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1. Introduction 

The statistical modelling of financial time series data such as asset prices plays an 

important role in portfolio management. Despite the extensive theoretical and empirical 

literature of the last thirty years, there is still no consensus on what might be the most 

adequate model specification for many financial series. For instance, whether asset 

returns of asset prices are predictable or not is still controversial. While the efficiency 

market hypothesis suggests that they should follow a random walk (see Fama, 1970; 

Summers, 1986), other authors have found evidence of mean reversion in their 

behaviour (see, e.g., Poterba and Summers, 1988 and Fama and French, 1988). The 

standard econometric approach to settle this issue empirically relies on establishing the 

(integer) order of integration of the series by carrying out nonstationary unit root tests. 

More recently, however, the possibility of fractional orders of integration has also been 

taken into account, with a slow rate of decay. Long memory specifications for realised 

volatility have been shown frequently to forecast very accurately (see, e.g., Li, 2002 or 

Martens and Zein, 2004), though in some cases the sum of short-memory (ARMA) 

specifications appears to forecast as accurately as a long-memory (ARFIMA) model 

(see, e.g., Pong et al, 2004). Using a fractional model, Caporale and Gil-Alana (2002) 

find that there is no permanent component in US stock market returns, since the series 

examined is close to being I(0). Caporale and Gil-Alana (2007) decompose the 

stochastic process followed by US stock prices into a long-run component described by 

the fractional differencing parameter (d) and a short-run (ARMA) structure. Empirical 

support for non-linear asset pricing models (such as the one by Dittmar, 2002) has also 

been found (see, inter alia, Hossein and Sonnie, 2006).  

The present paper takes into account these various strands of the literature on 

modelling asset prices and proposes a very general time series framework to capture the 
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long-run behaviour of financial data. The suggested model includes linear and non-

linear time trends, and stationary and nonstationary processes based on integer and/or 

fractional degrees of differentiation. Moreover, the spectrum is allowed to contain more 

than a single pole or singularity, occurring at the zero frequency but also at non-zero 

(cyclical) frequencies. This model is used to analyse four annual time series with a long 

span, namely dividends, earnings, interest rates and long-term government bond yields, 

obtainable from Robert Shiller’s homepage (http://www.econ.yale.edu/~shiller/). We 

are able to show that the selected specifications (with linear and non-linear trends, 

fractional integration and cyclical fractional integration) have better forecasting 

properties than alternative models used in the literature to analyse these data. 

The structure of the paper is as follows. Section 2 describes the model and the 

statistical approach employed in the paper. Section 3 presents the empirical analysis, 

considering first the case with linear trends and then the non-linear one. Section 4 

assesses the forecasting performance of the selected models, whilst Section 5 offers 

some concluding comments. 

 

2.  The model 

Let us assume that {yt, t = 1, 2, .., T} is the time series we observe. We consider the 

following model: 

,)( tt xtfy +=     (1) 

,)cos21()1( 221 tt
d

r
d uxLLwL =+−−    (2) 

,)()( tqtp LuL εθφ =    (3) 

where f is a function of time that may be of a linear/non-linear nature; L is the lag 

operator (i.e., Lsxt = xt-s); d1 is the order of integration corresponding to the long-run or 

zero frequency; wr = 2π/r, with r representing the number of periods per cycle; d2 is the 
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order of integration with respect to the non-zero (cyclical) frequency, and ut is assumed 

to be an I(0) process, that may follow a general stationary ARMA(p, q) process, where 

p and q indicate the orders of the autoregressive and moving average components 

respectively. Note that d1 and d2 are allowed be any real values and thus we do not 

restrict ourselves to integer degrees of differentiation. 

 The set-up described in (1) – (3) is fairly general, including the standard ARMA 

model (with or without trends), if d1 = d2 = 0; the ARIMA case, if d1 is integer and d2 = 

0; the ARFIMA specification, if d1 is fractional and d2 = 0, along with other more 

complex representations. 

 We now focus on equation (2), and first assume that d2 = 0. Then, the spectral 

density function of xt is given by: 
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and it contains a pole or singularity at the long-run or zero frequency. Further, note that 

the polynomial 1)1( dL− can be expressed in terms of its Binomial expansion, such that, 

for all real d1, 
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implying that the higher is the value of d1, the higher is the degree of association 

between observations distant in time. Thus, the parameter d1 plays a crucial role in 

determining the degree of persistence of the series. Although the time series literature 

for very long only considered the cases of integer values of d1 (stationarity if d1 = 0, and 

nonstationarity with d1 = 1), more recently fractional values of d1 have been widely 
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employed when modelling macroeconomic and financial data.1 Suppose now that d1 = 0 

in (2). Then, the process xt has a spectral density function given by: 

( ) 22
22
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π
στλ λ
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  (6) 

and is characterised by having a pole at a non-zero frequency. Moreover, the 

polynomial 22 )cos21( d
r LLw +−  can be expressed as a Gegenbauer polynomial, 

such that, defining rwcos=μ , for all 02 ≠d , 

   ,)()21(
0 2,22 j

j
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∞

=

−   (7)  

where )(2, μdjC  are orthogonal Gegenbauer polynomial coefficients recursively 

defined as:  
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(see, inter alia, Magnus et al., 1966, or Rainville, 1960, for further details on 

Gegenbauer polynomials). Gray et al. (1989, 1994) showed that this process is 

stationary if 5.02 <d  for 1cos <= rwμ  and if 25.02 <d  for 1=μ . If d2 = 1, the 

process is said to contain a unit root cycle (Ahtola and Tiao, 1987; Bierens, 2001); other 

applications using fractional values of d2 can be found in Gil-Alana (2001), Ahn, 

Knopova and Leonenko (2004), Soares and Souza (2006), etc.2 

                                                 
1 Empirical applications using fractional values of d1 include Diebold and Rudebusch (1989), Sowell 
(1992), Gil-Alana and Robinson (1997), etc. 
2 Models with multiple cyclical structures ( k -factor Gegenbauer processes) with multiple poles in the 
spectrum have been examined, among others, by Ferrara and Guegan (2001), Sadek and Khotanzad 
(2004) and Gil-Alana (2007a). 
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 In the empirical analysis carried out in the following section we use a method 

developed by Robinson (1994) that enables us to test a model such as (1) - (3). It is a 

testing procedure based on the Lagrange Multiplier (LM) principle that uses the Whittle 

function in the frequency domain. It can be used to test the null hypothesis: 

