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I. Introduction 
A rapidly growing amount of recent economic research focuses on the empirical modelling of 
variables with cross-sectional interdependence. Theoretical rationales for such work are 
almost ubiquitous in economics: game theory for long considered strategic interdependence 
among agents (firms or individuals) in their behaviour—examples are the quantity setting of 
Cournot firms, the price setting of Bertrand firms, investment decisions in research and 
development of oligopolistically competing enterprises, tax competition among regional or 
national jurisdictions, or group behaviour of individuals; a second reason for (cross-sectional) 
interdependence are general equilibrium effects and the propagation of ‘local’ shocks through 
economic systems that are interrelated, e.g.,  by trade or factor mobility.  
 
An attractive way of allowing for interdependence between cross-sectional units in empirical 
models is by means of so-called spatial econometric methods (see Anselin, 1988, for an early 
treatment, using the maximum-likelihood approach). The latter typically assume that there is 
some known channel of relations among cross-sectional units, e.g., ‘space’ in terms of 
geographical distance or adjacency but also input-output relationships or trade flows. A large 
class of existing models allows for spatially autoregressive residuals (SAR). There, 
interdependence occurs among the unobservable variables in the model. Anselin (2003) 
provides a typology of spatial econometric models. However, existing models seem restrictive 
from an applied researcher’s point of view, since the SAR process is typically assumed to be 
of first order, referred to as SAR(1) (see Anselin, 1988; Kelejian and Prucha, 1999; or 
Kapoor, Kelejian, and Prucha, 2007). In the latter case, the researcher may not allow for a 
flexible decay of interdependence in ‘space’, but spatial relationships need to be captured by a 
single parameter, given the assumed channel or matrix of interdependence among cross-
sectional units.  
 
This paper formulates a GM estimator for the case of a SAR process of order R, i.e., SAR(R), 
for panel data with a large cross-section that is repeatedly observed over a relatively smaller 
number of time periods.1 In particular, we generalize the existing GM approach to estimating 
the SAR(1) parameter in panel data error component models by Kapoor, Kelejian, and Prucha 
(2007) to the case of a spatial regressive error process of arbitrary order R. Such a framework 
allows the applied econometrician to study the strength of interdependence more flexibly than 
in existing SAR(1) models. For instance, with the suggested model one may allow first, 
second, and higher orders of bands of neighbours to exert a different impact on each other, 
given their ‘spatial’ distance, for various economic problems (see Kelejian and Robinson, 
1992; Bell and Boecksteal, 2000; and Cohen and Morrison Paul, 2007, for applications with 

                                                 
1 Apart from Kapoor, Kelejian, and Prucha (2007), panel data models for SAR processes have 
been suggested, for instance, by Anselin (1988), Baltagi, Song, Jung, and Koh (2007), and 
Lee and Yu (2007). While this list is not comprehensive, our approach of allowing for a 
SAR(R) process in a panel data error components model is novel, to the best of our 
knowledge. Previous work on higher order spatial processes, focussing on a cross-sectional 
model however, includes Lee and Xiadong (2006). 
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cross-sectional data). Similarly, one may allow for several alternative channels or concepts of 
interdependence, e.g. intra-industry and inter-industry spillovers (see Badinger and Egger, 
2008, for a cross-section application). Generally, economic, socio-economic, geographical, 
demographic (e.g., cultural, lingual), or political distance may play a role explicitly and 
simultaneously.  
 
Using a higher order spatial regressive process allows for a more flexible specification and 
thus better approximation of the functional form of the decay of interdependence in some pre-
defined space. Moreover, it enables an empirical assessment of the relative importance of 
alternative channels of interdependence.  
 
The remainder of the paper is organized as follows. Section II briefly summarizes the basic 
model specification and introduces some notation. Section III derives the moment conditions 
for the GM estimators of a SAR(R) process and the optimal weighting matrix. Section IV 
demonstrates consistency of the GM estimators and provides Monte Carlo evidence to 
illustrate the small sample performance. The last section concludes with a summary of the key 
findings.  
 
 
II. Basic model specification and notation 
The basic set-up of the error components model with spatially correlated error terms 
represents a generalization of the framework of Kapoor, Kelejian, and Prucha (2007), 
henceforth referred to as KKP. The model comprises Ni ,...,1= cross-sectional units and 

Tt ,...,1= time periods. For time period t, the model reads 
 
 )()()( tutXty NNN += β , (1a) 

 
where )(tyN  is an 1×N  vector with cross-sectional observations of the dependent variable in 

year t, )(tX N  is an KN ×  matrix of non-stochastic explanatory variables, with K denoting 

the number of explanatory variables in the model including the constant, and )(tuN  is an 

1×N  vector of disturbances which is generated by the following SAR(R) process: 
 

 )()()(
1

, ttuWtu N

R

m
NNmmN ερ += ∑

=

, (1b) 

 )()( tvt NNN += με , (1c) 

 
where mρ  and NmW ,  denote the time-invariant, unknown parameter and the known NN ×   

matrix of spatial interdependence for the m-th band or concept of interdependence, 
respectively. The structure of spatial correlation is determined by the R different, time-
invariant N × N matrices NmW , , whose elements wij,N are often (but need not be) specified as a 
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decreasing function of geographical distance between the cross-sectional units i and j. Using a 
higher order process allows the strength of spatial interdependence (reflected in the spatial 
regressive parameters mρ , Rm ,...,1= ) to vary across a fixed number of R  subsets of 

relations between cross-sectional units. Obviously, model (1) nests the specification by KKP 
as a special case for R = 1. )(tNε  is an error term which consists of two components, Nμ  and 

)(tvN . As indicated by the notation, Nμ  is time-invariant while )(tvN  is not. The typical 

elements of )(tNε , Nμ , and )(tvN  are the scalars Nit ,ε , Ni,μ , and Nitv , , respectively. 

 
Let us now stack the observations for all time periods such that t is the slow index and i is the 
fast index with all vectors and matrices, respectively. Then, the model reads 
 
 NNN uXy += β , (2a) 

 
where ])(),...,1([ ′′′= Tyyy NNN  is the NT × 1 vector of observations on the dependent variable. 

The regressor matrix ])(),...,1([ ′′′= TXXX NNN  is of dimension KNT × . Generalizing the 

specification in KKP (p. 100), the 1×NT  vector of error terms )](),...,1([ Tuuu NNN ′′=  for a 

spatial regressive process of order R reads  
 

 N

R

m
NNmTmN uWIu ερ +⊗= ∑

=1
, )( , (2b) 

 
where TI  is an identity matrix of dimension TT × . The 1×NT  vector ])(),...,1([ ′′′= TNNN εεε  

is specified as  
 
  NNNTN vIe +⊗= με )( . (2c) 

 
The 1×N  vector of unit specific error components is given by ],...,,[ 21 ′= NN μμμμ . Finally, 

NI  is an identity matrix of dimension NN ×  and Te  is a unit vector of dimension 1×T . 

Notice that, in light of (2b), the error term can also be written as  
 

 ∑
=

⊗−=
R

m
NNmTmNN uWIu

1
, )(ρε . (3) 

 
It follows that  
 

 ∑
=

−−⊗=
R

m
NNmmNTN WIIu

1

1
, ])([ ερ , (4a) 

 
and 
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 ∑
=

−−⊗+=
R

m
NNmmNTNN WIIXy

1

1
, ])([ ερβ . (4b) 

 
The following assumptions are maintained throughout the analysis.  
 
Assumption 1.  
Let T be a fixed positive integer. (a) For all 1 ≤ t ≤ T and 1 ≤ i ≤ N, N ≥ 1, the error 
components vit,N are identically distributed with zero mean and variance 2

vσ  , 0 < 2
vσ  <  bv < 

∞, and finite fourth moments. In addition, for each N ≥ 1 and 1 ≤ t ≤ T, 1 ≤ i ≤ N the error 
components vit,N are independently distributed. (b) For all 1 ≤ i ≤ N, N ≥ 1 the unit specific 
error components μi,N are identically distributed with zero mean and variance 2

μσ , 0 < 2
μσ  < 

bμ < ∞, and finite fourth moments. Moreover, for each N ≥ 1 and 1 ≤ i ≤ N the unit-specific 
error components μi,N are independently distributed. (c) The processes {vit,N} and {μi,N} are 
independent of each other. Assumption 1 is exactly identical to the first-order case considered 
by KKP.  
 
Assumption 2.  
(a) All diagonal elements of NrW ,  are zero for r = 1, …, R. 

(b) ∑
=

R

m
m

1
ρ < 1.  

 (c) The matrix )(
1

,∑
=

−
R

m
NmmWI ρ  is non-singular.   

Assumption (2c) ensures that Nu  and Ny  are uniquely identified through equations (4a) and 

(4b). Assumption (2b) places a restriction on the admissible parameter space. With row-
normalized weights matrices typically used in applied work, Assumption (2c) is implied by 
Assumption (2b).2 

  
Assumptions 1 and 2 imply that 

 
 22

,, )( vNjsNitE σσεε μ +=  for i = j and t = s,      (5a) 

 2
,, )( μσεε =NjsNitE  for i = j and t  ≠ s, and           (5b) 

 0)( ,, =NjsNitE εε  otherwise.                                (5c) 

  

                                                 
2 If the weights matrices Wm,N are not row-normalized, assumption (c) would be implied by 

taking the permissible parameter space to be 
1

,,...,11

max
−

=
=

⎟
⎠
⎞⎜

⎝
⎛<∑ NmRm

R

m
m Wρ , where  is any 

matrix norm (see Horn and Johnson, 1985, p. 301).  
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As a consequence, the variance-covariance matrix of the stacked error term εN is given by 
 
 NTvNTNNN IIJEΩ 22

, )(][ σσεε με +⊗=′= , (6a) 

 
where TTT eeJ ′=  is a T × T matrix with unit elements and NTI  is an identity matrix of 

dimension NT × NT. Equation (6a) can also be written as  
 

 NNvN QQΩ ,1
2
1,0

2
, σσε += , (6b) 

 
where 222

1 μσσσ Tv += . The two matrices Q0,N and Q1,N, which are central to the estimation of 

error component models and the moment conditions of the GM estimator, are defined as    
 

 N
T

TN I
T
J

IQ ⊗−= )(,0 , and  (7a) 

 N
T

N I
T
JQ ⊗=,1 . (7b) 

 
Notice that Q0,N and Q1,N are both of order NT × NT, and they are symmetric, idempotent, 
orthogonal to each other, and sum up to INT. Pre-multiplying an NT × 1 vector, e.g., Nε , with 

Q0,N transforms its elements into deviations from cross-section specific sample means taken 
over time. Pre-multiplying a vector by Q1,N transforms the observations into cross-section 
specific sample means. The elements of NNQ ε,0  and NNQ ε,1  are then given by 

∑ =
−

T

t NitNit T
1 ,, /1 εε  and ∑ =

T

t NitT
1 ,/1 ε , respectively. The matrices Q0,N and Q1,N have the 

following properties, which are repeatedly used in the subsequent derivations (KKP, p. 101): 
 
 )1()( ,0 −= TNQtr N , NQtr N =)( ,1 , 0)(,0 =⊗ NTN IeQ , )()(,1 NTNTN IeIeQ ⊗=⊗ , (8) 

 )()( ,0,0 NTNNNT DIQQDI ⊗=⊗ ,  )()( ,1,1 NTNNNT DIQQDI ⊗=⊗ , 

 )()1(])[( ,0 NNNT DtrTQDItr −=⊗ ,  and )(])[( ,1 NNNT DtrQDItr =⊗ , 

 
where DN is an arbitrary N × N matrix.  
 
