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1. Introduction
Markets are not only characterized by demand and supply, but also by the rules that
govern the trading process. The “institutional” framework determines the set of mar-
ket participants, their available options, and the matching and information structure
of the market. In reality we observe a huge variety of different market frameworks
even for trading the very same good. Real estate, for example, is traded at auctions
as well as by personal bargaining. There is also a large amount of evidence (mainly
experimental) that these characteristics are crucial for the resulting trading outcome
and for the realized prices (for an overview see e.g. Plott [33] or Holt [23]; in the
context of financial markets see also Friedman [18]). While double auctions typically
tend to generate market clearing prices and quantities, posted offer markets establish
prices that tend to be above the market clearing level, whereas the prices on posted
bid markets seem to be below the Walrasian level (see e.g. Plott and Smith[34]).
As a consequence, some gains of trade are not realized on these trading platforms,
and inefficiencies occur due to the design of the trading platform. In a similar way,
Dutch or first—price auctions are notorious for inducing overbidding and creating in-
efficient allocations compared to second-price formats (see e.g. Kagel [25]). In a field
study, Roth and Ockenfels [37] show that fixed ending—rules (“hard—close”) in online
auctions lead to late bidding (“sniping”); see also [32]. A laboratory experiment by
Ariely, Ockenfels, and Roth [3] confirmed this finding, and also showed that fixed
ending—rules lead to lower revenues for the seller (and less efficient allocations) than
automatic extensions of the auction (“soft ending”). All these studies suggest that
socially desirable features of market outcomes such as unbiased (market—clearing)
prices and efficient allocations are rather sensitive to details of the respective mar-
ket institution. Moreover, there seems to be a trade-off between efficiency and a
price—bias in favor of one of the market-sides.
A remarkable example for the coexistence of a variety of trade—institutions is

provided by Business to Business (B2B) trading platforms (for a comprehensive eco-
nomic analysis see e.g. Lucking-Reiley and Spulber [30]). The last decades have
seen a proliferation of B2B platforms, and despite the burst of the internet bubble
there were more than 1000 B2B marketplaces active in Europe in 2003 (see Euro-
pean Commission [17]). While most of the public and scientific attention is devoted
to e-marketplaces targeting consumers (like e-bay or Yahoo), about 95% of the e-
commerce is actually B2B (see United Nations [42]). In 2004 B2B had an estimated
volume of $1 trillion (see The Economist [11]). Contrary to Business to Consumers or
Consumer to Consumer platforms, large quantities of relatively standardized prod-
ucts are traded at B2B exchanges. On these platforms agents seem to act either
as buyers or as sellers, but not as both (see European Commission [17]). B2B e-
commerce is basically organized in three different ways. The predominant modus
in the early days of e-commerce were platforms opened by buyers or sellers (or re-
spective umbrella organizations). An example is MetalSite, a platform organized by
steel producers that suspended operations in 2001. Currently, B2B e-commerce is
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typically organized either as e-procurement1 where sellers use standardized software
and exchange opportunities offered by platforms such as Ariba or CommerceOne to
design and allocate procurement contracts. Or trade is organized via institutions
operated by a third party (this holds e.g. for CheMatch - a trade platform for chem-
ical products - or for a large part of the product portfolio offered at EnronOnline -
a multi—commodity exchange run by Enron until 2002). Of all firms active on B2B
platforms, about one third operates on such platforms run by third parties (see Eu-
ropean Commission [17]). Both e-procurement software and market designs of third
parties show a variety of institutional arrangements. EnronOnline, for instance, was
organized as a posted offer market while competing platforms such as AltraEnergy
(or on the chemical sector CheMatch) are exchange platforms that work like double
auctions. The software solutions offered by Ariba and CommerceOne include various
institutional arrangements such as Dutch auctions or proxy—bidding (with hard and
soft ending rules). Hence, platform designs that show different efficiency properties
in the laboratory co-exist in B2B e-commerce.
Given the variety of different market institutions, and the variety of their effi-

ciency properties, one wonders which type(s) of trading institutions will be observed
in the long run. In particular, our paper investigates whether institutions promot-
ing efficient, market clearing outcomes will dominate less efficient trading platforms
in the long run. To answer this question, we have to investigate the evolution of
market institutions. It is useful to distinguish between two aspects of this evolution,
namely the selection between existing institutions by the traders, and the emergence
of new institutions. New market institutions can either be introduced on purpose by
a market designer, or be the (unintended) by-product of the actions of the traders. In
what follows we will focus on market platforms introduced on purpose.2 If a trading
platform is introduced by a (profit maximizing) market designer who demands user
fees, the design of a new platform by the designer and the selection among existing
ones by the traders are closely interlinked. The market designer will try to introduce
a new platform with characteristics that attract many traders. This attractiveness in
turn determines the long run survival of the platform. In this paper we analyze this
interplay between the creation of new and the selection among existing trading plat-
forms, and we investigate the characteristics of the resulting platforms with respect
to their ability to achieve market clearing outcomes.
Trading platforms are created by profit maximizing and risk-neutral market de-

signers. The designers compete with each other through platform designs. Each
designer chooses a trading fee that he demands from the traders for the use of his
platform. To capture the trade—off between efficiency and a price-bias for one mar-
ket side that has been observed in laboratory studies (see above), we allow that the
designers can choose a platform design with a systematic price-bias, above or below

1For a recent discussion of the adoption of e-procurement in B2B and an overview of market
designs see e.g. Davila, Gupta, and Palmer [10]

