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Abstract 
 
We examine speculative attacks in a controlled laboratory environment featuring continuous 
time, size asymmetries, and varying amounts of public information. Attacks succeeded in 233 
of 344 possible cases. When speculators have symmetric size and access to information: (a) 
weaker fundamentals increase the likelihood of successful speculative attacks and hasten their 
onset, and (b) contrary to some theory, success is enhanced by public access to information 
about either the net speculative position or the fundamentals. The presence of a larger 
speculator further enhances success, and experience with large speculators increases small 
speculators’ response to the public information. However, giving the large speculator 
increased size or better information does not significantly strengthen his impact. 
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1.  Introduction 

For more than 30 years, recurrent currency crises have confounded policy makers, and have 

challenged economic theorists to find explanations. The “First Generation” models, (e.g., 

Krugman, 1979, and Flood and Garber, 1984) gave insight into the Latin American and other 

crises of the 1970s and early 1980s, but had difficulty accounting for later events such as the 

1992 British Pound crisis. Theorists responded with “Second Generation” models of self-

fulfilling crises (e.g., Obstfeld, 1995, 1996), leading to quite different policy implications. The 

1997-8 crisis in East Asia and other recent events inspired “Third Generation” models that focus 

on financial market imperfections. Most Second and Third Generation models feature strategic 

interactions among speculators and government agencies, and many have multiple equilibria.  

International finance economists now have an embarrassment of riches. With so many 

models to choose from, it is hard to trust the policy implications of any one of them; indeed, the 

next currency crisis might inspire Fourth Generation models with still different implications. 

Empirical work is essential to understand the range of applicability of current models. 

Traditional econometric methods help, but are limited by a mismatch between data and theory.  

Key variables, such as speculators’ information and expectations, are not observable in the field 

so inferences are limited. The historical data, of course, can exhibit at most one equilibrium at a 

time, so the existence of multiple equilibria remains a matter of conjecture.  

The laboratory offers an underexploited source of data for examining the robustness of 

theoretical predictions. In the lab, one can observe and even control key variables including the 

information available to players, can replicate a given scenario many times, and can make 

rigorous causal inferences. Of course, laboratory markets are much smaller scale than in the 

field, and one must investigate external validity. Due to their very different strengths, laboratory 

and field data are complements, not substitutes. 

The present paper describes one of the first laboratory investigations of speculative 

attacks. The laboratory game is not closely tailored to any particular theoretical model. It is 

intended to provide evidence not otherwise obtainable that can help sharpen the issues, inform 

econometric analysis of field data, and refine existing models.  

Unlike most current models and experiments, time is continuous in our laboratory game. 

During each trial, the strength of fundamentals can deteriorate moment by moment, and the 

speculators can switch back and forth between passive mode and attack mode.  Such 



 
 

 
 

 

4

asynchronous decisions by human subjects illuminate aspects of the coordination problem that 

are invisible in static models, but that may be crucial in the decentralized 24 hour global foreign 

exchange market.  

The experiment focuses on a question central to many of the Second and Third 

Generation models: when can speculators coordinate on their preferred equilibrium, an attack 

that forces devaluation? The question is particularly acute when the speculators are uncertain 

about the strength of fundamentals, or are uncertain about what the other speculators are doing. 

We examine whether public information about the fundamentals and about other players’ choices 

affects coordination and, hence, the probability of a successful attack.  

In some trials we include one speculator able to take a larger position and sometimes with 

better information on the fundamentals. It is widely believed that a single large player, George 

Soros, was essential in coordinating the successful 1992 attack on British pound, and a branch of 

the theoretical literature justifies that belief. The experiment also examines some predictions 

from that theoretical literature. 

Section 2 surveys some relevant theoretical models, some field evidence, and the handful 

of relevant laboratory studies. Section 3 offers some simple theoretical perspectives and some 

theoretical predictions that are testable in the laboratory. Section 4 describes our laboratory 

environment and treatments.   

Section 5 presents the results. When feasible, attacks succeed more often than not. With 

speculators of symmetric size and access to information, speculative attacks are more often 

successful and occur sooner when fundamentals are weaker. Contrary to some theory, public 

access to information about either the net speculative position or the fundamentals also enhances 

success. The presence of a larger speculator further enhances success, and experience with large 

speculators increases small speculators’ response to the public information. However, giving the 

large speculator increased size or better information does not significantly strengthen his impact. 

Section 6 puts the findings into broader perspective.  

 

2.  Some Related Literature 

As just noted, there are already several generations of models designed to explain foreign 

currency crises.  Henderson and Salant (1978) is an important precursor, dealing with the 

interaction between the speculators and government policies. The First Generation models, 
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formulated by Krugman (1979) and Flood and Garber (1984), focused on economies where the 

fundamentals are inconsistent with preserving a fixed exchange rate. This is the case when a 

sizable fiscal deficit is monetized and the money supply increases faster than money demand 

under a fixed exchange rate, inducing a crisis.  In the absence of uncertainty, the crisis hits and 

the currency devalues when the shadow exchange rate (i.e., the exchange rate that would prevail 

if the exchange rate were allowed to float) is equal to the official exchange rate.   

The First Generation models provide a useful interpretation of crises triggered by fiscal 

weaknesses, as in Latin America in the 1970s-80s.  However, the financial instability in Europe 

in the early 1990s, including the 1992 attack on the British Pound, shifted attention to the 

fragility of equilibrium under a fixed exchange rate.  The role of financier George Soros in the 

1992 attack also raised questions regarding speculators’ behavior when some of them have 

market power. “Second Generation” models, formulated by Obstfeld (1995, 1996), feature self-

fulfilling crises and multiple equilibria.  Obstfeld (1995), for instance, extends the Barro-Gordon 

framework and models a policy maker who faces a trade-off between credibility and flexibility 

when devaluation entails a fixed cost.  The potential for self-fulfilling crises stems from 

circularity: the behavior of the policy maker depends on prior private sector expectations of 

inflation and depreciation.  These expectations, however, depend on market perceptions of the 

policy maker’s behavior.  In such circumstances, an increase in the cost of abandoning the peg 

may increase the likelihood of a crisis [Flood and Marion (1999)], and toughness can be 

counterproductive [Drazen and Masson (1994)].   

Later events, especially the 1997-8 crisis in East Asia, led to “Third Generation” models.  

Their focus is the role of balance sheet factors and financial sector weaknesses, as well as the 

possibility of bailouts by international financial institutions, central banks, and governments. 

Leading examples include Krugman (1999), Corsetti et al. (1999), Chang and Velasco (1999) 

and Dooley (1997). 

The growing dynasty of models attests to the rich interplay between economic theory and 

economic events.  The downside is that models seem to “chase” the last crisis in an attempt to 

provide ex-post explanations. Of course, the research has also identified some ex-ante 

vulnerabilities and suggested ways to prevent or mitigate crises; see e.g. Obstfeld (1998).    

A common thread of the Second and Third Generation models is the role of public 

information and the existence of multiple equilibria. Morris and Shin (1998) resolve multiplicity 
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by introducing private information via the global games approach of Carlsson and Van Damme 

(1993). When privately informed speculators make simultaneous choices, one obtains a unique 

equilibrium for almost every value of the fundamentals. Much of the subsequent theoretical 

literature investigates when private information does or does not eliminate multiple equilibria 

(e.g., Angeletos and Werning, 2006).  