Finally, note that the variance-covariance matrix of Nu is given by  

 

 ∑∑
=

−

=

− ′−⊗−⊗=′=
R

m
NmmNT

R

m
NNmmNTNNNu WIIΩWIIuuEΩ

1

1
,

1
,

1
,, ])([])([][ ρρ ε , and (9a) 

 ∑∑
=

−

=

− ′−⊗−+=′
R

m
NmmNT

R

m
NmmNvNN WIIWItutuE

1

1
,

1

1
,

22 )(())(()]()([ ρρσσ μ . (9b) 
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III. GM Estimation of a SAR(R) model 
1. Moment conditions  
KKP (p. 103) use six moment conditions to derive a generalized moments (GM) estimator for 
a first-order spatial regressive process (SAR(R), with R = 1). With an R-th order process 
(SAR(R), with 1>R ), the GM estimators of the parameters Rρρ ,...,1 , 2

vσ , and 2
1σ  can be 

obtained by recognizing that –  under Assumptions 1 and 2 – the moment conditions used by 
KKP hold for each matrix Wr,N , r = 1, …, R. In particular, we define for each Wr,N 
 

 ))()(()(
1

,,,, ∑
=

⊗−⊗=⊗=
R

m
NNmTmNNrTNNrTNr uWIuWIWI ρεε . (10) 

 
A word on notation is in order here. In equation (10), subscript r has been introduced together 
with m to indicate that, with higher order spatial processes, NrW ,  and NmW ,  meet in 

Nr ,ε .While we will use index r to refer to the moment condition involving matrix NrW ,  in 

equation (10), index m is required in equation (10) for the summation over the terms NmmW ,ρ ; 

for summations like that as, e.g., in Assumption 2(b), we use index m throughout. Moreover, 
index r is used when there is no danger of confusion as in Assumption 2(a), for example. The 
moment conditions are then given by 
  

 Ma  2
,0 ]

)1(
1[ vNNNQ

TN
E σεε =′

−
,   (11) 

 M1,r  )(1]
)1(

1[ ,,
2

,,0, NrNrvNrNNr WWtr
N

Q
TN

E ′=′
−

σεε ,  

 M2,r  0]
)1(

1[ ,0, =′
− NNNr Q

TN
E εε , 

 Mb  2
1,1 ]1[ σεε =′ NNN Q

N
E  , where 222

1 μσσσ Tv += ,  

 M3,r )(1]1[ ,,
2
1,,1, NrNrNrNNr WWtr

N
Q

N
E ′=′ σεε , 

 M4,r  0]1[ ,1, =′ NNNr Q
N

E εε . 

 
The moment conditions associated with matrix NrW ,  ( Rr ,...,1= ) through (10) are indexed 

with subscripts 1 to 4. The remaining two moment conditions, which do not depend on r, are 
denoted as Ma and Mb. For an R-th order process, we thus have (4R + 2) moment conditions.  
 
Substituting equations (4), (10), and (1c) into the 4R +2 moment conditions (11) yields a (4R 
+ 2) equation system in ρ1, …, ρR, 2

vσ , and 2
1σ , which can be written as    

 
 0=− αγ NN Γ ,   (12) 
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where α is a [2R + R(R-1)/2 + 2] × 1 vector, given by 
 
 ),,,...,,...,,,..., ,,...,( 2

1
2

1121
22

11 ′= − σσρρρρρρρρρρα vRRRRR ,  

 
i.e., α contains R linear terms mρ ( Rm ,...,1= ), R quadratic terms 2 mρ  ( Rm ,...,1= ), 

2/)1( −RR cross products lm ρρ  ( RmlRm ,...,1  ,1,...,1 +=−= ), as well as 2
vσ  and 2

1σ . For 

later reference, we define the vector of spatial regressive parameters ),...,( 1 ′= Rρρρ  and the 

(row) vector of all parameters as ), ,,...,( 2
1

2
1 σσρρθ vR= . 

 

Nγ  is a 1)24( ×+R vector with elements ][ iγ , i = 1, …, )24( +R , and NΓ  is a 

)24( +R × ]22/)1(2[ +−+ RRR  matrix with elements ][ ijγ , )24(,...,1 += Ri , 

]22/)1(2[,...,1 +−+= RRRj , whose elements will be defined below. Subscript N is dropped 

from the elements of Nγ  and NΓ  for simplicity of notation here. The row-index of the 

elements Nγ  and NΓ  will be chosen such that the equation system (12) has the following 

order. The first four rows correspond to the moment restrictions M1,1 to M4,1 associated with 
matrix NW ,1  through (10); row five to eight correspond to M1,2 to M4,2 associated with matrix 

NW ,2 , and so fourth; rows (R−4) to 4R correspond to the M1,R to M4,R associated with the 

matrix NRW , . Finally, rows 4R+1 and 4R+2 correspond to the moment conditions Ma and Mb, 

respectively, which do not depend on r.  
 
The sample analogue to equation system (12) is given by  

 
 )(θϑα NNN Gg =− ,  (13) 

 
where the elements of gN and GN are equal to those of γN and ΓN with the expectations 
operator suppressed and the disturbances uN replaced by (consistent) estimates Nu~ .  

 
GM estimates of the parameters ρ1, …, ρR , 2

vσ and 2
1σ are then obtained as the solution to  

 
 )]((~)([][(minarg 11

,,,..,, 2
1

2
21

θϑθϑ
σσρρρ

NNNNNNNN Ξα)G(gΞα)Gg 
vR

−− ′=−′− ,  (14) 

 
i.e., the parameter estimates can be obtained from a (weighted) nonlinear least squares 
regression of Ng  on the columns of NG ; )(θϑN  can then be viewed as a vector of regression 

residuals. The optimal choice of the weighting matrix 1−
NΞ  will be discussed below.  
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In the following, we define the elements of γN and ΓN grouped by the corresponding moment 
conditions. For this, let us use the following notation:  
 
 NNrTNr uWIu )( ,, ⊗= , m = 1, …, R, and  (15a) 

 NNmNrTNNmTNrTNrm uWWIuWIWIu )())(( ,,,,, ⊗=⊗⊗= , r = 1, …, R, m = 1, … R. (15b) 

 
Moreover, running index Rl ,...,1=  has to be introduced for a proper definition of the 

elements of ΓN and γN.  
 
Moment condition M1,r delivers Rr ,...,1=  lines of equation system (12), appearing in rows 

4(r-1)+1 with the following elements of γN and ΓN: 
 

 
)1(

1
1)1(4 −

=+− TNrγ  E[ ],,0, NrNNr uQu ′ ,    

 ][
)1(

2
,,0,,1)1(4 NrmNNrmr uQuE

TN
′

−
=+−γ , Rm ,...,1= , 

 ][
)1(

1
,,0,,1)1(4 NrmNNrmmRr uQuE

TN
′

−
−=++−γ , Rm ,...,1= , 

 ][
)1(

2
,,0,2/)1()1(,1)1(4 NrlNNrmmlmmmRr uQuE

TN
′

−
−=−+−−++−γ , 1,...,1 −= Rm , Rml ,...,1+= , 

 )(1
,,12/)1(2,1)1(4 NrNrRRRr WWtr

N
′=+−++−γ ,  

022/)1(2,1)1(4 =+−++− RRRrγ . 

 
Moment condition M2,r consists of r = 1, … R lines of equation system (12), appearing in 
rows 4(r-1)+2 with the following elements of γN and ΓN: 
 

 ][
)1(

1
,0,2)1(4 NNNrr uQuE

TN
′

−
=+−γ ,       

 ][
)1(

1
,,0,,0,,2)1(4 NmNNrNNNrmmr uQuuQuE

TN
′+′

−
=+−γ , Rm ,...,1= ,   

 ][
)1(

1
,,0,,2)1(4 NmNNrmmRr uQuE

TN
′

−
−=++−γ , Rm ,...,1= ,   

 ][
)1(

1
,,0,,,0,2/)1()1(,2)1(4 NlNNrmNmNNrlmlmmmRr uQuuQuE

TN
′+′

−
−=−+−−++−γ , 1,...,1 −= Rm , 

 Rml ,...,1+= , 
 012/)1(2,2)1(4 =+−++− RRRrγ , 

 022/)1(2,2)1(4 =+−++− RRRrγ . 
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Moment condition M3,r corresponds to r = 1, … R lines of equation system (12), appearing in 
rows 4(r-1)+3 with the following elements of γN and ΓN: 
 

 
Nr
1

3)1(4 =+−γ  E[ ],,1, NrNNr uQu ′ ,   

 ][2
,,1,,3)1(4 NrmNNrmr uQuE

N
′=+−γ , Rm ,...,1= , 

 ][1
,,1,,3)1(4 NrmNNrmmRr uQuE

N
′−=++−γ , Rm ,...,1= , 

 ][2
,,1,2/)1()1(,3)1(4 NrlNNrmmlmmmRr uQuE

N
′−=−+−−++−γ , 1,...,1 −= Rm , Rml ,...,1+= ,   

 012/)1(2,3)1(4 =+−++− RRRrγ , 

 )(1
,,22/)1(2,3)1(4 NrNrRRRr WWtr

N
′=+−++−γ . 

 
Moment condition M4,r represents r = 1, … R lines of equation system (12) appearing in rows 
rows 4(r-1)+4 with the following elements of γN and ΓN: 
 

 ][1
,1,4)1(4 NNNrr uQuE

N
′=+−γ ,     

 ][1
,,1,,1,,4)1(4 NmNNrNNNrmmr uQuuQuE

N
′+′=+−γ , Rm ,...,1= ,   

 ][1
,,1,,4)1(4 NmNNrmmRr uQuE

N
′−=++−γ , Rm ,...,1= ,   

 ][1
,,1,,,1,2/)1()1(,4)1(4 NlNNrmNmNNrlmlmmmRr uQuuQuE

N
′+′−=−+−−++−γ , 1,...,1 −= Rm , 

 Rml ,...,1+= ,   
 012/)1(2,4)1(4 =+−++− RRRrγ , 

 022/)1(2,4)1(4 =+−++− RRRrγ . 

 
Moment condition Ma reflects 1 line of equation system (12) appearing in row (4R + 1) with 
the following elements of γN and ΓN: 
 

 ][
)1(

1
,014 NNNR uQuE

TN
′

−
=+γ ,    

 ][
)1(

2
,0,,14 NNNmmR uQuE

TN
′

−
=+γ , Rm ,...,1= ,    

 ][
)1(

1
,,0,,14 NmNNmmRR uQuE

TN
′

−
−=++γ , Rm ,...,1= ,    

 ][
)1(

2
,,0,2/)1()1(,14 NlNNmmlmmmRR uQuE

TN
′

−
−=−+−−++γ , 1,...,1 −= Rm , Rml ,...,1+= ,   
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 112/)1(2,14 =+−++ RRRRγ ,  

 022/)1(2,14 =+−++ RRRRγ . 