2For an analysis of markets as a by-product of traders’ actions, see Kirchsteiger et al.[28].
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the market clearing price. Hence, by the trading fee each designer decides upon his
share of the surplus created through trade at his platform. But he can also favor one
type of trader with the introduction of a price bias. Any bias reduces the surplus
generated at the platform (and thereby ceteris paribus the revenue for the designer),
but may also make it more attractive for the favored type of trader, which in turn
may enhance the platform’s survival probability.
To analyze this trade-off, we model competition between two market designers and

compare the results of this setting with the benchmark case of a monopolistic mar-
ket designer. After the platforms have been designed, each trader decides on which
platform to be active (for the monopolistic case, there is of course no real choice -
traders just trade at the only existing platform). The role of the trader (buyer or
seller) is exogenously given. Sellers are assumed to be firms with a constant returns
to scale production technology.3 Buyers are characterized by their demand functions,
and might be either consumers or other firms. For given platform characteristics, the
selection by traders gives rise to a coordination game. If each trader opts for a partic-
ular platform no trader has an incentive to deviate from this platform - independently
of the design alternatives offered by the competing platform. However, traders might
learn to coordinate on a particular platform. Following the game-theoretic learning
literature (see Young [43], Kandori et al. [26], or Ellison [13]), we use a Markovian
model to analyze the platform choice of the traders. We assume that the traders’
behavior depends on the market outcomes generated by the different platforms and
thereby on the characteristics of all feasible platforms. We are interested in the long
term properties of this learning process, i.e. in its limit invariant distribution. This
limit invariant distribution in turn determines the payoffs of the market designers.
Hence, we establish a link between designer-revenues and the characteristics of all
feasible platforms.
For the case of competing platforms we find that - in the long run - traders will

always coordinate on a platform with prices above the market clearing level, provided
that such a platform has been introduced by at least one designer. This forces both
designers to introduce platforms that are not market clearing, but that have a price
bias in favor of the sellers. On the other hand we find that a monopolistic designer will
always introduce a market clearing platform. Therefore competition at the designers’
level turns out to be detrimental for a competitive outcome at the traders’ level. We
regard this result as paradoxical.
The present paper is related to three strands of the literature. First, since we in-

vestigate the role of trading platforms with exogenously given buyers and sellers, our
paper is to some extent related to the two-sided markets literature (see Rochet and
Tirole [36] for an overview). This literature is based on the assumption of network-
externalities. It analyzes the impact of these externalities and of platform competition
on the structure of the fees demanded by the market designers (see e.g. Armstrong

3In Appendix B we investigate the robustness of our results with respect to decreasing returns
to scale.
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[4], Belleflamme and Toulemonde [5], Caillaud and Julien [9], or Rochet and Tirole
[35]). In contrast, we want to investigate whether traders learn to coordinate on mar-
ket clearing trading platforms, if such platforms are feasible. Therefore we explicitly
model the learning behavior of the traders, whereas the two-sided market literature
assumes rational traders. Further, we ask whether platform competition induces mar-
ket designers to establish platforms with characteristics that achieve market clearing
outcomes. Consequently, we abstract from any network externalities that are not
internalized by the price at which trade takes place. In our model trading fees de-
manded by the market designers are neutral insofar as the market outcome is only
influenced by the total fee imposed on both market sides, but not on the distribution
of the fees on the two market sides.4

Second, our paper is also related to the literature on competition between ex-
ogenously given trading institutions. Ellison and Fudenberg [15] and Ellison et al.
[16] analyze under which circumstances different market institutions can coexist in
equilibrium. Due to their different research questions these papers do not allow for
institutions with systematic price biases. Kugler et al. [29] and Neeman and Vulkan
[31] investigate the case of centralized versus decentralized trading institutions. All
of these papers they rely on the assumption of rational traders, and do not allow for
learning. In terms of traders’ behavior, the learning model of Gerber and Bettzüge
[22] is relatively close to our paper. But since they focus in the possibility of multiplic-
ity of active trading platforms, they consider neither non-market-clearing platforms
nor market designers. Closest related to the paper at hand is the work by Alós-Ferrer
and Kirchsteiger [2], which also analyzes the learning behavior of traders who face
the choice between different, not necessarily market clearing platforms. That paper,
however, deals only with the selection among different, exogenously given institutions
and does not consider competition between market designers.
In our model, rational market designers are confronted with boundedly rational,

learning traders.5 Hence, our paper belongs to a small but growing literature that we
would like to call “asymmetric rationality,” where fully rational firms or otherwise
sophisticated agents are confronted with a population of boundedly rational ones.
The basic motivation is that consumers and small traders do not have the resources
to obtain all the relevant information and fully optimize their behavior, often relying
on behavioral rules of thumb instead. However, large firms, market designers, etc.
can be taken as comparatively sophisticated. Schlag [40], Gabaix and Laibson [21],
Hopkins [24], and Spiegler [41] apply this approach to the analysis of industries facing
boundedly rational consumers. See Ellison [14] for an overview of this literature.
The paper is organized as follows. Section 2 presents the basic model. Section 3

discusses the traders’ platform choice of the traders. Section 4 analyzes the design
of the platform. Section 5 concludes. All proofs not found in the main text are

4Rochet and Tirole [36] define two-sided markets by the non-neutrality of the fees. In their
terminology we model a one-sided market.

5In Appendix B we show the robustness of our results with respect to learning designers.



On the Evolution of Market Institutions: The Platform Design Paradox 6

in Appendix A. In Appendix B we analyze the robustness of our results with re-
spect to boundedly rational designers and with respect to decreasing returns to scale
production. Appendix C provides a short reference for Markov processes.

2. The model
2.1. Market platforms’ design. A homogenous good is traded at alternative
market platforms, which are set up by market designers. For simplicity, we restrict
our attention to two competing market designers (referred to as competitive market
design). As a benchmark, we will also analyze the case where only one market designer
can set up a trading platform (referred to as monopolistic market design).
Before any trade takes place, the market designers decide upon the set of trading

rules under which their respective platforms operate, and the trading fees they de-
mand from the traders. We do not aim at a complete description of the different sets
of rules the designers can introduce. Rather, we characterize them by their ability
to establish market clearing. Market designers may choose to design platforms such
that market clearing is guaranteed, or they may pick platforms where the price is
systematically biased above or below the market clearing price. Denote by p∗i the
market clearing price if at least one seller and at least one buyer choose this platform
and by βi > 0 the bias of platform i = 1, 2. The actual price at which trade takes
place at platform i is then given by pi = βip

∗
i . If the actual price is not market clearing

(i.e. βi 6= 1), the quantity traded is determined by the short market side, and traders
on the long market side are rationed. Sellers are rationed equally if βi > 1. We do
not specify any rationing rule for the buyers.
The common set of feasible biases is assumed to be a finite, regular grid B =

