∗

t,vu → 0 for if not, then ld∗t,vu → ∞ which
contradicts lim

v→∞ξ∗lt,vu = 0. A now familiar argument implies that kd∗
t,vu → 0

is not consistent.
It follows that lim

v→∞ξ∗kt,vu = lim
v→∞ξ∗lt,vu = 0 for all t < +∞ and hence the

same equations must hold in the limit t → +∞.

Step 10 Let lim
v→+∞k∗t,vu = k∗t,u. Then lim

t→+∞k∗t,u < +∞ for every u.

Proof. Suppose k∗t,u converges to in�nity as t → +∞ for some �nite u.
Then there must necessarily be a ι ∈ H whose assets diverge, i.e. there is a
ι ∈ H such that kι∗

t+1,u + ñι∗
t,u + m̃ι∗

t,u → +∞ as t → +∞. If this is not the
case, then lim

t→+∞kh∗
t+1,u ≤ lim

t→+∞
(
kh∗

t+1,u + ñh∗
t,u + m̃h∗

t,u

) ≤ +∞ for all h ∈ H

implying that aggregate capital cannot diverge. Since capital markets clear
and k∗t,u → +∞, it follows from Assumption 1 that there is a t̃ such that for
all t ≥ t̃, β(r∗t,u + 1− δ) < 1.

Choose some τ ≥ t̃ large enough to make sure that k∗τ+1,u and kι∗
τ+1,u +

ñι∗
τ,u + m̃ι∗

τ,u are already large and such that agent ι chooses ∆ι∗
τ,u 6= 0. We

know that there is a �nite T such that ∆ι∗
τ+T,u 6= 0 again.
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We can de�ne a Kuhn-Tucker function for the maximization problem of
every h ∈ H. The resulting Kuhn-Tucker conditions are necessary but not
su�cient due to the lack of convexity. Since the transversality condition is
derived from the necessary Kuhn-Tucker conditions, it is also necessary. We
will argue that household ι eventually violates his transversality condition if
k∗t,u → +∞.

Let µι,1∗
t,u be the (present value) Lagrange multiplier for the cash account

constraint in period t (formulated in real terms). De�ne (the current value
multiplier) λι,1∗

t,u as usual by µι,1∗
t,u = λι,1∗

t,u βt. The multipliers for the checking
account constraint in t (also formulated in real terms) are denoted by µι,2∗

t,u

and λι,2∗
t,u , where µι,2∗

t,u = λι,2∗
t,u βt. The transversality condition of agent ι ∈ H

is then lim
t→+∞

(
λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
+ λι,1∗

t,u βtm̃ι∗
t,u

)
= 0.

For τ large enough, ι must accumulate his large investment between two
successive transfer dates τ and τ + T either on the cash account or on the
checking account. In the following Claim 1, we will argue that in case of large
investments on the cash account, the whole term λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
+

λι,1∗
t,u βtm̃ι∗

t,u must eventually be strictly increasing in t between such a pair
of successive transfer dates τ and τ + T . In Claim 2 we will show that
in case of large accumulation of wealth on the checking account, at least
λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
must eventually be strictly increasing in t between

such a pair of successive transfer dates τ and τ + T . Since the second
term, λι,1∗

t,u βtm̃ι∗
t,u, is nonnegative, the whole term, λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
+

λι,1∗
t,u βtm̃ι∗

t,u, cannot converge to zero in this case as well. Since one out of
these two cases is true between every pair of successive transfer dates, the
transversality condition must be violated. This implies that the Step must
be true.

Claim 1 Suppose that ι chooses to allocate his large investment between τ
and τ +T on the cash account, and invests only relatively less on the checking
account. Then, for every large enough τ , λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
+λι,1∗

t,u βtm̃ι∗
t,u

is increasing in t between τ and τ + T .