 
Moment condition Mb is associated with 1 line of equation system (12) appearing in row (4R 
+ 2) with the following elements of γN and ΓN: 
 

 ][1
,124 NNNR uQuE

N
′=+γ ,    

 ][2
,1,,24 NNNmmR uQuE

N
′=+γ , Rm ,...,1= ,    

 ][1
,,1,,24 NmNNmmRR uQuE

N
′−=++γ , Rm ,...,1= ,    

 ][2
,,1,2/)1()1(,24 NlNNmmlmmmRR uQuE

N
′−=−+−−++γ , 1,...,1 −= Rm , Rml ,...,1+= ,   

 012/)1(2,24 =+−++ RRRRγ , 

 122/)1(2,24 =+−++ RRRRγ . 

 
This completes the specification of the elements of the matrices Nγ  and NΓ . The similarity of 

the structure between the expressions resulting from the moment conditions Ma, M1,r and M2,r 
on the one hand and Mb, M3,r, M4,r on the other hand is apparent: they differ only by the 
normalization factor and the matrix of the quadratic forms (Q0,N or Q1,N). Moreover, note that 
the rows in (12) resulting from Ma, M1,r and M2,r (r = 1, …R) do not depend on 2

1σ  whereas 

the rows resulting from Mb, M3,r, and M4,r (r = 1, …R) do not depend on 2
vσ . This fact will be 

used to define an initial GM estimator, which is based on a subset of moment conditions (Ma, 
M1,r and M2,r) only, in order to obtain an estimate of the matrix NΞ . 

 
For future reference, we define the 1)12( ×+R  vector 0

Nγ  as the sub-vector containing rows r 

and )1( +r , Rr ,...,1=  and row )12( +R of Nγ  (corresponding to M1,r, M2,r and Ma). 

Moreover, we define the )12( +R × ]12/)1(2[ +−+ RRR  matrix 0
NΓ  as the sub-matrix 

containing rows r and )1( +r , Rr ,...,1= , and row )12( +R  of NΓ  (corresponding to M1,r, 

M2,r and Ma), with the last column of NΓ  (associated with 2
1σ ) deleted. 

 
Similarly, we define the 1)12( ×+R  vector 1

Nγ  as the sub-vector containing rows 2r, )12( +r , 

Rr ,...,1= , and row )22( +R of Nγ  (corresponding to M3,r, M4,r and Mb). Finally, we define 

the )12( +R × ]12/)1(2[ +−+ RRR  matrix 1
NΓ  as the sub-matrix containing rows 2r, )12( +r , 

Rr ,...,1= , and )22( +R  and NΓ  (corresponding to M3,r, M4,r and Mb), with the second last 

column of NΓ  (associated with 2
vσ ) deleted. 
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2. GM estimators of an R-th order spatial regressive process 
2.1. Additional assumptions 
Before defining the GM estimators, we make three additional assumptions. 
 
Assumption 3.  
The elements of XN are bounded uniformly in absolute value by kx < ∞. Furthermore, for i = 0, 
1, the matrices  

 )()(1lim *
,

* ρρ NNiNN

xx
i XQX

NT
M ′=

∞→
 ,     (16a) 

with N

R

r
NrrNTN XWIIX )]([)(

1
,

* ∑
=

−⊗= ρρ , and the matrices  

 NNN
XX

NT
′

∞→

1lim , )()(1lim ** ρρ NNN
XX

NT
′

∞→
, )()(1lim *1

,
* ρρ ε NNNN

XΩX
NT

−

∞→
′  (16b) 

are finite and non-singular. 
 
Assumption 3, which is identical to that in the first order case considered by KKP, is typical 
in large sample analyses. It is required, since the asymptotic properties of OLS and feasible 
generalized least-squares estimates (GLS; FGLS for feasible GLS) of β in (2a) involve limits 
of the expressions above.  
 
Assumption 4.  

The row and column sums of Wr,N, r = 1, …, R, and 1

1
, )()( −

=
∑−=

R

r
NrrNN WIP ρρ are bounded 

uniformly in absolute value by kW < ∞ and kP < ∞, respectively, where kP may depend on ρ = 
(ρ1, …, ρR). We take kW as largest of the bounds of the weights matrices, i.e., 

),...,max( ,1, RWWW kkk = .3 As KKP (pp. 106) point out, assumption (4) restricts the extent of 

neighborliness of the cross-sectional units on the one hand, and the degree of cross-sectional 
correlation between the model disturbances on the other hand. Such restrictions on the degree 
of permissible correlations are standard in virtually all large sample theory. 
 
Assumption 5  
The smallest eigenvalues of )()( 00

NN ΓΓ ′ and )()( 11
NN ΓΓ ′ are bounded away from zero, i.e., 

0)]()[( *min >≥′ λλ i
N

i
N ΓΓ  for i = 1, 2, where *λ  may depend on Rρρ ,...,1 , 2

vσ , and 2
1σ . 

Assumption 5 ensures identifiable uniqueness of the parameters Rρρ ,...,1 , 2
vσ , and 2

1σ . We 

show in the Appendix that Assumption 5 also implies that the smallest eigenvalue of 
)()( NN ΓΓ ′ is bounded away from zero.  

 

                                                 
3 See Appendix A1 for a definition of row (column) sum boundedness. 
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We may now define three different GM estimators for the case of an R-th order spatial 
regressive process (see KKP for analogous conditions under SAR(1) estimation).  
 
2.2. Initial GM estimation 
The initial GM estimator is based on a subset of moment conditions (Ma, M1,r and M2,r) and 
thus on the matrices 0

NΓ  and 0
Nγ  only.4 Define 0θ as the corresponding parameter vector that 

excludes 2
1σ , i.e. ),,...,(),( 2

1
20

vRv σρρσρθ == and accordingly 

),,...,,...,,,..., ,,...,( 2
1121

22
11

0 ′= − vRRRRR σρρρρρρρρρρα . 

 
The initial GM estimator is then obtained as the solution to  
 
 }],0[],,[),()(min{arg)~,~,...,~( 200002

,,1, baa vNNNvNRN ∈−∈′= σρθϑθϑσρρ ,  (17a)  

 
where a ≥ 1, b ≥ bv and == ),()( 2000

vNN σρϑθϑ )( 000 αGg NN − .      

 
Using these initial estimates of ρ1, …, ρR and 2

vσ , 2
1σ  can be estimated from moment 

condition Mb: 
 

 ∑∑
==

−′−=
R

m
NmNmNN

R

m
NmNmNN uuQuu

N 1
,,,1

1
,,

2
,1 )~~~()~~~(1~ ρρσ  (17b) 

 
.~~...~~~

~~...~

,,12/)1(2,24,2,112,24
2

,2,24

2
,11,24,,24,11,2424

NRNRRRRRNNRRNRRR

NRRNRRRNRR

ggg

gggg

ρρρρρ

ρρρ

−−+++++

+++++

−−−−

−−−−=
 

 
2.3. Weighted GM estimation 
2.3.1 Optimal weighting matrix  
It is well known from the literature on generalized method of moments estimation, that it is 
optimal to use as weights matrix the inverse of the (properly normalized) variance-covariance 
matrix of the moments, evaluated at true parameter values.  
 
The optimal weights matrix is thus given by 11 )]([ −− = NN NVarΞ η , where ηN denotes the 

[(4R+2) × 1] vector of moments, evaluated at the true parameter values. Suppressing the 
expectations operator (and ignoring the deterministic constants), the elements of ηN 
correspond to the expressions on the left hand side in equation (11). Notice, however, that the 

                                                 
4 An alternative would be to use an unweighted GM estimator based on all six moment 
conditions; however, as KKP (2007) show in their Monte Carlos study for a SAR(1) model, 
this estimator may perform much worse than the initial GM estimator, based on just three of 
their six moment conditions corresponding to our 0

NΓ  and 0
Nγ . Hence, in the following, the 

initial GM estimator will be used to obtain an estimate of 1−
NΞ . 
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ordering in equation system (12) is different, where the rows corresponding to Ma and Mb are 
placed in the last two rows, such that  

 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
−

′

′

′
−

′
−

=

NNN

NNN

NNNr

NrNNr

NNNr

NrNNr

N

Q
N

Q
TN

Q
N

Q
N

Q
TN

Q
TN

εε

εε

εε

εε

εε

εε

η

,1

,0

,1,

,,1,

,0,

,,0,

1
)1(

1
.            
.            

1

1
)1(

1
)1(

1

.  (18) 

 
Notice that the matrix NΞ = N )( NVar η  is symmetric and of order (4R + 2) × (4R + 2). Its 

elements are derived by substituting =Nr ,ε NNrT WI ε)( ,⊗  and using the results that 

)(2),( ,, NNNNNNNNNN ΩBΩAtrBACov εεεεεε =′′  for two non-negative definite symmetric 

matrices AN and BN  and εN  ~ N(0, NΩ ,ε ), see, e.g., Amemiya (1973, p. 5).5  

 
The matrix NΞ is then given as ][ ,srNΞ ξ= , r, s = 1, …, R+1, i.e., 

 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

++++

+

+

1,1,11,1

1,,1,

1,1,11,1

..
.

RRRRR

RRRRR

RR

NΞ

ξξξ
ξξξ

ξξξ

.  (19) 

 
Subscript N has been dropped from the elements sr ,ξ here to simplify notation. The matrix NΞ  

is made up of three parts. 
 
i) An upper left block of dimension 4R × 4R, consisting of R2 blocks of order 4 × 4, which are 
defined as   
 

                                                 
5 For quadratic forms in non-symmetric matrices AN (or BN) we use the fact that 

2/)( NNNNNNNNNN AAAA εεεεεε ′+′=′′=′ , which is a quadratic form in the symmetric 
matrix 2/)( NN AA ′+ . 
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 W
srsr TC ,, ⊗=ξ , r, s = 1, …R, where  (20) 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=

4
1

4

0

0
)1(

1

σ

σ vTC , and  (21) 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′++′′

+′′′′
=

)(1))((1

))((1)(2

,,,,,,,,

,,,,,,,,

,

NsNrNsNrNrNrNsNs

NsNsNrNrNsNsNrNr
W

sr

WWWWtr
N

WWWWtr
N

WWWWtr
N

WWWWtr
NT , r, s = 1, …, R. (22) 

 
ii) The last row (and column) block of dimension 2 × 4R (4R × 2), each consisting of R blocks 
of order  2 × 4 (4 × 2), defined as  
 
 W

sRsR tC ,1,1 ++ ⊗=ξ , and )( ,11, ′= ++ sRRs ξξ , s = 1, …, R, with  (23) 

 W
sRt ,1+ = ⎥⎦

⎤
⎢⎣
⎡ ′ 0)(2

,, NsNs WWtr
N

, s = 1, …, R.  (24) 

 
iii) The lower right block of order 2 × 2, defined as  
 
 21,11,1 ⊗=⊗= ++++ CtC W

RRRRξ .  (25) 

 
For definiteness, we add that the position of each block ξr,s is such that its upper left element 
appears in row (4r-3) and column (4s-3) of the (4R + 2) × (4R + 2) matrix Ξ N. The position of 
each block W

sRsR tC ,1,1 ++ ⊗=ξ , s = 1, …, R,   is such that its first element appears in row 

(4R+1) and column (4s-3) of ΞN. Finally, the upper left element of the block ( )1,1 ++ RRξ appears 

in row (4R+1) and column (4R + 1) of ΞN . 
 