Several later authors, surveyed in Allegret and Cornand (2005), extend the static Morris 

and Shin model to examine policy issues. There has been a widespread consensus in the policy 

community, bolstered by theoretical models such as Heinemann and Illing (2002) and by some 

evidence such as Bannier (2004), that greater transparency (i.e., better information on 

fundamentals and perhaps on speculative behavior) will discourage speculative attacks. Using a 

slightly different model, Bannier and Heinemann (2005) confirm the consensus except in some 

circumstances when prior beliefs about fundamentals are optimistic, in which case a lesser 

degree of transparency will minimize the probability of speculative attacks. The survey finds 

other exceptions and concludes that central bank transparency has an ambiguous effect 

theoretically (and empirically).  

Noting that “the coordination problem among investors is at the heart of most second- 

and third-generation models of currency crises,” Corsetti et al. (2004) work out the theoretical 

implications of introducing a single large player into the global games approach. Their model 

predicts that the mere presence of a large player makes other (small) players more willing to join 

a speculative attack. The effect is enhanced when the small players can observe the large player’s 

position, but is not necessarily enhanced by increasing the size of the large player. In a more 

strategically symmetric model, Bannier (2005) concludes that attacks are more likely with a 

larger and less well informed large player when beliefs about fundamentals are pessimistic, but 

the reverse is true when beliefs are optimistic.   

Costain (2004) obtains bimodal outcomes (both successful and unsuccessful attacks) over 

a wide range of fundamentals when speculators choose sequentially and observe some earlier 

choices. Angeletos et al. (2007) reach a similar conclusion in a discrete time dynamic extension 

of global games where players can learn from earlier periods. For our purposes, their most 

interesting conclusion is that “equilibrium dynamics can alternate between phases of distress and 

phases of tranquility, even without changes in the fundamentals.” An earlier paper, Chamley 
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(2003), also highlights the dynamic tension between delaying to learn more and moving quickly 

to ensure a share of the gains if an attack is successful. 

Guimaraes (2006) extends the Flood-Garber model to a continuous time setting in which 

the shadow foreign exchange rate (corresponding to fundamentals) follows Brownian motion and 

a continuum of speculators chooses at Poisson times. He obtains a unique equilibrium in which, 

other things equal, the number of attacking speculators increases in the Poisson parameter 

(proxying for smaller frictions) and in the trend deterioration in fundamentals; and decreases in 

the opportunity cost of speculating (e.g., the interest rate differential), and the uncertainty with 

which fundamentals are observed. Thus some recent work owes as much to the First Generation 

as to the later generations.  

Another theoretical approach begins with Abreu and Brunnermeier (2003). They build a 

rather complex model of bubbles and crashes in which a continuum of speculators gradually 

become aware of a negative shock to fundamentals, but don’t know how many others are already 

aware. Rochon (2006) incorporates this information process into a currency crisis model. In that 

model, the informed speculators delay attacking longer when fundamentals are stronger and 

deteriorate more slowly, and when speculators face higher opportunity costs and become 

informed more slowly.  

Evidence on the role of large players in contemporary foreign exchange markets includes 

the Federal Reserve Bank of New York (1998) report that the top five trading firms account for 

31% of market share. Recent surveys of dealers (Cheung and Wong, 2000; Cheung and Chinn, 

2001; Cheung et al., 2004) indicate that trading in some currencies is dominated by a few big 

players. Respondents attribute deviation of FX rates from fundamental values mainly to “excess 

speculation” and “institutional customer or hedge fund manipulation.” Many observers agree that 

George Soros’ hedge fund, followed by other investors, precipitated devaluation of the British 

pound and Italian lira in the 1992 EMS crisis. Some argue that the hedge funds led the way in the 

rapid devaluation of the Japanese yen in late 1998. It would seem that their high degree of 

leverage allows hedge funds to influence the price of thinly traded currencies (Economist, 

October 10, 1998; Sesit and Pacelle, 1998). On the other hand, Eichengreen et al. (1998) and 

others argue that hedge funds did not exacerbate the 1997-8 Asian currency crises.  

We are aware of only a few relevant laboratory experiments. The first, reported in 

Heinemann, Nagel and Ockenfels (2004, henceforth HNO) examines the static symmetric model 
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of Morris and Shin (1998). Subjects play the role of speculators in a series of simultaneous move 

coordination games, with public or private information about the strength of fundamentals. 

Contrary to the key global games prediction that private information resolves multiplicity, the 

speculators coordinate more successfully and achieve higher payoffs with public information. 

Consistent with the basic comparative static predictions, speculative attacks succeed more often 

when fundamentals are weaker and when speculation costs are lower.  

A second study by Costain, Heinemann and Ockenfels (2005, henceforth CHO) reports 

bimodal outcomes when traders move sequentially, as predicted in the Costain (2004) model. 

Cornand (2006) extends the static HNO setup and finds that speculative attacks succeed more 

often with two public signals than with one public and one private signal. Arikawa et al. (2006) 

also extend HNO and find, consistent with Corsetti et al. (2004), that small players are more 

likely to attack when a large player is present.  

Do similar results hold in continuous time? Huberman and Glance (1993) argue that 

continuous time can make coordination more difficult because choices are asynchronous—it’s 

not only what you do but when you do it. In the only other continuous coordination laboratory 

game we know, Brunnermeier and Morgan (2004, henceforth BM) 1 examine “clock games” that 

end when the third of six players exits, and those three players receive a payoff that increases 

continuously in the exit time. The authors report that, consistent with the unique symmetric pure 

strategy Nash equilibrium, players exit sooner when they have better information about other 

players’ choices and clock settings.  

  

3. Theoretical Considerations 

This section spotlights the main issues by describing speculators’ activities and writing down a 

simple stylized model. It then poses a set of researchable questions. 

When speculators think that monetary authorities may not be able to maintain a fixed 

exchange rate for some specific currency (against, say, the US Dollar), they can “attack” by 

selling the currency short, hoping to profit from the difference between the exchange rate before 

and after devaluation. Devaluation occurs when in aggregate speculators’ net short position 

exceeds some critical level that represents the monetary authorities’ willingness and ability to 

                                                 
1 We believe that all the laboratory studies mentioned here were independently initiated at about the same time as (or 
after) our own except for HNO, which came first. 
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defend the currency (the so-called “fundamentals”). While waiting for devaluation, the 

speculators incur ongoing costs. The main explicit cost is the interest rate differential: authorities 

often defend a currency by raising the interest rate hundreds or even thousands of basis points 

above the US dollar rate. The main implicit cost is the risk that the authorities might impose 

capital controls, or might otherwise penalize speculators taking large short positions.  

 

3.1   A Simple Model 

Many of the strategic issues are captured in the following continuous time coordination 

game. At each moment t in [0, 1], each player i with mass (or position size) mi can switch 

between passive mode, denoted ai(t) = 0, and attack mode ai(t) = 1.2 Let B(t) = ∑i ai(t) mi be the 

total mass of players in attack mode at time t, and let T(t) represent the threshold mass, i.e., the 

exogenous strength of fundamentals. Normalize payoff flows so that players earn 100 per unit 

time in passive mode (an opportunity cost that represents the speculators’ ongoing costs noted 

above) and, when   B(t) < T(t), earn 0 in attack mode. Let t* = min{1, inf {t: B(t) ≥ T(t) }} 

represent the moment that the speculative attack succeeds, or the end of the period if the attack 

never succeeds. The attackers receive a lump-sum payoff of L>0 when the attack succeeds. After 

that point, all players earn the opportunity cost. Set the discount factor to 1 for simplicity.  