Proof. We �rst show that λι,1∗
τ+j,uβτ+j = λι,2∗

τ+j,uβτ+j for all j ∈ {0, . . . , T}: ι
chooses to allocate most of his large investments on the cash account between
τ and τ + T . Hence m̃ι∗

τ+j must be positive for all j ∈ {0, . . . , T − 1}. This
can only be a best response if

∏T−1
j=0 π∗τ+j,u ≥

∏T−1
j=0 (r∗τ+j+1,u + 1− δ). Since

π∗t−1,u ≤ r∗t,u +1− δ, we get
∏T−1

j=0 π∗τ+j,u =
∏T−1

j=0 (r∗τ+j+1,u +1− δ). Clearly,
π∗τ+j,u = r∗τ+j+1,u + 1 − δ for all j ∈ {0, . . . , T − 1}. Indeed, if π∗τ+j,u <
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r∗τ+j+1,u + 1 − δ for some j then
∏T−1

j=0 π∗τ+j,u =
∏T−1

j=0 (r∗τ+j+1,u + 1 − δ)
implies that there must be another j′ with π∗τ+j′,u > r∗τ+j′+1,u + 1 − δ, a
contradiction.

Since m̃ι∗
τ+j is strictly positive for all j ∈ {0, . . . , T − 1}, the �rst order

conditions imply λι,1∗
τ+j+1,uβτ+j+1

λι,1∗
τ+j,uβτ+j

= 1
π∗τ+j,u

for all j ∈ {0, . . . , T − 1}. On
the checking account, optimality implies that ι must accumulate his wage
income between τ +1 and τ +T . Hence, the investment kι∗

τ+1+j,u+ñι∗
τ+j,u in a

"composite asset" having return max{π∗t−1,u, r∗t,u +1− δ} = r∗t,u +1− δ must

be strictly positive in these periods implying λι,2∗
τ+j+1,uβτ+j+1

λι,2∗
τ+j,uβτ+j

= 1
r∗τ+j+1,u+1−δ

for all j ∈ {1, . . . , T − 1}. Furthermore, λι,2∗
τ+1,uβτ+1

λι,2∗
τ,u βτ

≤ 1
r∗τ+1,u+1−δ .

Since ∆ι∗
τ,u 6= 0 and ∆ι∗

τ+T,u 6= 0, it follows from the Kuhn-Tucker condi-
tions that λι,2∗

τ,u = λι,1∗
τ,u and λι,2∗

τ+T,u = λι,1∗
τ+T,u.

We get λι,2∗
τ+1,uβτ+1

λι,2∗
τ,u βτ

≤ 1
r∗τ+1,u+1−δ = 1

π∗τ,u
=

λι,1∗
τ+1,uβτ+1

λι,1∗
τ,u βτ

=
λι,1∗

τ+1,uβτ+1

λι,2∗
τ,u βτ

from

which we infer λι,2∗
τ+1,uβτ+1 ≤ λι,1∗

τ+1,uβτ+1. In the next period, λι,2∗
τ+2,uβτ+2

λι,2∗
τ+1,uβτ+1

=

1
r∗τ+2,u+1−δ = 1

π∗τ+1,u
=

λι,1∗
τ+2,uβτ+2

λι,1∗
τ+1,uβτ+1

. The previous inequality and this equality

together imply λι,2∗
τ+2,uβτ+1 ≤ λι,1∗

τ+2,uβτ+1. The same argument can be made
until period τ + T to �nd λι,2∗

τ+T,uβτ+1 ≤ λι,1∗
τ+T,uβτ+1. That is, if there is one

strict inequality involved in some period between τ +1 and τ +T −1, we get
the strict inequality in τ + T . However, we know that λι,2∗