2.3.2 The ‘weighted GM estimator’  
Using the estimate NΞ

~ , one can proceed with a weighted regression, using all 4R +2 moment 

conditions. The weighted GM estimator is obtained as the solution to  
 
 }],0[],,0[],,[),(~)({ minarg)ˆ,ˆ,ˆ,...,ˆ( 2

1
212

1,
2
,,1, cbaaΞ vNNNNNvNRN ∈∈−∈′= − σσρθϑθϑσσρρ , (26) 

 
where a ≥ 1, b ≥ bv, c ≥ T bμ  + bv, and == ),,()( 2

1
2 σσρϑθϑ vNN )( αGg NN − .  

   
2.3.3 The ‘partially weighted GM estimator’ 
KKP suggest using a simplified weighting scheme for computational purposes. This scheme 
uses the same weight for the first three moment conditions (Ma, M1,r and M2,r) and the same 
weight for the three other moment conditions (Mb, M3,r, and M4,r), but the weight used for the 
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first three moment equations is different from that used for last three moment equations. In 
case of a higher order process, this simplified weighting matrix p

NΞ  is given by 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊗
⊗

⊗
⊗

=

1..00
00
...
00
00.0

2

2

2

C
IC

IC
IC

Ξ p
N ,  (27) 

 
and the partially weighted GM estimator is defined as  

 }],0[],,0[],,[),()~()({ minarg),,,...,( 2
1

212
1,

2
,,1, cbaaΞ vN

p
NNNNvNRN ∈∈−∈′= −∨∨∨∨ σσρθϑθϑσσρρ , (28) 

 
where a ≥ 1, b ≥ bv, c ≥ T bμ  + bv, and == ),,()( 2

1
2 σσρϑθϑ vNN )( αGg NN − .  

 
3. Properties of the proposed GM estimators  
3.1. Large sample results  
This section summarizes some important asymptotic properties of the proposed GM 
estimators. The proofs are relegated to the Appendix.  
 
Theorem 1. Consistency of initial GM estimators 
Suppose Assumptions 1-5 hold. Then, if Nβ~ is a consistent estimator of β , the initial GM 

estimators )~,~,~,...,~( 2
1

2
1 σσρρ vR defined by (17a) and (17b) are consistent for 2

1 ,,..., vR σρρ , 2
1σ , 

i.e., ),,,...,(  )~,~,~,...,~( 2
1

2
1

2
,1

2
,,1, σσρρσσρρ vR

P
NNvNRN →  as ∞→N . 

 
Theorem 2. Consistency of weighted GM estimators 
Suppose Assumptions 1-5 hold and that the smallest and largest eigenvalues of the matrices 

1−
NΞ  satisfy ∞<≤≤≤< −−

**
1

max
1

min* )()(0 λλλλ NN ΞΞ . Suppose furthermore that Nβ~  and NΞ
~  

are consistent estimators of β  and NΞ , respectively. Then the weighted GM estimators  

)ˆ,ˆ,ˆ,...,ˆ( 2
,1

2
,,1, NNvNRN σσρρ defined by (26) are consistent for 2

1 ,,..., vR σρρ , 2
1σ , i.e.,  

),,,...,(  )ˆ,ˆ,ˆ,...,ˆ( 2
1

2
1

2
,1

2
,,1, σσρρσσρρ vR

P
NNvNRN →  as ∞→N . 

 
Theorem 3. Consistency of partially weighted GM estimators 
Suppose Assumptions 1-5 hold. Suppose furthermore that β~  and p

NΞ
~  are consistent 

estimators of β  and p
NΞ , respectively. Then, the partially weighted GM estimators 

 ),,,...,( 2
1,

2
,,1, NNvNRN

∨∨∨∨
σσρρ defined by (28) are consistent for 2

1 ,,..., vR σρρ , 2
1σ , i.e.,  
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),,,...,(  ),,,...,( 2
1

2
1

2
1,

2
,,1, σσρρσσρρ vR

P
NNvNRN →

∨∨∨∨
 as ∞→N . 

 
Since the specification of the main equation is identical to that in KKP, the focus of the 
present paper is on the spatial regressive error process. But it is readily verified by an 
inspection of the respective proofs in KKP,6 that under the maintained assumptions the 
following two theorems also hold in case of an R-th order spatial regressive error process.  
 
Theorem 4. Consistency of OLS estimator of β 
Suppose Assumptions 1-4 holds. The OLS estimator of β based on (2a), which is given by 

NNNN
OLS
N yXXX ′′= −1)(β̂ , is consistent for β, i.e., ββ POLS

N →ˆ  as ∞→N . 

 
Theorem 5. Asymptotic distribution of the GLS and FGLS estimators of β 
The true generalized least squares (GLS) estimator of β is given by  
 
 NvNuNNvNuN

GLS
N yΩXXΩX )],,([})],,([{ˆ 2

1
21

,
12

1
21

, σσρσσρβ −−− ′′= . (29a) 

 
Using the expression for NuΩ ,  in (9a), this can also be written as   

 
 )()],()[()}()],()[({ˆ *2

1
21

,
*1*2

1
21

,
* ρσσρρσσρβ εε NvNNNvNN

GLS
N yΩXXΩX −−− ′′= , where (29b) 

 N

R

m
NmmNTN XWIIX ∑

=

−⊗=
1

,
* )]([)( ρρ , (30a) 

 N

R

m
NmmNTN yWIIy ∑

=

−⊗=
1

,
* )]([)( ρρ . (30b) 

 
The feasible generalized least squares (FGLS) estimator is obtained by replacing the true 
parameters ,, 2

vσρ and 2
1σ by their respective (initial, weighted, or partially weighted) GM 

estimates, denoted as ,, 2
vσρ &&&& and 2

1σ&& . 

 
Now, suppose that Assumptions 1-4 hold. 
(a) Then the GLS estimator is consistent and asymptotically normal, i.e., 
 

 },0{]ˆ[)( 2/1 ΨNNT DGLS
N →− ββ  as ∞→N , with 

 1
1

2
10

2 ][ −−− += xxxx
v MMΨ σσ . 

 

                                                 
6 In particular, the proofs of consistency of OLS in KKP (2007, p. 124) and the proof of 
Theorem 4 in KKP (2007, p. 126). 
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(b) Let ,, 2
, NvN σρ &&&& and 2

,1 Nσ&&  be (any) consistent estimates of ,, 2
vσρ and 2

1σ . Then,  

 

 0]ˆˆ[)( 2/1 PFGLS
N

GLS
NNT →− ββ  as ∞→N . 

 
This means that GLS and FGLS are asymptotically equivalent and, hence, FGLS

Nβ̂  is also 

consistent and asymptotically normal. 
 
(c) Furthermore, 
 

 0P
N ΨΨ →−&  as ∞→N , where  

 
1

*2
,1

2
,

1
,

* )()],()[(1 −
−

⎭
⎬
⎫

⎩
⎨
⎧ ′= NNNNvNNNN XΩX

NT
Ψ ρσσρ ε &&&&& . 

 
This suggests that small sample inference can be based on the approximation 

))(,(~ˆ 1
N

FGLS
N ΨNTN &&

−ββ . 

 
While we demonstrate in the Appendix that the initial, weighted, and partially weighted GM 
estimators of ,, 2

vσρ and 2
1σ  defined in (17), (26), and (28) are consistent, we are also 

interested in their small sample performance. We thus proceed with a Monte Carlo study. 
 
 
IV. Monte Carlo analysis 
In this section, we consider a Monte Carlos experiment for the case of a third-order spatial 
regressive process, i.e., 
 

 uN = N
m

NmTm uWI ερ +⊗∑
=

3

1
)( . (31) 

 
In all our Monte Carlo experiments, the time dimension is T = 5. Concerning the cross-section 
dimension, we consider three sample sizes: N = 100, N = 250, and N = 500. For our basic 
setup of the weights matrix, we follow Kelejian and Prucha (1999) and use a binary “up to 9 
ahead and up to 9 behind” contiguity specification. This means that the elements of the time-
invariant, raw weights matrix W0 are defined such that the i-th cross-section element is related 
to the 9 elements after it and the 9 elements before it.  

 
The raw NN ×  matrix W0 is then split up into three NN ×  matrices 0

1W , 0
2W , and 0

3W , 

where 00
3

0
2

0
1 WWWW =++ . The matrices 0

1W , 0
2W , and 0

3W  are specified such that they 

contain the elements of W0 for different bands of neighbours and zeros else: 0
1W corresponds 
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to an “up to 3 ahead and up to 3 behind” specification, 0
2W  corresponds to a “4 to 6 ahead and 

4 to 6 behind” specification, and 0
3W  corresponds to a “7 to 9 ahead and 7 to 9 behind” 

specification. The final weights matrices W1, W2, and W3  are obtained by separately row-
normalizing 0

1W , 0
2W , and 0

3W , that is by dividing their elements 0
,1 ijw , 0

,2 ijw , and 0
,2 ijw  through 

the corresponding row sums d1,i, d2,i, and d3,i, respectively.  
 

With three row-normalized matrices W1, W2, and W3, the parameter space for ρ1, ρ2, and ρ3 
must satisfy 10 321 <++≤ ρρρ  for ( 332211 WWWI ρρρ −−− ) to be invertible. We consider 

10 parameter constellations, assuming that the parameter values (ρ1, ρ2, ρ3) are non-increasing 
in the order of neighbourhood, i.e., we always have ρ1 ≥ ρ2 ≥ ρ3. 

 
Table 1. Parameter constellations in the Monte Carlo experiments 

Parameter 
constellation ρ1 ρ2 ρ3 

(1) 0.4 0.4 0 
(2) 0.4 0.2 0.2 
(3) 0.4 0.2 0.1 
(4) 0.4 0.2 0 
(5) 0.4 0 0 
(6) 0.2 0.2 0.2 
(7) 0.2 0.1 0 
(8) 0.2 0.2 0 
(9) 0.2 0 0 
(10) 0 0 0 

 
Regarding the properties of the error process εN, we assume that 122 == vσσ μ , i.e.,  the error 

components μN and vit are drawn from a standard normal distribution. For each Monte Carlo 
experiment we consider 2000 draws. To ensure comparability, the same draw of μ and v is 
used for each of the 10 combinations of ρ1, ρ2, and ρ3. Tables 2-4 show the results for the 
three sample sizes.  

 
The tables are organized as follows. Each column shows the results for one parameter 
constellation, corresponding to the true parameters values given in the rows ρ1, ρ2, ρ3, 

2
μσ  

and 2
vσ . Below each parameter, the bias and root mean squared error are listed for each of the 

three estimators, i.e., the initial GM estimator (GMin), the weighted GM estimator (GMw), and 
the partially weighted GM estimator (GMin). 
 