,),(),(: 2121 o
T

oo
T

o ddddddH ≡=≡   (8) 

in (1) – (3) where d10 and d20 may be any real values, thus encompassing stationary and 

nonstationary hypotheses. The specific form of the test statistic (denoted by R̂ ) is 

presented in the appendix. Under very general regularity conditions, Robinson (1994) 

showed that for this particular version of his tests, 

.,ˆ 2
2 ∞→→ TasR d χ     (9) 

Thus, unlike in other procedures, we are in a classical large-sample testing situation. A 

test of (8) will reject Ho against the alternative Ha: d ≠ do if R̂  > 2
,2 αχ , where Prob ( 2

2χ  

> 2
,2 αχ ) = α. Furthermore the test is efficient in the Pitman sense against local departures 

from the null, that is, if the test is implemented against local departures of the form: Ha: 

d = do + δT-1/2, for δ ≠ 0, the limit distribution is a ),(2
2 vχ  with a non-centrality 

parameter v that is optimal under Gaussianity of ut. 

 There exist other procedures for estimating and testing the fractionally 

differenced parameters, some of them also based on the likelihood function. As in other 

standard large-sample testing situations, Wald and LR test statistics against fractional 

alternatives will have the same null and local limit theory as the LM tests of Robinson 

(1994). Ooms (1997) proposed tests based on seasonal fractional models: they are Wald 

tests, and thus require efficient estimates of the fractional differencing parameters. He 

used a modified periodogram regression estimation procedure due to Hassler (1994). 

Also, Hosoya (1997) established the limit theory for long-memory processes with the 



 6

singularities not restricted at the zero frequency, and proposed a set of quasi log-

likelihood statistics to be applied to raw time series.3  Unlike these previous methods, 

the tests of Robinson (1994) do not require estimation of the long-memory parameters 

since the differenced series have short memory under the null. Similarly, with respect to 

the zero frequency, Sowell (1992) employed a Wald testing procedure, though again 

this approach requires an efficient estimate of d1, and while such estimates can be 

obtained, the LM procedure of Robinson (1994) seems computationally more 

attractive.4 

 

3. Empirical Analysis 

The data analysed in this paper have been obtained from Robert Shiller’s homepage 

(http://www.econ.yale.edu/~shiller/). They are described in chapter 26 of Shiller’s 

(1989) book on “Market Volatility”, where further details can be found, and are 

constantly updated and revised. Specifically, they are the following series: dividends (an 

index), earnings (also an index), one-year interest rate (this series is the result of 

converting the January and July rates into an annual yield), long-term government bond 

yield (this is the yield on the 10-year Treasury bonds after 1953). The sample period 

goes from 1871 to 2006 for the first two series, 2004 for the third one, and 2007 for the 

fourth one. In all cases, we leave out the last ten observations to use them for the 

forecasting comparison carried out in Section 4. 

 

[INSERT FIGURE 1 ABOUT HERE] 

                                                 
3 Models of this form (with a pole at the non-zero frequency) were also considered, among others, by 
Giraitis, Hidalgo and Robinson (2001), Hidalgo and Soulier (2004) and Hidalgo (2005). These authors 
assume that the pole in the spectrum is unknown and suggest various parametric and semiparametric 
methods to estimate the fractional parameter (d2), along with the frequency of the pole in the spectrum 
(see also Arteche and Robinson, 2000, and Arteche, 2002). 
4 See also Tanaka (1999) for a time domain representation of Robinson’s (1994) tests. 
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Figure 1 contains plots of the four series. As can be seen, both dividends and 

earnings appear to be quite stable for about a century, and then increase sharply in the 

last few decades of the sample. Interest rates and government bond yields fluctuate a lot 

more throughout the sample, but also seem to increase towards the end of the sample, 

before a significant fall. 

In the following two subsections, we examine first a model with linear trends, 

and then one with non-linear structures. In both cases we allow for long-range 

dependence at the zero and non-zero (cyclical) frequencies. 

 

3.1 The case of linear trends 

First we consider the case of linear trends, and assume that the model contains two 

cyclical structures, one for the long-term behaviour of the series and the other for the 

cyclical component. We allow both components to display long-memory behaviour, and 

test the null hypothesis in (8),  

,),(),(: 2121 o
T

oo
T

o ddddddH ≡=≡    

in the following model, 

,tt xty ++= βα     (10) 

,)cos21()1( 221 tt
d

r
d uxLLwL =+−−    (11) 

under the assumption that the disturbance term ut is white noise, AR(1) and AR(2) 

respectively. Higher AR orders were also employed and the results do not substantially 

alter the conclusions based on these two first orders. In all cases, we test Ho for (d1o, 

d2o)-values from -1 to 3 with 0.01 increments, and r = 2, 3, …, T/2,5 choosing as 

                                                 
5 Note that in case of r = 1, the polynomial 2)cos21( 2 d

r LLw +−  becomes ,)1( 22dL− implying the 
existence of a pole at the long run or zero frequency. 
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estimates of d1 and d2 the values of d1o and d2o that produce the lowest statistics. These 

values should be an approximation to the maximum likelihood estimates, noting that 

Robinson’s (1994) method is based on the Whittle function, which is an approximation 

to the likelihood function.6 Given that some of the coefficients in (10) were not 

significant, we also carried out the computations in a model with only an intercept (i.e. 

β = 0 a priori) and with no regressors at all (α = β = 0 a priori). The results for the four 

series are displayed in Tables 1A – 4A.  

Also, noting that in some cases the order of integration for the cyclical part (d2) 

was not statistically significantly different from zero, we also perform the analysis with 

a single fractional differencing parameter, i.e., employing 

,)1( 1 tt
d uxL =−     (12) 

rather than (11). The results for this case are displayed in Tables 1B – 4B. We  describe  

first of all the results for the trend-cyclical case.  