{βmin, βmin + δ, ..., 1, ...βmax − δ, βmax}, where 0 < βmin < 1 < βmax and δ is the step
of the grid. To understand why institutions with different price biases are feasible for
the designers, recall the experimental and empirical results mentioned in the introduc-
tion. In our framework posted offer markets or first price auctions are characterized
by β > 1, posted bid markets or proxy-auctions with ”hard—close” by a β < 1, while
double auctions can be represented by β = 1. We refer to the platform with β = 1 as
the market-clearing platform, and we assume that such a platform is always feasible.
|B| denotes the number of feasible biases.
After the platforms are set up, traders will use their experience and observations

to eventually learn which platform to use. Formally, we will analyze a learning process
with an infinite number of trading rounds. The designers’ long-run payoffs are the
expected per round charges. Furthermore, we assume that the charges of designer i
are a fixed share of the revenue generated by trade on i0s platform.6 Denote by fi
the trading fee demanded by designer i, and by ERi the expected per round revenue
generated on platform i. Then market designer i’s profits are given by πD,i = fiERi.
The set of feasible fees is the same for both designers. For simplicity we assume

6Our results would not change if we assume quantity-dependent charges instead of revenue-
dependent charges.
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that it is given by a finite, regular grid F = {fmin, fmin + γ, ...fmax − γ, fmax}, where
0 < fmin < fmax < 1.7 |F | denotes the number of feasible fees.
The trading fee can be imposed on the sellers’ side, on the buyers’ side, or divided

between both sides. However, the market clearing price, the realized price at which
trade is conducted, and the traded quantities depend only on the total fee, and not
on the distribution of the fee over the two market sides. Buyers at platform i pay pi
for each unit, market designers receive fipi, and sellers ultimately receive (1− fi) pi.
Hence, we do not need to specify on which market side the fee is imposed.
The characteristics of a platform i are denoted by si = (βi, fi), and the set of

feasible characteristics by S = B × F.

2.2. Traders. The good is supplied by a finite set M of profit maximizing firms
that use a constant returns to scale technology. We assume that there are at least
two sellers at the market, i.e. |M | > 1. Each seller uses the same constant returns
to scale technology with marginal costs of c > 0.8 When deciding about the supply,
a seller takes into account the trading fee of the platform at which he is operating.
Hence, sellers will supply a strictly positive but finite quantity if and only if the price
net of trading fee is equal to c.
As we will see, the assumption of a constant returns to scale technology allows us

to derive results for a very general class of learning models. That is, by focusing on
the constant returns to scale case, we will obtain results that are robust to the details
of the learning process. In the appendix we illustrate that for strictly decreasing
returns to scale the results depend on the details of the learning model. In particular,
the results of the constant returns to scale case can be replicated also for strictly
decreasing returns to scale, but not for the whole class of learning models we analyze
here.
The good is demanded by a finite setN of buyers with |N | > 1. Each buyer n ∈ N

is endowed with a demand function dn(p) which might be different for different buyers.
All the demand functions are assumed to be strictly decreasing in p. Furthermore,
0 < dn(p) <∞ for all p, n. To avoid discontinuities in the designers’ profit functions
we also assume that limp→∞ pdn(p) = 0 for all n ∈ N.9

We call a platform active if both sellers and buyers are present and positive
quantities are traded, and inactive if not. The presence of both types of traders does
not ensure that the platform is active. Due to the assumption of a constant returns
to scale technology the market clearing price of a platform i where both sellers and
buyers are present (and, in particular, of an active platform) is given by p∗i (si) =

c
1−fi .

7The assumption that the fees are strictly positive can be justified by (unmodelled) setup costs
for the market designers.

8The assumption of identical sellers might seem restrictive at the first sight. Within our frame-
work firms without access to the lowest cost technology cannot sell anything on the market, anyhow.
Hence, our assumptions only rule out the case where exactly one firm has access to the production
technology with the lowest costs.

9Our results do not depend on the assumption that the value of demand goes to zero when the
price approaches infinity. However, the presentation is simplified by this assumption.
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The realized price at which trade is conducted on platform i is then

pi(si) = βi
c

1− fi
.

Note that if βi < 1, the net price received by the sellers is below the marginal costs.
Hence, supply is zero, and platform i is inactive.
Denote by Ni the set of buyers who choose platform i, and byMi the set of sellers

who choose platform i. Then, platform i is active if and only if |Ni| > 0, |Mi| > 0,
and βi ≥ 1. Let

DNi(p) =
X
n∈Ni

dn (p)

denote the total demand at platform i. The quantities traded by a buyer n ∈ Ni,
qn,i(Ni,Mi, si), and by a seller m ∈Mi, qm,i(Ni,Mi, si), are given by

qn,i(Ni,Mi, si) =

½
dn(βi

c
1−fi ) if i is active,
0 otherwise,

qm,i(Ni,Mi, si) =

(
1
|Mi|DNi

³
βi

c
1−fi

´
if i is active,

0 otherwise.

In the single-designer case, traders cannot choose between different platforms, but
have to use platform i. Hence, Ni = N, Mi = M, and the market outcome is only
determined by the platform characteristics si.
If there is competition between market designers, trade can take place at different

platforms, and the outcome depends also on the way traders learn which platform
to use. This learning process is driven by the market outcomes of both platforms
(see above), and by the individual evaluations of these outcomes. For the latter
part note that if buyers trade strictly positive amounts, they are strictly better off
than without trade. Hence, inactive platforms are worse for buyers than active ones.
Furthermore, whenever a buyer trades a strictly positive quantity, he is not rationed
at all. Hence, it is natural to assume that buyers’ evaluation of active platforms is
monotonically decreasing in the price. Therefore, buyers’ evaluation of platform i
could be represented e.g. by10

πn,i(si) =

½
1
pi
= 1−fi

βic
if i is active,

0 otherwise

If both platforms i and j are active (i.e. positive amounts are traded),

p(si) < p(sj)⇐⇒ πn,i(si) > πn,j(sj).