 Thus, using the Heaviside function θ(x) = 1 if x >0 and θ(x) = 0 otherwise, the payoff for 

player i can be written as 
*

0
100(1 ( ) ) (1- *) ( *)

t

i ia t dt t a t Lθ− +∫ . In the simplest variant of the game, 

players at time t observe the history T(s) and B(s) for all s<t, and all have equal mass normalized 

to unity, mi = 1. More complicated variants allow for noisy observations of T(s) and B(s) and for 

size asymmetries. 

 Some caveats are in order before discussing the equilibria of these games and the testable 

implications. The threshold T(t) is exogenous, i.e., the monetary authority is not a strategic 

participant, in order to keep a sharp focus on coordination and information issues. The games 

suppress two margins that sometimes play a minor role in the literature: the size of the 

devaluation is fixed at L, and each player either attacks fully or not at all. 

At any fixed time t, the (static) equilibrium correspondence depends on the strength of 

the fundamentals T(t)  relative to the mass m = maxi mi of the largest individual player, and to the 

                                                 
2 A careful formal model would impose the assumption that the ai functions are right-continuous, or at least 
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total mass M = ∑i mi of all players. When T(t) ≤ m, there are only devaluation equilibria in which 

a sufficiently large player unilaterally forces devaluation. When T(t)  > M, there is only the 

trivial equilibrium with everyone passive. Our focus is the intermediate case. When                    

m < T(t) ≤ M, there are devaluation equilibria as well as the trivial equilibrium. The question then 

is, when will the players be able to coordinate an attack to achieve the higher payoffs in a 

devaluation equilibrium?  

Continuous time introduces some interesting complications. Player i would find it in her 

immediate interest to join a speculative attack whenever she is pivotal, i.e., at any time t such 

that B(t) < T(t) ≤ B+i(t) ≡  mi + ∑j ≠ i aj(t) mj. Typically several passive players would find 

themselves as pivotal at the same time, so they play a preemption game: as with patrons of a 

burning nightclub or depositors in a bank run, the reward goes to those who move first. The 

incentives are in the opposite direction when a player is not pivotal. It is in her interest to wait for 

the other players to attack (and let them forego the opportunity cost of 100 per unit time) until 

she becomes pivotal. Thus the direct incentive switches abruptly from free riding (waiting) to 

preemption (rushing) when a player becomes pivotal.3 

The efficient equilibrium in the continuous time game (from the players’ perspective, not 

the Central Bank’s perspective!)  is for all players to switch simultaneously into attack mode at 

the first time t* that T(t*) ≤ M. Of course, there are many other equilibria, e.g., “sunspot” 

equilibria in which a sufficient mass of players attacks at an arbitrary t* such that T(t*) ≤ M.  

 

3.2  Researchable Questions 

In practice, one wonders how the players might learn to coordinate on any equilibrium. 

Some of our evidence suggests a home-grown signaling process. When B(s) is publicly 

observable, a player switching into attack mode signals to the other players currently in passive 

mode that they are now closer to being pivotal, which may encourage them also to switch. This 

signal is low cost if the switch is brief. Such signaling episodes would be observed as pulses in 

                                                                                                                                                             
measurable. 
3 Similar timing issues arise in several other contexts besides speculative attacks. These range from trying to be 
fashionably late to a dinner party, to introducing a new high technology product or harvesting a seasonal crop, to 
selling off a bubble asset. Park and Smith (2008) consider such games with no information on other players’ choices 
and no option to switch back to non-speculative mode. They derive symmetric mixed Nash equilibria characterized 
by a trickle of attackers until a crucial moment (determined by the known future path T(t+s)) when all remaining 
players attack. 
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which B increases rapidly and either reaches the threshold T so the attack succeeds, or else tops 

out below T and then rapidly declines. Angeletos et al. (2007) obtain such pulses in dynamic 

equilibrium. 

The interesting questions now may be posed as follows.  

1. Fundamentals. Is the probability of a successful attack a decreasing function of T(t)? The 

static Nash equilibrium correspondence allows for that possibility but does not require it. Recall 

that the global games approach predicts a sharp transition from probability 0 to probability 1. To 

expand slightly on the comments at the end of the previous section, HNO obtain a more gradual 

transition using different fixed levels of T in different trials, while CHO confirm an almost linear 

transition with simultaneous choice but persistent bimodality with sequential choice. By contrast, 

our laboratory design will allow us to evaluate the effects of continuously changing 

fundamentals.   

2. Information. Does the probability of a successful attack increase or decrease when players 

have better public information about B and T?  The discussion above (regarding signaling and 

being pivotal) suggests an increase, as do the lab results (albeit in a very different context) of 

BM. The policy consensus, together with some theory and field evidence, predicts a decrease. 

Bannier and Heinemann (2005) predict that it can go either way depending on market sentiment 

and other factors. In a somewhat different lab context, HNO find that public information makes 

no significant difference. 

3. Asymmetries. Does the presence of a player with larger mass or better information increase the 

probability of a successful attack? Corsetti et al. (2004) predict affirmative answers that are 

consistent with the laboratory results of Arikawa et al. (2006). Bannier (2005) has more nuanced 

predictions. Our experiment provides evidence in a continuous time setting. 

4. Coordination. In terms of individual choice, do players respond differently when they are 

nearly pivotal than when they are far from pivotal? More precisely, is a player in passive (or 

active) mode more (or less) likely to switch when the shortfall T(t) - B+i(t) is smaller? More 

generally, is the switch probability increasing in B and/or decreasing in T? 

 

4. The Experiment  

To answer such questions, we conducted an experiment at UCSC’s LEEPS lab using a custom-

built software platform called EvTech that supports asynchronous (i.e., continuous time) binary 
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choice games. A typical session lasted 90 minutes and involved fewer than a dozen 

inexperienced human subjects recruited by email from a campus-wide pool of undergraduate 

volunteers.  Subjects silently read the instructions, reproduced in Appendix A, and then listened 

to an oral summary by the conductor. After a quiz and a couple of practice rounds, they played 

usually played 45 periods, of which most were the Speculative Attack game described in more 

detail below. Each subject received $2 (or $3 in some sessions) in cash per 1000 points earned 

over all periods, plus a $5 showup fee. On average the cash payment was $20.90, and the vast 

majority of subjects earned between $15 and $30. 

 During each period, each subject privately viewed a player screen display similar to the 

one shown in Figure 1. Except for one condition (explained in the Symmetry item below), each 

subject knew that other subjects saw the same information on their screens. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Example of speculator’s screen at mid-period. 
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Each subject had two buttons, labeled Red (corresponding to the passive mode) and Blue 

(the attack mode), and switched mode by clicking the button not grayed out. In Speculative 

Attack periods, the payoff rates were exactly as in the theoretical discussion above: 0 for Blue 

prior to success, and 100 per period for Red (the opportunity cost) and for either mode after a 

successful attack. It was announced publicly (and written on the whiteboard) that players in Blue 

mode at the time that an attack succeeded received a bonus of L=100 points. The “Activity 

Payoff Graph” portion of the screen showed in real time the payoff rates as blue and red lines, 

and also showed (as a green area) the player’s profits earned so far. At the end of each period, 

the subject could see her current period and previous period payoffs, and the average payoffs to 

both activities, as in the right side panels in Figure 1. 

Continuously updated panels as in the upper left in Figure 1 allowed players in the 

baseline treatment to observe the mass B(s) of players in attack mode and the threshold T(s) for 

success, for all times s from the beginning of the period up to the current time t. More precisely, 

the program refreshed the screen displays every “tick”, set at half a second (500 msec), and each 

period lasted 90 seconds. 