 

[INSERT TABLES 1A – 4A ABOUT HERE] 

 

The first remark to make is that the parameter r (indicating the number of time 

periods per cycle) is constrained between 2 and 15 in all cases, being around 8 in the 

majority of cases. This is consistent with the empirical findings in the business cycle 

literature (Canova, 1998; Burnside, 1998; King and Rebelo, 1999; etc.) according to 

which cycles have a periodicity between five and ten years. It is also noteworthy that the 

order of integration at the long-run or zero frequency (i.e., d1) is substantially higher 

than its corresponding value at the cyclical frequency (d2), especially for earnings and 

                                                 
6 Several Monte Carlo experiments based on this approach were conducted by Caporale and Gil-Alana 
(2006), and Gil-Alana (2007). It is shown in these papers that this method correctly determines the orders 
of integration at the two frequencies for samples of similar size to those employed in this article. 
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interest rates. For these two series the unit root null cannot be rejected at the long-run 

frequency (d1 = 1), while d2 is found to be strictly below 1 in all cases. In Tables 1A – 

4A we report in bold the cases where the null hypothesis of white noise errors cannot be 

rejected at conventional statistical levels. There are two such cases for dividends, a 

single one for earnings, six for interest rates and five for government bond yields. 

Among these selected models we choose the best specification on the basis of LR tests 

and other likelihood criteria. The selected model for each series is as follows. For 

dividends, 

.)cos21()1(;891.6 52.02
10

48.1
tttt xLLwLxy ε=+−−+−=  (1A) 

For earnings, 

     
.503.0284.0

;)cos21()1(;348.10

21

39.02
7

19.1

tttt

tttt

uuu
uxLLwLxy

ε+−−=
=+−−+=

−−

 (2A) 

For interest rates, 

tttttt uuuuxLLwL ε+−−==+−− −− 21
18.02

8
76.0 211.0217.0;)cos21()1( . (3A) 

Finally, for the government bond yields, 

    
1.182.0

.)cos21()1(;090.23

1

28.02
8

96.0

ttt

tttt
uu

uxLLwLxy
ε+−=

=+−−+−=

−
 (4A) 

Considering the confidence bands for the orders of integration of these selected models 

we see that for dividends and earnings (Tables 1A and 2A), d1 is strictly above 1 while 

d2 is constrained between 0 and 1. On the other hand, for interest rates and bond yields 

(Tables 3A and 4A) we cannot reject the null hypotheses of d1 = 1 and d2 = 0. 

 

[INSERT TABLES 1B – 4B ABOUT HERE] 
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 Next we examine the case of a single pole at the long-run or zero frequency 

(Tables 1B – 4B). Here we notice that for dividends the order of integration is much 

higher than 1, being even above 2 in three cases. For earnings and government bond 

yields, some values are below 1 while others are above 1. Finally, for interest rates, the 

estimated order of integration is below 1 in all cases and in six out of nine cases the unit 

root null is rejected in favour of smaller orders of integration. Using this specification, 

the selected model for dividends is the following: 

        ,211.0677.0;)1( 21
57.1

tttttt uuuuxL ε+−==− −−   (1B) 

In case of earnings, the chosen specification is: 

.445.0023.0;)1(;434.0575.0 21
38.1

tttttttt uuuuxLxty ε+−==−+−= −−  (2B) 

For interest rates, 

  ,083.0244.0;)1( 21
64.0

tttttt uuuuxL ε+−==− −−   (3B) 

and finally, for government bond yields 

.159.0;)1( 1
00.1

ttttt uuuxL ε+−==− −   (4B) 

According to these models the four series are nonstationary, and the unit root hypothesis 

is rejected in favour of higher orders of integration in case of the dividend series. 

 

3.2 The case of non-linear trends 

Next we allow for possible non-linearities, and assume that the four series exhibit a 

single break.7 Figure 1 suggests that there might be a break around 1973, the time of the 

first oil price crisis. We experimented with a change in the level, in the slope and in 

both of them, and came to the conclusion that a level change was the most plausible one 

for government bond yields, while for the remaining three series we allowed for a 

                                                 
7 Multiple breaks could also be considered. However, we believe that the series examined in this paper 
can be adequately described including a single structural break. Note that allowing for multiple breaks 
would result in short subsamples and innaccurate estimates of the coefficients. 
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change in both level and slope after the break. Specifically, we consider a model of the 

form: 

,)1973()1973( 21 tt xtItIy +≥+<= αα   (13) 

for government bond yields, and 

,)1973()1973()1973( 21 tt xtIttItIy +≥+≥+<= βαα   (14) 

for the remaining three series, allowing two fractional structures as in (11) (in Tables 1C 

– 4C) and with a single fractional differencing polynomial at the zero frequency as in 

(12) (in Tables 1D – 4D):8  

 

[INSERT TABLES 1C – 4D ABOUT HERE] 

 

 Starting again with the case of two poles in the spectrum (i.e., using equation 

11), the selected models for dividends (with T* = 1973) in Tables 1C – 4C were: 

.308.0;)cos21()1(

;)(452.0)(204.20)(006.6

1
53.02

11
56.1

***

ttttt

tt

uuuxLLwL

xTtItTtITtIy

ε+==+−−

+≥+≥−<−=

−

    (1C) 

For earnings, 

.260.0117.0;)cos21()1(

;)(039.1)(15.104)(003.121

21
52.02

7
32.1

***

tttttt

tt

uuuuxLLwL

xTtItTtITtIy

ε+−−==+−−

+≥−≥−<−=

−−

(2C) 

For interest rates, 

.237.0;)cos21()1(

;)(636.0)(114.63)(817.75

1
23.12

15
38.0

***

ttttt

tt

uuuxLLwL

xTtItTtITtIy

ε+−==+−−

+≥−≥−<−=

−

    (3C) 

and finally, for government bond yields, 

                                                 
8 We also considered other break dates for the four series, and the coefficients in (13) and (14) were 
insignificant in the majority of the cases. 
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.088.0;)cos21()1(

;)(013.28)(644.25

1
14.02

3
95.0

**

ttttt

tt

uuuxLLwL

xTtITtIy

ε+−==+−−

+≥−<−=

−

  (4C) 

 It can be seen that the number of periods per cycle varies substantially 

depending on the series. Specifically, it is 11 for dividends, 7 for earnings, 15 for 

interest rates, and 3 for government bond yields. The order of integration at the long-run 

or zero frequency is higher than the cyclical one for dividends, earnings and government 

bond yields, while the opposite holds for interest rates. For the first two series, d1 is 

significantly higher than 1, while d2 is in the interval (0, 1) for the three latter series. 

Surprisingly, for the interest rate d1 is strictly smaller than 1 while d2 is significantly 

above 1. 