10We do not use this particular representation. If demand is derived from utility maximization,
though, the realized (indirect) utility must be (a strictly monotone transformation of) this payoff
function.
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Clearly, platform i is active if and only if both types of traders are present and
βi ≥ 1. Both platforms are active whenever Ni, Nj 6= N,Mi,Mj 6=M and βi, βj ≥ 1.
In particular, if βi = βj = 1 and fi < fj, then πn,i(si) > πn,j(sj).
The sellers’ evaluation of the platforms are determined by the respective profits.

An inactive platform gives of course zero profits. Furthermore, whenever βi > 1,
sellers trading on platform i are on the long market side, and hence equally rationed.
Hence, the sellers’ evaluation of platform i is given by

πm,i(Ni,Mi, si) =

( h
1
|Mi|DNi

³
βi

c
1−fi

´i
(βi − 1)c if i is active,

0 otherwise.

Note that as long as both platforms are active, the outcome of a non-market
clearing platform is always better for the sellers than the outcome of a market clearing
platform. That is, for all fi, fj,

Ni, Nj 6= N, Mi,Mj 6=M and βi > βj = 1 ⇒ πm,i(Ni,Mi, si) > πm,j(Ni,Mi, si) .

3. The Traders’ Platform Choice
First, market designers choose their platforms’ characteristics. If there is only one
market designer, traders’ choice is trivial - they simply opt for the existing platform.
With more than one market designer, traders have to choose between the two plat-
forms. For any given si, sj the choice of platform constitutes a coordination game.
If all traders choose platform i, no trader has an incentive to deviate to the other
platform j. Furthermore, if βi and βj are strictly larger than 1, full coordination on
any platform is even a strict Nash equilibrium. Hence, nothing guarantees coordina-
tion on any particular platform, and therefore traders have to learn which platform
to use.

3.1. The Learning Process. In order to model the learning process, we (im-
plicitly) assume that a trader does not only take into account his own experiences
(as he would in e.g. a reinforcement learning model). He observes the prices and the
quantities of both platforms (including the observation of the inactiveness of a plat-
form), and takes this information into account. We also assume that an individual
trader does not have enough information on other traders or is not able to perform
all the necessary computations in order to predict the future behavior of the other
traders. Hence, an individual trader cannot accurately predict the future outcomes
of the platforms. Furthermore, traders also lack the capability necessary to always
compute an exact (but myopic) best reply to the current choices of all other traders.
What can a trader do in such a situation? From his individual, myopic standpoint,

if he considers himself to be small relative to market size, the best thing he can do
is to evaluate the outcomes of both platforms, and switch to the other platform if he
perceives the other platform’s outcome as better. A trader can perceive this behavior
as approximately rational, since when he switches, the implied changes in prices and
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traded quantities will most of the time be small, and hence this behavior is close to
best reply. Of course, this could also be interpreted as imitation of successful traders
of the own market type. We want to stress, though, that the described behavior does
not require the observation of any evaluation conducted by other traders, but merely
the observation of prices and traded quantities of both platforms.
We proceed now to model the learning process. The state space is given by

Ω = {1, 2}|N |×{1, 2}|M |. A typical state ω specifies which trading platform is chosen
by each buyer and each seller - trader k’s platform choice is denoted by ω(k) ∈ {1, 2}.
The following notation will prove convenient:

Ni (ω) = {n ∈ N |ω(n) = i}
Mi (ω) = {m ∈M |ω(m) = i}

i.e. Ni (ω) ⊆ N is the set of buyers who are on platform i in state ω, andMi (ω) ⊆M
the set of sellers who are on platform i in state ω. Of course, for j 6= i, Ni (ω) =
N \Nj (ω) and Mi (ω) =M \Mj (ω) .
The state of the process at time t = 0, 1, 2, ... is given by ω(t) ∈ Ω. That is,

ω(t)(k) ∈ {1, 2} denotes the platform chosen by trader k at time t.

Unperturbed Learning Process. We first concentrate on the unperturbed
learning process, where traders switch platform only because of learning, but not
because of experimentation (experimentation is introduced in section 3.1 below). If
an agent is able to revise his choice for a given period t+1, he takes the new market
outcomes of both platforms in period t and evaluates them. As explained above, we
postulate the following learning rule:

Assumption A: A trader, who gets the opportunity to revise, observes the out-
comes of both platforms in the last period. He then chooses the platform whose
outcome he evaluates as best. In case of indifference, he randomizes the choice,
with both platforms chosen with strictly positive probability. Choice probabil-
ities may depend on the outcomes but not on the platforms’ names.11

That is, provided that trader k receives revision opportunity at period t, he will
choose the platform with a period t − 1 outcome that he evaluates highest. If, by
chance, the outcomes of both platforms are equally evaluated, players are indifferent
and will select one platform at random. For instance, in the case in which one platform
is inactive and the other is active but yields exactly zero profits for the sellers, sellers
randomize among them.
But when are agents allowed to revise their choices? It is common in learning mod-

els to explicitly introduce some inertia allowing for the possibility that not all agents

11In other words, we assume platform symmetry, i.e. the trader’s choice does not depend on the
identity of the platform but on its observable features - prices and quantities. In case of indifference,
both choice probabilities have to be strictly positive but might still depend on other observable
characteristics as e.g. the number of traders at each platform.
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are able to revise strategies simultaneously (or, for instance, accounting for idiosyn-
cratic switching costs). Different specifications of how revision opportunities arrive
give rise to different dynamics and often affect the results. Rather than adopting a
specific formulation, here we follow Alós-Ferrer and Kirchsteiger [2] and postulate a
general class of dynamics encompassing the standard examples (and many others),
which are then reviewed below. See Alós-Ferrer [1] for a discussion.
Let E(k, ω) denote the event that agent k receives revision opportunity when the

state is ω, and let E∗(k, ω) ⊆ E(k, ω) denote the event that agent k is the only agent
of his type (i.e. the only buyer or the only seller) receiving revision opportunity in ω.

Assumption B1: Pr (E∗(k, ω)) > 0 for every agent k and state ω.

Assumption B1 implies Pr (E(k, ω)) > 0, i.e. every agent has strictly positive
probability of being able to revise at any given state. Further, we introduce a weak
form of independence between revision opportunities in the two different populations
of agents (it can be thought of as an anonymity requirement).