τ+T,u = λι,1∗
τ+T,u, so

every weak inequality must hold as equality. This is what had to be shown.
The next step is to show that λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
+λι,1∗

t,u βtm̃ι∗
t,u is even-

tually increasing in t. From what we said before, the latter term reduces to
λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u + m̃ι∗

t,u

)
. From the budget constraints (6) and (7) and

from the equality of de�ation and returns on capital, we get kι∗
t+1,u + ñι∗

t,u +
m̃ι∗

t,u = (m̃ι∗
t−1,u + ñι∗

t−1,u)π∗t−1,u + kι
t,u(r∗t,u + 1 − δ) + w∗t,u(e − κl(∆ι

t,u)) −
κc(∆ι

t,u)− cι
t,u = (kι∗

t,u + ñι∗
t−1,u + m̃ι∗

t−1,u)(r∗t,u + 1− δ) + w∗t,u(e− κl(∆ι
t,u))−

κc(∆ι
t,u))− cι

t,u. Hence

λι,2∗
t,u βt

λι,2∗
t−1,uβt−1

kι∗
t+1,u + ñι∗

t,u + m̃ι∗
t,u

kι∗
t,u + ñι∗

t−1,u + m̃ι∗
t−1,u

=
1

r∗t,u + 1− δ

(
r∗t,u + 1− δ +

w∗t,u(e− κl(∆ι
t,u))− κc(∆ι

t,u))− cι
t,u

kι∗
t,u + ñι∗

t−1,u + m̃ι∗
t−1,u

)
.
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This term is strictly larger than one if and only if w∗t,u(e − κl(∆ι
t,u)) >

κc(∆ι
t,u)) + cι

t,u. In the �rst place, consumption is decreasing in time since
β(rt,u +1− δ) < 1. Secondly, for a large enough capital stock, Assumption 1
implies that the wage rate becomes arbitrary large. Hence the fraction given
above is larger than one for all large enough t, thus proving Claim 1.

Claim 2 Suppose that ι chooses to allocate his large investment between
τ and τ + T on the checking account. Then, for every large enough τ ,
λι,2∗

t,u βt
(
kι∗

t+1,u + ñι∗
t,u

)
is increasing in t between τ and τ + T .

Proof. Since ι invests on the checking account, the investment kι∗
t+1+j,u +

ñι∗
t+j,u in the "composite asset" which has return max{π∗t−1,u, r∗t,u + 1− δ} =

r∗t,u+1−δ must be strictly positive between τ and τ +T , i.e. λι,2∗
τ+j+1,uβτ+j+1

λι,2∗
τ+j,uβτ+j

=
1

r∗τ+j+1,u+1−δ for all j ∈ {0, . . . , T − 1}. Using this fact together with the
budget constraint allows us to derive the following fraction:

λι,2∗
t,u βt

λι,2∗
t−1,uβt−1

kι∗
t+1,u + ñι∗

t,u

kι∗
t,u + ñι∗

t−1,u

=
1

r∗t,u + 1− δ

(
r∗t,u + 1− δ +

w∗t,u(e− κl(∆ι∗
t,u))− κ2

c(∆
ι∗
t,u)− ∆̃ι∗

t,u

kι∗
t,u + ñι∗

t−1,u

)
.

This term is larger than one if and only if w∗t,u(e−κl(∆ι∗
t,u)) > κ2

c(∆
ι∗
t,u)+∆̃ι∗

t,u.
This is obviously true for t ∈ {τ + 1, . . . , τ + T − 1} because, by de�nition
of τ and τ + T , κ2

c(∆
ι∗
t,u) + ∆̃ι∗

t,u = 0 in these periods. For a transfer date s,
say, this is true if and only if w∗s,u(e − γl) > γc + ∆̃ι∗

s,u. We will now argue
that this will be true for all large enough s.

Optimization of ι and the fact that de�ation rates are positive implies that
ι �nances positive consumption between τ and τ + T − 1 by holding money,
hence m̃ι∗

τ+j,u > 0 for all j ∈ {0, . . . , T−2}. From this, λι,1∗
τ+j+1,uβτ+j+1

λι,1∗
τ+j,uβτ+j

= 1
π∗τ+j,u

for all j ∈ {0, . . . , T − 2}. We can restrict attention to the case where
m̃ι∗

τ+T−1,u = 0. Indeed, if this term would be strictly positive, then ι must
be indi�erent between holding wealth between τ and τ + T on the checking
account and on the cash account. This can only be true if the rates of return
between these two transfer dates coincide. But then we are back in the case
of Claim 1.