The results suggest that the proposed GM estimator performs reasonably well, even in small 
samples. As can be seen from Table 2, which is based on a sample size of 100 observations, 
the bias over all parameter constellations is fairly small for all three estimators. 
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Table 2. Monte Carlo Results, N = 100, T = 5, 2000 draws 
Parameter Constellation 1) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) average 2) 
ρ1  0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0.2800  
Bias GMin -0.0049 -0.0058 -0.0067 -0.0073 -0.0093 -0.0076 -0.0097 -0.0088 -0.0105 -0.0115 0.0082 
 GMw 0.0126 0.0142 0.0137 0.0133 0.0140 0.0145 0.0144 0.0141 0.0147 0.0147 0.0140 
 GMpw 0.0022 0.0026 0.0026 0.0025 0.0029 0.0024 0.0027 0.0025 0.0028 0.0026 0.0026 
RMSE GMin 0.0652 0.0703 0.0691 0.0681 0.0722 0.0789 0.0806 0.0781 0.0834 0.0936 0.0759 
 GMw 0.0592 0.0649 0.0634 0.0621 0.0659 0.0722 0.0732 0.0709 0.0758 0.0847 0.0692 
 GMpw 0.0586 0.0632 0.0618 0.0607 0.0641 0.0705 0.0716 0.0694 0.0740 0.0832 0.0677 
ρ2  0.4 0.2 0.2 0.2 0 0.2 0.1 0.2 0 0 0.1500 
Bias GMin -0.0006 0.0005 -0.0003 -0.0010 -0.0012 -0.0015 -0.0028 -0.0028 -0.0028 -0.0043 0.0018 
 GMw -0.0064 -0.0078 -0.0071 -0.0063 -0.0058 -0.0066 -0.0052 -0.0052 -0.0051 -0.0046 0.0060 
 GMpw -0.0009 -0.0014 -0.0013 -0.0012 -0.0014 -0.0009 -0.0008 -0.0006 -0.0010 -0.0007 0.0010 
RMSE GMin 0.0814 0.0795 0.0805 0.0813 0.0795 0.0824 0.0850 0.0848 0.0847 0.0904 0.0829 
 GMw 0.0754 0.0745 0.0754 0.0761 0.0745 0.0768 0.0795 0.0791 0.0792 0.0846 0.0775 
 GMpw 0.0749 0.0732 0.0742 0.0749 0.0733 0.0759 0.0783 0.0781 0.0780 0.0833 0.0764 
ρ3  0 0.2 0.1 0 0 0.2 0 0 0 0 0.0500 
Bias GMin -0.0012 -0.0023 -0.0023 -0.0023 -0.0033 -0.0031 -0.0033 -0.0028 -0.0038 -0.0043 0.0029 
 GMw -0.0051 -0.0051 -0.0038 -0.0026 -0.0006 -0.0041 -0.0017 -0.0026 -0.0010 -0.0013 0.0028 
 GMpw -0.0005 -0.0003 0.0000 0.0001 0.0005 0.0001 0.0002 0.0001 0.0003 0.0002 0.0002 
RMSE GMin 0.0702 0.0713 0.0725 0.0730 0.0741 0.0792 0.0809 0.0804 0.0812 0.0875 0.0770 
 GMw 0.0649 0.0658 0.0671 0.0675 0.0684 0.0735 0.0751 0.0747 0.0753 0.0813 0.0714 
 GMpw 0.0646 0.0657 0.0669 0.0675 0.0686 0.0731 0.0750 0.0745 0.0753 0.0813 0.0713 

2
vσ   1 1 1 1 1 1 1 1 1 1 1.0000 

Bias GMin -0.0110 -0.0111 -0.0114 -0.0116 -0.0120 -0.0121 -0.0128 -0.0126 -0.0129 -0.0137 0.0121 
 GMw -0.0122 -0.0120 -0.0123 -0.0124 -0.0126 -0.0111 -0.0114 -0.0113 -0.0115 -0.0105 0.0117 
 GMpw -0.0121 -0.0121 -0.0122 -0.0122 -0.0123 -0.0120 -0.0120 -0.0120 -0.0120 -0.0118 0.0121 
RMSE GMin 0.0723 0.0719 0.0717 0.0716 0.0714 0.0713 0.0709 0.0711 0.0709 0.0708 0.0714 
 GMw 0.0721 0.0717 0.0716 0.0716 0.0714 0.0710 0.0707 0.0709 0.0707 0.0704 0.0712 
 GMpw 0.0721 0.0717 0.0716 0.0715 0.0713 0.0711 0.0707 0.0709 0.0707 0.0705 0.0712 

2
1σ   6 6 6 6 6 6 6 6 6 6 6.0000 

Bias GMin 0.0218 0.0209 0.0179 0.0158 0.0125 0.0135 0.0082 0.0100 0.0068 0.0020 0.0129 
 GMw -0.0914 -0.0909 -0.0923 -0.0933 -0.0951 -0.0847 -0.0869 -0.0860 -0.0879 -0.0816 0.0890 
 GMpw -0.0886 -0.0894 -0.0894 -0.0892 -0.0900 -0.0878 -0.0876 -0.0873 -0.0880 -0.0862 0.0883 
RMSE GMin 0.8745 0.8712 0.8702 0.8700 0.8675 0.8667 0.8647 0.8661 0.8637 0.8616 0.8676 
 GMw 0.8641 0.8624 0.8622 0.8621 0.8610 0.8603 0.8588 0.8595 0.8584 0.8571 0.8606 
 GMpw 0.8649 0.8630 0.8628 0.8627 0.8615 0.8610 0.8596 0.8604 0.8591 0.8580 0.8613 

Note: GMin, GMw, GMpw denote initial, weighted, and partially weighted GM estimator respectively. 1) Each column corresponds to one parameter constellation (see 
Table 1). 2) Average of absolute row values. 
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Table 3. Monte Carlo Results, N = 250, T = 5, 2000 draws 
Parameter Constellation 1) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) average 2) 

ρ1  0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0.2800  
Bias GMin -0.0028 -0.0033 -0.0037 -0.0039 -0.0048 -0.0043 -0.0052 -0.0047 -0.0055 -0.0061 0.0044 
 GMw 0.0060 0.0068 0.0065 0.0063 0.0066 0.0070 0.0069 0.0067 0.0070 0.0070 0.0067 
 GMpw 0.0010 0.0012 0.0012 0.0012 0.0013 0.0010 0.0012 0.0011 0.0012 0.0010 0.0011 
RMSE GMin 0.0399 0.0431 0.0419 0.0410 0.0429 0.0478 0.0480 0.0467 0.0495 0.0555 0.0456 
 GMw 0.0359 0.0394 0.0383 0.0373 0.0392 0.0435 0.0436 0.0424 0.0450 0.0502 0.0415 
 GMpw 0.0361 0.0390 0.0378 0.0369 0.0386 0.0431 0.0432 0.0420 0.0445 0.0499 0.0411 
ρ2  0.4 0.2 0.2 0.2 0 0.2 0.1 0.2 0 0 0.1500 
Bias GMin -0.0005 0.0000 -0.0004 -0.0007 -0.0009 -0.0009 -0.0015 -0.0015 -0.0016 -0.0023 0.0010 
 GMw -0.0036 -0.0042 -0.0039 -0.0035 -0.0032 -0.0037 -0.0029 -0.0030 -0.0029 -0.0027 0.0033 
 GMpw -0.0012 -0.0014 -0.0014 -0.0013 -0.0014 -0.0012 -0.0012 -0.0011 -0.0013 -0.0012 0.0013 
RMSE GMin 0.0497 0.0487 0.0493 0.0498 0.0487 0.0506 0.0522 0.0521 0.0520 0.0556 0.0509 
 GMw 0.0443 0.0437 0.0442 0.0446 0.0436 0.0453 0.0467 0.0466 0.0465 0.0498 0.0455 
 GMpw 0.0444 0.0435 0.0440 0.0444 0.0434 0.0452 0.0466 0.0465 0.0464 0.0497 0.0454 
ρ3  0 0.2 0.1 0 0 0.2 0 0 0 0 0.0500 
Bias GMin -0.0005 0.0000 -0.0004 -0.0007 -0.0009 -0.0009 -0.0015 -0.0015 -0.0016 -0.0023 0.0010 
 GMw -0.0036 -0.0042 -0.0039 -0.0035 -0.0032 -0.0037 -0.0029 -0.0030 -0.0029 -0.0027 0.0033 
 GMpw -0.0012 -0.0014 -0.0014 -0.0013 -0.0014 -0.0012 -0.0012 -0.0011 -0.0013 -0.0012 0.0013 
RMSE GMin 0.0497 0.0487 0.0493 0.0498 0.0487 0.0506 0.0522 0.0521 0.0520 0.0556 0.0509 
 GMw 0.0443 0.0437 0.0442 0.0446 0.0436 0.0453 0.0467 0.0466 0.0465 0.0498 0.0455 
 GMpw 0.0444 0.0435 0.0440 0.0444 0.0434 0.0452 0.0466 0.0465 0.0464 0.0497 0.0454 

2
vσ   1 1 1 1 1 1 1 1 1 1 1.0000 

Bias GMin -0.0043 -0.0045 -0.0046 -0.0046 -0.0048 -0.0050 -0.0052 -0.0051 -0.0053 -0.0057 0.0049 
 GMw -0.0052 -0.0052 -0.0053 -0.0054 -0.0055 -0.0047 -0.0049 -0.0048 -0.0050 -0.0045 0.0051 
 GMpw -0.0051 -0.0052 -0.0052 -0.0052 -0.0053 -0.0052 -0.0051 -0.0051 -0.0052 -0.0051 0.0052 
RMSE GMin 0.0464 0.0462 0.0461 0.0460 0.0460 0.0458 0.0456 0.0457 0.0456 0.0455 0.0459 
 GMw 0.0463 0.0461 0.0460 0.0460 0.0459 0.0458 0.0456 0.0456 0.0456 0.0454 0.0458 
 GMpw 0.0463 0.0462 0.0460 0.0460 0.0459 0.0459 0.0456 0.0457 0.0456 0.0455 0.0459 

2
1σ   6 6 6 6 6 6 6 6 6 6 6.0000 

Bias GMin 0.0095 0.0088 0.0083 0.0080 0.0072 0.0059 0.0047 0.0052 0.0043 0.0017 0.0064 
 GMw -0.0352 -0.0349 -0.0354 -0.0357 -0.0364 -0.0318 -0.0326 -0.0323 -0.0330 -0.0300 0.0337 
 GMpw -0.0336 -0.0341 -0.0340 -0.0338 -0.0341 -0.0334 -0.0331 -0.0330 -0.0332 -0.0325 0.0335 
RMSE GMin 0.5331 0.5323 0.5320 0.5320 0.5317 0.5308 0.5301 0.5303 0.5300 0.5293 0.5311 
 GMw 0.5290 0.5290 0.5287 0.5284 0.5284 0.5280 0.5273 0.5273 0.5274 0.5269 0.5280 
 GMpw 0.5297 0.5297 0.5293 0.5290 0.5291 0.5288 0.5281 0.5281 0.5282 0.5280 0.5288 

Note: GMin, GMw, GMpw denote initial, weighted, and partially weighted GM estimator respectively. 1) Each column corresponds to one parameter constellation (see 
Table 1). 2) Average of absolute row values. 
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Table 4. Monte Carlo Results, N = 500, T = 5, 2000 draws 
Parameter Constellation 1) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) average 2) 