 

[INSERT TABLES 1D – 4D ABOUT HERE] 

 

When we assume that there is a single pole occurring at the long-run or zero 

frequency, (Tables 1D – 4D), the deterministic terms are found to be mostly 

insignificant in the case of dividends and earnings, while they are all significant in the 

case of interest rates and government bond yields. The order of integration appears to be 

highly sensitive to the chosen specification for the disturbance term, especially for 

dividends and earnings. For instance, for dividends, d1 is above 2 in case of a white 

noise ut; it is 1.24 (and the unit root null cannot be rejected) if ut is AR(1), and it is 

strictly smaller than 1 with an AR(2) ut. The selected models in this case are the 

following: for dividends, 

.745.0372.1;)1(

;)(485.0)(878.2)(744.1

21
63.0

***

tttttt

tt

uuuuxL

xTtItTtITtIy

ε+−==−

+≥+≥−<−=

−−

  (1D) 

For earnings, 
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.401.0162.0;)1(

;)(641.1)(269.0)(231.0

21
17.1

***

tttttt

tt

uuuuxL

xTtItTtITtIy

ε+−==−

+≥+≥+<=

−−

   (2D) 

For interest rates, 

.007.0333.0;)1(

;)(258.0)(105.7)(751.2

21
45.0

***

tttttt

tt

uuuuxL

xTtItTtITtIy

ε++==−

+≥−≥+<=

−−

  (3D) 

and for government bond yields, 

.007.0183.0;)1(

;)(761.5)(279.5

21
99.0

**

tttttt

tt

uuuuxL

xTtITtIy

ε+−−==−

+≥+<=

−−

   (4D) 

 According to these specifications, dividends, government bond yields and 

earnings are nonstationary variables, while interest rates is the only one with a fractional 

differencing parameter in the stationary region (d < 0.5). However, the confidence 

intervals indicate that dividends is the only series for which the unit root null (d = 1) is 

rejected. 

 

4. Forecasting performance 

This section examines the forecasting performance of the models previously selected. 

For each of the series we consider the four model specifications given by equations 

(1A) – (4D). First, we compute the k (=1, 2, …, 10)-ahead prediction errors of each 

model, obtained by expanding the fractional polynomials in (5) and (7). Tables 5 – 8 

report the Root Mean Squared Errors (RMSE) of each specification for each series. It 

can be seen that for dividends (Table 5) model (1B) appears to be the best based on the 

1-period ahead prediction. However, for longer horizons, model (1D) (i.e., a single 

fractional polynomial at the long-run frequency along with a non-linear trend) seems to 

perform best in all cases. A similar conclusion is reached for earnings (Table 6) and 

government bond yields (Table 8). Thus, based on the 1-period ahead predictions, the 
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model with a single fractional differencing polynomial (equations (2B) and (4B)) 

performs best, while the one with a non-linear trend is preferred in the remaining cases 

(equations (2D) and (4D)). Finally, for interest rates (Table 7) models (3A) and (3D) are 

the most adequate ones: based on the 1, 2, 5, 6 and 7-period ahead predictions, the 

model with a non-linear trend and a single fractional polynomial seems to be the most 

adequate. However, when the forecasting horizon is 3, 4, 8, 9 and 10 periods ahead, the 

specification with two fractional polynomials is the preferred one. 

 

[INSERT TABLES 5 – 8 ABOUT HERE] 

 

 Overall, for dividends, earnings and government bond yields, the model with a 

single fractional polynomial at the zero frequency predicts better 1-period ahead; 

however, for longer horizons, a model with a non-linear trend (and also a fractional 

process at the zero frequency) outperforms the rival models. For interest rates, the 

results are slightly more ambiguous: the model with two polynomials (at the zero and 

the cyclical frequency) seems to be the most adequate one in some cases, but a non-

linear model with a single polynomial at the zero frequency appears to be preferable in 

other cases. 

The results presented so far as based on the RMSE. However, this criterion 

along with other methods such as the Mean Absolute Prediction Error (MAPE), Mean 

Squared Error (MSE), Mean Absolute Deviation (MAD), etc., is a purely descriptive 

device.9 Several statistical tests for comparing different forecasting models are now 

available. One of them, widely employed in the time series literature, is the asymptotic 

                                                 
9 The accuracy of different forecasting methods is a topic of continuing interest and research (see, e.g., 
Makridakis et al., 1998 and Makridakis and Hibon, 2000, for a review of the forecasting accuracy of 
competing forecasting models). 
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test for a zero expected loss differential due to Diebold and Mariano (1995).10 Harvey, 

Leybourne and Newbold (1997) note that the Diebold-Mariano test statistic could be 

seriously over-sized as the prediction horizon increases, and therefore provide a 

modified Diebold-Mariano test statistic given by: 

,
n

n/)1h(hh21nDMDMM −+−+
=−  

where DM is the original Diebold-Mariano statistic, h is the prediction horizon and n is 

the time span for the predictions. Harvey et al. (1997) and Clark and McCracken (2001) 

show that this modified test statistic performs better than the DM test statistic (though 

still poorly in finite samples), and also that the power of the test is improved when p-

values are computed with a Student t-distribution. 

Using the M-DM test statistic, we further evaluate the relative forecast 

performance of the different models by making pairwise comparisons. We consider 2, 4, 

6 and 8-period ahead forecasts on a 10-period horizon. The results are displayed in 

Tables 9 – 12, and are consistent with the previous ones. 

 

[INSERT TABLES 9 – 12 ABOUT HERE] 

 

In particular, models (1D), (2D), (3D) and (4D) are preferred in most cases, 

especially based on the 2- and 4-period ahead prediction horizons. Only for interest 

rates does model (3A) outperform (3D) in some cases. 

 

 

 

                                                 
10 An alternative approach is the bootstrap-based test of Ashley (1998), though his method is 
computationally more intensive. 
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5. Conclusions 

In this paper we have introduced a new time series approach to modelling long-run 

trends and cycles in financial time series data. The proposed model is general enough to 

include linear and non-linear trends along with fractional integration at zero and non-

zero (cyclical) frequencies. It is based on the testing procedure developed by Robinson 

(1994) for stationary and nonstationary hypotheses. We have used our framework to 

investigate the behaviour of four financial time series already examined in many earlier 

studies. Specifically, we have used the annual dataset including dividends, earnings, 

interest rates and government bond yields, which was constructed (and is constantly 

updated) by Robert Shiller. 

 The results can be summarised as follows. It appears that the four series of 

interest can be characterised in terms of long-memory processes with two poles in the 

spectrum, one corresponding to the long-run or zero frequency, and the other one to the 

cyclical component. The latter exhibits a periodicity ranging between 3 and 15 years 

depending on the series and the model considered. In general, the order of integration is 

higher at the zero frequency, implying that the degree of persistence is higher in this 

component. When non-linear trends are incorporated, the models outperform the linear 

ones in terms of their forecasting accuracy, especially over longer horizons. 