For transfer date τ , one calculates the transfer using the cash account
constraints as ∆̃ι∗

τ,u = −m̃ι∗
τ−1π

∗
τ−1,u +

∑T−1
j=0

cι∗
τ+j,u

π∗τ,u·····π∗τ+j−1,u
. The �rst order
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condition λι,1∗
τ+j+1,uβτ+j+1

λι,1∗
τ+j,uβτ+j

= 1
π∗τ+j,u

reduces to cι∗
τ+j,uβ

cι∗
τ+j+1,u

= 1
π∗τ+j,u

using Assump-
tion 2 which imposes log-utilities. Plugging this into the term for the transfer
gives us the simple expression ∆̃ι∗

τ,u = −m̃ι∗
τ−1π

∗
τ−1,u + cι∗

τ,u

∑T−1
j=0 βj . Accord-

ing to the reasoning given above, it follows that λι,2∗
t,u βt

λι,2∗
t−1,uβt−1

kι∗
t+1,u+ñι∗

t,u

kι∗
t,u+ñι∗

t−1,u
is larger

than one at a transfer date τ if and only if w∗τ,u(e− γl) > γc− m̃ι∗
τ−1π

∗
τ−1,u +

cι∗
τ,u

∑T−1
j=0 βj + γc. Since aggregate capital is diverging with t and the wage

is determined by the marginal product of labor using arbitrary large capital,
Assumption 1 implies that the term w∗τ,u(e− γl) is becoming arbitrary large
if we choose τ large enough. The term

∑T−1
j=0 βj is bounded above by 1

1−β
and cι∗

t,u is strictly decreasing in t implying that cι∗
τ,u becomes small for τ

large enough. Hence, the above inequality condition must eventually be true
implying that λι,2∗

t,u βt

λι,2∗
t−1,uβt−1

kι∗
t+1,u+ñι∗

t,u

kι∗
t,u+ñι∗

t−1,u
> 1 for all large enough transfer dates t.

This proves the Claim.
As argued before Claim 1, both Claims together imply that ι ∈ H must

violate his transversality condition. But this contradicts optimality and thus
proves the Step.

De�ne su := min{t ∈ T | ptu = u}. If there is a �nite ū such that sū =
+∞, then the vector

{
(σh∗

ū )h∈H , (σj∗
ū )j∈J , p∗̄u, w∗̄u, r∗̄u

}
is an equilibrium: all

monetary prices are bounded above by ū, agents maximize (see the last
step) and all markets clear. Indeed, it only remains to argue that the output
and money markets clear since capital and labor markets have already been
shown to clear. If some consumption market in some t < +∞ would be in
excess demand at this ū, i.e. ξ∗ct,ū > 0, then the price would hit the bound ū in
this t, a contradiction to sū = +∞. Since excess supply is already excluded,
the claim follows. Money market clearing follows from Walras law in every
period t ∈ T since prices are both positive and �nite. Thus it remains to
show that such an upper bound exists. The idea to prove existence by this
argument is adopted from Gale and Hellwig (1984).

Step 11 There is a u∗ < +∞ such that su∗ = +∞.

Proof. The proof is by contradiction. So suppose from now on that
su < +∞ for all u ∈ N. Note that for every u ∈ N, markets clear in all
periods t < su by the same rationale as given a few lines above.
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Let φ̄real,h(π, r, w) be the demand sets derived from φ̄h(p, r, w) by using
the real budget sets instead of the nominal ones.20 The projection of these
real demands onto real money demand on the cash account and on the check-
ing account in a period t are denoted with φ̄real,h

m̃∗
t

(π, r, w) and φ̄real,h
ñ∗t

(π, r, w),
respectively.

Claim 3 There exist numbers ū < +∞, T < +∞ and c > 0 with the property
that for all u > ū, there is a subset of households H ⊂ H such that21

inf
{∫

H

(
φ̄real,h

m̃su+j,u
(π∗u, r∗u, w∗u) + φ̄real,h

ñsu+j,u
(π∗u, r∗u, w∗u)

)
dh

}
> c

for some 0 ≤ j < T .