Assumption B2: For every agent k and state ω, either
Pr (E∗(k, ω) ∩E∗(k0, ω)) > 0 for any agent k0 of the other type, or
Pr (E∗(k, ω) ∩E(k0, ω)) = 0 for any such k0.

This assumption explicitly excludes non-anonymous situations where, say, when-
ever seller number 17 gets the opportunity to revise, buyers 3 and 6 also get the
opportunity to revise. Assumptions B1 and B2 are rather general. They are fulfilled
by the standard models considered in the literature of learning in games. In these
models, revision opportunities are either modelled through independent probabilities
(a case we call independent inertia; see e.g. Samuelson [38] or Kandori and Rob [27])
or assumed to arrive in an asynchronous way (also called non-simultaneous learning;
see e.g. Blume [8], Binmore and Samuelson [7] or Benaïm and Weibull [6]).12 That
is, our formulation covers the following standard examples. Part of our later results
will refer to some of these examples.
Independent Inertia. There is an exogenous, independent (across traders and

periods) probability 0 < 1− ρ < 1 such that the agent does not get revision oppor-
tunity in a given state (inertia). Obviously, Pr (E∗(n, ω)) = ρ (1− ρ)n−1 > 0 for any
buyer n, and analogously for sellers, hence verifying B1. B2 follows from indepen-
dence: Pr (E∗(n, ω) ∩E∗(m,ω)) = Pr (E∗(n, ω)) · Pr (E∗(m,ω)) > 0 for any buyer n
and any seller m.
Independent Inertia within Types. In our case, it would be natural to pos-

tulate different inertia parameters for buyers and sellers, ρB, ρS ∈ ]0, 1[. Clearly, B1
and B2 are not affected by this modification. Notice that, as long as ρB = ρS is not
excluded, this case encompasses the previous one.

12The reason we explicitly choose Assumptions B1, B2 is that, in the literature of learning in
games, many models are not robust to minute changes in the dynamic assumptions. We want to
make explicit that our model is not so sensible to the details of the dynamics.
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Asynchronous Learning. Each period, only one agent (i.e. either a buyer or a
seller) is (randomly) selected and allowed to revise his strategy. Hence, Pr (E∗(k, ω)) =

1
|N |+|M | for any trader k (verifying B1), and Pr (E

∗(n, ω) ∩E(m,ω)) = 0 for any pair
of buyers and sellers (verifying B2).
Asynchronous Learning within Types. Again, in our case, it is natural to

differentiate buyers and sellers and conceive a dynamics where in every period, only
one buyer and one seller are selected (randomly and independently) and given the
opportunity to revise. Assumption B1 holds because Pr (E∗(n, ω)) = 1

|N | > 0 for any
buyer n and Pr (E∗(m,ω)) = 1

|M | > 0 for any seller m. Assumption B2 holds by
independence.
Note that the second part of Assumption B2 is the one that specifically allows for

dynamics where only one agent at all is allowed to revise each period (asynchronous
learning). If this part were dropped (which still allows for asynchronous learning
within types and independent inertia), the modified Assumption B2 would imply B1.
The specification above allows for more general learning processes than those

described by independent inertia or asynchronous learning. Since the revision proba-
bility Pr (E(k, ω)) is a function of the state ω, it might depend e.g. on the difference
between the evaluation of the outcomes of both platforms (so that unsatisfied traders
are more likely to revise), or on idiosyncratic characteristics of the currently chosen
platform.
Assumptions A, B1, and B2 define a stationaryMarkov chain13 on the (finite) state

space Ω. Given two states ω, ω0 ∈ Ω, denote by P 0 (ω, ω0) the probability of transition
from ω to ω0 in one period for the unperturbed learning process, i.e. for the process
without experimentation. The transition matrix of the process is given by P 0 =
[P 0 (ω, ω0)]ω,ω0∈Ω. In the following Lemma we characterize the unperturbed learning
process by its absorbing states (states that once entered are never abandoned).

Lemma 1. Assume A, B1, and B2.

(a) If βi > 1 and βj > 1, the only absorbing sets of the unperturbed dynamics
are the two singletons made of monomorphic states ω∗i (i = 1, 2) such that
Ni(ω

∗
i ) = N,Mi(ω

∗
i ) =M .

(b) If βi > 1 and βj ≤ 1, the unperturbed dynamics is ergodic and the only
absorbing set is the singleton made of the monomorphic state ω∗i .

(c) If βi ≤ 1 and βj ≤ 1, the unperturbed dynamics is irreducible, i.e. the whole
state space Ω forms an absorbing set.

The previous Lemma shows that depending on the properties of the platforms the
unperturbed process is ergodic (the respective absorbing set is unique, see (b) and

13In Appendix C we define and explain all the terms related to the Markov processes of this and
the following sections.
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(c)) or there is more than one absorbing set (see (a)). In order to select among them,
we study in the next section the stability properties of the platforms with respect to
experimentation.

Perturbed Learning Process. Following the literature on this type of learning
models, we proceed to study stochastic stability with respect to experimentation. To
do so, the dynamics is enriched with a perturbation in the form of experiments (or
mistakes) as follows. With an independent, small probability ε > 0, each agent, in
each round, might experiment (or make a mistake or “mutate”), and simply pick a
platform at random,14 independently of other considerations.
The dynamics with experimentation is called perturbed learning process. Its tran-

sition matrix is denoted by P ε. Given two absorbing sets X and Y , let γ(X,Y ) > 0
(referred to as the transition cost from X to Y ) denote the minimal number of ex-
periments necessary for a direct transition from X to Y , i.e. a positive probability
path starting in an element of X and leading to an element in Y , which does not go
through any other absorbing set.
Since experiments make transitions between any two states possible, the perturbed

process has a single absorbing set formed by the whole state space (i.e. the process
is irreducible). The following theorem characterizes the perturbed learning process
by its stochastically stable states.15 In the sequel, whenever we say absorbing sets
or states, we refer to the unperturbed dynamics. Since the perturbed dynamics is
irreducible, no confusion should arise.
In our case, the stochastic stability analysis is simple because of Lemma 1.

Theorem 2. Assume A, B1, and B2.

