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I. Introduction

A rapidly growing amount of recent economic research focuses on the empirical modelling of
variables with cross-sectional interdependence. Theoretical rationales for such work are
almost ubiquitous in economics. game theory for long considered strategic interdependence
among agents (firms or individuals) in their behaviour—examples are the quantity setting of
Cournot firms, the price setting of Bertrand firms, investment decisions in research and
development of oligopolistically competing enterprises, tax competition among regional or
national jurisdictions, or group behaviour of individuals; a second reason for (cross-sectional)
interdependence are general equilibrium effects and the propagation of ‘local’ shocks through
economic systems that are interrelated, e.g., by trade or factor mobility.

An attractive way of allowing for interdependence between cross-sectional units in empirical
models is by means of so-called spatial econometric methods (see Anselin, 1988, for an early
treatment, using the maximum-likelihood approach). The latter typically assume that there is
some known channel of relations among cross-sectional units, e.g., ‘space’ in terms of
geographical distance or adjacency but also input-output relationships or trade flows. A large
class of existing models allows for spatially autoregressive residuals (SAR). There,
interdependence occurs among the unobservable variables in the model. Anselin (2003)
provides atypology of spatial econometric models. However, existing models seem restrictive
from an applied researcher’s point of view, since the SAR process is typically assumed to be
of first order, referred to as SAR(1) (see Anselin, 1988; Kelgjian and Prucha, 1999; or
Kapoor, Kelgian, and Prucha, 2007). In the latter case, the researcher may not allow for a
flexible decay of interdependence in ‘space’, but spatial relationships need to be captured by a
single parameter, given the assumed channel or matrix of interdependence among cross-
sectional units,

This paper formulates a GM estimator for the case of a SAR process of order R, i.e., SAR(R),
for panel data with a large cross-section that is repeatedly observed over a relatively smaller
number of time periods.1 In particular, we generalize the existing GM approach to estimating
the SAR(1) parameter in panel data error component models by Kapoor, Kelgjian, and Prucha
(2007) to the case of a spatial regressive error process of arbitrary order R. Such a framework
allows the applied econometrician to study the strength of interdependence more flexibly than
in existing SAR(1) models. For instance, with the suggested model one may allow first,
second, and higher orders of bands of neighbours to exert a different impact on each other,
given their ‘spatial’ distance, for various economic problems (see Kelgiian and Robinson,
1992; Bell and Boecksteal, 2000; and Cohen and Morrison Paul, 2007, for applications with

! Apart from Kapoor, Kelgjian, and Prucha (2007), panel data models for SAR processes have
been suggested, for instance, by Anselin (1988), Baltagi, Song, Jung, and Koh (2007), and
Lee and Yu (2007). While this list is not comprehensive, our approach of alowing for a
SAR(R) process in a panel data error components model is novel, to the best of our
knowledge. Previous work on higher order spatial processes, focussing on a cross-sectional
model however, includes Lee and Xiadong (2006).



cross-sectional data). Similarly, one may allow for several alternative channels or concepts of
interdependence, e.g. intra-industry and inter-industry spillovers (see Badinger and Egger,
2008, for a cross-section application). Generally, economic, socio-economic, geographical,
demographic (e.g., cultural, lingual), or political distance may play a role explicitly and
simultaneously.

Using a higher order spatial regressive process allows for a more flexible specification and
thus better approximation of the functional form of the decay of interdependence in some pre-
defined space. Moreover, it enables an empirical assessment of the relative importance of
alternative channels of interdependence.

The remainder of the paper is organized as follows. Section |1 briefly summarizes the basic
model specification and introduces some notation. Section 111 derives the moment conditions
for the GM estimators of a SAR(R) process and the optima weighting matrix. Section 1V
demonstrates consistency of the GM estimators and provides Monte Carlo evidence to
illustrate the small sample performance. The last section concludes with a summary of the key
findings.

I1. Basic model specification and notation

The basic set-up of the error components model with spatially correlated error terms
represents a generalization of the framework of Kapoor, Kelgian, and Prucha (2007),
henceforth referred to as KKP. The model comprises i=1,..., N cross-sectional units and

t =1,...,T time periods. For time period z, the model reads

yn(O)=Xy@OF +uy @), (18)

where y, (t) isan N x1 vector with cross-sectional observations of the dependent variablein
year ¢, X, (¢) isan NxK matrix of non-stochastic explanatory variables, with K denoting
the number of explanatory variables in the model including the constant, and u, (¢) is an
N x1 vector of disturbances which is generated by the following SAR(R) process:

uy ()= oo it () + (1), (1b)
gN(t):ﬂN"'VN(t) ) (1c)

where p, and W, , denote the time-invariant, unknown parameter and the known N x N

matrix of spatia interdependence for the m-th band or concept of interdependence,
respectively. The structure of spatial correlation is determined by the R different, time-

invariant N x N matrices ¥, ., whose elements w;; v are often (but need not be) specified asa



decreasing function of geographical distance between the cross-sectional unitsi and ;. Using a
higher order process allows the strength of spatial interdependence (reflected in the spatial
regressive parameters p, , m=1...,R) to vary across a fixed number of R subsets of

relations between cross-sectional units. Obviously, model (1) nests the specification by KKP
asaspecia casefor R = 1. ¢, () isan error term which consists of two components, x, and

vy(t). As indicated by the notation, u, is time-invariant while v, (¢) is not. The typica

elementsof ¢, (1), u,,and v, (r) arethescalars ¢, , u; v, and v, , , respectively.

Let us now stack the observations for all time periods such that ¢ is the Slow index and i is the
fast index with all vectors and matrices, respectively. Then, the model reads

Y :XNﬁ+uN7 (Za)

where y, =[yy@,...,»\(T)]" isthe NT x 1 vector of observations on the dependent variable.
The regressor matrix X, =[X,(@),..,X\(7)] is of dimenson NT xK . Generalizing the
specification in KKP (p. 100), the N7 x1 vector of error terms u, =[u) (1),...,u\(7T)] for a
gpatial regressive process of order R reads

R
uN:zpm(1T®Wm’N)uN+gN, (2b)

m=1

where 7, isan identity matrix of dimension 7'xT . The NT x1 vector ¢, =[&},(D,....&y ()]’
Is specified as

ey =(e, ®1,)uy +vy. (2¢)

The N x1 vector of unit specific error components is given by u,, =[4, tt,..., 12,,]" . Finaly,
I, is an identity matrix of dimension NxN and e, is a unit vector of dimension 7' x1.
Notice that, in light of (2b), the error term can also be written as

R
En :uN_me(IT®Wm,N)uN' ©)
=1
It follows that
3 1
Uy = [IT ® (IN _zmem,N)_ ]SN ) (4a)

m=1

and



YN :XNﬂ+[1T®(]N_meWm,N)il]gN . (4b)

The following assumptions are maintained throughout the analysis.

Assumption 1.
Let 7 be a fixed positive integer. (@) For all 1< ¢ < Tand 1<i < N, N > 1, the error
components v;, v are identically distributed with zero mean and variance o> , 0< o2 < b, <

o, and finite fourth moments. In addition, foreach N>1and 1<t < 7, 1 <i < N the error
components v;; y are independently distributed. (b) For all 1 <i < N, N > 1 the unit specific
error components z;,y are identically distributed with zero mean and variance o, 0 < o <

b, < o, and finite fourth moments. Moreover, for each N > 1 and 1 < i < N the unit-specific
error components ;v are independently distributed. (c) The processes {v;x} and {x;\} are
independent of each other. Assumption 1 is exactly identical to the first-order case considered
by KKP.

Assumption 2.
(a) All diagonal elementsof 7, , arezeroforr=1, ..., R.

b) Yo, |<L

m=1

R
(c) Thematrix (I - p, W, ) isnon-singular.

m=1
Assumption (2c) ensures that »,, and y, are uniquely identified through equations (4a) and
(4b). Assumption (2b) places a restriction on the admissible parameter space. With row-
normalized weights matrices typically used in applied work, Assumption (2c) is implied by
Assumption (2b).2

Assumptions 1 and 2 imply that

E(s,y&,x)=0,+o, fori=jandr=5s, (5a)
E(g, &, y)=0- fori=jand¢ =s, and (5b)
E(e, y&;,,) =0 otherwise. (5¢)

®If the wei ghts matrices W,, y are not row-normalized, assumption (c) would be implied by
R -1
taking the permissible parameter space to be >'|p, | <( rr}axRHWmNH) , where | | is any

m=1

matrix norm (see Horn and Johnson, 1985, p. 301).



As a consequence, the variance-covariance matrix of the stacked error term &y is given by
Q. v :E[gNg]'V]zo-i(JT®IN)+G\:2]NT’ (6a)

where J, =e;e; isa T x T matrix with unit elements and 7,, is an identity matrix of

dimension NT x NT. Equation (6a) can also be written as
Q.on = GVZQO,N + J12Ql,1v . (6b)

where o = o7 +To. . The two matrices Qo,v and Q1 v, Which are central to the estimation of
error component models and the moment conditions of the GM estimator, are defined as

J
QO,N:(]T_TT)®IN7and (7&)
J
Ql,N :7T®]N' (7b)

Notice that Qg and Q, y are both of order NT x NT, and they are symmetric, idempotent,
orthogonal to each other, and sum up to /y7. Pre-multiplying an NT x 1 vector, e.g., &, , with

Qo transforms its elements into deviations from cross-section specific sample means taken
over time. Premultiplying a vector by Q;y transforms the observations into cross-section
specific sample means. The elements of Q,,¢, and QO &, ae then given by

g,y =1 Tz;gw and 1/ Tz;gw, respectively. The matrices Qoy and Qi have the
following properties, which are repeatedly used in the subsequent derivations (KKP, p. 101):

tr(QO,N):N(T_l)! tr(Ql,N)zN! QO,N(eT®IN)=O! Ql,N(eT ®IN)=(eT ®1N)1 (8)
(IT ®DN)QO,N = QO,N(]T ®DN)! (IT ®DN)Q1,N = Ql,N(]T ®DN)'
tr[(1; ®DN)QO,N] = (T -Dur(Dy), and r{(1, ®DN)Q1,N] =ir(Dy),

where Dy isan arbitrary N x N matrix.