Proof. Suppose that the claim is false. Then, for every �nite ū, �nite T
and positive c, there is a u > ū such that for all 0 ≤ j < T and for all sub-
sets H ⊂ H we have inf

{∫
H

(
φ̄real,h

m̃su+j,u
(π∗u, r∗u, w∗u)+ φ̄real,h

ñsu+j,u
(π∗u, r∗u, w∗u)

)
dh

}

≤ c for all j ≥ 0. H ⊂ H implies that inf
{∫

H

(
φ̄real,h

m̃su+j,u
(π∗u, r∗u, w∗u) +

φ̄real,h
ñsu+j,u

(π∗u, r∗u, w∗u)
)
dh

}
≤ c. Since this is true for every �nite T and ev-

ery positive c, we can choose a sequence of T and c converging to +∞ and
zero, respectively, to get that for every j ≥ 0, inf

{∫
H

(
φ̄real,h

m̃su+j,u
(π∗u, r∗u, w∗u)

+φ̄real,h
ñsu+j,u

(π∗u, r∗u, w∗u)
)
dh

}
= 0. Call this Hypothesis (∗).

We now argue that under (∗), ∆̃h∗
t,u > 0 for almost all h ∈ H and for all

t ≥ su + 1. Indeed, suppose the number of periods between two transfers is
positive for a positive measure of agents. Since real wages are bounded away
from zero and interest rates are at least δ, the number of such periods is al-
ways �nite. The de�ation factor is strictly positive since 0 < p∗t,u ≤ u < +∞
for every u < +∞. Hence between the two transfer dates, positive real
money demand is budgetary feasible and allows for a positive consumption
stream. The property ln(0) = −∞ imposed by Assumption 2 now implies
that, if optimal behavior satis�es (∗), then, ∀t ≥ su +1, ∆̃h∗

t,u > 0 must even-
tually be true for almost every h. The reason is that positive consumption
can be �nanced by deviating to positive real money demand which allows to
get an intertemporal utility which does not converge to −∞.

Thus, under (∗), aggregate transactions costs in all t ≥ su + 1 are∫
H κ2

c(∆
h∗
t,u) dh = γc and

∫
H κl(∆h∗

t,u) dh = γl. Since the labor markets clear,
20Note that these two demand sets are one-to-one as long as the output prices are both

strictly positive and �nite.
21Note that the integral used in the condition is an integral over a correspondence.
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in every such period, the labor input is just e − γl. Households are homo-
geneous in all t ≥ su + 1. Remember that we denote aggregate variables by
dropping the superscript.

Case (i): Suppose k∗su+1,u < k̄, the market clearing aggregate capital
stock in su +1 is strictly smaller than k̄. Integrate the checking accounts (7)
(in real terms) over h and use the fact that every h sacri�ces the transactions
costs to get

c∗su+1,u + k∗su+2,u + γc = w∗su+1,u(e− γl) + k∗su+1,u(r∗su+1,u + 1− δ)
+D∗

su+1,u − [(m̃∗
su+1,u + ñ∗su+1,u)− π∗su,u(m̃∗

su,u + ñ∗su,u)]

De�ne, ∀t ∈ T ,

ξ∗m̃t,u := m̃∗
t,u + ñ∗t,u − π∗t−1,u(m̃∗

t−1,u + ñ∗t−1,u).

Use this de�nition and substitute for D∗
s+1,u to get

k∗su+2,u − k∗su+1,u = [y∗su+1 − k∗su+1,uδ − γc]−c∗su+1,u

−[w∗su+1,uξ∗ls+1,u+r∗su+1,uξ∗ksu+1,u+ξ∗m̃su+1,u]. (16)