ρ1  0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0.2800 
Bias GMin -0.0025 -0.0028 -0.0029 -0.0028 -0.0031 -0.0032 -0.0033 -0.0032 -0.0034 -0.0037 0.0031 
 GMw 0.0021 0.0023 0.0023 0.0023 0.0025 0.0024 0.0025 0.0024 0.0026 0.0026 0.0024 
 GMpw -0.0006 -0.0006 -0.0005 -0.0004 -0.0002 -0.0007 -0.0003 -0.0004 -0.0003 -0.0004 0.0004 
RMSE GMin 0.0281 0.0304 0.0297 0.0291 0.0306 0.0341 0.0344 0.0334 0.0355 0.0399 0.0325 
 GMw 0.0241 0.0265 0.0258 0.0252 0.0267 0.0295 0.0298 0.0288 0.0308 0.0344 0.0282 
 GMpw 0.0247 0.0268 0.0261 0.0255 0.0269 0.0299 0.0301 0.0293 0.0311 0.0350 0.0285 
ρ2  0.4 0.2 0.2 0.2 0 0.2 0.1 0.2 0 0 0.1500 
Bias GMin 0.0008 0.0011 0.0009 0.0008 0.0007 0.0008 0.0005 0.0005 0.0005 0.0004 0.0007 
 GMw -0.0009 -0.0011 -0.0010 -0.0008 -0.0006 -0.0008 -0.0004 -0.0004 -0.0004 -0.0002 0.0007 
 GMpw 0.0006 0.0005 0.0005 0.0005 0.0004 0.0007 0.0007 0.0007 0.0006 0.0007 0.0006 
RMSE GMin 0.0342 0.0335 0.0339 0.0343 0.0335 0.0347 0.0359 0.0358 0.0358 0.0383 0.0350 
 GMw 0.0304 0.0300 0.0304 0.0308 0.0302 0.0310 0.0322 0.0320 0.0322 0.0344 0.0314 
 GMpw 0.0308 0.0301 0.0305 0.0308 0.0301 0.0312 0.0322 0.0321 0.0321 0.0343 0.0314 
ρ3  0 0.2 0.1 0 0 0.2 0 0 0 0 0.0500 
Bias GMin 0.0008 0.0011 0.0009 0.0008 0.0007 0.0008 0.0005 0.0005 0.0005 0.0004 0.0007 
 GMw -0.0009 -0.0011 -0.0010 -0.0008 -0.0006 -0.0008 -0.0004 -0.0004 -0.0004 -0.0002 0.0007 
 GMpw 0.0006 0.0005 0.0005 0.0005 0.0004 0.0007 0.0007 0.0007 0.0006 0.0007 0.0006 
RMSE GMin 0.0342 0.0335 0.0339 0.0343 0.0335 0.0347 0.0359 0.0358 0.0358 0.0383 0.0350 
 GMw 0.0304 0.0300 0.0304 0.0308 0.0302 0.0310 0.0322 0.0320 0.0322 0.0344 0.0314 
 GMpw 0.0308 0.0301 0.0305 0.0308 0.0301 0.0312 0.0322 0.0321 0.0321 0.0343 0.0314 

2
vσ   1 1 1 1 1 1 1 1 1 1 1.0000 

Bias GMin -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0020 -0.0020 -0.0020 -0.0020 -0.0022 0.0019 
 GMw -0.0021 -0.0020 -0.0021 -0.0021 -0.0021 -0.0018 -0.0018 -0.0018 -0.0018 -0.0016 0.0019 
 GMpw -0.0020 -0.0021 -0.0020 -0.0020 -0.0019 -0.0021 -0.0019 -0.0020 -0.0019 -0.0019 0.0020 
RMSE GMin 0.0330 0.0329 0.0329 0.0328 0.0328 0.0327 0.0326 0.0326 0.0326 0.0327 0.0328 
 GMw 0.0328 0.0327 0.0327 0.0327 0.0328 0.0326 0.0326 0.0326 0.0326 0.0326 0.0327 
 GMpw 0.0329 0.0328 0.0327 0.0327 0.0327 0.0326 0.0326 0.0326 0.0326 0.0326 0.0327 

2
1σ   6 6 6 6 6 6 6 6 6 6 6.0000 

Bias GMin 0.0015 0.0011 0.0011 0.0011 0.0012 -0.0007 -0.0006 -0.0006 -0.0005 -0.0020 0.0010 
 GMw -0.0199 -0.0198 -0.0199 -0.0199 -0.0199 -0.0186 -0.0185 -0.0186 -0.0186 -0.0174 0.0191 
 GMpw -0.0202 -0.0203 -0.0200 -0.0197 -0.0194 -0.0203 -0.0195 -0.0197 -0.0194 -0.0194 0.0198 
RMSE GMin 0.3760 0.3760 0.3756 0.3755 0.3756 0.3749 0.3743 0.3743 0.3745 0.3740 0.3751 
 GMw 0.3754 0.3755 0.3751 0.3748 0.3747 0.3746 0.3738 0.3739 0.3738 0.3734 0.3745 
 GMpw 0.3761 0.3762 0.3758 0.3755 0.3754 0.3753 0.3744 0.3745 0.3745 0.3740 0.3752 

Note: GMin, GMw, GMpw denote initial, weighted, and partially weighted GM estimator respectively. 1) Each column corresponds to one parameter constellation (see 
Table 1). 2) Average of absolute row values.  
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For the initial GM estimator (GMin), the average absolute bias amounts to 2.9 percent for ρ1, 
to 0.6 percent for ρ2, and to 1.0 percent for ρ3. The average absolute bias is slightly larger 
with the weighted GM estimator (GMw) with a small number of cross-sectional units, N. The 
bias deteriorates quickly as the number of cross-sectional observations grows larger (compare 
the results in the last column of Table 2 with those in Tables 3 and 4).  
 
Considering the root mean squared error (RMSE) of ρ1, ρ2, and ρ3, we observe that the 
partially weighted GM estimator (GMpw) performs as well as the weighted GM estimator in 
fairly small samples with N=100. The RMSE of GMin is relatively larger than that of GMpw 
and GMw. The RMSE of GMw tends to decline faster with an increase in N than that of GMpw 
and GMin. To see this, compare the last column of Table 2 with that of Table 5. Overall, the 
RMSE is fairly small across all considered GM estimators even with 100=N . 
 
V. Conclusions 
Research on the analysis of interdependent data by means of spatial econometric methods has 
been evolving quite dynamically in recent years. One reason for this observation lies in the 
fact that various lines of economic theory provide a rich source of hypotheses that relate to 
interdependent units—individuals, firms, industries, jurisdictions, or countries.  
 
One limitation of most concurrent econometric work on that matter is that much is known 
about processes with just a single channel of interdependence, while extensions to generalize 
the possible number of types or decay segments for spatial interdependence mechanisms are 
scarce and only available for cross-sectional data-sets.  
 
We contribute to the literature on spatial econometrics by formulating a GM estimation 
procedure which allows researchers to estimate panel data error component models for short 
time periods with an R-th order spatially autoregressive process. Such a model is useful, if the 
decay function of a given weights matrix—say, for bands of neighbours—is of unknown 
degree of non-linearity or even non-monotonic. Also, the approach is applicable if several 
channels of cross-sectional interdependence in conceptually different dimensions—such as 
geographical, cultural, institutional, industry, or political ‘space’—generate effects at the 
same time and one wishes to estimate their relative importance on outcome. 
 
We prove that the proposed GM estimators for the spatial autoregressive parameters and error 
component variances are consistent. Under standard assumptions, generalized least-squares 
(GLS) and feasible GLS (FGLS) estimates of the slope parameters in the main equation are 
then asymptotically normal, and the weighted GLS and FGLS estimators are efficient.  A 
Monte Carlo analysis for a third-order spatial autoregressive model illustrates that the 
estimator is applicable even with panel data of a small to medium-sized cross-sectional 
dimension and fixed time. 
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Appendix  
The proof of consistency of the GM estimators for a higher order spatial regressive process is 
given in full length to the benefit of the reader. It proceeds closely along that for the first-
order case given in KKP. We require that the assumptions regarding the properties of WN in 
KKP hold for each of the matrices Wr,N (Assumptions 2 and 4). Moreover, since we have a 
vector of autoregressive parameters ),...,( 1 ′= Rρρρ , the admissible parameter space needs to 
be defined differently (Assumption 2). Finally, it has to be accounted for the higher dimension 
of ΓN, γN, and NΞ , when considering the eigenvalues, e.g., of NNΓΓ ′  (Assumptions 3 and 5). 

 
Remark A1. Row and column sum boundedness  
Definition (KKP, p. 99). Let BN, N ≥ 1, be some sequence of kN  × kN matrices with k some 
fixed positive integer. We will then say that the row and column sums of the (sequence of) 
matrices BN are bounded uniformly in absolute value, if there exists a constant c < ∞, which 
does not depend on N, such that  
 

 cb
kN

j
NijkNi

≤∑
=≤≤ 1

,1
max  and cb

kN

i
NijkNj

≤∑
=

≤≤ 1
,1

max  for all N ≥ 1.  (A.1)  

 
The following results are repeatedly used in the consistency proof (see KKP, pp. 118). 
(i) Let RN be a (sequence of) N × N matrices whose row and column sums are bounded 
uniformly in absolute value, and let S be some k × k matrix (with k ≥ 1 fixed). Then the row 
and column sums of S ⊗ RN are bounded uniformly in absolute value. 
 
(ii) If AN and BN are (sequences of) kN × kN matrices (with k ≥ 1 fixed), whose row and 
column sums are bounded uniformly in absolute value, then so are the row and column sums 
of ANBN and AN + BN. If ZN is a (sequence of) kN × p matrices whose elements are uniformly 
bounded in absolute value, then so are the elements of ANZN and NNN ZAZkN ′−1)( .  

 
In the following, we give three Lemmata which will be useful for the consistency proof.7 
 
 
Lemma A1.  
Let ST be some T × T matrix (with T fixed), and let RN be some N × N matrix whose row and 
column sums are bounded in uniformly in absolute value. Let εN = (eT ⊗ IN)μN + vN, where μN 
and vN satisfy Assumption 1. Consider the quadratic form  
 
 NNTNN RSN εεϕ )(1 ⊗′= − . (A.2) 

 

                                                 
7 The lemmata are derived in KKP (2007) and adapted here to the higher order setting. 
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Then )1(O)( =NE ϕ and )1(o)( =NVar ϕ , and as a consequence   

 0)(
P

NN E →− ϕϕ  as N → ∞. 

 
See KKP (p. 120) for the proof, which relies on the properties of products and sums of row 
and column sum bounded matrices summarized in Remark A1.  
 
 
Lemma A2. 
Let *

NG  and *
Ng  be identical to ΓN and γN in (12) except that the expectations operator is 

dropped. Suppose Assumptions 1, 2, and 4 hold. Then ΓN = O(1), γN = O(1), and  

0*
P

NN ΓG →−  and  0*
P

NNg →− γ  as N → ∞. 

 
Proof. 
Note from (4a) as well as (15a) and (15b) that 
 

 NNT

R

m
NNmmNTN PIWIIu εερ )(])([

1

1
, ⊗=−⊗= ∑

=

− , 

 NNNmTNNmTNm PWIuWIu ε)()( ,,, ⊗=⊗= , m = 1, …, R, and  

 NNNlNmTNNlNmTNml PWWIuWWIu ε)()( ,,,,, ⊗=⊗= , m, l = 1, …, R. 