(a) If βi > 1 and βj > 1, only the two monomorphic states can be stochastically
stable. Further, ω∗i is stochastically stable if and only if γ(ω

∗
i , ω

∗
j) ≥ γ(ω∗j , ω

∗
i ).

(b) If βi > 1 and βj ≤ 1, the only stochastically stable state is the monomorphic
state ω∗i .

(c) If βi ≤ 1 and βj ≤ 1, all states in Ω are stochastically stable.

Proof. (b) and (c) are trivial, since the set of stochastically stable states is always
non-empty, only states in absorbing sets can be stochastically stable, and all states
in the same absorbing set are simultaneously either stochastically stable or not. Part
(a) follows from standard results; see the last point of Appendix C.

14We mean that an institution is picked up according to a pre-specified probability distribution
having full support, for instance uniformly. The exact distribution does not affect the results, as
long as it has full support, and does not depend on ε.
15An absorbing state of the unperturbed process is called stochastically stable if it is in the support

of its limit invariant distribution, i.e. if there is a strictly positive probability that the process is in
the absorbing state in the long-run and in the limit ε→ 0. For a more detailed explanation, formal
definitions, and basic characterization results see Appendix C.
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3.2. The long run trading patterns. We now proceed to analyze the stochastic
stability of platforms depending on the values of the parameters si = (βi, fi) and
sj =

¡
βj, fj

¢
.

As a benchmark, we start with the case of identical platform design. To analyze
platforms with identical characteristics (si = sj), we observe that, for every state
ω ∈ Ω we can uniquely define a so-called mirror state eω by changing the platform
affiliation of all traders, that is, eω is the only state such that Mj(eω) = Mi(ω) and
Nj(eω) = Ni(ω). Then,

Lemma 3. Suppose si = sj. Then, μ∗(ω) = μ∗(eω) ∀ω ∈ Ω.

Proof. Follows directly from P (ω, ω0) = P (eω, eω0) ∀ω, ω0 ∈ Ω which holds for
si = sj due to platform symmetry (recall Assumption A).
Theorem 2 already identifies the set of stochastically stable states whenever at

least one platform i has a price bias βi ≤ 1. Hence we are left with design con-
figurations si and sj where both price biases favor sellers (i.e. βi, βj > 1). There,
Theorem 2 indicates that full coordination on both platforms are the only possible
stochastically stable states. To further pin down the long-run trading pattern, it
proves useful to distinguish the two platforms with respect to their prices. We start
with the platform which implements a (weakly) lower price.

Lemma 4. Suppose βi, βj > 1 and pi =
βic
1−fi ≤

βjc

1−fj = pj. Then, γ(ω∗i , ω
∗
j) ≥ 2 =

γ(ω∗j , ω
∗
i ) and ω∗i is stochastically stable.

Proof. If pi ≤ pj, buyers (weakly) prefer platform i to platform j whenever it
is active. Accordingly, ω∗i can be reached from ω∗j with just two mutations. To see
this, suppose the system is in state ω∗j . A buyer and a seller switching to platform i
due to experimentation induce trade at platform i. B1 and B2 guarantee that there
is a positive probability that first all buyers at platform j get the opportunity to
revise their platform choice (and switch to i because of the lower price or because of
indifference) and subsequently all sellers at platform j can revise and also switch to
platform i as this is now the only platform that generates positive profits for them.
Hence, γ(ω∗j , ω

∗
i ) = 2. Clearly γ(ω∗i , ω

∗
j) ≥ 2 as at least one seller and one buyer

have to switch to platform j to induce trade. Then, Theorem 2(a) implies stochastic
stability of ω∗i .
We now turn to the stochastic stability of a platform with a strictly higher price

(provided that the biases of both platforms favor sellers). While all our previous
results did not depend on the modelling details such as (i) absolute population size of
buyers and sellers, (ii) the relative size of these populations, (iii) the heterogeneity of
buyers, (iv) the price elasticity of demand, (v) the grid size δ, and (vi) details of the
learning process (e.g. adjustment speed, asymmetries between buyers and sellers),
these details do matter now as the following results illustrate.
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Lemma 5. Suppose βi, βj > 1, pi =
βic
1−fi <

βjc

1−fj = pj, so that ω∗i is stochastically
stable.

(a) in a dynamics with independent inertia, ω∗j is also stochastically stable (i.e.
γ(ω∗i , ω

∗
j) = 2) if and only if there is at least one buyer en ∈ N such that

dn

µ
βjc

1− fj

¶
(βj − 1) ≥

1

|M |− 1DN\{n}

µ
βic

1− fi

¶
(βi − 1).

(b) in a dynamics with asynchronous learning, ω∗j is also stochastically stable (i.e.
γ(ω∗i , ω

∗
j) = 2) if and only if there is at least one buyer en ∈ N such that

1

|M |− 1dn
µ

βjc

1− fj

¶
(βj − 1) ≥ DN\{n}

µ
βic

1− fi

¶
(βi − 1).

Note that the condition in Lemma 5(a) is violated whenever e.g. buyers are iden-
tical, |N | ≥ |M |, and the price elasticity of demand is sufficiently high. In contrast,
the condition can be satisfied for βj > βi whenever e.g. buyers are sufficiently het-
erogeneous (i.e. ∃ en ∈ N such that dn(p) >> dn(p) ∀n 6= en), or buyers are identical
and |M | >> |N |, or d(p) is sufficiently inelastic.
The stochastic stability of ω∗j is harder to establish if the dynamics is slow as e.g.

under asynchronous learning. The condition in Lemma 5(b) is violated whenever e.g.
buyers are identical and the price elasticity of demand is sufficiently high (in contrast
to the case of independent inertia, this holds independently of the sizes of populations
|M | and |N |). The condition can be fulfilled for βj > βi if e.g. buyers are sufficiently
heterogeneous or buyers are identical and demand is sufficiently inelastic.

Remark 1. The analysis in the previous lemmata establishes stochastic stability
through transition paths involving at most two simultaneous mutations. In the ter-
minology of Ellison [13], this implies that the estimated time of first arrival, i.e. the
estimated time until a stochastically stable state is first observed, is of order ε−2.
Thus the speed of convergence is relatively high. The number of mutations needed
for the relevant transitions does not increase with the population size. Hence, our
dynamics escape the well-known critique that for large populations the long run may
actually be “too long” to be relevant (see Kandori et al. [26] or Ellison [12]).