By Hypothesis (*) and the fact that labor and capital markets clear, the
second brackets on the right hand side are zero. Since the labor market
clears, every �rm must be using the labor input e−γl. It follows that, ∀j ∈ J ,
y∗su+1 = yj∗

su+1 = F (lj∗su+1,u, kj∗
su+1,u) = F (ld∗su+1,u, kd∗

su+1,u) = F (e−γl, k
∗
su+1,u)

and thus

k∗su+2,u−k∗su+1,u =[F (e−γl, k
∗
su+1,u)−k∗su+1,uδ−γc]−c∗su+1,u. (17)

k∗su+1,u < k̄ and the fact that �rms play identical actions implies that
kj∗

su+1,u < k̄ for every j ∈ J . Assumption 4 now implies that the brack-
ets on the right hand side of (17) are strictly negative. It follows

c∗su+1,u + k∗su+2,u < k∗su+1,u (18)

and hence

k∗su+2,u < k∗su+1,u, (19)

i.e., the aggregate capital stock shrinks between su+1 and su+2. Since under
Hypothesis (∗), ∆̃h∗

t,u > 0 for all h ∈ H and for all t ≥ su + 1, households act
homogeneously from period su + 1 on. This implies that the following Euler
equation must be met:

u′(c∗su,u)
u′(c∗su+1,u)

= β ·max
{
r∗su+1,u + 1− δ, π∗su,u

}
. (20)
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Suppose r∗su+1,u + 1 − δ > π∗su,u. We know that kd∗
su+1,u < k̄. By de�nition

of k̄, this implies u′(c∗su,u)

u′(c∗su+1,u) = β(r∗su+1,u + 1 − δ) > 1, consumption grows
between su and su + 1. If (r∗su+1,u + 1 − δ) = π∗su,u, the same reasoning
applies.

From (19), r∗su+2,u > r∗su+1,u. It follows that β(r∗su+2,u + 1 − δ) >
β(r∗su+1,u + 1 − δ) > 1 and the same argument as above shows that con-
sumption also grows between su + 1 and su + 2. In addition, integrating the
constraints (in real terms) and rearranging as before gives

k∗su+3,u−k∗su+2,u =[y∗su+2 − k∗su+2,uδ−γc]−c∗su+2,u

−[w∗su+2,uξ
∗
lsu+2,u+r∗su+2,uξ

∗
ksu+2,u+ξ∗m̃su+2,u].

From r∗su+2,u > r∗su+1,u > δ we infer as before that �rms have symmetric
single valued demands and supplies. Hence, (19) and Assumption 4 again
imply

k∗su+3,u < k∗su+2,u. (21)

The same procedure shows that consumption grows over time for all t ≥ su+1
and capital shrinks over time for all t ≥ su +1. Similarly, one can show that
(18) holds for all successor periods of su + 1, i.e.

c∗su+1+j,u + k∗su+2+j,u < k∗su+1+j,u (22)

holds for every integer j ≥ 0. Sum these inequalities over the next T ′ periods
to get

T ′∑

j=0

c∗su+1+j,u + k∗su+2+T ′,u < k∗su+1,u. (23)

Since
∑T ′

j=0 c∗su+1+j,u becomes with T ′ large enough, this is a contradiction.
If k∗su+1 ∈ [k̄, k̃], then it is not hard to see that the same argument applies

to this case. Hence, the aggregate capital stock decreases in time, and we
eventually end up in Case (i) again.

Case (ii): Suppose that k∗su+1 > k̃. As before, we know that the following
two equations are true:

c∗su+1,u+k∗su+2,u = F (e−γl, k
∗
su+1,u)+(1− δ)k∗su+1,u−γc.

u′(c∗su,u)
u′(c∗su+1,u)

= β
(
Fk(e−γl, k

∗
su+1,u) + 1− δ

)
.

37



We now borrow an argument from the analysis of global dynamics in the
neoclassical growth model. The previous two equations characterize the
global dynamics of aggregate consumption and capital in this case. We
start by deriving the two functions which indicate constant consumption
and constant capital: First, the value k̄ was de�ned such that

1 = β
(
Fk(e−γl, k̄) + 1− δ

)
.

At k̄, consumption is unchanged for every h since

u′(ct)
u′(ct+1)

= β
(
Fk(e−γl, k̄) + 1− δ

)
= 1.