 

4.1 Treatments 

Table 1 lists the 12 experimental sessions featuring Speculative Attack periods. Each 

session had several blocks, each with four consecutive periods of the Speculative Attack game 

separated from the adjoining blocks by single periods of some other game using the same 

computer interface. Each block held constant all treatments except the time path of 

fundamentals; the other treatments varied across blocks and across sessions. The table includes 

90 such blocks, but excludes 16 periods with too-strong fundamentals (as described below); 

hence the table and subsequent analysis reports 4*90 – 16 = 344 periods. 

Key treatments include the following. 

1. Number of players and experience. The number of human subjects varied across sessions from 

4 to 11, and was known to everyone. The last two sessions used only subjects with experience in 

a prior session of the experiment; the other sessions used only inexperienced subjects. 

2. Fundamentals. The threshold T(t) always started out at 110% of total player mass M at t=0, 

fell linearly to a predetermined final value at a predetermined time, and remained at that final



 
 

 
 

 

14

Table 1: Experimental Design 

Session  
number 

Session 
date 

Number of 
periods with 
max player 

weighta  

Number
of 

players
 

Number of 
periods with 

displayed linesb 
 

Number of 
periods with 
asymmetric 
informationc 

Number of 
periods with 

steepd 
fundamental

Players 
experi-
enced? 

  =1 =3 =5  T B TB A D N yes no  
85 7/21/04 15 0 0 6 10 11 8 0 0 0 2 13 No 
86 8/16/04 36 0 0 4 24 24 16 0 0 0 8 28 No 
87 8/18/04 23 0 0 6 19 16 12 0 0 0 5 18 No 
88 9/28/04 36 0 0 7 24 24 16 0 0 0 8 28 No 
89 10/6/04 18 0 0 5 10 10 6 0 0 0 4 14 No 
91 10/13/04 18 0 0 8 10 10 6 0 0 0 4 14 No 
94 11/19/04 0 31 0 6 18 31 18 6 18 7 4 27 No 

100 1/25/05 11 10 12 7 13 33 13 8 6 8 0 33 No 
101 1/31/05 8 9 11 11 13 28 13 7 7 6 0 28 No 
102 2/1/05 9 12 14 8 15 19 9 9 9 8 5 30 No 
103 2/7/05 7 12 8 7 11 18 8 7 7 6 3 24 Yes 
104 2/8/05 12 14 18 9 17 25 10 11 10 11 5 39 Yes 

Sum  
193 88 63  184 249 135 48 57 46 48 296

 

 
Note: The table and subsequent analysis excludes practice periods, the first 5 periods in each session, periods not related to speculative 
attacks, and 16 periods in which the attack was not feasible. The sessions after 10/13/04 include only the extreme information treatments 
(sharp lines or none) regarding fundamentals and speculative activity, while the prior sessions also include the intermediate (thick line) 
treatments. 
a Symmetric periods are indicated by max player weight =1, regular Soros periods by =3 and BigSoros periods by =5. 
b T indicates that the threshold line is displayed; B indicates that the blue (attack) line is displayed; and TB indicates that both lines are 
displayed. 
 c A indicates that only Soros sees the threshold line; D indicates that all players see the threshold line; and N indicates that no players 
see the threshold line in sessions with asymmetric (“Soros”) periods. 
d The fundamental path is classified as steep if T(t) fell to 0.5M within 50 sec., or to 0.6M within 30 seconds. 
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 value for the rest of the period.4 Final values and times ranged from 50% of M at 15 seconds to 

105% at 60 seconds. Of course, attacks cannot succeed when T(t) always remains above 100%, 

and the 16 such periods are excluded from the analysis.5 The vast majority of fundamentals paths 

lie between a decrease to 90% of M within 45 seconds, and a decrease to 60% within 30 seconds. 

The path changed each period (to discourage uninteresting focal point equilibria), and varied 

across blocks orthogonally to the other treatment variables (to sharpen statistical inferences). 

3. Information. The threshold line T(t) and blue activity line B(t) were displayed sharply in 

baseline periods, as in Figure 1. In some other periods, participants saw a thick line or band 

encompassing (not centered on) the actual value; its width allowed observational errors of up to 

two players.  In some periods we completely suppressed either the T line or the B line. Thus each 

source of information had three possible levels, yielding 3*3=9 different information treatments. 

Preliminary analysis showed that performance in the thick line treatments was not significantly 

different from the sharp line treatments, so the main data analysis involves only 2*2  = 4 distinct 

information treatments. 

4. Symmetry. In more than half of the reported periods, all players had the same screen displays 

and the same weight. In three periods of most blocks of some sessions, one player (called Soros 

below) had weight 3 or 5 times the weight of the other players. Soros observed the same B line as 

everyone else (either perfect or none), but in some blocks when other players did not observe T, 

Soros observed it perfectly, and this possibility was known to all players. The Soros role rotated 

among the players across blocks. Each player knew when Soros was present, could infer Soros’ 

size in periods when the B line appeared, and knew when she had the Soros role.  

The laboratory environment is constructed to address the questions posed at the end of 

the previous section, regarding the impact of fundamentals, information, player asymmetries and 

pivotality. It does not address some other questions covered in the HNO experiment, such as the 

comparative statics of devaluation size and opportunity cost, or the general impact of private 

information (we examine only Soros’ private information). The sequential environment of CHO 

and the continuous time environment of BM allow players only to switch once from passive to 

                                                 
4 This treatment of fundamentals is perhaps reminiscent of First Generation models, except that (due to our focus on 
the “intermediate case”) we always stabilize T above the level m where the no-attack equilibrium disappears.   
5 Of course, we excluded the block separation periods from the present paper, as well as periods from early pilot 
sessions (in which we often varied the number of active players within a session and introduced some automated 
agents). We also excluded the first block of each session because occasionally a few subjects seemed confused in the 
first few periods. No other periods or sessions are excluded.  
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attack mode; ours allows them to switch freely back and forth. Thus our asynchronous 

environment provides a new and stringent test of coordination. 

 

5. Results 

5.1  Overview 

Before testing hypotheses, we gain perspective by examining how players behaved in a 

single trading period, say the 19th period in the last session. In that block (periods 16-20), all 

players observed neither the blue line B(t), the weight of players in attack mode, nor the gray line 

T(t), the threshold weight or strength of fundamentals.  In period 19, player #4 had the Soros 

role, with weight 5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Player activity graph from period 19 on Feb. 8, 2005. The threshold (grey line) falls to 
0.5 (6.5) after 45 seconds. There were 9 human players, but player 4 had a weight of 5 in this 
period. No player saw any of the lines in this period.  
 
 

As shown in Figure 2, the threshold dropped from 110% of total mass M ( = 5+8*1 = 13) 

to 50% of M at t=45 seconds. In the first 20 seconds or so players remained in passive mode 

except for brief solo attacks by player #5 and player #4 (Soros). Then several small players 

successively switched into attack mode and remained there for several seconds, but the attack 

reached a plateau and began to subside by t=27 sec. At t=41, with much weaker fundamentals, 

the attack was renewed and it succeeded at t*=45.5 when Soros finally switched to attack mode. 

Soros and the other attackers at t* earned about 190 points each in period 19, while passive 

players earned 100 points. Player #9 abandoned the attack just before it succeeded and earned 

Blue line 

Red line 

grey line 



 
 

 
 

 

17

only 89 points. 