Finally, note that the variance-covariance matrix of u, isgiven by

R R
QM,N = E[uNu;V] = [IT ® (IN _meVVm,N)_l]Qg,N[lT ® (IN _zpmVVn'z,N)_l] 1 and (ga)

m=1 m=1

Eluy (0)uy, (0] = (o), + o)Ly =2 2 W) U ® Uy =2 p, i)™ (9b)

m=1 m=1



I11. GM Estimation of a SAR(R) model

1. Moment conditions

KKP (p. 103) use six moment conditions to derive a generalized moments (GM) estimator for
a first-order spatial regressive process (SAR(R), with R = 1). With an R-th order process
(SAR(R), with R >1), the GM estimators of the parametersp,,...,p,, o>, and o can be
obtained by recognizing that — under Assumptions 1 and 2 — the moment conditions used by
KKP hold for each matrix W, n,r=1, ..., R. In particular, we define for each ..y

R
&N = (I, ®W:*,N)8N =1, ®Wr,N)(”N _me (I, ®Wm,N)uN) . (10)

m=1

A word on notation isin order here. In equation (10), subscript » has been introduced together
with m to indicate that, with higher order spatial processes, W,, and W, , meet in

&, v -While we will use index r to refer to the moment condition involving matrix W, , in
equation (10), index m is required in equation (10) for the summation over thetermsp, W,  ;

for summations like that as, e.g., in Assumption 2(b), we use index m throughout. Moreover,
index r is used when there is no danger of confusion as in Assumption 2(a), for example. The
moment conditions are then given by

1

Ma E[—N(T—l) eyOonénl =07, (11)
1 -, — 2 1 '

My, E[m g nOoné w1 =0, Ntr(VVr,NVVr,N) :
1

Mz, E[mgr,NQO,NgN] =0,

1,

Mp E[WSNQLNSN] =0 ,where o =0’ +T0'5 ,
1._, _ , 1 ,

Ms, E[ﬁ gr,NQl,Ngr,N] =0 ﬁtr(VV;‘,NWr,N) )
1_,

Ma, E[WEV,NQLN‘QN] =0.

The moment conditions associated with matrix W, , (» =1...,R) through (10) are indexed

with subscripts 1 to 4. The remaining two moment conditions, which do not depend on r, are
denoted as M, and M. For an R-th order process we thus have (4R + 2) moment conditions.

Substituting equations (4), (10), and (1c) into the 4R +2 moment conditions (11) yields a (4R
+ 2) equation systemin p, ..., pr, o2, and o, which can be written as

vy —Iya=0, (12)



where aisa[2R + R(R-1)/2 + 2] x 1 vector, given by
2 2 2 2\
A = (Prreens Prs PLreees Prs PLP21w01 PP+ Pr-1Pr1 031 01) s

i.e, a contans R linear terms p, (m=1..,R), R quadratic terms p> (m=1...,R),
R(R-1)/2cross products p,p, (m=1..,R-1I=m+1..,R), aswell as ¢ and o . For
later reference, we define the vector of spatia regressive parameters p = (p,,..., p;)" and the

(row) vector of al parametersas 6 = (p,,..., Pz, 02,07) .

vy 1S a (4R+2)x1lvector with elements [y,], i = 1, ..., (4R+2), and [, is a
(AR+2)x[2R+R(R-1)/2+2]  matrix with elements [y,], i=L1..,(4R+2),
j=1..,[2R+R(R-1)/2+ 2], whose elements will be defined below. Subscript N is dropped
from the elements of y, and ", for smplicity of notation here. The row-index of the

elements y,, and ", will be chosen such that the equation system (12) has the following

order. The first four rows correspond to the moment restrictions M1, to Ma,1 associated with
matrix W, ,, through (10); row five to eight correspond to M3, to My, associated with matrix

W, v, and so fourth; rows (R—4) to 4R correspond to the Mz to M4 associated with the
matrix W, . Finally, rows 4R+1 and 4R+2 correspond to the moment conditions Ma and My,

respectively, which do not depend on r.
The sample analogue to equation system (12) is given by

gy —Gya=39,(00), (13)

where the elements of gy and Gy are equal to those of yy and 7y with the expectations
operator suppressed and the disturbances uy replaced by (consistent) estimates ), .

GM estimates of the parameters py, ..., pr ,o> and o, are then obtained as the solution to

agmin  [(g, - Gy@) 5, (g, — G, =[9, (6) Z31(,(O)], (14)

2 2
P11P211PR1Oy 1O

i.e.,, the parameter estimates can be obtained from a (weighted) nonlinear least squares
regression of g, on the columnsof G, ; 4, (¢) can then be viewed as a vector of regression

residuals. The optimal choice of the weighting matrix =, will be discussed below.



In the following, we define the elements of yy and 7 grouped by the corresponding moment
conditions. For this, let us use the following notation:

U,y =, W, Juy,,m=1,...,R,and (15a)
i, = ®W, NI W, Juy =, ®W, W, Juy,r=1,...,R,m=1,...R.(15b)

Moreover, running index /=1,...,R has to be introduced for a proper definition of the

elements of 7y and y.

Moment condition M1, delivers » =1,..., R lines of equation system (12), appearing in rows
4(r-1)+1 with the following elements of yy and 7y:

1
Vag-yn = m
2
7/4(r—1)+l,m - N(T _1)

E[ ﬁr,,NQO,NL_lr,N:L
E[Z’_lr',NQO,Nﬁrm,N] ,m=L..,R,

7/4(r—1)+l,R+m = _mE[Er’m,NQO,Nﬁrm,N] y M= 111R ’

2 = =
}/4(r—l)+l,R(m+l)fm(m—l)/2+l—m = _mE[urm,NQO,Nurl,N] y m ::L!R _1! l =m +1¢)R ’

1 ,
Y 4(r-1)+1,2R+R(R-1) /241 — Ntr(Wr,NWr,N) )
Y a(r—1)+1,2R+R(R-1) 1242 = 0.

Moment condition M, consistsof » = 1, ... R lines of equation system (12), appearing in
rows 4(r-1)+2 with the following elements of yy and 7'y:

1 —
Va2 = N—(T 1) Elu; yOonun],
1 = — —
Vagr-vsom = mE[urm,NQO,NuN +ur,NQO,Num,N] ,m=1..,R,

1

Y a2,k m = _mE[ﬁrlm,NQO,Nﬁm,N] ,m=1..,R,

1 g} — =g} —
Y a(r-0)+2,R(m+1)-m(m-1) 21-m = _mE[url,NQO,Num,N +i,, yOonth y], m=1..,R-1,

I=m+1...,R,
Y a(r-1)+2,2R+R(R-1) 1241 = 0,

Y a(r1)+2,2R+R(R-1) 1242 = 0.



Moment condition M3, correspondsto » =1, ... R lines of equation system (12), appearing in
rows 4(r-1)+3 with the following elements of yy and 7'y:

1 _, —
Var-1+3 = ﬁ E[“r,NQl,N”r,N] '

2 ., =
?/4(/*—1)+3,m = NE[MV,NQ].,NMWH,N] y m :l"R ’

1 - =
7/4(1*—1)+3,R+m = __E[ur’m,NQl,Nurm,N] y m ::L’R ’

N
2 = =
Y a(r=1)+3. R(m4L)=m(m=1) | 2+1-m — _NE[urm,NQl,Nurl,N] ,m=1..,R-1,1=m+1..,R,

Y 4(r-1)+3,2R+R(R-1) /21 — 0,

1 :
Y a(r—1)+3 2R+R(R-1) [ 242 — Wtr(VVr,NWr,N) .

Moment condition M4, represents» = 1, ... R lines of equation system (12) appearing in rows
rows 4(r-1)+4 with the following elements of yy and 7'y:

1
Vagr-pra = ﬁE[ur,NQl,NuN] )

1 = — —
Vagr-nram = NE[urm,NQl,NuN +it, Oy, ], m=1..,R,

j — _
7/4(r—1)+4,R+m = _WE[urm,NQ:L,Num,N] y m =11---;R )

1 =, _ =y _
7/4(r—1)+4,R(m+l)—m(mfl)/2+l—m = _FE[url,N Ql,N um,N + urm,NQl,Nul,N] y M= 11’R _1’
l=m+1,...,R,
Y a(r—1)+4,2R+R(R-1) 1241 = 0,

Y 4(r-1)+4,2R+R(R-1) 1 242 = 0.

Moment condition M, reflects 1 line of equation system (12) appearing in row (4R + 1) with
the following elements of yy and 7'y:

1 :
Vari =mE[uNQO,NuN]’
2 —
7/4R+1,m = N(T—l) E[um,NQO,NuN] y M ::L!R ’

1 _, _
7/4R+1,R+m = _mE Um’NQO’Num'N] , m =l...,R s

2

Y aR4LR(m+Y)=m(m=1) 2+1-m — _mE[ﬁr;,NQO,NﬁI,N] ,m=1..,R-1,I=m+1..,R,

10



Y aR12R+R(R-1) 1241 = 1,

Y 4R+1,2R+R(R-1) /242 — 0.