In Figure 3, which is a (c, k)−diagram, the set of consumption-capital-vectors
having this property is the vertical line at the value k̄. Second, de�ne c(k)
by

c(k) := F (e−γl, k)− δk − γc.

Aggregate capital remains constant if the aggregate consumption is equal
to c(k). From Assumptions 1 and 4, we easily infer that this function is
negative for k < k̃, zero at k̃, positive for k > k̃, has positive slope for all k
and the slope converges to a number in [0, 1

β − 1) as k runs out of bounds.
This function is also indicated in Figure 3. In this �gure, we further de�ne
the two areas A and B which are both located to the right of k̃. A lies above
c(k) and B below. We draw the dashed line to indicate that the analysis of
Case (ii) is concerned with the dynamics for k > k̃ only. We will consider
separately the two cases where (k∗su+1, c

∗
su+1,u) lies in A and in B.

Suppose �rst that the tuple (k∗su+1, c
∗
su+1,u) is in area B. By de�nition,

c∗su+1,u < c(ksu+1). Thus

k∗su+2,u = F (e−γl, k
∗
su+1,u) + (1− δ)k∗su+1,u − c∗su+1,u − γc

= k∗su+1,u + (c(ksu+1))− c∗su+1,u).

This equation implies that k∗su+2,u > k∗su+1,u, capital increases. Since k∗su+1 >

k̃ > k̄, we get from the Euler equation that c∗su+1,u > c∗su+2,u. The ar-
rows in area B of Figure 3 indicate this dynamic behavior. It follows that
(k∗su+2, c

∗
su+2,u) is again in area B and by induction that this will be rue

for every successor period. Hence the system consisting of aggregate capital
and consumption moves to the south-east inside B, just as in the standard
neoclassical growth theory. It is now straightforward that this eventually im-
plies a contradiction to some households transversality condition, as argued
in Step 2.10.
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Figure 3: The Phase-Diagram in Case (ii).

Suppose now that the tuple (k∗su+1, c
∗
su,u) is in area A. As before, we get

from c∗su,u > c(k∗su+1) that k∗su+2,u < k∗su+1,u and from the Euler equation
that c∗su+1,u > c∗su+2,u. The arrows in area A of Figure 3 indicate this
dynamic behavior. If (k∗su+2, c

∗
su+2,u) in again in area A, the same result

applies. If the system jumps into area B, we are back in the case considered
in the previous paragraph. This is true for every successor period. Hence we
can conclude that since the capital stock cannot diverge after entering area
B, it must eventually converge to a value smaller k̃, which leads us back to
Case (i). This implies that (∗) cannot be true.

From ξ∗lt,u = ξ∗kt,u = 0 for all t and u we get from Walras Law that

ξ∗ct,u + m̃∗
t,u + ñ∗t,u = (m̃∗

t−1,u + ñ∗t−1,u)π∗t−1,u

for all t ∈ T . From what we said before, we know that ξ∗ct,u ≥ 0 for every u
and t which implies

m̃∗
t,u + ñ∗t,u ≤ (m̃∗

t−1,u + ñ∗t−1,u)π∗t−1,u

for all t ∈ T . Since this holds for all u, it holds in particular for all u ≥ ū,
where the existence of ū comes from the previous claim. We know that there
is a �nite T and a 0 ≤ j < T such that real aggregate money demand in
period su + j is bounded away from zero by the number c > 0. This holds
for all u ≥ ū with the corresponding su. If j ≥ 1, take a large enough u and
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apply the above inequality to periods between su and su + j to get

m̃∗
su+j,u + ñ∗su+j,u ≤ (m̃∗

su−1,u + ñ∗su−1,u)π∗su−1,u · . . . · π∗su+j−1,u

=
m

p∗su,u

π∗su,u · . . . · π∗su+j−1,u.