This paper can be extended in several directions. First, multiple cyclical 

structures of the form advocated by Ferrara and Guegan (2001) and others can be 

considered. In fact, the interaction between cyclical (fractional) processes may produce 

autocorrelations decaying in a very complicated way that has not been much 

investigated yet. Other more complex non-linear structures (like the Threshold 

AutoRegressive, TAR, Momentum Threshold AutoRegressive, M-TAR or Smooth 

Transition Autoregressive, STAR-form (see, e.g. Enders and Granger, 1998; Enders and 
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Siklos, 2001; Skalin and Teräsvirta, 2002) can also be included in the regression model 

(1). Finally, the date(s) of the structural break(s) can be endogenously determined in the 

context of the general model described by equations (1) – (3). Future research will 

address these issues. 
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Appendix 

The test statistic proposed by Robinson (1994) for testing Ho (8) in (1) - (3) is given by: 
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function g above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, they require specific 

modelling assumptions about the short-memory specification of ut. Thus, if ut is white 
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noise, g ≡ 1, and if ut is an AR process of the form φ(L)ut = εt, g = |φ(eiλ)|-2, with σ2 = 

V(εt), so that the AR coefficients are a function of τ. 
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Figure 1: Time series plots 
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Table 1A: Coefficient estimates with two fractional structures. Series: Dividends 
 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -462.89 
(-61.42) 

-0.075 
(-0.80) 

0.02 
[-0.09, 0.14] 8 0.60 

[0.47,  1.54] 0.804 -0.420 

AR(2) with an intercept -2.257 
(-7.59) --- 1.16 

[0.76,  1.54] 15 0.99 
[0.33,  1.37] -0.422 -0.212 

AR(2) with no regressors --- --- 1.51 
[0.84,  1.97] 9 0.53 

[0.03,  0.87] -0.207 -0.099 

AR(1) with time trend -2.023 
(-2.23) 

-24.501
(-98.28) 

0.96 
[0.91,  1.04] 13 0.98 

[0.93,  1.42] 0.412 --- 

AR(1) with an intercept 42.283 
(11.73) --- 1.47 

[1.26,  1.87] 3 0.80 
[0.64,  0.96] -0.091 --- 

AR(1) with no regressors --- --- 1.36 
[1.19,  1.53] 5 0.06 

[0.00,  0.14] 0.691 --- 

White noise with trend -431.63 
(-33.46) 

-1.710 
(-10.66) 

0.13 
[0.06,  0.17] 15 1.01 

[0.97,  1.07] --- --- 

White noise + intercept* -6.891 
(-9.32) --- 1.48 

[1.31,  1.71] 10 0.52 
[0.30,  0.69] --- --- 

White noise with no reg. 

R
--- --- 1.17 

[1.06,  1.35] 12 0.58 
[0.47,  0.71] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 
 

Table 2A: Coefficient estimates with two fractional structures. Series: Earnings  
 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -54.618 
(-3.45) 

-
61.003 

0.93 
[0.86,  1.19] 8 0.73 

[0.50,  0.91] 0.174 0.053 

AR(2) with an intercept* 10.348 
(0.89) --- 1.19 

[1.04,  1.81] 7 0.39 
[0.09,  0.51] -0.284 -0.503 

AR(2) with no regressors --- --- 1.06 
[0.60,  1.77] 8 0.10 

[-0.37, 0.69] 0.130 -0.371 

AR(1) with time trend -10.996 
(-0.98) 

-
87.225 

1.09 
[0.89,  1.18] 11 0.74 

[0.30,  0.94] -0.165 --- 

AR(1) with an intercept 733.08 
(11.79) --- 1.20 

[0.98,  1.47] 2 0.92 
[0.68,  1.07] -0.069 --- 

AR(1) with no regressors --- --- 0.79 
[0.28,  1.23] 3 0.16 

[-0.02, 0.31] 0.560 --- 

White noise with trend -51.997 
(-3.50) 

-
63.653 

0.95 
[0.89,  1.15] 10 0.72 

[0.56,  0.97] --- --- 

White noise with intercept -131.86 
(-7.26) --- 1.08 

[1.01,  1.16] 8 0.42 
[0.22,  0.66] --- --- 

White noise with no reg. 

R
--- --- 0.93 

[0.76,  1.21] 6 0.24 
[0.01,  0.54] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 3A: Coefficient estimates with two fractional structures. Series: Interest rates 
 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend -70.345 
(-8.33) 

-3.626 
(-35.50) 

0.68 
[0.60,  1.54] 12 0.41 

[0.07,  0.62] 0.115 0.137 

AR(2) with an intercept -144.46 
(-8.19) --- 1.18 

[0.80,  1.64] 4 0.11 
[-0.30, 0.29] 0.091 -0.247 

AR(2) with no regressors* --- --- 0.76 
[0.17,  1.11] 8 0.18 

[-0.15, 0.92] -0.217 -0.211 

AR(1) with time trend 62.566 
(4.27) 

14.998 
(39.80) 

1.17 
[0.75,  1.32] 3 0.11 

[-0.27, 0.34] 0.075 --- 

AR(1) with an intercept -120.01 
(-7.96) --- 1.08 

[0.78,  1.47] 2 0.09 
[-0.05, 0.72] -0.166 --- 

AR(1) with no regressors --- --- 0.53 
[0.12,  0.88] 8 0.05 

[-0.13, 0.38] 0.204 --- 

White noise with trend -48.096 
(-5.45) 

-2.212 
(-26.53) 

0.74 
[0.71,  0.78] 15 0.19 

[-0.04, 0.46] --- --- 

White noise +  intercept -83.753 
(-6.50) --- 1.44 

[1.32,  1.57] 3 0.05 
[-0.05, 0.29] --- --- 

White noise with no reg. --- --- 0.59 
[0.45,  0.84] 15 0.05 

[-0.05, 0.20] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 
 

Table 4A: Coefficient estimates with two fractional structures. Series: Government 
bond yields 

 α β d1 r d2 ρ1 ρ2 

AR(2) with time trend 26.951 
(2.29) 

3.889 
(17.66) 