Moment condition My, is associated with 1 line of equation system (12) appearing in row (4R
+ 2) with the following elements of yy and 7':

1.
Vars2 ZWE[uNQl,NuN];
2 e
74R+2,m = WE[umyNQl,NuN] , m ::L,R y
1 ., _
}/4R+2,R+m = _WE[M'",NQLNum,N] , M :l,,R ,

2 ., _
74R+2,R(m+l)—m(m—l)/2+l—m = _WE[um,NQl,Nul,N] » m :1'1R _1’ l: m +1"R ’

Y 4R+2,2R+R(R-1) 1241 — 0,

Y aR+2,2R+R(R-1) 1242 — 1.

This completes the specification of the elements of the matrices y,, and I",,. The similarity of

the structure between the expressions resulting from the moment conditions M, M1, and M,
on the one hand and My, M3,, M4, on the other hand is apparent: they differ only by the
normalization factor and the matrix of the quadratic forms (Qoy or O15). Moreover, note that

the rows in (12) resulting from M,, My, and My, (» = 1, ...R) do not depend on & whereas
the rows resulting from My, M3,, and M4, (r = 1, ...R) do not depend on af . Thisfact will be

used to define an initial GM estimator, which is based on a subset of moment conditions (M,
M1, and M2,) only, in order to obtain an estimate of the matrix =, .

For future reference, we define the (2R +1) x1 vector ¥\ as the sub-vector containing rows »
and (r+1), r=1..,R and row (2R+1of y, (corresponding to Mi,, My, and My).
Moreover, we define the (2R+1)x[2R+ R(R-1)/2+1] matrix I'y as the sub-matrix
containing rows » and (»+1), »=1..,R, and row (2R+1) of ", (corresponding to My,

M, and M), with the last column of I",, (associated with &) deleted.

Similarly, we define the (2R +1) x1 vector y;, as the sub-vector containing rows 2r, (2r +1),
r=1..,R,and row (2R +2)of y, (corresponding to Ms,, M4, and My). Finaly, we define
the (2R +1) x[2R + R(R —1)/2+1] matrix I}, asthe sub-matrix containing rows 2r, (2 +1),
r=1..,R,and (2R+2) and I", (corresponding to Ms,, M4, and My), with the second last
column of I, (associated with o) deleted.

11



2. GM estimators of an R-th order spatial regressive process
2.1. Additional assumptions
Before defining the GM estimators, we make three additional assumptions.

Assumption 3.
The elements of Xy are bounded uniformly in absolute value by &, < . Furthermore, for i = 0,
1, the matrices

R S R
M = ]ULQWXN (P)Y O Xy (P) (16a)

R
with X (p) =[1, ® (I, = > p,W, y)1 X, and the matrices
r=1

1, R R
fim X3 X lim XL (0) X (0), i~ X (p) 2, X () (16b)
are finite and non-singular.

Assumption 3, which isidentical to that in the first order case considered by KKP, is typical
in large sample analyses. It is required, since the asymptotic properties of OLS and feasible
generaized least-squares estimates (GLS; FGLS for feasible GLS) of £in (2a) involve limits
of the expressions above.

Assumption 4.
R
The row and column sums of W, y, »=1, ..., R, and P, (p)=(1, —Zerr,N)‘lare bounded
r=1
uniformly in absolute value by ky < oo and kp < o, respectively, where kp may depend on p =
(o ... pr). We take ky as largest of the bounds of the weights matrices, i.e.,
ky, = max(ky, ;... ky 1) 2 As KKP (pp. 106) point out, assumption (4) restricts the extent of
neighborliness of the cross-sectional units on the one hand, and the degree of cross-sectional

correlation between the model disturbances on the other hand. Such restrictions on the degree
of permissible correlations are standard in virtually all large sample theory.

Assumption 5

The smallest eigenvalues of (I'y)'(I'y)and (I'y)'(I"y) are bounded away from zero, i.e.,
Ain (T ()= A >0 for i = 1, 2, where 4. may depend on p,...,p,, o, and o7.
Assumption 5 ensures identifiable uniqueness of the parameters p,,..., p,, o2, and o/. We

show in the Appendix that Assumption 5 also implies that the smallest eigenvalue of
(") (") is bounded away from zero.

: See Appendix A1l for adefinition of row (column) sum boundedness.
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We may now define three different GM estimators for the case of an R-th order spatial
regressive process (see KKP for analogous conditions under SAR(1) estimation).

2.2. Initial GM estimation
The initial GM estimator is based on a subset of moment conditions (M,, M1,r and M>,) and

thus on the matrices 7% and »° only.” Define 6°as the corresponding parameter vector that

excludeso; ,i.e. 8° = (p,02) = (p,,...px o) and accordingly

A% = (Do Prs PLveees P PrPasewss PiPg v PraPrr O ) -

Theinitial GM estimator is then obtained as the solution to
(Poyrees Prn:Ooy) =agmin{ 99 (6°) 9(6°), p e[-a,al, o’ [0,b]}, (179)

wherea > 1,5 > b, and 93(8°) = 93 (p,02) = (g5 —Gra®).

Using these initial estimates of pi, ..., pr and o2, o} can be estimated from moment
condition My
~ 1 - R - - , - R - -
Oy = W(MN - zpm,Nl’_lm,N) Ql,N(”N - zpm,Nﬁm,N) (17b)
m=1 m=1
=84ri2 "~ g4R+2,151,N T g4R+2,R,5R,N - g4R+2,R+151?N
_g4R+2,2R51§,N - g4R+2,2R+1:51,N,52,N T g4R+2,2R+R(R—l)/25R—1,NIBR,N'

2.3. Weighted GM estimation

2.3.1 Optimal weighting matrix

It is well known from the literature on generalized method of moments estimation, that it is
optimal to use as weights matrix the inverse of the (properly normalized) variance-covariance
matrix of the moments, evaluated at true parameter values.

The optimal weights matrix is thus given by =.'=[NVar(n,)]™, where ny denotes the

[(4R+2) x 1] vector of moments, evaluated at the true parameter values. Suppressing the
expectations operator (and ignoring the deterministic constants), the elements of 7y
correspond to the expressions on the left hand side in equation (11). Notice, however, that the

* An dternative would be to use an unweighted GM estimator based on all six moment
conditions; however, as KKP (2007) show in their Monte Carlos study for a SAR(1) model,
this estimator may perform much worse than the initial GM estimator, based on just three of

their six moment conditions corresponding to our Iy and y%. Hence, in the following, the
initial GM estimator will be used to obtain an estimate of = ;"

13



ordering in equation system (12) is different, where the rows corresponding to M, and My, are
placed in the last two rows, such that

1 ]
& &,
N(T _1) ),NQO,N r,N
! g £
N(T _1) I‘,N O,N N
1., _
ﬁgr,NQl,Ngr,N

1.,

— & N NEN

Ny (18)

1
— & &
N(T_l) NQO,N N

1,
—& &
N NQl,N N

Notice that the matrix =, = NVar(n,) is symmetric and of order (4R + 2) x (4R + 2). Its

elements are derived by substituting ,, = (I, ®W, ,)e, and using the results that
Cov(eyAy ey exByey) = 2tr(A4,Q, (B2, ) for two non-negative definite symmetric

matrices Ay and By and sy ~N(0, 2, ), see, e.g., Amemiya (1973, p. 5).”

Thematrix = isthengivenas =, =[¢, ], 7, s=1,...,R+1li.e,

fl,l ) gl,R gl,R‘Fl

—
- —
—

' . 19
N é:R,l é:R,R §R,R+l ( )

§R +1,1 §R+1,R §R+1,R+1

Subscript N has been dropped from the elements £,  here to simplify notation. The matrix =,
is made up of three parts.

i) An upper left block of dimension 4R x 4R, consisting of R? blocks of order 4 x 4, which are
defined as

For quadratic forms in non-symmetric matrices Ay (or By) we use the fact that
eyAyey =eyA' yey =6y (Ay+4')e, 12, which is a quadratic form in the symmetric
matrix (4, +A4',)/2.
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&, _C®TVZ,, =1, ...R, where (20)

I

C= v , (21)

1 ,
. FZF(W w. W W, N) Ntr(W N/ N(VK vt S’N))
T" = 1 1 rns=1 ...,R (22
ﬁt’”(W’N s MUZSYE VVrN)) ﬁ”(W;,NWv,N + VVV,,NVVV,N)

ii) Thelast row (and column) block of dimension 2 x 4R (4R x 2), each consisting of R blocks
of order 2 x 4 (4 x 2), defined as

§R+1s = C®t1V?V+1S ! and 55 R+l — (§R+1s)’ S = 1’ R} R’ Wlth (23)

o, [ (W, ) 0} LR (24)

1ii) The lower right block of order 2 x 2, defined as

§R+1,R+1 = C ® tll/2V+l,R+l = C ® 2 : (25)

For definiteness, we add that the position of each block &.; is such that its upper left element
appearsin row (4r-3) and column (4s-3) of the (4R + 2) x (4R + 2) matrix = y. The position of
each block &,,,, =C®ty,,,, s =1, ..., R, issuch that its first element appears in row
(4R+1) and column (4s-3) of Zy. Finally, the upper left element of the block (&, .,) appears

inrow (4R+1) and column (4R + 1) of 5y .