3.3. Platform Revenues and Designers’ Profits. Till now we have analyzed
the learning dynamics of the traders and the resulting long run pattern of trades.
Next turn to the revenues generated by the platforms, which in turn determine the
profits of the market designers.
When analyzing the market designers’ choice of the characteristics of the trad-

ing platforms we will assume that platform designers are long-lived, patient, and
(relatively) rational agents when compared with individual buyers or sellers. Hence,
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the designers take only the long term expected revenues into account, and ignore
revenues made during the adjustment process to the limit invariant distribution.16

Given the platform characteristics s = (si, sj), the long-run expected revenues per
round ERi(s) depend on the limit invariant distribution. The profits of designer i
are given by πD,i(s) = fiERi(s) implying that πD,i(s) ≥ 0 for all s.
Consider first a platform i with βi < 1.

Lemma 6. Suppose βi < 1. Then πD,i ((βi, fi) , sj) = 0 for all feasible fi, sj.

Proof. Follows immediately form the fact that trade is never possible on platforms
with βi < 1.
Hence, we are left with platform configurations (si, sj) where both platforms have

a price bias weakly larger than one. In this case expected revenues at platform i
depend not only on the design of this platform but also on the design of the other
platform as the following results indicate.

Lemma 7. Consider a platform configuration s = (si, sj) with si = (βi, fi), sj =¡
βj, fj

¢
and prices pi = βi

c
1−fi , pj = βj

c
1−fj .

(a) If si = sj, then, πD,k(s) =
1
2
fkpkDN (pk) > 0 for k = 1, 2.

(b) If βi = βj = 1 and fi < fj, then fkpkDN (pk) > πD,k(si, sj) > 0 for k = 1, 2.

(c) If βi > 1 and βj ≤ 1, then πD,i(si, sj) = fipiDN (pi) and πD,j(sj, si) = 0.

(d) If βi, βj > 1, pi ≤ pj, and γ(ω∗i , ω
∗
j) > 2, then πD,i(si, sj) = fipiDN (pi) and

πD,j(si, sj) = 0.

(e) If βi, βj > 1, pi ≤ pj, and γ(ω∗i , ω
∗
j) = 2, then πD,k(si, sj) = μ∗(ω∗k)fkpkDN (pk) >

0 for k = 1, 2.

Proof. (a) follows directly from Lemma 3 as the price and the traded quantity in
ω at platform i are identical to price and quantity in eω at platform j. To see (b),
recall from Theorem 2(c) that every ω ∈ Ω is stochastically stable if βi = βj = 1.
Hence, there is a strictly positive probability for trade (i.e. positive revenues) at each
platform. (c) follows directly from Theorem 2(b). (d) and (e) follow directly from
Theorem 2(a) and Lemma 4.

4. The Platform Design
We now compare the design choices by a monopolistic designer and by two competing
designers. Observe for reference that, as shown in the last Lemma 7, the designers’
expected revenues are always weakly positive.
16Otherwise, the payoffs of a market designer would not only depend on the characteristics of both

platforms, but also on the initial distribution of the traders over the platforms. In the absence of a
plausible theory on the initial distribution, the results would be arbitrary. Further, as pointed out
in Remark 1, convergence to full coordination is fast, and hence the assumption is, to some extent,
justified.
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4.1. Monopolistic Market Design. As a benchmark, we briefly consider the
case where only one platform is available, with characteristics s = (β, f). In this case
traders have no choice but to use this platform. Designer’s profits are given by:

πD(s) =

(
f βc
1−fDN

³
βc
1−f

´
if β ≥ 1

0 otherwise.

What is the profit maximizing platform (β∗, f∗)? Note first that for β < 1 the
profits are zero, whereas for β ≥ 1 and for 0 < f < 1 the profits are strictly positive.
Hence, β∗ ≥ 1. Now assume for a moment that β and f are continuous variables with
f ∈ [0, 1] and β ∈ [1,∞). Denote p = βc

1−f and recall that limp→∞ dn(p)p = 0 for all
n ∈ N . Hence, it must hold that 0 < f∗ < 1.
Differentiating the designer’s profits yields (for β ≥ 1)

∂πD
∂f

(β, f) = pDN(p) + f
∂p

∂f
[DN(p) + pD0

N(p)]

∂πD
∂β

(β, f) = f
∂p

∂β
[DN(p) + pD0

N(p)]

where ∂p
∂f
= βc

(1−f)2 > 0 and ∂p
∂β
= c

1−f > 0. Let the optimal price be p∗ = β∗c
1−f∗ .

Since 0 < f∗ < 1, the first order conditions for the designer’s optimum imply that
∂πD
∂f
(β∗, f∗) = 0, thus DN(p

∗) + pD0
N(p

∗) < 0. This implies that ∂πD
∂β
(β∗, f∗) < 0,

hence the designer’s profits are maximized at the corner solution β∗ = 1.
Of course, in our model β and f are not continuous variables. However, if the grid

of feasible fees is fine enough, the optimal fee approximates the one of the continuous
case, and hence the optimal β is 1 also in the discontinuous case. Hence we conclude
that a monopolistic market designer would introduce a market clearing platform,
because such an platform allows him to reap the highest profits.
The intuitive reason for this result is as follows. Suppose revenues pDN(p) are

maximized at price p∗. Note that this price can be attained with different (β, f)
combinations and that p∗ = βc

1−f is increasing both in β and f . Since the monopolist
designer’s profits are fpDN(p), he will try to reach p∗ with that (β, f) combination
that has the highest fee, and hence the lowest possible β ≥ 1.

4.2. Competitive Market Design. In order to reflect that platform designers
are “more rational” than individual buyers and sellers, we simply consider them
rational players in the normal-form game defined by these payoff functions.17 That
is, both designers choose their platforms simultaneously and payoffs are given as
above. The sets of pure strategies of designer i and j are given by Si = Sj = B × F .
We also allow designers to use mixed strategies, i.e. choose a probability distribution
over S rather than picking up a particular characteristic for sure.