 
Define  
 

 )(
1

1
,0 T

JI
T

S T
TT −

−
= , 

T
JS T

T =,1 , such that (A.3) 

 NNT Q
T

IS ,0,0 )1(
1
−

=⊗  and NNT QIS ,1,1 =⊗ . (A.4) 

 
Using these definitions, the elements of =*

Ng ][ *
,Nig , i = 1, …, (4R + 2), and *

NG = ][ *
, Nijg , i = 

1, …, (4R + 2) and j = 1, …, [2R + R(R-1)/2 + 2] are, apart from a constant, expressible as 
quadratic forms similar to (A.2), i.e., 
 

NNijTNNij RS
N

εεϕ )(1
,,0, ⊗′= , (A.5) 

 
where i and j refer to the row (and column) of the respective element of *

Ng and *
NG .8  

                                                 
8 For notational simplicity, we drop the subscript N from Nij ,ϕ  and NijR , . As in section III, the 
elements are grouped by moment conditions. 
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Associated with moment condition M1, for each r = 1, …R we have: 

 =+− 1)1(4 rϕ  NrNN RS
N

εε )(1
1)1(4,0 +−⊗′ , NNrNmNr PWWPR ,,1)1(4 ′′=+− , (A.6) 

 =+− mr ,1)1(4ϕ NmrTN RS
N

εε )(1
,1)1(4,0 +−⊗′ , NNmNrNrNr PWWWPR ,,,1)1(4 ′′=+− , m = 1, …, R, 

 =++− mRr ,1)1(4ϕ NmRrTN RS
N

εε )(1
,1)1(4,0 ++−⊗′ , NNmNrNrNmNmRr PWWWWPR ,,,,,1)1(4 ′′′=++− ,  

  m = 1, …, R 

 =−+−−++− mlmmmRr 2/)1()1(,1)1(4ϕ  NmlmmmRrTN RS
N

εε )(1
2/)1()1(,1)1(4,0 −+−−++−⊗′ , 

   NNlNrNrNmNmlmmmRr PWWWWPR ,,,,2/)1()1(,1)1(4 ′′′=−+−−++− , m = 1, …, R-1, l = m +1, … R. 

 
Associated with moment condition M2, for each r = 1, …R we have: 

 =+− 2)1(4 rϕ NrTN RS
N

εε )(1
2)1(4,0 +−⊗′ , NNrNr PWPR ,2)1(4 ′′=+− ,  

 =+− mr ,2)1(4ϕ NmrTN RS
N

εε )(1
,2)1(4,0 +−⊗′ , NNmNrNNNrNmNmr PWWPPWWPR ,,,,,2)1(4 ′′+′′′=+− ,  

  m = 1, …, R, 

 =++− mRr ,2)1(4ϕ NmRrTN RS
N

εε )(1
,2)1(4,0 ++−⊗′ , NNmNrNmNmRr PWWWPR ,,,,2)1(4 ′′′=++− ,  

  m = 1, …, R, 

 =−+−−++− mlmmmRr 2/)1()1(,2)1(4ϕ NmlmmmRrTN RS
N

εε )(1
2/)1()1(,2)1(4,0 −+−−++−⊗′ ,   

  NNlNrNmNNNmNrNlNmlmmmRr PWWWPPWWWPR ,,,,,,2/)1()1(,2)1(4 ′′′+′′′=−+−−++− , m = 1, …, R-1, l = 

  m +1, …, R. 
 
Associated with moment condition M3, for each r = 1, …R we have: 

 =+− 3)1(4 rϕ NNrTN RS
N

εε )(1
,3)1(4,1 +−⊗′ , NNmNrNNr PWWPR ,,,3)1(4 ′′=+− , 

 =+− mr ,3)1(4ϕ NmrTN RS
N

εε )(1
,3)1(4,1 +−⊗′ , NNmNrNrNmr PWWWPR ,,,,3)1(4 ′′=+− , m = 1, …, R, 

 =++− mRr ,3)1(4ϕ NmRrTN RS
N

εε )(1
,3)1(4,1 ++−⊗′ , NNmNrNrNmNmRr PWWWWPR ,,,,,3)1(4 ′′′=++− ,  

  m = 1, …, R, 

 =−+−−++− mlmmmRr 2/)1()1(,3)1(4ϕ NmlmmmRrTN RS
N

εε )(1
2/)1()1(,3)1(4,1 −+−−++−⊗′ ,  

  NNlNrNrNmNmlmmmRr PWWWWPR ,,,,2/)1()1(,3)1(4 ′′′=−+−−++− , m = 1, …, R-1, l = m +1, … R.   

 
Associated with moment condition M4, for each r = 1, …R we have: 

 =+− 4)1(4 rγ NrTN RS
N

εε )(1
4)1(4,1 +−⊗′ , NNrNr PWPR ,4)1(4 ′′=+− , m = 1, …, R, 
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 =+− mr ,4)1(4γ NmrTN RS
N

εε )(1
,4)1(4,1 +−⊗′ , NNmNrNNNrNmNmr PWWPPWWPR ,,,,,4)1(4 ′′+′′′=+− ,  

  m = 1, …, R,  

 =++− mRr ,4)1(4γ NmRrTN RS
N

εε )(1
,4)1(4,1 ++−⊗′ , NNmNrNmNmRr PWWWPR ,,,,4)1(4 ′′′=++− ,  

  m = 1, …, R, 

=−+−−++− mlmmmRr 2/)1()1(,4)1(4γ NmlmmmRrTN RS
N

εε )(1
2/)1()1(,4)1(4,1 −+−−++−⊗′ ,

 NNlNrNmNNNmNrNlNmlmmmRr PWWWPPWWWPR ,,,,,,2/)1()1(,4)1(4 ′′′+′′′=−+−−++− , m = 1, …, R-1,  

 l = m+1, …, R.   
 
Associated with moment condition Ma: 

 =+14Rϕ NRTN RS
N

εε )(1
14,0 +⊗′ , NNR PPR ′=+14 , 

 =+ mR ,14ϕ NmRTN RS
N

εε )(1
,14,0 +⊗′ , NNmNmR PWPR ,,14 ′′=+ , m = 1, …, R,   

 =++ mRR ,14ϕ NmRRTN RS
N

εε )(1
,14,0 ++⊗′ , NNmNmNmRR PWWPR ,,,14 ′′=++ , m = 1, …, R,  

 =−+−−++ mlmmmRR 2/)1()1(,14ϕ NmlmmmRRTN RS
N

εε )(1
2/)1()1(,14,0 −+−−++⊗′ ,    

  NNlNmNmlmmmRR PWWPR ,,2/)1()1(,14 ′′=−+−−++ , m = 1, …, R-1, and l = m +1, … R. 

   
Associated with moment condition Mb we have: 

 =+24Rϕ NRTN RS
N

εε )(1
24,1 +⊗′ , NNR PPR ′=+24 , 

 =+ mR ,24ϕ NmRTN RS
N

εε )(1
,24,1 +⊗′ , NNmNmR PWPR ,,24 ′′=+ , m = 1, …, R,   

 =++ mRR ,24ϕ NmRRTN RS
N

εε )(1
,24,1 ++⊗′ , NNmNmNmRR PWWPR ,,,24 ′′=++ , m = 1, …, R, 

 =−+−−++ mlmmmRR 2/)1()1(,24ϕ NmlmmmRRTN RS
N

εε )(1
2/)1()1(,24,1 −+−−++⊗′ ,    

  NNlNmNmlmmmRR PWWPR ,,2/)1()1(,24 ′′=−+−−++ , m = 1, …, R-1, l = m +1, … R.   

 
Since the row and column sums of WN and PN are uniformly bounded in absolute value by 
Assumption 4, so are the the matrices Rij,N (i = 1, .., 6) in light of Remark A1. The other 

elements of *
NG  and *

Ng are 0,1 or of the form )(1
,, NrNr WWtr

N
′  and thus uniformly bounded in 

absolute value. Lemma A2 now follows by applying Lemma A1 to each of the quadratic 
forms in (A.6), which compose *

NG  and *
Ng . 
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Lemma A3. 
Let *

NG  and *
Ng be defined as in Lemma A2. Then, given Assumptions 1 to 4 

0* P
NN GG →−  and  0* P

NN gg →−  as N → ∞, provided ββ P
N →

~  as N → ∞. 

 
Proof.  
In (A.16), elements of =*

Ng ][ *
,Nig , i = 1, …, (4R + 2), and *

NG = ][ *
, Nijg , i = 1, …, (4R + 2) and 

j = 1, …, [2R + R(R-1)/2 + 2] were shown to be of the form  
 

 NNijNNij uCu
N ,,
1 ′=ϕ , (A.7) 

 
where NijC ,  are nonstochastic NT × NT matrices. Since the row and column sums of the 

elements of Wr,N and PN are uniformly bounded in absolute value by Assumption 4, this is 
also true for the row and column sums of the matrices Cij,N in light of Remark A1. The 
elements of GN and gN defined in (13) are – again apart from a constant – given by  
 

 NNijNNij uCu
N

~~1~
,, ′=ϕ . (A.8) 

 

To proof Lemma A3 we have to show that 0~
,,

P

NijNij →−ϕϕ  as N → ∞. Note that 

 
 )(~~ βββ −−=−= NNNNNNN XuXyu & . (A.9) 

 

Let Nβ&  be any consistent estimator of β ; in that case )( ββ −N
& 0

P
→  as N → ∞. Substituting 

(A.9) into (A.8) yields  
 
  )()(2)(()(~

,
1

,
1

,, NNijNNNNNijNNNijNij uCXNXCXN ′′−−−′′−=− −− ββββ)ββϕϕ &&& . (A.10) 

 
Regarding the first term on the right hand side of (A.10), the row and column sums of Cij,N are 
bounded uniformly in absolute value as are the elements of XN. Utilizing the results in Remark 
A1, it follows that all K2 elements of NNijN XCXN ,

1 ′−  are O(1). Thus, the first term on the right 

hand side converges in probability to zero since )( ββ −N
& 0P→  as N → ∞. 

 
Regarding the second term on the right hand side of (A.10), consider the vector 

NNijNN uCXN ,
1 ′= −ζ . The mean of Nζ is zero and its variance covariance matrix is  

 
 )( ,,,

11
NNijNuNijN XCΩCXNN ′′−− , (A.11) 
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where NuΩ ,  is given by (9a) and (9b). Given the maintained assumptions, the row and column 

sums of NuΩ ,  are uniformly bounded in absolute value, and therefore so are those of 

NijNuNij CΩC ,,, ′ . Since the elements of XN are uniformly bounded in absolute value by 

Assumption A3, it follows that all K2 elements of NNijNuNijN XCΩCXN ,,,
1 ′′− are O(1) in light of 

remark A1. As a consequence, the variance covariance matrix of Nζ converges to zero and 

hence Nζ converges to zero in probability. This establishes that also the second term on the 

right hand side of (A.10) converges to zero in probability.  
 
 
Theorem A1. 
Combining Lemmata A2 and A3 we have 
 

 0P
NN ΓG →−  and  0P

NNg →− γ  as N → ∞. (A.12) 

 
With these initial results at hand we can now demonstrate the consistency of the GM 
estimators defined in section III. We first prove consistency of the initial GM estimator 
(Theorem 1) and then turn to the weighted and partially weighted GM estimators (Theorems 2 
and 3). In all three cases the proof proceeds in two steps (based on the assumption that the 
estimators Nθ~  exist and are measurable).9 We first show that the true parameter vector θ  is 

identifiable unique using Lemma 4.1 in Pötscher and Prucha (1997). Then we proof 
consistency by checking the criterion given in Lemma 3.1 in Pötscher and Prucha (1997).  
 
 
Proof of Theorem 1. Consistency of initial GM estimator  
The objective function of the nonlinear least squares estimator in (17a) and its nonstochastic 
counterpart are given by  
 
 ][]()( 00000000 ααθ NNNNN GgGgR −′−=  and  (A.13a)  

 ][][)( 00000000 αγαγθ NNNNN ΓΓR −′−= . (A.13b) 

  
Since 0000 =− αγ NN Γ , we have 0)( 00 =θNR , i.e., 0)( 00 =θNR  at the true parameter vector 

),,...,( 2
1

0
vR σρρθ = .  