2.3.2 The ‘weighted GM estimator’
Using the estimate z v » one can proceed with aweighted regression, using all 4R +2 moment

conditions. The weighted GM estimator is obtained as the solution to
(Buy s Py GonsO1y) = AgMIn{ 8, (0) 5,9, (0), p €[-a.al, o’ €[0,b], 07 €[0,c]} , (26)
wherea > 1,b2b,,c2Th, +b,, and 9,(8) = 9, (p.or.07) = (g4 — Gya).

2.3.3 The ‘partially weighted GM estimator’

KKP suggest using a simplified weighting scheme for computational purposes. This scheme
uses the same weight for the first three moment conditions (M5, M1, and M»,,) and the same
weight for the three other moment conditions (My,, M3,,, and My,,), but the weight used for the
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first three moment equations is different from that used for last three moment equations. In
case of a higher order process, this simplified weighting matrix =7 isgiven by

cC®I, 0 : 0 0
0 C®I, 0
Er=| . : . (27)
0 c®I, 0
.0 o . : C®1]

and the partially weighted GM estimator is defined as

(Dry s P O Ton) = AgmIin{ 9, (8) (57)" 9, (0). p e[-a.al,c” €[0,5], 07 €[0.c]}, (28)
wherea>1,b>b,, ¢ 2 Th, +b, and 9,(0) = 9, (p.0.,07) = (gy — Gya).

3. Properties of the proposed GM estimators

3.1. Large sample results

This section summarizes some important asymptotic properties of the proposed GM
estimators. The proofs are relegated to the Appendix.

Theorem 1. Consistency of initial GM estimators
Suppose Assumptions 1-5 hold. Then, if ENis a consistent estimator of £, the initial GM

estimators (py,..., pp, 0,0, ) defined by (17a) and (17b) are consistent for p,,..., pz,0-, 07,

. ~ ~  ~3 ~p \ P
I.€., (pl,Nv--!pR,N’O-VZ,N'O-lZ,N)_>(p1!---!pR'O-v21O-12) as N oo,

Theorem 2. Consistency of weighted GM estimators
Suppose Assumptions 1-5 hold and that the smallest and largest eigenvalues of the matrices

=1 satisfy 0< 4 < 2,0 (53 < A (531) < A < 0. Suppose furthermore that 3, and =,
are consistent estimators of £ and =, , respectively. Then the weighted GM estimators

(Pry e PrysOF 1 Oy ) defined by (26) are consistent for p,,..., oy, 07,07, i€,

A A ~2  ~2 P 2 2
(pl,N""’pR,N’Gv,N’Gl,N)%(pli""pR’Jvial) as N—>wx.

Theorem 3. Consistency of partially weighted GM estimators
Suppose Assumptions 1-5 hold. Suppose furthermore that 5 and 5;; are consistent

estimators of f and ZY, respectively. Then, the partially weighted GM estimators

(Dryses Prys o, Or) defined by (28) are consistent for p,..., p,, 02,02, i€,
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v v v 2 v 2 P 2 2
(pl,N""’pR,N'G"rN’leN)_)(pl""’pR'Gv'O-l) as N —>o.

Since the specification of the main equation is identica to that in KKP, the focus of the
present paper is on the spatial regressive error process. But it is readily verified by an
inspection of the respective proofs in KKP,’ that under the maintained assumptions the
following two theorems also hold in case of an R-thorder spatial regressive error process.

Theorem 4. Consistency of OLS estimator of 3
Suppose Assumptions 1-4 holds. The OL S estimator of fbased on (2a), which is given by

3OS = (X1, X)Xy, , isconsistent for j,i.e., 252> as N — oo.

Theorem 5. Asymptotic distribution of the GLS and FGLS estimators of
The true generalized |least squares (GLS) estimator of Zis given by

B0 ={X 12,5 (pol o)X} X2, (0,07 0]y (29%)

Using the expression for ©, , in(9a), this can also be written as

5 = (X (P25 (7, 0DIX () X (DI (07,020 (o) where  (290)
X, (p) =y ®(1, =3 P, X, (302)
Vo) =1y O 1 =3 o, oy (300)

The feasible generalized least squares (FGLS) estimator is obtained by replacing the true
parameters p,c’,and o by their respective (initial, weighted, or partially weighted) GM

estimates, denoted as p,572,and &7.

Now, suppose that Assumptions 1-4 hold.
(a) Then the GL S estimator is consistent and asymptotically normal, i.e.,

(NT)?[ B - B2 N{O, "} as N —> oo, with
¥ =[c M +0,°M;"1™.

®In particular, the proofs of consistency of OLS in KKP (2007, p. 124) and the proof of
Theorem 4 in KKP (2007, p. 126).
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(b) Let p,,52,,and &7, be (any) consistent estimates of p,c?,and o . Then,

(NT)"?[B5" = Br150 as N — oo

FGLS

This means that GLS and FGLS are asymptotically equivalent and, hence, ,éN is aso
consistent and asymptotically normal.

(c) Furthermore,

¥, -¥250as N -, where

7y = {%X;’ (DL S0y 001Xy (p,v)} .

This suggests that small sample inference can be based on the approximation
B~ N(B,(NT) ).

While we demonstrate in the Appendix that the initial, weighted, and partially weighted GM
estimators of p,o?,and of defined in (17), (26), and (28) are consistent, we are also
interested in their small sample performance. We thus proceed with a Monte Carlo study.

IV. Monte Carlo analysis
In this section, we consider a Monte Carlos experiment for the case of a third-order spatial
regressive process, i.e.,

3
Uy = me (IT ® I/Vm)MN + gN - (31)
m=1

In al our Monte Carlo experiments, the time dimension is 7= 5. Concerning the cross-section
dimension, we consider three sample sizes: N = 100, N = 250, and N = 500. For our basic
setup of the weights matrix, we follow Kelgiian and Prucha (1999) and use a binary “up to 9
ahead and up to 9 behind” contiguity specification. This means that the elements of the time-
invariant, raw weights matrix #° are defined such that the i-th cross-section element is related
to the 9 elements after it and the 9 elements beforeit.

The raw NxN matrix WP is then split up into three Nx N matrices W,°, W, and W7,
where W2+ Wy + W, =w°. The matrices W,°, W, , and W,) are specified such that they

contain the elements of W° for different bands of neighbours and zeros else: w,” corresponds
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to an “up to 3 ahead and up to 3 behind” specification, 7, corresponds to a“4 to 6 ahead and
4 to 6 behind” specification, and W, corresponds to a “7 to 9 ahead and 7 to 9 behind”
specification. The final weights matrices W, W,, and W3 are obtained by separately row-
normalizing W,”, W, , and W, that is by dividing their elements wy,, wy ., and wj, through

the corresponding row sums d ;, d2,;, and ds;, respectively.

With three row-normalized matrices W1, W», and W3, the parameter space for p1, 2, and ps3
must satisfy 0<|py|+|p,|+|ps| <1 for (1 — p¥, - p,, — p¥,) to be invertible. We consider

10 parameter constellations, assuming that the parameter values (o1, p2, p3) ae non-increasing
in the order of neighbourhood, i.e., we always have p1 > p, > pa.

Table 1. Parameter constellations in the Monte Carlo experiments

Parameter

constellation P1 P2 P3
Q) 04 0.4 0
) 0.4 0.2 0.2
3) 0.4 0.2 0.1
(4) 0.4 0.2 0
(5) 0.4 0 0
(6) 0.2 0.2 0.2
@) 0.2 0.1 0
(8) 0.2 0.2 0
(9) 0.2 0 0
(10) 0 0 0

Regarding the properties of the error process gy, we assume that a/f =c’=1,i.e, theerror

components xy and v;, are drawn from a standard normal distribution. For each Monte Carlo
experiment we consider 2000 draws. To ensure comparability, the same draw of xand v is
used for each of the 10 combinations of pi, o, and ps. Tables 2-4 show the results for the
three sample sizes.

The tables are organized as follows. Each column shows the results for one parameter
constellation, corresponding to the true parameters values given in the rows pi1, 2, ps, afl

and o’ . Below each parameter, the bias and root mean squared error are listed for each of the

three estimators, i.e., theinitial GM estimator (GM™), the weighted GM estimator (GM "), and
the partially weighted GM estimator (GM'™).