The latter equality holds because the market clearing on capital, labor and
consumption markets in all periods prior su implies that aggregate money
supply in su is m. If j = 0, then it just follows that m̃∗

su+j,u + ñ∗su+j,u ≤
m

p∗su,u
. The previous claim and the de�nition of su now imply c < m

u π∗su,u ·
. . . · π∗su+j−1,u if j ≥ 1 and cu < m if j = 0. The latter inequality leads
immediately to a contradiction for some large enough u. We have shown
before that the aggregate capital stock is bounded away from zero by the
number b > 0. This implies immediately that there is a �nite constant R
which bounds the term r∗t,u + 1 − δ above. Since π∗t−1,u ≤ r∗t,u + 1 − δ it
follows c u < m Rj−1 if j ≥ 1. For large enough u, this leads again to a
contradiction. From this we conclude that the Step must be true.

Step 12 c∗vu À 0 for all v, u large enough. Hence c∗u∗ À 0.

Proof. Since, for every u and for every t ∈ T , r∗t,u ≥ δ and w∗t,u > 0,
every single household has positive nominal wealth on the cash account in
every period. Thus, the �rst claim is true for all �nite u since de�ation
is positive allowing for positive consumption by holding money over time
between transfer dates. Since we established the existence of upper bound
on monetary output prices, the second result follows.

The �nal Step is concerned with the convexi�cation of households de-
mands. The in�nite dimensional character of this economy complicates the
argument since we cannot simply use the theorem of Carathéodory as in
�nite dimensional spaces. Instead, we apply an argument given in Gale and
Hellwig (1984). The interested reader may want to �nd more details on this
problem in their paper. We will see that every h indeed maximizes his utility.
Combining this result with market clearing �nally proves the existence of a
monetary general equilibrium.

Step 13 In the limit, every agent maximizes his objective function.

Proof. In the �rst place, from 0 ∈ coΞh(p∗u∗ , r
∗
u∗ , w

∗
u∗)− ΞJ(p∗u∗ , r

∗
u∗ , w

∗
u∗)

it follows that there is a corresponding ξh∗ ∈ coΞh(p∗u∗ , r
∗
u∗ , w

∗
u∗). One can
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show (Rudin, 1991, Theorem 3.28) that there exists a regular Borel measure
µ over the set Ξh(p∗u∗ , r

∗
u∗ , w

∗
u∗) such that

ξh∗ =
∫

Ξh(p∗
u∗ ,r∗

u∗ ,w∗
u∗ )

ξ µ(dξ). (24)

Recall that H = [0, 1] and let λ be the Lebesgue measure de�ned on the
Borel sets of H. The theorem of Skorokhod implies that, for the space
Ξh(p∗u∗ , r

∗
u∗ , w

∗
u∗) and the Borel measure µ, there exists a measurable mapping

g : [0, 1] → Ξh(p∗u∗ , r
∗
u∗ , w

∗
u∗) such that µ = λ ◦ g−1. Using this and a change

of variable, we get
∫

Ξh(p∗
u∗ ,r∗

u∗ ,w∗
u∗ )

ξ µ(dξ) =
∫

Ξh(p∗
u∗ ,r∗

u∗ ,w∗
u∗ )

ξ (λ ◦ g−1)(dξ) =
∫ 1

0
g(h) dh. (25)

By combining (24) and (25),

ξh∗ =
∫ 1

0
g(h) dh

with g(h) ∈ Ξh(p∗u∗ , r
∗
u∗ , w

∗
u∗) for all h ∈ H. By de�nition of Ξh, there is a

vector σh∗
u∗ ∈ φ̄h∗(p∗u∗ , r

∗
u∗ , w

∗
u∗) which corresponds to g(h) ∈ Ξh(p∗u∗ , r

∗
u∗ , w

∗
u∗)

for almost every h ∈ H. Hence (almost) every household maximizes his
utility.

The interpretation of the argument given is straightforward: the measure
µ is the distribution of individual demands over the set Ξh(p∗u∗ , r

∗
u∗ , w

∗
u∗)

and the function g assigns the demand g(h) ∈ Ξh(p∗u∗ , r
∗
u∗ , w

∗
u∗) to agent

h ∈ H = [0, 1].
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