 The other 343 periods differed in many respects. Some sessions saw many periods with 

several unsuccessful attack pulses, while other sessions (including the last) usually saw attacks 

succeed on the first pulse. Some sessions had relatively few successful attacks, but in one session 

attacks usually succeeded almost as soon as they became feasible. Summaries for all periods in 

Figure 2 format cannot be included here but are available on request. 

 

 
Figure 3: Success Rates for Speculative Attacks by the Strength of Fundamentals in Symmetric Periods. 
The success rate at threshold x is defined as S(x)/[S(x)+U(x)], where S(x) = number of periods where an 
attack succeeded at a threshold at or above x, and U(x) = number of periods where the threshold declined 
to x without a successful attack. The horizontal axis is the threshold T as a fraction of the mass M of 
players. The treatment dummies DB and DT =1 (resp. =0) indicate that players observe (resp. do not 
observe) the number of attackers and the threshold. 
 

Figure 3 provides an overview of speculative success for the 296 symmetric periods, by 

information condition. The success rate for speculative attacks is, of course, zero when the 

fundamentals are too strong (T > M). A simultaneous attack by all speculators is required when  
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T = 0.95M, and the figure shows that the success rate in this case is under 10% in all information 

treatments.  When speculators can see both B(t) and T(t), the success rate climbs steeply as 

fundamentals weaken, e.g., it is over 70% when T = 0.75M , that is, when ¾ of the speculators 

are required. By contrast, the success rate at the same threshold is only about 20% when 

speculators see neither B(t) nor T(t). Players achieve intermediate success rates when they can 

see one but not both of the lines.  

The figure suggests affirmative answers to the first two research questions: the 

probability of a successful attack does seem to be a decreasing function of the threshold, and 

seems enhanced by more public information. But the figure doesn’t indicate whether the 

differences are significant, it conflates rapidly moving with slowly moving fundamentals, and it 

omits the asymmetric periods.6 More quantitative tests are in order. 

 

5.2 Performance Variables, Explanatory Variables, and Estimation Techniques 

The first two parts of our quantitative data analysis treat each period as a single 

observation, and examine four measures of performance. 

1. Success: this dummy variable =1 iff there is a successful attack that period.  

2. Time to success, τ =t*-to: seconds elapsed from the time to when the attack first became 

feasible (so T(to) = M) until the time t* when the attack succeeded. Since time-dependent 

variables are recorded by tick (half-seconds), we can also measure time as the integer number of 

ticks instead of the decimal number τ of seconds. The τ and tick variables are right-censored by 

the end of the period when t*=90, i.e., when no attack succeeds that period. 

3. Minimum gap, Mingap = min{T(t) – B(t): 0 ≤ t ≤ 90}/M, the minimum shortfall of the mass 

attackers from the threshold within the period, expressed as a fraction of player mass M. Mingap 

measures continuously how close attacks come to success. It equals zero and is left-censored 

when Success = 1.  

                                                 
6 After making conventions on how to classify periods in which Soros sees T but other players do not, etc., one can 
create versions of Figure 3 that includes the asymmetric periods. The results are roughly similar to Figure 3 except 
that the DB=1, DT=0 line is closer to the full information line DT=DB=1, suggesting that information on 
speculative activity is more useful when Soros is present.  
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4. Bluearea = ∫
*

0
)(

t
dttB :  the area under the blue activity line B(t) before the attack succeeds. It 

measures speculators’ foregone earnings due to attacks before achieving success. It is right-

censored when Success = 0.  

The explanatory variables (as previously noted in Table 1 and Figure 3) include: 

1. Threshold information dummy: DT=1 if a threshold line is displayed (exact or with noise) and 

=0 if it is not displayed. (We found no qualitative difference between an exact DT dummy and a 

noisy DT dummy in the symmetric sessions, so we combine them.)  

2. Blue information dummy: DB=1 if the blue line is displayed (exact or with noise) and =0 if it 

is not displayed. (Again, for simplicity we combined the exact and noisy DB dummies after 

finding no qualitative difference between them.) 

3. Steep dummy: Steep=1 if T(t) fell to 0.5 within 50 seconds, or to 0.6 within 30 seconds. A 

value of 1 indicates rapid deterioration of the fundamentals. 

 To explain the first performance measure, success, we estimate the Logit model 

P(yi = 1) = F(xi’β), i = 1, …, N, 

where yi is the period i success dummy taking the value of 1 or 0, while xi is a vector of 

explanatory variables, and β is the corresponding vector of coefficients. )1/()( ww eewF +=  is 

the logistic distribution function, and N=193  is the number of periods included in the regression 

analysis.  

 Due to their censoring structure, the performance variables τ, Mingap, and Bluearea are 

estimated using the Tobit specification 

yi
*  = xi’β + εi, i = 1, …, N 

where the observed variable yi is equal to its latent counterpart yi
* if there is no censoring and is 

equal to 1 (0) if yi
* is right- (left-) censored.  (For τ, the censor-value of 1 period length 

corresponds to 90 sec or 180 ticks.) The coefficients are estimated under the standard Type I 

extreme-value distribution assumption.7  

To check robustness and to offer a different perspective on the data, we re-examine the 

time to success τ using the Cox proportional hazard model (PHM) 

hi(t) = h(t,xi) = h0(t) exp(xi' β),  i = 1, …, N. 

                                                 
7 The Type I extreme-value distribution function, also known as the log Weibull distribution function, is given by 
F(w) = exp[-exp(-w)]. 



 
 

 
 

 

20

The variable hi(t) is the hazard rate (or, in the present context, the success rate), the probability 

density that a speculative attack is successful at time t conditional on the explanatory variables in 

the vector xi (and conditional on no earlier success, so we can use t and τ  interchangeably). The 

baseline hazard rate h0(t)  is hi(t) when xi = 0. One advantage of PHM is that it is semiparametric 

and imposes no functional form on the baseline function h0(t). 

 

5.3 Tests of Fundamentals and Information. 

Is the probability of a successful attack a decreasing function of T(t)? We now sharpen 

this first question as: do the variables T(t) or Steep have a significant impact on the performance 

variables in the appropriate direction? Likewise, the second researchable question—Does the 

probability of a successful attack increase or decrease when players have better public 

information about B and T?—can be sharpened as: do the variables DB and DT significantly 

impact the performance variables in either direction?  

Table 2 collects the evidence from the 193 periods with symmetric players. The second 

column reports the logit estimates for the performance variable Success. The probability of a 

successful attack does significantly increase when the threshold and attack mass variables are 

observable and when the fundamentals deteriorate rapidly. Indeed, a steep decline in the 

fundamentals increases the log odds of success by almost three. We also considered the effect of 

the interaction terms DT*Steep and DT*DB, but omit reporting them because neither is highly 

significant in any specification or even marginally significant in most specifications.  

The Tobit estimation results for the other three performance variables are shown in the 

next three columns, and they all reinforce the implications of the Logit estimates. For instance, 

the time to success (τ) is significantly less when players see the T and the B lines and when T 

drops steeply. Each dummy variable reduces the time to success by about 15% (e.g., 0.88 /5.87 ≈ 

0.15 for DB). Again, the estimates indicate that the 'Steep' dummy has an even larger impact. 

So far the regression results indicate that information about the fundamentals and 

speculative activity hastens the occurrence of a successful attack. What happens when no 

successful attack is observed? The Mingap Tobit regression again indicates that all three 

explanatory variables foster speculation and help narrow the gap to success. The Bluearea Tobit 

regression likewise shows that the same variables reduce the time spent in fruitless speculation. 