The results suggest that the proposed GM estimator performs reasonably well, even in small
samples. As can be seen from Table 2, which is based on a sample size of 100 observations,

the bias over al parameter constellations is fairly smal for al three estimators.
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Table 2. Monte Carlo Results, N = 100, T =5, 2000 draws

Parameter Constellation” (1) @) ©) (4) (5) (6) 7) (8) (9) (10) average ?
o1 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0.2800
Bias GM™ -0.0049  -00058 -0.0067 -0.0073  -0.0093 -0.0076  -0.0097 -0.0088  -0.0105 -0.0115  0.0082
GM" 00126 00142 00137 00133 00140 00145 00144 00141 00147 00147  0.0140
GMPY 00022 00026 00026 00025  0.0029 00024 00027 00025 00028  0.0026  0.0026
RMSE GM™ 00652 00703 00691 00681 00722 00789 00806 00781 00834  0.0936  0.0759
GM" 00592 00649 00634 00621 00659  0.0722 00732 00709 00758  0.0847  0.0692
GMP 00586 00632 00618 00607 00641 00705 00716 00694 00740  0.0832  0.0677
D 0.4 0.2 0.2 0.2 0 0.2 0.1 0.2 0 0 0.1500
Bias GM™ -0.0006 00005  -0.0003 -0.0010 -0.0012 -0.0015 -0.0028 -0.0028  -0.0028  -0.0043  0.0018
GM" -0.0064 -0.0078  -0.0071  -0.0063  -0.0058  -0.0066  -0.0052  -0.0052  -0.0051  -0.0046  0.0060
GMPY -0.0009  -00014 -0.0013  -0.0012 -0.0014  -0.0009  -0.0008  -0.0006 -0.0010  -0.0007  0.0010
RMSE GM™ 0.0814 00795 00805 00813 00795 00824 00850 00848 00847  0.0904  0.0829
GM" 0.0754 00745 00754 00761 00745 00768 00795 00791 00792  0.0846  0.0775
GMPY 00749 00732 00742 00749 00733 00759 00783 00781 00780 00833  0.0764
s 0 0.2 0.1 0 0 0.2 0 0 0 0 0.0500
Bias GM™ 00012 -00023  -0.0023 -0.0023 -0.0033 -0.0031  -0.0033 -0.0028 -0.0038  -0.0043  0.0029
GM" 00051  -00051  -0.0038  -0.0026  -0.0006 -0.0041  -0.0017 -0.0026  -0.0010  -0.0013  0.0028
GMP" 00005 -00003 00000  0.0001 00005 00001 00002 00001  0.0003  0.0002  0.0002
RMSE GM™ 00702 00713 00725 00730 00741 00792 00809 00804 00812 00875  0.0770
GM" 00649 00658 00671 00675 00684 00735 00751 00747 00753 00813 00714
GMPY 00646 00657 00669 00675 00686 00731 00750 00745 00753  0.0813  0.0713
o) 1 1 1 1 1 1 1 1 1 1 1.0000
Bias GM™ -0.0110 -00111 -0.0114 -00116 -0.0120 -0.0121 -0.0128 -0.0126  -0.0129 -0.0137  0.0121
GM" 00122  -00120 -0.0123  -0.0124 -00126 -0.0111  -0.0114 -00113 -0.0115 -0.0105  0.0117
GMP" 00121  -00121  -00122 -0.0122 -0.0123 -0.0120 -0.0120 -0.0120 -0.0120  -0.0118  0.0121
RMSE GM™ 00723 00719 00717 00716 00714 00713 00709 00711 00709 00708  0.0714
GM" 00721 00717 00716 00716 00714 00710 00707 00709 00707  0.0704  0.0712
GMPY 00721 00717 00716 00715 00713 00711 00707 00709 00707  0.0705  0.0712
o} 6 6 6 6 6 6 6 6 6 6 6.0000
Bias GM™ 0.0218 00209 00179 00158 00125 00135 00082 00100 00068  0.0020  0.0129
GM" -0.0914  -00909  -0.0923  -0.0933  -0.0951  -0.0847 -0.0869  -0.0860  -0.0879  -0.0816  0.0890
GMPY -0.0886  -0.0894  -0.0894  -0.0892  -0.0900 -0.0878 -0.0876  -0.0873  -0.0880  -0.0862  0.0883
RMSE GM™ 0.8745 08712 08702 08700 08675 08667 08647 08661  0.8637  0.8616  0.8676
GM" 0.8641 08624 08622 08621  0.8610 08603 08588  0.8595  0.8584  0.8571  0.8606
GMPY 0.8649 08630  0.8628  0.8627  0.8615 08610 08596  0.8604  0.8591  0.8580  0.8613

Note: GM™, GM", GMP" denote initial, weighted, and partially weighted GM estimator respectively. » Each column corresponds to one parameter constellation (see

Table 1). 2 Average of absolute row values.

20



Table 3. Monte Carlo Results, N = 250, T =5, 2000 draws

Parameter Constellation? (1) ) ©) (%) (5) (6) 7 ) ©) (10) average ?
P 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0.2800
Bias GM™ -00028  -0.0033  -0.0037 -0.0039 -0.0048 -0.0043 -00052 -0.0047 -0.0055 -0.0061  0.0044
GM" 0.0060 00068 00065  0.0063  0.0066  0.0070 00069 00067 00070 00070  0.0067
GMP" 00010 00012 00012 00012 00013 00010 00012 00011 00012  0.0010  0.0011
RMSE  GM™ 00399 00431 00419 00410 00429 00478 00480 00467 00495 00555  0.0456
GM" 00359 00394 00383 00373 00392 00435 00436 00424 00450 00502  0.0415
GMP" 00361 00390 00378 00369 0038 00431 00432 00420 00445  0.0499  0.0411
P2 0.4 0.2 0.2 0.2 0 0.2 0.1 0.2 0 0 0.1500
Bias GM™ 00005 00000  -0.0004 -0.0007 -0.0009 -00009 -00015 -0.0015 -0.0016 -0.0023  0.0010
GMY -0.0036  -00042 -0.0039 -0.0035 -0.0032 -0.0037 -0.0029  -0.0030  -0.0029  -0.0027  0.0033
GMP" 00012  -0.0014  -0.0014  -0.0013  -0.0014  -0.0012 -00012 -0.0011  -0.0013  -0.0012  0.0013
RMSE  GM™ 00497 00487 00493  0.0498 00487 00506 00522 00521 00520 00556  0.0509
GM" 0.0443 00437 00442 00446 00436 00453 00467 00466 00465 00498  0.0455
GMP" 00444 00435 00440  0.0444 00434 00452 00466 00465 00464  0.0497  0.0454
Ps 0 0.2 0.1 0 0 0.2 0 0 0 0 0.0500
Bias GM™ 00005 00000  -0.0004 -0.0007 -0.0009 -0.0009 -00015 -0.0015 -0.0016 -0.0023  0.0010
GMY -00036  -0.0042  -0.0039  -0.0035 -0.0032 -0.0037 -00029 -0.0030 -0.0029  -0.0027  0.0033
GMmP" 00012 -0.0014 -0.0014  -0.0013  -0.0014  -0.0012 -00012 -0.0011 -0.0013  -0.0012  0.0013
RMSE  GM™ 0.0497 00487 00493  0.0498  0.0487 00506 00522 00521 00520 00556  0.0509
GM" 0.0443 00437 00442 00446  0.0436 00453 00467 00466  0.0465  0.0498  0.0455
GMP" 00444 00435 00440  0.0444 00434 00452 00466 00465 00464  0.0497  0.0454
o 1 1 1 1 1 1 1 1 1 1 1.0000
Bias GM™ -0.0043  -00045 -0.0046 -0.0046 -0.0048 -0.0050 -0.0052 -0.0051 -0.0053  -0.0057  0.0049
GM" 00052  -0.0052  -0.0053  -0.0054 -0.0055 -0.0047 -0.0049  -0.0048  -0.0050  -0.0045  0.0051
GMmP" 00051  -0.0052  -0.0052  -0.0052  -0.0053 -0.0052  -0.0051 -0.0051 -0.0052  -0.0051  0.0052
RMSE  GM™ 0.0464 00462 00461  0.0460  0.0460 00458 00456 00457  0.0456  0.0455  0.0459
GMY 00463 00461 00460  0.0460 00459 00458 00456 00456 00456 00454  0.0458
GMP" 0.0463 00462 00460  0.0460  0.0459  0.0459 00456 00457 00456  0.0455  0.0459
o 6 6 6 6 6 6 6 6 6 6 6.0000
Bias GM™ 00095 00088 00083 00080 00072 00059 00047 00052 00043 00017  0.0064
GM" 00352  -0.0349  -0.0354  -0.0357 -0.0364 -0.0318 -00326 -0.0323 -0.0330 -0.0300  0.0337
GMP" -0.0336  -00341  -0.0340 -0.0338 -0.0341 -00334 -0.0331 -0.0330 -0.0332 -0.0325  0.0335
RMSE  GM™ 05331 05323 05320 05320 05317 05308 05301 05303 05300 05293 05311
GM" 05290 05290 05287 05284 05284 05280 05273 05273 05274 05269  0.5280
GMP" 05297 05297 05293 05290 05291 05288 05281 05281 05282 05280  0.5288

Note: GM™, GM", GMP" denote initial, weighted, and partially weighted GM estimator respectively. » Each column corresponds to one parameter constellation (see

Table 1). 2 Average of absolute row values.
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Table 4. Monte Carlo Results, N =500, 7T =5, 2000 draws