1.20 
[0.86,  1.94] 8 0.09 

[-0.29, 0.44] -0.334 -0.047 

AR(2) with an intercept -2.098 
(-1.43) --- 0.95 

[0.67, 1.09] 11 1.00 
[0.40,  1.24] 0.998 -0.453 

AR(2) with no regressors --- --- 0.10 
[-0.14, 1.11] 4 0.76 

[0.16,  1.53] 0.622 0.337 

AR(1) with time trend -84.161 
(-10.97) 

-4.990 
(-54.51) 

0.71 
[0.61,  1.02] 14 0.42 

[0.17,  0.58] 0.489 --- 

AR(1) with an intercept* -23.090 
(-4.75) --- 0.96 

[0.88,  1.02] 8 0.28 
[-0.04, 0.87] -0.182 --- 

AR(1) with no regressors --- --- 0.75 
[0.39,  1.16] 3 0.01 

[-0.17, 0.36] 0.097 --- 

White noise with trend -36.744 
(-3.53) 

-2.563 
(-4.123) 

0.89 
[0.85,  0.94] 15 0.08 

[-0.04, 0.39] --- --- 

White noise + intercept -39.023 
(-6.84) --- 1.30 

[1.05,  1.46] 3 0.09 
[-0.04, 0.62] --- --- 

White noise with no reg. 

R
--- --- 0.82 

[0.70,  1.01] 2 0.01 
[-0.06, 0.12] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 1B: Coefficient estimates with one fractional structure. Series: Dividends 
 α β d1 ρ1 ρ2 

AR(2) with time trend 0.298  
(1.448) 

-0.113 
(-0.522) 

1.68 
[1.07, 2.05] 0.577 -0.167 

AR(2) with an intercept 0.241  
(1.405) --- 1.73 

[1.11,  2.05] 0.530  -0.150 

AR(2) with no regressors* --- --- 1.57 
[1.01,  2.00] 0.677  -0.211 

AR(1) with time trend 0.282  
(1.268) 

-0.091  
(-1.049) 

1.34 
[1.21,  1.56] 0.699 --- 

AR(1) with an intercept 0.234  
(1.068) --- 1.33 

[1.20,  1.52] 0.707  --- 

AR(1) with no regressors --- --- 1.48 
[1.32,  1.62] 0.619 --- 

White noise with trend 0.218   
(0.960)) 

0.042  
(0.127)) 

2.12 
[1.93,  2.33] --- --- 

White noise + intercept 0.239  
(1.590) --- 2.12 

[1.93,  2.35] --- --- 

White noise with no reg. 

R
--- --- 2.11 

[1.93,  2.35] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 2B: Coefficient estimates with one fractional structure. Series: Earnings  
 α β d1 ρ1 ρ2 

AR(2) with time trend* 0.575  
(0.185) 

-0.434 
(-0.306) 

1.38 
[0.75, 1.82] 0.023 -0.445 

AR(2) with an intercept 0.349  
(0.115) --- 1.36 

[0.83,  1.81] 0.038  -0.438 

AR(2) with no regressors --- --- 1.37 
[0.93  1.81] 0.031  -0.441 

AR(1) with time trend -3.048 
(-0.911) 

0.091   
(0.981)) 

0.73 
[0.55,  0.98] 0.485 --- 

AR(1) with an intercept -2.701 
(-0.841) --- 0.70 

[0.46,  0.98] 0.519  --- 

AR(1) with no regressors --- --- 0.81 
[0.65,  0.96] 0.413 --- 

White noise with trend -0.069  
(-0.019) 

0.709  
(1.293) 

1.13 
[0.99,  1.34] --- --- 

White noise + intercept 0.365  
(0.103) --- 1.13 

[0.99,  1.34] --- --- 

White noise with no reg. 

R
--- --- 1.13 

[0.99,  1.34] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 3B: Coefficient estimates with one fractional structure. Series: Interest rates 
 α β d1 ρ1 ρ2 

AR(2) with time trend 6.332  
(4.431) 

-0.055 
(-1.271) 

0.75 
[0.53, 1.16] 0.074 -0.149 

AR(2) with an intercept 4.923  
(4.071) --- 0.62 

[0.37,  1.16] 0.206  -0.098 

AR(2) with no regressors* --- --- 0.64 
[0.19,  1.11] 0.244  -0.083 

AR(1) with time trend 5.728  
(4.544) 

-0.053  
(-2.261) 

0.60 
[0.40,  0.80] 0.207 --- 

AR(1) with an intercept 3.751  
(3.654) --- 0.53 

[0.39,  0.78] 0.289  --- 

AR(1) with no regressors --- --- 0.53 
[0.40,  0.62] 0.340 --- 

White noise with trend 6.457   
(4.487) 

-0.019 
(-0.471) 

0.73 
[0.61,  0.91] --- --- 

White noise + intercept 6.301  
(4.514) --- 0.73 

[0.61,  0.89] --- --- 

White noise with no reg. 

R
--- --- 0.74 

[0.64,  0.89] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 4B: Coefficient estimates with one fractional structure. Series: Government bond 
yields 
 α β d1 ρ1 ρ2 

AR(2) with time trend 5.333  
(7.139) 

-0.038 
(-0.526) 

1.03 
[0.80, 1.40] -0.222 -0.038 

AR(2) with an intercept 5.300  
(7.119) --- 1.03 

[0.82,  1.40] -0.222 -0.038 

AR(2) with no regressors --- --- 1.20 
[1.10, 1.81] -0.372 -0.134 

AR(1) with time trend 5.324  
(7.119) 

-0.038  
(-0.608) 

1.00 
[0.86,  1.17] -0.188 --- 

AR(1) with an intercept 5.279  
(7.085) --- 0.99 

[0.85,  1.17] -0.180 --- 

AR(1) with no regressors* --- --- 1.00 
[0.82,  1.30] -0.159 --- 

White noise with trend 5.278   
(7.091) 

0.0001 
(0.0034) 

0.88 
[0.78,  1.01] --- --- 

White noise + intercept 5.278  
(7.139) --- 0.88 

[0.80,  0.98] --- --- 

White noise with no reg. 