In the sixth column, the PHM coefficient signs are reversed relative to the Tobit model
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Table 2: Coefficient Estimates for Symmetric Periods 
 

Dependent Var. Success τ in sec Mingap Bluearea τ in sec Ticks Ticks Ticks Ticks 
Model Logit Tobit Tobit Tobit PHM PHM PHM PHM PHM 
  Intercept -2.29 ** 5.87 ** -.31 ** 6.88 **      
  DT  1.61 ** -.81 ** -.32 ** - .69 ** 1.08 ** 1.03 **  1.04 ** 1.04 ** 
  DB  1.59 ** -.88 ** -.32 ** - .87 ** 1.29 ** .91 ** .62 .93 ** .92 ** 
  Steep 2.96 ** -1.33 ** -.71 ** -1.62 **   1.85 **     
  T(t)      -7.04 ** -8.89 ** -7.52 ** -7.14 ** 
AT(t)       -6.21 -3.92  
Tprime(t)         -5.00 
No. of obs. 193 193 193 193 193 193 66 193 193 
Censor if success  =0 =1 =0 =0 =0 =0 =0 =0 
Type of censoring  right left right right right right right right 
No. censored obs.  87 106 87 87 87 44 87 87 
 

Note: ** denotes p-values ≤ .001, * denotes p-values ≤ .01, + denotes p-values ≤ .1.  Data are all symmetric periods reported in Table 1. 
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(because the PHM estimates the success rate instead of the time to success) but the fitted models again 

reinforce each other. Other things equal, displaying the strength of fundamentals (DT=1) increases the 

probability of a successful attack per unit time by an estimated factor of e1.08 ≈ 2.94, or 194%. Likewise, 

displaying the overall speculative position (DB=1) more than triples the probability of success (e1.29 ≈ 

3.65) and steeply declining fundamentals (Steep=1) increases it sixfold (e1.85 ≈  6.36).  

The PMH also allows us to examine directly the effect of the time-varying fundamental T(t), as 

reported in the remaining columns Table 2. Of course, the Steep dummy is now redundant and is omitted 

and, due to the way the data are recorded, the time variable is expressed in ticks rather than in seconds. In 

column 7, both information dummies DT and DB maintain their significance and approximate magnitudes 

in the presence of T(t), although their relative size changes. The coefficient estimate -7.04 implies that 

deterioration of fundamentals causes a dramatic increase in the probability of a successful attack. For 

example, the success probability doubles when T decreases by just 10% of speculators’ total capacity M 

(since e(-0.10)*(-7.04) ≈ 2.02).   

What happens when players can’t observe the threshold, that is, when DT = 0? Define AT(t) as the 

average over all draws of T(t) used in the experiment. Up to sampling error, this variable captures an 

individual player’s previous experience in observing the fundamentals. Columns 8 and 9 report results 

based on, respectively, only sessions with DT = 0 and all the sessions. The results suggest that subjects 

respond appropriately to such experience, especially in the 66 periods with DT = 0, but (perhaps due to 

sampling error) the AT(t) coefficient estimates aren’t quite significant; their p-values are 0.37 in the DT = 

0 subset and 0.27 overall.  

Some of the theoretical work suggests that the speed at which fundamentals deteriorate is as 

important as the level (Flood and Garber, 1984; Guimares, 2006; Rochon, 2006). To investigate, we form 

the variable Tprime = dT/dt , expressed as a fraction of M  per minute. For instance, if T falls linearly 

from 1.1M to 0.8M  at t=45 sec and then stops, then Tprime = -0.3/(45/60) =  -0.4 for t < 45 sec  and  = 0 

for t > 45 sec. The results in the last column of Table 2 show that the deterioration rate of fundamentals 

has the predicted effect but it is not statistically significant. We note that if T is excluded from the 

regression, then Tprime has the expected sign and is significant. Thus, our data do not support the 

extreme view that the deterioration rate of fundamentals is all that matters.  

We also conducted several robustness checks, omitted from Table 2 to conserve space. Players in 

a given session might be especially good or bad at coordinating, and this could affect the results, so we re-

ran all regressions using session fixed effects.  None of the estimated effects changes sign or loses 

significance, and some estimated effects become stronger. A few of the session fixed effects are large 
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(e.g., session exp101 has a very large fixed effect for Success, suggesting excellent coordination) but, 

except for some of the Bluearea and Mingap tobits, very few are highly significant. We also ran several 

alternative PHM specifications. Including a time trend in some cases slightly increased the estimated 

magnitude and significance of the T, AT, or Tprime variables, but never enough to change the qualitative 

conclusions, and the time trend itself was never significant in the presence of these variables.  

 

5.4 Tests of Asymmetry 

 Does the presence of a player with larger mass or better information increase the probability of a 

successful attack? To address this third researchable question, we define the   following dummy 

explanatory variables: 

1. Soros: equals one if there was a player with weight>1  

2. BigSoros: equals one if his weight=5; =0 otherwise 

3. PT: equals one if the threshold line {T(s): s<t} is displayed for the Public 

4. OST: equals one if only Soros sees the threshold line, but not the Public 

Table 3 reports regressions for the asymmetric sessions, which include 47 symmetric periods as 

well as 151 periods with Soros. The specifications are similar to those in Table 2, augmented by the 

‘Soros’ variable and the more significant interactions. The variable ‘BigSoros’ is insignificant in all 

specifications and so is dropped from the reported results. One possible interpretation, consistent with the 

theoretical results of Corsetti et al. (2004), is that what matters is Soros’ mere presence, not his exact 

trading capacity. The ‘OST’ variable is also insignificant in all specifications and omitted from the table.  

The results in Table 3 confirm that Soros has a real impact. The “Soros” dummy variable is 

significant at least at the 10% level in each regression, and always indicates that speculative attacks are 

more likely to succeed and come sooner when Soros is present.  For example, the third column of Panel A 

indicates that Soros speeds the time to success by almost 30% (from 1.94/6.76 ≈ 0.287).  Even when the 

attack is not successful, the Mingap and pressure estimates in columns 4 and 5 indicate that the presence 

of Soros significantly narrows the gap from success and adds to speculative pressure.  

The impact of fundamentals T(t) is less in Table 3 than in Table 2 but is still quite strong. For 

example, the devaluation probability increase for a 10% deterioration in fundamentals is 65% (based on 

the -5.01 coefficient estimate in the last column of Table 3), about two-thirds as strong as in Table 2. 

Steeply declining fundamentals seldom appear in the asymmetric data, so the steep dummy has more 

erratic coefficients and usually lower significance than in Table 2.  
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Table 3: Coefficient Estimates for Asymmetric Sessions 
 

Dependent Var. Success τ in sec Mingap Bluearea τ in sec Ticks Attacka 
Model Logit Tobit Tobit Tobit PHM PHM PHM 
  Intercept -5.12 * 6.76 ** .25 ** 9.31 **    
  PT  3.68 * -1.24 ** -.24 ** -1.66 ** 1.87 ** 1.16 + 2.48 ** 
  DB  5.18 * -2.42 * -.28 **  -3.74 ** 3.56 * 2.92 * .31 ** 
  PT*DB -1.96 .82* -.02  1.26 * -1.23 + -.45  
  Steep 14.52 -.82 ** -3.54   1.62 **  1.27 **   
  T(t)       -5.01**  -2.47 **

  Soros 3.80 + -1.94 + -.22 ** -2.39+ 2.93 * 2.42 +     .31 ** 
  DB*Soros -2.19 1.55 + -.003     2.28 +  -2.33 + -1.73  
No. of obs. 198 198 198 198 198 198 2448 
Censor if success  =0 =1 =0 =0 =0  
Type of censoring  right left right right right right 
No. censored obs.  44 154 44 44 44 282 

 
Note: ** denotes p-values ≤ .001, * denotes p-values ≤ .01, + denotes p-values ≤ .1.  Data in all columns 
except the last are from all periods of sessions conducted after 11/1/04 as reported in Table 1. aThe 
columns for Attack are based on all data from all sessions reported in Table 1.  
 