Parameter Constellation? (1) ) ©) (%) (5) (6) 7 ) ©) (10) average ?
P 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0.2800
Bias GM™ 00025 -0.0028 -0.0029 -0.0028  -0.0031  -0.0032 -00033 -0.0032 -0.0034  -0.0037  0.0031
GM" 00021 00023 00023  0.0023 00025 00024 00025 00024 00026 00026  0.0024
GMP" -0.0006 -0.0006 -0.0005 -0.0004 -0.0002 -0.0007 -0.0003 -0.0004 -0.0003 -0.0004  0.0004
RMSE  GM™ 00281 00304 00297 00291 00306 00341 00344 00334 00355 00399  0.0325
GM" 00241 00265 00258 00252 00267 00295 00298 00288 00308 00344  0.0282
GMPY 0.0247 00268 00261 00255  0.0269 00299 00301 00293 00311 00350  0.0285
P2 0.4 0.2 0.2 0.2 0 0.2 0.1 0.2 0 0 0.1500
Bias GM™ 00008 00011 00009  0.0008  0.0007  0.0008 00005 00005 00005 00004  0.0007
GM" -0.0009  -00011  -0.0010 -0.0008  -0.0006  -0.0008  -0.0004 -0.0004 -0.0004 -0.0002  0.0007
GMP" 00006 00005 00005  0.0005 00004 00007 00007 00007 00006 00007  0.0006
RMSE  GM™ 00342 00335 00339 00343 0033 00347 00359 00358 00358  0.0383  0.0350
GM" 00304 00300 00304 00308 00302 00310 00322 00320 00322 00344  0.0314
GMP" 00308 00301 00305 00308 00301 00312 00322 00321 00321 00343  0.0314
Ps 0 0.2 0.1 0 0 0.2 0 0 0 0 0.0500
Bias GM™ 00008 00011 00009  0.0008  0.0007  0.0008 00005 00005 00005 00004  0.0007
GMY -00009  -0.0011  -0.0010  -0.0008  -0.0006 -0.0008  -0.0004 -0.0004 -0.0004 -0.0002  0.0007
GMmP" 00006 00005 00005  0.0005 00004 00007 00007 00007 00006 00007  0.0006
RMSE  GM™ 00342 00335 00339 00343 0033 00347 00359 00358 00358  0.0383  0.0350
GMY 0.0304 00300 00304 00308 00302 00310 0032 00320 00322 00344  0.0314
GMP" 00308 00301 00305 00308 00301 00312 00322 00321 00321 00343  0.0314
o 1 1 1 1 1 1 1 1 1 1 1.0000
Bias GM™ -0.0017 -00017 -0.0017 -0.0017 -0.0017 -0.0020 -0.0020 -0.0020  -0.0020  -0.0022  0.0019
GM" 00021  -0.0020 -0.0021  -0.0021  -0.0021  -0.0018  -0.0018 -0.0018  -0.0018  -0.0016  0.0019
GMmP" 00020  -0.0021  -0.0020  -0.0020  -0.0019  -0.0021  -0.0019  -0.0020  -0.0019  -0.0019  0.0020
RMSE  GM™ 00330 00329 00329 00328 00328 00327 00326 00326 00326 00327  0.0328
GMY 00328 00327 00327 00327 00328 00326 00326 00326 00326 00326  0.0327
GMP" 00329 00328 00327 00327 00327 00326 00326 00326 00326 00326  0.0327
o 6 6 6 6 6 6 6 6 6 6 6.0000
Bias GM™ 00015 00011 00011 00011 00012  -00007 -0.0006 -0.0006 -0.0005 -0.0020  0.0010
GM" 00199  -0.0198  -0.0199  -0.0199 -0.0199 -0.0186 -00185 -0.0186 -0.0186  -0.0174  0.0191
GMP" -0.0202  -00203  -0.0200 -0.0197 -0.0194 -0.0203 -0.0195 -0.0197 -0.0194  -0.0194  0.0198
RMSE  GM™ 03760 03760 03756 03755 03756 03749 03743 03743 03745 03740 03751
GM" 03754 03755 03751 03748 03747 03746 03738 03739 03738 03734 03745
GMPY 03761 03762 03758 03755 03754 03753 03744 03745 03745 03740  0.3752

Note: GM™, GM", GMP" denote initial, weighted, and partially weighted GM estimator respectively. » Each column corresponds to one parameter constellation (see

Table 1). 2 Average of absolute row values.
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For the initial GM estimator (GM™), the average absolute bias amounts to 2.9 percent for px,
to 0.6 percent for p,, and to 1.0 percent for ps. The average absolute bias is dightly larger
with the weighted GM estimator (GM") with a small number of cross-sectional units, N. The
bias deteriorates quickly as the number of cross-sectional observations grows larger (compare
the resultsin the last column of Table 2 with thosein Tables 3 and 4).

Considering the root mean squared error (RMSE) of p;, p», and ps, we observe that the
partially weighted GM estimator (GMP") performs as well as the weighted GM estimator in
fairly small samples with N=100. The RMSE of GM™" is relatively larger than that of GMP"
and GM". The RMSE of GM" tends to decline faster with an increase in N than that of GMP"
and GM™. To see this, compare the last column of Table 2 with that of Table 5. Overall, the
RMSE isfairly small across al considered GM estimators even with N =100.

V. Conclusions

Research on the analysis of interdependent data by means of spatia econometric methods has
been evolving quite dynamically in recent years. One reason for this observation lies in the
fact that various lines of economic theory provide a rich source of hypotheses that relate to
interdependent units—individuals, firms, industries, jurisdictions, or countries.

One limitation of most concurrent econometric work on that matter is that much is known
about processes with just a single channel of interdependence, while extensions to generalize
the possible number of types or decay segments for spatial interdependence mechanisms are
scarce and only available for cross-sectional data-sets.

We contribute to the literature on spatial econometrics by formulating a GM estimation
procedure which allows researchers to estimate panel data error component models for short
time periods with an R-th order spatially autoregressive process. Such a model is useful, if the
decay function of a given weights matrix—say, for bands of neighbours—is of unknown
degree of non-linearity or even non-monotonic. Also, the approach is applicable if several
channels of cross-sectional interdependence in conceptualy different dimensions—such as
geographical, cultural, institutional, industry, or political ‘space —generate effects at the
same time and one wishes to estimate their relative importance on outcome.

We prove that the proposed GM estimators for the spatial autoregressive parameters and error
component variances are consistent. Under standard assumptions, generalized |least-squares
(GLS) and feasible GLS (FGLS) estimates of the slope parameters in the main equation are
then asymptotically normal, and the weighted GLS and FGLS estimators are efficient. A
Monte Carlo analysis for a third-order spatial autoregressive model illustrates that the
estimator is applicable even with panel data of a small to medium-sized cross-sectional
dimension and fixed time.
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Appendix

The proof of consistency of the GM estimators for a higher order spatial regressive processis
given in full length to the benefit of the reader. It proceeds closely along that for the first-
order case given in KKP. We require that the assumptions regarding the properties of Wy in
KKP hold for each of the matrices W, y (Assumptions 2 and 4). Moreover, since we have a
vector of autoregressive parameters p = (p;,..., 0) , the admissible parameter space needs to
be defined differently (Assumption 2). Finally, it has to be accounted for the higher dimension

of I'y, v, and =, when considering the eigenvalues, e.g., of 77,,I",, (Assumptions 3 and 5).

Remark Al. Row and column sum boundedness

Definition (KKP, p. 99). Let By, N > 1, be some sequence of kN x kN matrices with k£ some
fixed positive integer. We will then say that the row and column sums of the (sequence of)
matrices By are bounded uniformly in absolute value, if there exists a constant ¢ < o, which
does not depend on N, such that

kN

kN
max;‘by,zv‘ﬁc and Q%;‘byw‘gc foral N> 1. (A1)

I<i<kN

The following results are repeatedly used in the consistency proof (see KKP, pp. 118).

(i) Let Ry be a (sequence of) N x N matrices whose row and column sums are bounded
uniformly in absolute value, and let S be some £ x k& matrix (with £ > 1 fixed). Then the row
and column sums of S ® Ry are bounded uniformly in absolute value.

(i) If Ay and By are (sequences of) kN x kN matrices (with £ > 1 fixed), whose row and
column sums are bounded uniformly in absolute value, then so are the row and column sums
of AyBy and Ay + By. If Zy is a (sequence of) kN x p matrices whose elements are uniformly
bounded in absol ute value, then so are the elements of 4yZy and (kN) ™ Z}, 4, Z,, -

In the following, we give three Lemmata which will be useful for the consistency proof.7

Lemma Al.

Let Sy be some T x T matrix (with T fixed), and let Ry be some N x N matrix whose row and
column sums are bounded in uniformly in absolute value. Let ey = (er ® Iy)uy + vy, Where wuy
and vy satisfy Assumption 1. Consider the quadratic form

Py :N_l‘g;\/(ST@RN)gN' (A.2)

" The lemmata are derived in KKP (2007) and adapted here to the higher order setting.
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Then E(p,)=0(1) and Var(¢, ) = 0(1), and as a consequence

P
oy —E(py)—>0 asN — oo,

See KKP (p. 120) for the proof, which relies on the properties of products and sums of row
and column sum bounded matrices summarized in Remark A1l.

Lemma AZ2.
Let G, and g, be identical to 7 and yv in (12) except that the expectations operator is

dropped. Suppose Assumptions 1, 2, and 4 hold. Then 7y = O(1), yv = O(1), and

P P
Gy-I'y—»>0and g, —y,—>0 aN— .

Proof.
Note from (4a) aswell as (15a) and (15b) that

R
uN :[IT ®(1N _anzVVr7z,N)7l]gN :(]T ®PN)8N’
m=1
U,y =, W, Juy=UQW, P)e,,m=1,.., R ad

Uy =L W, W, Juy =L W, W, Pey,m =1, .., R

Define
1 J J
S =——(,--L , S =—T,suchthat A.3
or =7 (I =5), Sy =2 (A3
1
SO,T ®1N QO,N and Sl,T ®IN = Ql,N' (A-4)

S(r-D
Using these definitions, the elements of g, =[g;y].i=1, ..., (4R + 2),and G, =[g; ], =

1, ...,(A4R+2)and;j =1, ..., [2R + R(R-1)/2 + 2] are, apart from a constant, expressible as
quadratic forms similar to (A.2), i.e.,

1,
Pj.n ZW‘C“N(SO,T ®R; v)éy (A.5)

where i and j refer to the row (and column) of the respective element of g, and G, S

® For notational simplicity, we drop the subscript N from ¢, , and R; , . Asin section I11, the
elements are grouped by moment conditions.