 
Then,  
 

                                                 
9 This is ensured, for example, by Lemma 2 in Jennrich (1969) or Lemma 3.4 in Pötscher and 
Prucha (1997). 
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 =− )()( 0000 θθ NN RR  ][][ 000000 αααα −′′− NN ΓΓ .   (A.14) 

In light of Rao (1973, p. 62), it follows that:  
 

 ][])[()()( 000000
min

0000 ααααλθθ −′−′≥− NNNN ΓΓRR  and  

 ][][)()( 0000
*

0000 ααααλθθ −′−≥− NN RR  by Assumption 5.  

 

Using the norm 2/1)]([ AAtrA = , we have ≤−
200 θθ ][][ 0000 αααα −′− . It follows that 

200
*

0000 )()( θθλθθ −≥− NN RR . Hence, for every ε > 0  

 

 0inf)]()([inflim 2
*

200
*

}:{

0000

}:{ 000000
>=−≥−

≥−≥−∞→
ελθθλθθ

εθθθεθθθ
NNN

RR  (A.15) 

 
which proves that the true parameter 0θ  is identifiable unique.  
 
Next, let ],[ 000

NNN GgF −= and ],[ 000
NNN ΓΦ −= γ , then the objective function and its 

nonstochastic counterpart can be written as  
 

 ),1(),1()( 000000 ′′′′= ααθ NNN FFR  and   

 ),1(),1()( 000000 ′′′′= ααθ NNN ΦΦR .    

 
Hence for ],[ aa−∈ρ  and ],0[2 bv ∈σ  it holds that  

 

 ),1]()[,1()()( 0000000000 ′′′−′′=− ααθθ NNNNNN ΦΦFFRR .  

 
Moreover, since the norm ⋅  is submultiplicative, i.e., BAAB  ≤ , we have 

 

 )()( 0000 θθ NN RR −
2

00000 ),1( ′′−′≤ αNNNN ΦΦFF      

 ]
2

)1(2[1 2420000 baRRRRaΦΦFF NNNN +
−+

++′−′≤ .  
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In light of Theorem A1, we have 000 P
NN ΦF →−  as N → ∞. Observing that, by Lemma A2, 

the elements of 0
NΦ  are O(1) it follows that 00000 P

NNNN ΦΦFF →′−′  as N → ∞. As a 

consequence, we have (for finite R) 
 

0]
2

)1([1 ][)()(sup 24200000000

],0[],,[ 2

P
NNNNNN

baa
baRRRaΦΦFFRR

v

→+
−

++′−′≤−
∈−∈

θθ
σρ

 as N → ∞. (A.16) 

 
Together with identifiable uniqueness, the consistency of )~,~,...,~(~ 2

,,,1
0

NvNRNN σρρθ =  now 

follows directly from Lemma 3.1 in Pötscher and Prucha (1997). 
 
Having proved that the estimators 2

,,,1
~,~...,~

NvNRN σρρ  are consistent for 2
,1 ,..., vR σρρ , we now 

show that 2
1σ  can be estimated consistently from the last line (4R + 2) of equation system 

(12), using   
 

 2
,11,24,,24,11,2424

2
,1

~~...~~
NRRNRRRNRRN gggg ρρρσ +++++ −−−−=   

 NRNRRRRRNNRRNRRR ggg ,,12/)1(2,24,2,112,24
2

,2,24
~~...~~~ ρρρρρ −−+++++ −−−− . (A.17a) 

 
Since 0=− αγ NN Γ , we have  

 

 

).~~()...~~(

)~()...~(

)~(...)~(

~~)(...~~)(

~)(...~)(

~)(...~)()(~

1,,12/)1(2,2421
2
,2,112,24

22
,2,24

2
1

2
,11,24

,,241,11,24

,,12/)1(2,242/)1(2,24,2,112,2412,24

2
,2,242,24

2
,11,241,24

,,24,24,11,241,242424
2
1

2
1

RRNRNRRRRRNNRR

RNRRRNRR

RNRRRNR

NRNRRRRRRRRRNNRRRR

NRRRRRNRRRR

NRRRRRNRRRR

gg

gg

ggg

ρρρργρρρργ

ρργρργ

ρργρργ

ρργρργ

ργργ

ργργγσσ

−−−++++

+++

++

−−++−++++++

++++++

++++++

−−−−

−−−−

−−−−−

−−−−−

−−−−−

−−−−−−=−

(A.17b) 

 

Observing by Theorem A1 that 0P
NN ΦF →−  as N → ∞ and that the elements of NΦ  are O(1) 

it follows from the consistency of NRN ,,1
~,...,~ ρρ  that 0~ 2

1
2
,1

P
N →−σσ  as N → ∞ . 

 
 
Proof of Theorem 2. Consistency of the weighted GM estimator 
The objective function of the weighted GM estimator and its nonstochastic counterpart are 
given by  
 
 ][~]()( 1 ααθ NNNNNN GgΞGgR −′−= −  and (A.18a)  
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 ][][)( 1 αγαγθ NNNNNN ΓΞΓR −′−= −  (A.18b) 

 
First, in order to ensure identifiable uniqueness, we show that Assumption 5 also implies that 
the smallest eigenvalue of )()( 1

NNN ΓΞΓ −′ is bounded away from zero, i.e.,  

 
 0

1
min )( λλ ≥′ −

NNN ΓΞΓ  for some .00 >λ  (A.19) 

 

Let 00)( NNij ΓΓaA ′==  and 11)( NNij ΓΓbB ′== . Note that 0
NΓ  and 1

NΓ  are of dimension 

)12( +R × ]12/)1(2[ +−+ RRR  (i.e., they have half the rows and one column less than than 

NΓ  ). A and B are of order ]12/)1(2[ +−+ RRR × ]12/)1(2[ +−+ RRR  (i.e., they have one 

row and column less than NN ΓΓ ′ ). 

 
Now define NΓ

(
 as  

 

 ⎥
⎦

⎤
⎢
⎣

⎡
= 1

0

N

N
N Γ

Γ
Γ (

(
(

,  (A.20a) 

 
which differs from NΓ only by the ordering of the rows.   

 
0
NΓ
(

 corresponds to 0
NΓ  with a zero column appended as last column, i.e., ]0,[ 00

NN ΓΓ =
(

, such 

that 
 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′
=′

+−++−++−+

+−+

0000
0
0.
0

00
0

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

00
00

RRRRRRRRR

RRR

NN
NN aa

aa

ΓΓΓΓ
((((

 . (A.21a) 

( 00
NN ΓΓ
(( ′  is of the same dimension as NN ΓΓ ′ , i.e., [2R + R(R-1)/2 + 2] × [2R + R(R-1)/2 + 2].) 

 
1
NΓ
(

 is a modified version of 1
NΓ , with a zero column included as second last column, such 

that  
 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′

+−++−++−+

+−+

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

11

0.
0000
.0.

0

RRRRRRRRR

RRR

NN

bb

bb

ΓΓ
((

.    (A.21b) 

( 11
NN ΓΓ
(( ′ is of the same dimension as NN ΓΓ ′ , i.e., [2R + R(R-1)/2 + 2] × [2R + R(R-1)/2 + 2].) 
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Since ⎥
⎦

⎤
⎢
⎣

⎡
= 1

0

N

N
N Γ

Γ
Γ (

(
(

 differs from NΓ only by the ordering of the rows, it follows that     

 

 NN ΓΓ ′  = 1100
1

0
10

NNNN
N

N
NNNN ΓΓΓΓ

Γ
Γ

ΓΓΓΓ
((((

(

(
(((( ′+′=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ ′′=′ ,  i.e., (A.22) 

 

.

0.
0000
.0.

0

                        

0000
0
0.
0

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′

+−++−++−+

+−+

+−++−++−+

+−+

RRRRRRRRR

RRR

RRRRRRRRR

RRR

NN

bb

bb

aa

aa

ΓΓ

 

 
Utilizing Assumption A5 we have 
 
 BBAANNNNNN BxxAxxxΓΓxxΓΓxxΓΓx ′+′=′′+′′=′′ 1100 ((((

.  (A.23) 

 
The vector x is of dimension [2R + R(R-1)/2 + 2] × 1 (corresponding to the number of 
columns of ΓN), wheras Ax  and Bx  are of dimension [2R + R(R-1)/2 + 1], i.e. both have one 

row less: Ax  excludes the last element of x, i.e., x2R+R(R-1)+2, Bx  excludes the second-last 
element of x, i.e. x2R+R(R-1)+1. 
 
Again, we invoke Rao (1973, p. 62) for each quadratic form. It follows 
 
 xxxxxxxxBxxABxxAxx BBAABBAABBAA ′≥′+′≥′+′≥′+′ **

minmin )()()( λλλλ   (A.24) 
 
for any ],...,,[ 2221 += Rxxxx . 
 
Hence, we have shown that  

 
 xxxΓΓx NN ′≥′′ *λ ,    

 
or, equivalently,   
 

 *λ≥
′

′′
xx

xΓΓx NN   for 0≠x . (A.25) 
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Next, note that in light of Rao (1973, p. 62), 
 

 0inf)( *min >≥
′

′′
=′ λλ

xx
xΓΓx

ΓΓ NN

xNN .  (A.26) 

 
Using Mittelhammer (1996, p. 254) we have  

 

 
xx

xΓΞΓxΓΞΓ NNN
xNNN ′

′′
=′

−
−

1
1

min inf)(λ  
xx

xΓΓxΞ NN
xN ′

′′
≥ − inf)( 1

minλ     

 
 0)()( 0min

1
min >≥′= − λλλ NNN ΓΓΞ , (A.27) 

 
with λ0 = **λλ  since 0)( *

1
min >≥= − λλ NΞ  by assumption (see Theorem 2). 

 
This ensures that the true parameter vector ),,,...,( 2

1
2

1 σσρρθ vR=  is identifiable unique. 

 
Next note that in light of the assumptions in Theorem 2, 1−

NΞ  is O(1) by the equivalence of 

matrix norms. 
 
Analogous to the prove of theorem 1, observe that 0)( =θNR , i.e., 0)( =θNR  at the true 

parameter vector ),,,...,( 2
1

2
1 σσρρθ vR= .  It follows that 

  

 ][][)()( 1 ααααθθ −′′−=− −
NNNNN ΓΞΓRR . (A.30) 

 
Moreover, let ],[ NNN GgF −= and ],[ NNN ΓΦ −= γ , then,  

 
 ),1(~),1()( 1 ′′′′= − ααθ NNNN FΞFR  and (A.31a) 

 ),1(),1()( 1 ′′′′= − ααθ NNNN ΦΞΦR . (A.31b) 

 
The remainder of the proof is now analogous to that of Theorem 1. 
 
 
Proof of Theorem 3. Consistency of partially weighted GM estimator 
Let ],)1min[( 4

1
4

*
−−−= σσλ vT  and ],)1max[( 4

1
4

**
−−−= σσλ vT .  

Then ∞<≤≤< −
**

1
min* )(0 λλλ p

NΞ . The proof of Theorem 3 is now analogous to that of 

Theorem 2 with NΞ and NΞ
~ replaced by p

NΞ and p
NΞ

~ . 
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