 

Table 3, like Table 2, reports that both informational dummy variables significantly increase the 

probability of an attack, hasten its onset, increase speculative pressure, and reduce the shortfall of 

unsuccessful attacks. However, in Table 3 most of the direct effects are stronger and they often interfere 

with each other. The Tobit time to success estimates, for example, indicate separate reductions of about 

18% and 36% respectively for PT (the counterpart of DT from Table 2) and DB, but an offset of 12% in 

the combination. Thus when speculators observe both speculative activity and fundamentals, the average 

time to success declines by about [1.24 + 2.42 – 0.82]/6.76 ≈ 18% + 36% - 12% = 42%.   

The interaction term DB*Soros is insignificant in many of the regressions, but comes up 

marginally significant in two of the three timing regressions, with a sign again indicating an offset of the 

level effects. Looking once more at the Tobit time to success estimates, we note that the separate effects 

are 36% and 29% reductions respectively for observing speculative activity and for Soros’ presence, but 

the coefficient estimate for DB*Soros implies an offset of 1.55/6.76 ≈ 23% and thus a combined effect of 

about 36% + 29% - 23% = 42%. In comparing these estimates to those from Table 2, the main puzzle is 

the large impact for DB (estimated at 36%) when Soros is absent. Perhaps players somehow become more 

attuned to signaling in sessions where Soros is usually present. 

Again to check robustness, we reran the Table 3 estimates allowing for session fixed effects. This 
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generally strengthens the results slightly, without changing the qualitative results. We also tried the AT 

and Tprime variables on the asymmetric data, obtaining results a bit noisier but otherwise similar to those 

reported in the previous subsection. These additional results are not reported for brevity but are available 

from the authors. 

 

5.5 Tests of Coordination 

The last column of Table 3 investigates a preliminary question: how do individual speculators 

decide when to attack? We fit the proportional hazard model to the 2448 ticks at which a speculator first 

switched from passive mode into attack mode. The estimates indicate that such switches are much more 

likely when speculators can see the strength of fundamentals and somewhat more likely when they can 

see the amount of speculation. Stronger fundamentals (when observable) deter attacks and the presence of 

Soros encourages attacks. 

 
Table 4: Timing of Speculative Attacks 
 

 No. of obs. Mean SP t Test MW Test 
Soros Knows Same   6.05** 4.44**
  Regular Players 2033 5.25   
  Soros Players 178 3.70   
     
Soros Knows More   5.78** 4.32**
  Regular Players 664 5.36   
  Soros Players 93 3.32   

 
Note: MW refers to the nonparametric Mann-Whitney (or Wilcoxon rank-sum) test, and t refers to the 
unequal variance version of Student’s t test for equality of means. The variable Shortfall from Pivotality 
(SP) is defined in the text. Data are all periods from sessions conducted after 10/13/04 reported in Table 
1. 
** denotes p-values ≤ .001. 

 

Table 4 investigates a question related both to coordination and to asymmetry. The model of 

Corsetti et al. (2004) emphasizes Soros’ ability to exploit his signaling strength by attacking earlier than 

other speculators. On the other hand, in our experiment, Soros could exploit his greater opportunity to be 

pivotal by attacking later. By the same token, ordinary speculators might attack earlier to avoid 

preemption by Soros.  

The most direct evidence comes from defining the variable Shortfall from Pivotality, SP(i,t) = T(t) 

– B(t) + (ai(t)-1)mi, for each player i at each time t. Thus SP is the number of additional regular (mass=1) 
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players it would take for the attack to succeed. Table 4 reports mean values of SP of 5.25 for regular 

players and 3.70 for Soros players when Soros has no informational advantage, and reports similar 

averages (if anything, a bit further apart) when Soros knows the strength of fundamentals but small 

speculators do not.  Thus in our experiment Soros attacks later than ordinary speculators. 

  

Table 5: Switching Behavior  
 
Dependent 
Var. 

Switch 
to Attack 

Switch to 
Attack 

Switch 
to 

Attack 

Switch to 
Attack 

Stay in 
Attack 

Stay in 
Attack 

Stay in 
Attack 

Stay in 
Attack 

Model 

Logit Logit + 
Subject 
fixed 

effects 

Logit Logit + 
Subject 
fixed 

effects 

Logit Logit + 
Subject 
fixed 

effects 

Logit Logit + 
Subject 
fixed 

effects 
  Intercept -3.04 ** 

-2.80 
-3.47 

** -5.01 ** 2.37 ** 2.77 1.33 ** 1.65 
DT  0.15 ** -0.20 0.09 + 0.06 0.41 ** 0.64 ** 0.37 ** 0.93 * 
DB  0.24 ** -0.18 0.23 ** -0.43 + 0.21 ** 0.92 ** 0.20 ** 0.40 
DT*DB  1.18 **  0.76 +  -0.14  -0.97 + 
SP -0.22 ** 

-0.34 ** 
 

 
-0.09 

** -0.14 ** 
 

 
SP*DT   0.09 +    0.05   
SP*DB   0.13 **    -0.07 +   
SP*DT*DB  -0.29 **    -0.08   
Threshold   -0.13 

** 0.02 
  0.03 + -0.01 

numAttack   0.33 ** 0.50 **   0.23 ** 0.16 + 
Thresh*DT     0.01    0.01 
Thresh*DB     0.12 *    0.01 
numAtt*DT     -0.16 *    -0.07 
numAtt*DB    -0.11 +    0.12 + 
Th*DT*DB    -0.15 *    0.02 
Att*DT*DB     0.31 **    0.17 + 
No. of obs. 109051 109051 109051 109051 27061 27061 27061 27061 
 
Note: ** denotes p-values ≤ .001, * denotes p-values ≤ .01, + denotes p-values ≤ .10.  Data include all 
ticks prior to a successful attack in all symmetric periods and for all subjects reported in Table 1. 

 

Table 5 addresses the crucial question on coordination: do players respond differently when they 

are nearly pivotal than when they are far from pivotal? The table looks at each player’s choices every 

half-second tick prior to a successful attack in all symmetric periods. For players in passive mode (about 
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109 thousand observations), it uses a logit model to fit the cases (about 3 thousand) where the player 

switched to attack mode on the next tick. For players already in attack mode (about 27 thousand 

observations) it fits the choice of staying in attack mode (about 25 thousand cases) or switching back to 

passive mode.  

The second column reports direct effect estimates. The presence of either line increases the 

switching probability significantly, and a greater shortfall from pivotality decreases it. The third column 

allows for individual subject fixed effects and interactions. When both lines are visible, those estimates 

give slope -.34+.09+.13-.29 =  -0.41 and intercept -2.80-.20-.18+1.18  =  -2.00. Given the logit 

specification, the corresponding switch probability is exp (-2.00 - 0.41SP) /(1+ exp(-2.00 - 0.41SP)), 

about 12% when the player is pivotal (SP=0, essentially a measure of reaction time) and about 8% when 

only one more speculator is required for a successful attack (SP=1). The estimated probability falls below 

1% when at least 7 more speculators are needed. 