26



Associated with moment condition M4, for each » =1, ...R we have;

m,N"" r,

1 ’ ! !
Dar1y1 = N‘C"N (Son ® R4(r71)+1)51v v Ry 1y = BWou xW, v By (A.6)
1 ! 1 ’ —
Dagr-1y+1m = W‘E‘N (Sor ®R4(r—l)+l,m)€N' Ry sy =BW. W W, By, m= 1, ..., R,

1 ’ / ! 1
Datr—)+1,R+m = W‘C“N (So,r ® R4(r—1)+l,R+m)gN’ R4(r—l)+l,R+m =BW, W W W vBy s

m=1,...,R
1

’
Da(r-1)+1, R(m+1)=m(m—-1) 241-m — N‘C“N (So,r ®R4(r—1)+1,R(m+1)—m(m—l)/2+1—m)gN '

27 ral ’ — —
R4(r—1)+1,R(m+1)—m(m—l)/2+l—m = PNVVm,NVVl‘,NVVr,NVVl,NPN’ m= 1’ ] R-l’ [=m +1! o R

Associated with moment condition M»,, for each » =1, ...R we have:

1 ’ 1 ’
Oar—1y2 = ﬁgzv (So,r ®R4(r-1)+2)5N v Ry y0 = BV, By

1 ’ 127 74 ' ’ ’
¢4(r71)+2,m = WEN (SO,T ® R4(r—l)+2,m)gN ’ R4(r—l)+2,m = PNW:71,NW*,NPN + PNW;,NWm,NPN ’
m=1,...,R,

1 ’ ! / !
Dar-1)+2,Rem = ﬁgzv (Sor ® R4(r—1)+2,R+m)gN v Ry o mim = BAWu \W W, v By s

m=1,...,R,
1

Datr 142, R(m+D=m(m-1)/ 241-m — ﬁgzlv (So,r ® R4(r—1)+2,R(m+l)—m(m—l)/2+l—m)gN’
1 ’ ’ / !’ ’ —_ —
R4(r—l)+2,R(m+l)—m(m—1)/2+l—m = PNVV;,NVV)‘,NWm,NPN + PNWm,NVV}’,NVV;,NPN y m = 1’ ey R-l’ Z -
m+l, ..., R.
Associated with moment condition M3, for each» = 1, ...R we have:

1 ’ / !
Dar-143 = N‘C"N (Sl,T ® R4(r—1)+3,N)8N 1R4(;~—1)+3,N =W, W, vPy

1 ! ! ’ —
Dagr-1y43m = Wgzv (Sl,T ® R4(r—l)+3,m)gN Raryrzm = BW W W yBy v m = 1, ... R,

1 ’ ! ’ ’
Dagr-1)+3,R+m — FEN (Sl,T ® R4(r—1)+3,R+m)gN ’R4(r—1)+3,R+m = PNWm,NVVr,NVVr,NWm,NPN 1

m=1,...,R,
1

!
Da(r 143, R(m+L)-m(m-1) 241-m — ﬁgzv (Sy7 ®R4(r—1)+3,R(m+1)—m(m—1)/2+1—m)‘9N ,

' 177! ' — —
R4(r—1)+3,R(m+1)—m(mfl)/2+l—m = PNW W NVVV,NVVI,NPN ym= 1’ ey R-l’ Z =m +1’ e R

m,N""r,

Associated with moment condition My, for each » =1, ...R we have;

1 ’ ! ! —
Vag-1+a = N‘(;N (Syr ®R4(,»—1)+4)8N Ry, s =BW, yPy,m=1,.. R,
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1
74(r71)+4,m = W‘C"I’V (Sl,T ® R4(r—l)+4,m)gN ’ R4(r—l)+4,m = P]\’/WW’:,NVVr’,NPN + P]QVVr’,NWm,NPN ’
m=1, ..., R,
—1'S®R R =pw' w' w P
Va(r-1+a,rem — ﬁ‘c"N( 17 4(r—1)+4,R+m)gN’ a(r=1)+a,Rem — AN i NV e NV o NN

m=1,...,R,
1

!
Y a(r—1)+ 4, R(m+L)=m(m=1) | 241-m — W‘C"N (Sl,T ® R4(r—1)+4,R(m+1)—m(m—1)/2+1—m)51v )
! ! ’ / ! ’ —
R4(r—1)+4,R(m+1)7m(m—l)/2+l—m = PNW;,NVV;’,NWm,NPN + PNWm,NVVr,NW;,NPN M= 1’ T R-l’
I=m+l, ..., R.

Associated with moment condition M

1 ’ 1
Dare1 = ﬁgzv (SO,T O Rypi1)éns Ropa=Pyby

1, P _
Dagiim = W‘C“N (So,r ®R4R+1,m)gN’ Rigiam =BW, yPyym=1, ..., R,

¢4R+1,R+m

1, P _
= W‘S‘N (SO,T ® R4R+1,R+m)gN v Raprgom = BWo W, By ym=1, .. R,

1

!
Dar+1,R(m+1)-m(m=1) 1 2+1-m — NEN (Sor ® R4R+1,R(m+1)-m(m—1)/2+1—m)‘9N )

R4R+1,R(m+l)—m(m—l)/2+l—m = P]\’/Wr;,NVI/I,NPN ym= 1’ Tt R-l’ and l =m +1' R

Associated with moment condition M, we have:

1 ! /
Dapio = Ngzv (Sl,T ® Ryp,2)en s Rapoo =Pyby

Dariom

1 ’ ! ! p—
= W‘(}‘N(Sl,T O Rypiom)Ens Rigiom =W, yPyym=1, .. R,

(04R+2,R+m

1, I -
= W‘C"N(SI,T ® Rypezrim)en s Rarizgin = PWusWonbBm=1, .. R,

1

[
Dar+2, R(m+1)=m(m=1)I 2+1-m — N‘E‘N (Sl,T ® R4R+2,R(m+l)—m(m—l)/2+l—m)8N )

! ! — [—
Rypovmey-mm-vizei-m = PWusWin By rm =1, ..., R-L I=m+1, ... R.

Since the row and column sums of Wy and Py are uniformly bounded in absolute value by
Assumption 4, so are the the matrices R;v (i = 1, .., 6) in light of Remark Al. The other

elementsof G, and g are 0,1 or of the form %tr(Wr" ~W, v) and thus uniformly bounded in

absolute value. Lemma A2 now follows by applying Lemma A1l to each of the quadratic
formsin (A.6), which composeG,, and g, .
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Lemma A3.
Let G, and g, be defined asin LemmaA2. Then, given Assumptions 1 to 4

G,-G,5H0and g, —g, >0 asN — o, provided B, 5> asN — .

Proof.
In (A.16), elementsof g, =[g;,],i=1, ..., (4R +2),and G, =[g, ,],i=1, ..., (4R +2) and
j=1,...,[2R + R(R-1)/2 + 2] were shown to be of the form

1,
Din = ﬁuch‘j,NuN ) (A.7)

where C, , are nonstochastic NT x NT matrices. Since the row and column sums of the

elements of W,y and Py are uniformly bounded in absolute value by Assumption 4, this is
aso true for the row and column sums of the matrices C;y in light of Remark Al. The
elements of Gy and gy defined in (13) are — again apart from a constant — given by

~ 1 ~
Pyn = WENCg‘j,NuN . (A.8)

To proof Lemma A3 we have to show that ¢, , — @, %50 asN — ». Note that
IIN:yN_XNﬂN:uN_XN(BN_ﬂ)' (A.9)

Let S, be any consistent estimator of f; in that case (5, — /) %50 as N — . Substituting
(A.9) into (A.8) yields

&;zj,N - @,’,N = (IBN - ﬂ)'(NilX],\fCij,NXN )(IBN - ﬂ) - Z(BN - ﬂ)’(NilX]'VCij,NuN) . (A.].O)
Regarding the first term on the right hand side of (A.10), the row and column sums of C; y are

bounded uniformly in absolute value as are the elements of Xy. Utilizing the results in Remark
A1, it follows that all K? elements of N‘lX]’vCl.j,NXN are O(1). Thus, the first term on the right

hand side convergesin probability to zero since (5, — ) 50 asN — .

Regarding the second term on the right hand side of (A.10), consider the vector
{y=N"X,C; u, . Themean of ¢, iszero and itsvariance covariance matrix is

NYNTXLCy 2, 4Crv X y) s (A.11)

29



where Q, , isgiven by (9a) and (9b). Given the maintained assumptions, the row and column
sums of @ , are uniformly bounded in absolute value, and therefore so are those of
C,v2,xCi - Since the elements of Xy are uniformly bounded in absolute value by
Assumption A3, it follows that all K* elements of NX,C; 2, ,Ch X yare O(1) in light of
remark Al. As a consequence, the variance covariance matrix of ¢, converges to zero and

hence ¢, converges to zero in probability. This establishes that also the second term on the
right hand side of (A.10) converges to zero in probability.

Theorem Al.
Combining Lemmata A2 and A3 we have

G,-I'y>0and g, 7,250 asN — . (A.12)

With these initial results at hand we can now demonstrate the consistency of the GM
estimators defined in section Il1l. We first prove consistency of the initial GM estimator
(Theorem 1) and then turn to the weighted and partially weighted GM estimators (Theorems 2
and 3). In all three cases the proof proceeds in two steps (based on the assumption that the

estimators 67N exist and are measurable).9 We first show that the true parameter vector 6 is

identifiable unique using Lemma 4.1 in Potscher and Prucha (1997). Then we proof
consistency by checking the criterion given in Lemma 3.1 in Potscher and Prucha (1997).