R
--- --- 0.88 

[0.81,  0.98] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 1C: Estimates in the nonlinear case with two fractional structures. Series: Dividends 
 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2) -0.682  
(-2.855) 

-0.999  
(-0.006) 

0.0076 
(0.0016) 

2.15 
[1.99,  2.24] 7 1.01 

[0.94, 1.09] -1.059 -0.560 

AR(1)* -6.066  
(-7.180) 

-20.204 
(-0.036) 

0.452  
(-0.028) 

1.56 
[1.41,  1.72] 11 0.53 

[0.42,  0.71] -0.308 --- 

White Noise -494.658 
(-60.53) 

-498.19 
(-.325) 

-1.580 
(-1.890) 

0.08 
[0.00,  0.11] 13 1.07 

[1.01,   1.18] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 2C: Estimates in the nonlinear case with two fractional structures. Series: Earnings 
 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2)* -121.003 
(-2.891) 

-104.15 
(-10.30) 

-1.039 
(--3.34) 

1.32 
[1.17,  1.55] 7 0.52 

[0.34, 0.63] -0.117 -0.260 

AR(1) -446.595 
(-13.54) 

396.206 
(11.07) 

-20.120
(-0.980) 

0.17 
[0.11,  0.30] 15 1.33 

[1.21, 1.56] -0.354 --- 

White Noise -1090.33 
(-62.53) 

-1146.4 
(-26.58) 

-1.276 
(-0.611) 

0.09 
[0.00,  0.13] 7 1.29 

[1.17, 1.40] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 3C: Estimates in the nonlinear case with two fractional structures. Series: Interest rates 
 α1 α2 β2 d1 r d2 ρ1 ρ2 

AR(2) 68.826 
(3.409) 

6.006   
(0.0013) 

1.728  
(0.0123) 

1.18 
[1.04,  1.39] 5 0.63 

[0.41, 0.88] -0.199 -0.284 

AR(1)* -75.817 
(-9.678) 

-63.114 
(-7.089) 

-0.636 
(-4.351) 

0.38 
[0.30,  0.52] 15 1.23 

[1.13,  1.39] -0.237 --- 

White Noise -41.014 
(-5.193) 

-37.947 
(-4.720) 

-0.851 
(-5.028) 

0.82 
[0.77,  0.89] 3 0.01 

[-0.09,   0.16] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 4C: Estimates in the nonlinear case with two fractional structures. Series: Government 
bond yields 

 α1 α2 d1 r d2 ρ1 ρ2 

AR(2) -3.301 
(-1.917) 

-3.536 
(-1.915) 

0.95 
[0.69,  1.06] 13 0.94 

[0.75, 1.13] -0.955 -0.424 

AR(1)* -25.644 
(-4.446) 

-28.013
(-4.806) 

0.95 
[0.89,  1.07] 3 0.14 

[0.03,  0.54] -0.088 --- 

White Noise -34.125 
(-6.275) 

-36.569
(-6.608) 

0.94 
[0.86,  1.10] 8 0.27 

[0.08,   0.59] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 1D: Coefficient estimates with one fractional structure. Series: Dividends 
 α1 α2 β2 d1 ρ1 ρ2 

AR(2)* -1.744  
(-8.287) 

-2.878 
(-9.185) 

0.485  
(31.232) 

0.63 
[0.55, 0.70] 1.372  -0.745 

AR(1) 0.225  
(0.985) 

-0.005 
(-0.016) 

0.459  
(5.334)  

1.24 
[0.86,  1.49] 0.712  ---     

White noise 0.239   
(1.592)  

0.270  
(1.001)  

0.088  
(0.263)  

2.12 
[1.93, 2.35] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 2D: Coefficient estimates with one fractional structure. Series: Earnings 
 α1 α2 β2 d1 ρ1 ρ2 

AR(2)* 0.231   
(0.073) 

0.269  
(0.059)  

1.641  
(1.733)  

1.17 
[0.51, 1.79] 0.162  -0.401 

AR(1) -8.748 
(-4.465) 

-13.960 
(-4.363) 

1.572  
(11.162) 

0.47 
[0.30,  0.67] 0.497  ---     

White noise -0.080  
(-0.023) 

-0.440 
(-0.088) 

1.634  
(2.441)  

1.03 
[0.81, 1.31] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 3D: Coefficient estimates with one fractional structure. Series: Interest Rate 
 α1 α2 β2 d1 ρ1 ρ2 

AR(2)* 2.751   
(3.330) 

7.105  
(5.134)  

-0.258  
(-4.019) 

0.45 
[0.30, 1.12] 0.333  0.007  

AR(1) 2.462  
(3.152) 

6.890  
(5.159)  

-0.257 
(-4.142) 

0.43 
[0.16,  0.74] 0.360  ---     

White noise 5.668    
(4.328)  

9.466  
(4.930)  

-0.259 
(-2.365) 

0.69 
[0.58, 0.85] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 

 
 

Table 4D: Coefficient estimates with one fractional structure. Series: Government bond 
yields 
 α1 α2 d1 ρ1 ρ2 

AR(2)* 5.279  
(7.100)   

5.761  
(5.479)  

0.99 
[0.80, 1.38] -0.183 -0.007 

AR(1) 5.272  
(6.985)  

5.760  
(5.398)  

0.98 
[0.82,  1.17] -0.173 ---     

White noise 5.126   
(6.975)  

5.713  
(5.505)  

0.87 
[0.78, 0.98] --- --- 

In bold, the models for which the null hypothesis of white noise errors cannot be rejected. “*” indicates the best model 
specification using LR tests and other likelihood criteria. 
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Table 5: RMSE of the k-ahead prediction errors. Series: Dividends 

k  /  Model (1A) (1B) (1C) (1D) 

1 0.006234 0.000591 0.008026 0.018123 

2 0.031326 0.025251 0.036914 0.016958 

3 0.030545 0.024227 0.033172 0.013850 

4 0.031718 0.025917 0.034087 0.012656 

5 0.034013 0.028231 0.036075 0.012689 

6 0.036629 0.030663 0.038195 0.013575 

7 0.039581 0.033446 0.040673 0.015228 
8 0.042596 0.036330 0.043256 0.017238 

9 0.045808 0.039465 0.046073 0.019673 

10 0.049288 0.042921 0.049189 0.022551 
In bold the lowest value among models for each k-ahead prediction error. 
 