These coefficient estimates indicate that seeing both lines together has a much stronger effect than 

seeing either of them by itself: for the intercept, the direct effects (-.20, -.18) are at best marginally 

significant while the interaction (+1.18) is very significant, and for the slope estimates the interaction term 

(-0.29) again is the most significant and strongest term. 

The fourth column breaks apart the SP variable and looks at the separate effects of the threshold 

T(t) and the number of players B(t) currently in attack mode, as fractions of the total player mass M.  

Consistent with many of the theoretical models, the T(t) coefficient estimate indicates that individual 

players are significantly more likely to switch to attack mode when fundamentals are weaker. Switching 

to attack mode responds even more strongly to a larger number of players already in attack mode.  The 

significant three way interactions in the fifth column once more show that seeing both lines together has 

an especially strong effect. 

The other columns of Table 5 obtain parallel results for players already in attack mode. The direct 

effect estimates for SP again indicate that players are more likely to remain in attack mode when they 

have more information and when the attack is closer to success. The more refined specification in the next 

column obtains stronger direct effect estimates but relatively weak interaction estimates. The last column 

also shows a significantly stronger positive information effect for threshold but a marginally significant 

level effect of the wrong sign.8  

Subsets of the data provide evidence on the robustness of two conditional predictions regarding 

                                                 
8 That sign reverts to its expected one but becomes insignificant in more refined estimates including higher order interactions 
and subject fixed effects. These estimates, excluded here to save space, are available from the authors.  
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transparency. Recall that Bannier and Heinemann (2005) conclude that greater transparency may 

encourage speculation in some circumstances when speculators believe that fundamentals are strong. 

Their model, an extension of global games, doesn’t translate precisely into our laboratory setup, but if 

their conclusion is very robust it would suggest that the positive DB and DT coefficient estimates in the 

second column of Table 5 are due to observations when T(t) is high. Figure 3 points to T(t)=0.8M as a 

natural breakpoint, since the success rate of speculative attacks in the full information condition first 

exceeds 50% and climbs sharply at this threshold. Restricting to T(t) ≥ 0.8M data, we obtain coefficient 

estimates -0.06 and 0.23**, smaller than the unrestricted estimates of 0.15** and 0.24** reported in the 

table. Thus the first conditional prediction is not supported in our data. 

Recall that Bannier (2005) concludes that attacks are more likely with a larger and less well 

informed large player when beliefs about fundamentals are pessimistic, but the reverse holds when beliefs 

are optimistic. A rough translation into our data predicts higher attack rates by ordinary players in 

condition 5N-p (Soros has weight 5 and neither Soros nor regular players see the threshold line, and 

fundamentals are “pessimistic,” T(t) < 0.8M) than in 3A-p (Soros has weight 3 and is the only one who 

sees the threshold line, and T(t) < 0.8M), and higher attack rates in 3A-o than in 5N-o (defined as before 

except with “optimistic” fundamentals T(t) ≥ 0.8M). The raw attack rates in our data are 3.2% in 5N-p 

versus 7.0% in 3A-p (contrary to the first part of the prediction) and are 2.9% in 3A-o versus 2.7% in 5N-

o (consistent with the prediction but negligible). To control for information conditions and SP, one 

compares intercept coefficients the basic Switch to Attack Logit. The first comparison becomes negligible 

(log-odds of -1.70 in 5N-p versus -1.76 in 3A-p) while the second becomes more favorable (-1.95 in 3A-o 

versus -2.57 in 5N-o). Thus the evidence on the second conditional prediction is mixed. 

 

6.  Discussion 

Second and third generation models raise as many questions as they answer. What governs the timing of 

speculative attacks? What factors make attacks more or less frequent, and more or less likely to succeed? 

The models, and the available field evidence, are either silent or inconsistent on these important matters. 

The few existing laboratory studies use a simplified one-time, simultaneous-move setting that doesn’t 

capture the dynamic nature of currency speculation. 

Our laboratory experiment allows speculators to switch in and out of attack mode and lets the 

strength of fundamentals change in real time. It controls explanatory variables and so their impact on 

performance has a causal interpretation. Thus the experiment provides direct evidence on the models’ 

predictive power in a simple dynamic setting, and offers a fresh perspective on field evidence.  
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The main results of the experiment can be summarized as follows. 

1. Fundamentals. The probability of a successful attack indeed is a decreasing function of the strength of 

the fundamentals. The function appears to be continuous, not a jump from 0 to 1 as in some models.  For 

example, a deterioration of the fundamentals from 90 to 80 (percent of potential speculation required to 

force a devaluation) doubles the probability of a successful attack in our data. 

2. Information. Successful attacks are more likely and come sooner when speculators have information 

about the strength of fundamentals and about the activities of other speculators. In our symmetric data, for 

example, providing precise public information about net speculative positions shortens the average time 

to devaluation by about 15%, and providing precise public information about the fundamentals has a very 

similar effect. The effects persist even with weaker fundamentals and with less precise information.  

3. Asymmetries. The mere presence of a speculator with larger mass (“Soros”) increases the probability of 

a successful attack and hastens its onset; e.g., the time to success decreases by almost 30%. Consistent 

with some theory, giving the large speculator increased size does not significantly strengthen his impact 

in our data. Contrary to some theory, giving him better information seems to have little impact, and in our 

experiment the large speculators tend to attack later than ordinary speculators. 

4. Coordination. Speculators are more likely to switch into (and less likely to switch out of) attack mode 

when they are nearer to being pivotal, e.g., when fundamentals are weaker or more speculators are already 

in attack mode. The effect is enhanced by information about fundamentals and speculative activity.  

Of course, the laboratory results should not be translated directly into policy recommendations, 

but they should sharpen subsequent theoretical and empirical research and thus improve policy indirectly. 

For example, part of result 3 seems inconsistent with surveys of foreign exchange dealers, who say that 

the two most important advantages possessed by large traders are a “large customer base” and “better 

information” about the market (Cheung and Wong, 2000; Cheung and Chinn, 2001; and Cheung, Chinn 

and Marsh, 2004).9 Future empirical work, both laboratory and field, should resolve the inconsistency and 

point to appropriate policy.  

Another example is the second result that better information about fundamentals encourages 

speculative attacks and makes success more likely. As noted, this conclusion seems to contradict 

conventional wisdom, some theoretical models, and one piece of field data. In our experiment, the 

strength of fundamentals is, by design, independent of what information is available. The two variables 

might be correlated in field data. Indeed, the central bank might strategically increase or decrease the 

                                                 
9 Wei and Kim (1997) find a very weak association between big players’ position and the subsequent currency movement, and 
infer that large players do not generally have better information.  
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availability of information, and from a decrease speculators might infer that fundamentals are weak. If 

this strategic effect is sufficiently strong, it could account for the conventional result and its very different 

policy implications. One way to pursue the question is to conduct laboratory experiments with 

information controlled by a player in the role of a central bank. The baseline results of our completed 

experiment would allow clear inferences about the strategic effect. 

To conclude, experimental methods have made useful contributions to many theoretical and 

applied fields of economics in the last ten or twenty years, but have hardly touched international finance. 

We believe that the work reported here offers evidence that is complementary to both field studies and 

theoretical models, and we hope that it encourages greater cross fertilization.   
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