Proof of Theorem 1. Consistency of initial GM estimator
The objective function of the nonlinear least squares estimator in (17a) and its nonstochastic
counterpart are given by

Ry(0°)=(g -Goa'llg - Gya’] and (A.139)
RO =1y -Tellyy -] (A.13b)

Since 3% -I'%a° =0, we have R2(0°)=0, i.e, R2(6°)=0 at the true parameter vector

0° = (p1yes P10 -

Then,

® This s ensured, for example, by Lemma 2 in Jennrich (1969) or Lemma 3.4 in Potscher and
Prucha (1997).
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RY(E")-RY(6°) = [a’ -a°I'T} I}’ -a°]. (A.14)
In light of Rao (1973, p. 62), it follows that:

RY(0") = RY(0°) 2 Ao (TN T’ —a°)'[a” - a°] and
R2(0°)-R2(0°) = A[a’ — a°T'[a’ —a°] by Assumption 5.

Using the norm | 4] =[tr(44)]"?, we have HQO —QOHZ <[a’-a°T[a’-a’]. It follows that

R2(6°)-R2(6°) > AHQO —GOHZ. Hence, for every £>0

lim inf (RO -RY@)= inf  Al6°~6 =ae*>0 (A.15)

N%w{a":HQ%aOHzE} {90:HQ076’0H25}

which proves that the true parameter 6° isidentifiable unique.

Next, let FJ=[g%~Gyland @) =[yy,~Iy], then the objective function and its
nonstochastic counterpart can be written as

RY(0°)=@La”)F) FiLa™) and
R(O°) = L)@y o5 (La") .
Hencefor p e[-a,a] and &2 €[0,b] it holds that

s o) - R a.a™irs 72 - 08 210,07

Moreover, since the norm ||| is submultiplicative, i.e., |4B| < |4|B|, we have

2

[R3(6%) - Ry(0°)| < |FY Fy -0 @7 |1,2”)

2R+ R(R-1) ,

<|FYF? — % ®°|[1+ Ra? + +b?].
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In light of Theorem A1, we have HFJS —@2”30 as N — oo. Observing that, by Lemma A2,

the elements of ®° are O(1) it follows that |[FCF?-®%®%| 550 as N — «. As a

consequence, we have (for finite R)

sp  |R9(6%) - RUE)| < |[FY Y~ 4] [1+Ra2+#a4+b2]$o asN - . (A.16)

pel-a,al,o?€[0,b]

Together with identifiable uniqueness, the consistency of 5,3:(51’N,...,5R’N,55N) now

follows directly from Lemma 3.1 in Pétscher and Prucha (1997).

Having proved that the estimators p, ..., oz v, 0.y ae consistent for p, ..., p,, 07, We now

show that o can be estimated consistently from the last line (4R + 2) of equation system
(12), using

~2 ~ ~ ~2
O1n = 8ar+2 ~ 8ari21P1n —++ Zar+2,rPrN ~ 84r+2,r+41PLN
- - o~ - -
—84r+22rPRN ~ 8ar+22r PN P2 N T T 8are2,2R+R(R-1)12PR-LNPRN - (A.179)
Since y, — I'ya =0, wehave
~> 5 - -
Oy =0y =(8urso = Varsa) = (g4R+2,l - 74R+2,1)p1,1v e (g4R+2,R - 74R+2,R)pR,N
~2 ~2

- (g4R+2,R+1 - 74R+2,R+1),01,N T T (g4R+2,2R - 74R+2,2R)pR,N
- (g4R+2,2R+1 - 74R+2,2R+1),01,N:02,N e (g4R+2,2R+R(R—1)/2 - 74R+2,2R+R(R—1)/z)PR—l,NpR,N (A.17h)

- 7/4R+2,1(51,N — ) = Var+2,R (,ER,N ~ Pr)
- 7/4R+2,R+1(51?N - plz) ~ Var+2,2R (,Ezgw - ,OE)
- 74R+2,2R+1(:51,N:522,N — PLP2) 7/4R+2,2R+R(R—l)/2(5R—1,N5R,N ~ Pr-1Pr)-

Observing by Theorem A1 that F, —®, >0 as N — « and that the elements of @, are O(1)

it follows from the consistency of p, ..., p v thet 67, — o7 ->0 asN — .

Proof of Theorem 2. Consistency of the weighted GM estimator
The objective function of the weighted GM estimator and its nonstochastic counterpart are
given by

Ry(0) = (g, - Gyal'E gy —Gyal and (A.183)
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Ry(O) =[yy -Tyal'Eyy —Tyal (A.18b)

First, in order to ensure identifiable uniqueness, we show that Assumption 5 also implies that
the smallest eigenvalue of (7°,)'Z,'(I",) is bounded away from zero, i.e.,

Awin (TVEVT ) > A, for some 4, > 0. (A.19)

Let A=(a,)=T3T and B=(b,)=T"% ;. Note that I'0 and I, are of dimension
(2R+D)x[2R+R(R-1)/2+17] (i.e, they have half the rows and one column less than than
I, ). A and B are of order [2R+ R(R-1)/2+1x[2R+ R(R-1)/2+1] (i.e., they have one

row and column lessthan I I}, ).

Now define I, as

_ I°
r,=|_Y[, A.20a)

which differs from 7, only by the ordering of the rows.

I'° corresponds to "% with a zero column appended as last column, i.e., "% =[7"%,0], such
that

ay Q1 2R+ R(R-1)12+1 0

-, =0’ 70 0
rore=[Ivly 0|2 (A.21a)

0 0 AR+ R(R-1)/2+11 AR+ R(R-1)12+1,2R+R(R-1)/ 2+1 0

0 0 0 0

(9T isof thesamedimensionas 1", ", , i.e., [2R + R(R-1)/2 + 2] x [2R + R(R-1)/2 + 2].)

I} is amodified version of I'}, with a zero column included as second last column, such
that

bl,l 0 b1,2R+R(R—1)/2+1
i . 0 .
rrt = 0 0 o 0 (A.21b)
b2R+R(R—l)/2+1,1 0 b2R+R(R—l)/2+1,2R+R(R—l)/2+l

(1Y isof the samedimensionas I', Iy, i.e., [2R + R(R-1)/2 + 2] x [2R + R(R-1)/2 + 2].)
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-0
Since I = [Cflv } differsfrom 7, only by the ordering of the rows, it follows that
N

- = — —a I:' =0! = =11 = .
ryr,=ro, FNz[F,?, I }{ Jj}:rﬁ re+riry, ie, (A.22)
N
ag A1 oRR(R-1)/2+1 0
0
I'yI'y = 0
AoriR(R-1)12+11 AoR1R(R-1)/ 2+1,2R+R(R-1)/ 241
0 0 0 0
by, 0 bl,2R+R(R—l)/2+l
. 0 .
+
0 00 0
b2R+R(R—1) /2+11 O b2R+R(R—l) /2+1,2R+R(R-1)/ 2+1

Utilizing Assumption A5 we have
XTI, Tyx=x'T TOx+xTY I x = x', Ax,, + x},Bx, . (A.23)

The vector x is of dimension [2R + R(R-1)/2 + 2] x 1 (corresponding to the number of
columns of /), wheras x, and x, are of dimension [2R + R(R-1)/2 + 1], i.e. both have one

row less: x, excludes the last element of x, i.e., xorsr@r-1)+2, X, €xcludes the second-last
element of x, i.€. xop+r(r-1)+1-

Again, we invoke Rao (1973, p. 62) for each quadratic form. It follows
(B)xx, > A (x'x, +xhx,) > A x'x (A.24)

X Ax  +xp,Bx, 2 A (A)x'x, + 4

min min
forany x =[x,,x,,...sXop.,] -
Hence, we have shown that

XT3 yx> A x'x,

or, equivaently,

! !
xI' I x

'
XX

>4 for x#0. (A.25)



Next, note that in light of Rao (1973, p. 62),

(I'\.T,) = me,FNXZ/L>O. (A.26)
XX

m|n

Using Mittelhammer (1996, p. 254) we have

rr -1 el
Do DL ) =it s 5 (i Hala
X XX XX
= ﬂ“min (Ej:ll)lmin (FI’\IFN) 2 ﬂ*o > 0’ (A27)

with 1o = 4.4 since = A (Z;') = A >0 by assumption (see Theorem 2).

This ensures that the true parameter vector 6 = (p,,..., pz,07,07) isidentifiable unique.

—~-1

Next note that in light of the assumptions in Theorem 2, =" is O(1) by the equivalence of

matrix norms.

Analogous to the prove of theorem 1, observe that R, (#) =0, i.e, R, (f)=0 at the true

parameter vector 6 = (p, ..., pr, 02,07 ). It follows that
Ry(O)-Ry(O)=[a-al Ty =T [a-a]. (A.30)
Moreover, let F, =[g,,—Gy]and @, =[y,,—I"y], then,

Ry(0)=(La)FLELF,(La') and (A.313)
R,(0)=(La )P, 5P, (La') . (A.31b)

The remainder of the proof is now analogous to that of Theorem 1.

Proof of Theorem 3. Consistency of partially weighted GM estimator
Let 4 =min[(T -)o,*,0;,'] and A. = max[(T -1)o.*,0;"].
Then 0< A <A, (E°)" <A.<ow. The proof of Theorem 3 is now anaogous to that of

Theorem 2 with =, and 5 =, replaced by =) and = ”" .
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