 
 
Table 6: RMSE of the k-ahead prediction errors. Series: Earnings  

k  /  Model (2A) (2B) (2C) (2D) 

1 0.009811 0.002347 0.128726 0.041816 

2 0.043473 0.047612 0.179285 0.033633 
3 0.045904 0.054964 0.183457 0.030183 

4 0.063079 0.073397 0.198744 0.039817 

5 0.067516 0.080890 0.205456 0.043198 

6 0.073898 0.087810 0.213325 0.047346 

7 0.084659 0.097785 0.224043 0.055428 

8 0.096819 0.109013 0.235610 0.065194 
9 0.110367 0.122034 0.248383 0.077060 

10 0.126495 0.138105 0.263549 0.092292 
In bold the lowest value among models for each k-ahead prediction error. 
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Table 7: RMSE of the k-ahead prediction errors. Series: Interest Rates 

k  /  Model (3A) (3B) (3C) (3D) 

1 0.001353 0.001622 0.077673 0.000636 
2 0.031361 0.032086 0.107293 0.031284 

3 0.057927 0.058682 0.131547 0.058063 

4 0.085821 0.086357 0.158054 0.085826 

5 0.110345 0.110731 0.182517 0.110294 

6 0.130518 0.130777 0.203123 0.130446 

7 0.150488 0.150638 0.223397 0.150430 
8 0.167591 0.167674 0.240997 0.167592 

9 0.180127 0.180186 0.254282 0.180229 

10 0.188005 0.188063 0.263042 0.188227 
In bold the lowest value among models for each k-ahead prediction error. 
 
 
 
Table 8: RMSE of the k-ahead prediction errors. Series: Government bond yields 

k  /  Model (4A) (4B) (4C) (4D) 

1 0.021940 0.000892 0.026910 0.006647 

2 0.043353 0.022852 0.046478 0.019229 
3 0.060376 0.040011 0.063574 0.035646 

4 0.079280 0.059526 0.083255 0.054984 

5 0.096742 0.077144 0.101070 0.072477 

6 0.112871 0.093214 0.117255 0.088455 

7 0.126838 0.106984 0.131291 0.102144 

8 0.139513 0.119445 0.143957 0.114540 
9 0.151303 0.131048 0.155693 0.126092 

10 0.162691 0.142301 0.167085 0.137308 
In bold the lowest value among models for each k-ahead prediction error. 
 
 
 
 
 
 
 
 
 
 
 



 34

              Table 9: Modified DM statistic: 2-step ahead forecasts 
Dividends 1A 1B 1C 

1B 65.654 (1B) XXXXXX XXXXXX 
1C -3.154 (1A) -14.420 (1B) XXXXXX 
1D 4.574 (1D) 3.120 (1D) 5.217 (1D) 

Earnings 2A 2B 2C 
2B -3.998 (2A) XXXXXX XXXXXX 
2C -63.060 (2A) -174.975 (2B) XXXXXX 
2D 2.813 (2D) 3.130 (2D) 17.222 (2D) 

Interest rates 3A 3B 3C 
3B -3.501 (3A) XXXXXX XXXXXX 
3C -139.916 (3A) -137.877 (3B) XXXXXX 
3D 0.565 2.905 (3D) 129.224 (3D) 

Gov bond yield 4A 4B 4C 
4B 125.925 (4B) XXXXXX XXXXXX 
4C -20.277 (4A) -93.416 (4B) XXXXXX 
4D 22.406 (4D) 3.069  (4D) 28.210 (4D) 

 Critical value: 1.833 (95% level, with 9 degrees of freedom). In parentheses, the     
preferred model in a pairwise comparison. 

 
 
             Table 10: Modified DM statistic: 4-step ahead forecasts 

Dividends 1A 1B 1C 
1B 50.144 (1B) XXXXXX XXXXXX 
1C -2.420 (1A) -11.013 (1B) XXXXXX 
1D 3.493 (1D) 2.383 (1D) 3.985(1D) 

Earnings 2A 2B 2C 
2B -3.054 (2A) XXXXXX XXXXXX 
2C -48.163 (2A) -133.64 (2B) XXXXXX 
2D 2.148 (2D) 2.390 (2D) 13.153 (2D) 

Interest rates 3A 3B 3C 
3B -2.674 (3A) XXXXXX XXXXXX 
3C -106.863 (3A) -105.305 XXXXXX 
3D 0.431 2.219 (3D) 98.696 (3D) 

Gov bond yield 4A 4B 4C 
4B 96.177(4B) XXXXXX XXXXXX 
4C -15.487(4A) -71.347 (4B) XXXXXX 
4D 17.113 (4D) 2.344 (4D) 21.545 (4D) 

Critical value: 1.833 (95% level, with 9 degrees of freedom). In parentheses, the         
preferred model in a pairwise comparison. 
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              Table 11: Modified DM statistic: 6-step ahead forecasts 
Dividends 1A 1B 1C 

1B 34.602 (1B) XXXXXX XXXXXX 
1C -1.662  -7.600 (1B) XXXXXX 
1D 2.410 (1D) 1.644 2.750 (1D) 

Earnings 2A 2B 2C 
2B -2.107 (2A) XXXXXX XXXXXX 
2C -33.235 (2A) -92.220 (2B) XXXXXX 
2D 1.482 1.649 9.076 (2D)  

Interest rates 3A 3B 3C 
3B -1.845 (3A) XXXXXX XXXXXX 
3C -73.742 (3A) -72.667 (3B) XXXXXX 
3D 0.298 1.531 68.107 (3D) 

Gov bond yield 4A 4B 4C 
4B 66.368 (4B) XXXXXX XXXXXX 
4C -10.687 (4A) -49.234 (4B) XXXXXX 
4D 11.809 (4D) 1.617 14.868 (4D) 

Critical value: 1.833 (95% level, with 9 degrees of freedom). In parenthesis, the                
preferred model in a pairwise comparison. 

 
 
             Table 12: Modified DM statistic: 8-step ahead forecasts 

Dividends 1A 1B 1C 
1B 18.952 (1B) XXXXXX XXXXXX 
1C -0.910 -4.162 (1B) XXXXXX 
1D 1.320 0.900 1.506 

Earnings 2A 2B 2C 
2B -1.154 XXXXXX XXXXXX 
2C -18.204 (2A) -50.511 (2B) XXXXXX 
2D 0.812 0.903 4.971 (2D) 

Interest rates 3A 3B 3C 
3B -1.010 XXXXXX XXXXXX 
3C -40.390 (3A) -39.801 (3B) XXXXXX 
3D 0.163 0.838 37.303 (3D) 

Gov bond yield 4A 4B 4C 
4B 36.351 (4B) XXXXXX XXXXXX 
4C -5.853 (4A) -26.966 (4B) XXXXXX 
4D 6.468 (4D) 0.885 8.143 (4D) 

Critical value: 1.833 (95% level, with 9 degrees of freedom). In parenthesis, the           
preferred model in a pairwise comparison. 
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