17Interestingly enough, it is possible to build a model with boundedly rational market designers
where or main results still hold. See Appendix B.1.
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Denote by σi the (mixed) strategy of designer i. The expected payoff of i is

πD,i(σi, σj) =
X
sj∈S

X
si∈S

σj(sj)σi(si)fiERi(si, sj).

Further, πD,i(si, σj) denotes the expected payoff if designer i chooses si for sure and
j chooses the probability distribution σj.
Since the sets of pure strategies are finite, a Nash equilibrium of the designers’

game always exists (possibly in mixed strategies). To characterize these equilibria,
we need the following Lemma.

Lemma 8. Let (σ∗i , σ
∗
j) be a Nash equilibrium (possibly in mixed strategies). Then,

for any pure strategy si = (βi, fi) of player i such that σ
∗
i (si) > 0, it holds that

βi ≥ 1.

Proof. Assume to the contrary that there exists a pure strategy si = (βi, f i) with
σ∗i (si) > 0 and βi < 1. By Lemma 6 this pure strategy gives designer i a profit of
zero against all strategies of j. Hence, πD,i(si, σ

∗
j) = 0, and, since σ

∗
i is an equilibrium

strategy, πD,i(σ
∗
i , σ

∗
j) = 0.

Suppose that, in equilibrium, j chooses only platforms with βj < 1. That is,
βj < 1 for all sj = (βj , fj) ∈ S with σ∗j(sj) > 0. In this case, if designer i chooses
with certainty a platform s0i with β0i > 1, Lemma 7(c) implies that πD,i(s

0
i, σ

∗
j) =

f 0i
β0ic
1−f 0i

DN

³
β0ic
1−f 0i

´
> 0. Since πD,i(σ

∗
i , σ

∗
j) = 0, this contradicts that (σ

∗
i , σ

∗
j) is a Nash

equilibrium.
Thus, there must exist an sj with βj ≥ 1 such that σ∗j(sj) > 0. Then, if de-

signer i deviates to the pure strategy s0i = sj, πD,i(s
0
i, σ

∗
j) = σ∗j(sj)fiERi(s

0
i, sj) +P

sj∈S8sj
σ∗j(sj)πD,i(s

0
i, sj). Since by Lemma 7(a) ERi(s

0
i, sj) > 0, we conclude that

πD,i(s
0
i, σ

∗
j) > 0, again contradicting that (σ

∗
i , σ

∗
j) is a Nash equilibrium.

Hence, we have shown that, in equilibrium, only platforms weakly biased in favor
of the sellers can be chosen. We now want to show that, actually, in any equilibrium,
both designers will introduce platforms that lead to prices strictly above the market
clearing level - platforms that lead to market clearing prices will not be designed in
equilibrium. This results holds as long as the grid of possible biases is fine enough.

Theorem 9. Let (σ∗i , σ
∗
j) be a Nash equilibrium (possibly in mixed strategies). For

any pure strategy si = (βi, fi) of player i such that σ
∗
i (si) > 0, it holds that βi > 1 if

δ is sufficiently small.

Proof. By the previous lemma, only platforms with β ≥ 1 will be designed in equi-
librium. Assume by contradiction that there exist some pure strategies si = (βi, fi)
with σ∗i (si) > 0 and βi = 1. Denote a strategy of this type by si = (1, fi) and let p =
c

1−fi
. Denote the carrier or support of σ∗j by C(σ

∗
j) =

©
sj = (βj, fj) ∈ S

¯̄
σ∗j(sj) > 0

ª
.
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Suppose that, for all sj ∈ C(σ∗j) we actually had that βj > 1.This implies by
Lemma 7(c) that πD,i(σ

∗
i , σ

∗
j) = πD,i(si, σ

∗
j) = 0. Take any s0i = s0j ∈ C(σ∗j). By

Lemma 7(a), and recalling that πD,i(si, sj) ≥ 0 for all si, sj, we obtain that

πD,i(s
0
i, σ

∗
j) ≥ σ∗j(s

0
j)f

0
jERj(s

0
i, s

0
j) > 0.

Hence, player i would have an incentive to deviate from σ∗i , a contradiction.
We conclude that there exists some sj ∈ C(σ∗j) with βj = 1. Let C1(σ∗j) =©

sj = (βj, fj) ∈ C(σ∗j)
¯̄
βj = 1

ª
. Notice that, since si = (1, fi), we have by Lemma

7(c) that πD,i(si, sj) = 0 for all sj ∈ C(σ∗j) with βj > 1. Then, by Lemma 7(a,b),

πD,i(si, σ
∗
j) <

X©
σ∗j(sj)fipDN (p)

¯̄
sj ∈ C1(σ

∗
j)
ª

However, for any s0i with β0i > 1 and f 0i = fi,

πD,i(s
0
i, σ

∗
j) ≥

X©
σ∗j(sj)fiβ

0
ipDN (β

0
ip)
¯̄
sj ∈ C1(σ

∗
j)
ª

due to Lemma 7 (c) (the inequality follows from the fact that πD,i(s
0
i, sj) ≥ 0 for all

sj). This latter expression is continuous in β0i. Thus, for β
0
i approaching one from

above, πD,i(s
0
i, σ

∗
j) > πD,i(si, σ

∗
j) = πD,i(σ

∗
i , σ

∗
j). Hence, if the grid is fine enough
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player i has an incentive to deviate from σ∗i to an institution with β0i > 1 but close
enough to 1. A contradiction.
We have thus established the paradoxical result that competition among plat-

form designers will induce them to select biased platforms which implement non-
competitive market outcomes. In general, nothing more can be said about the spe-
cific characteristics of the Nash equilibria. A brief examination of Lemma 5 and
Lemma 7(d) and (e) should convince the reader that a full characterization of the
Nash equilibria will depend on the exact shape of the limit invariant distribution,
and not only on its support. This distribution in turn depends on the details of the
dynamics, e.g. whether learning opportunities arise simultaneously among traders
or asynchronously. In contrast, the last theorem holds for any specification of the
learning dynamics satisfying assumptions B1 and B2.
Still, one might suspect that competition leads to platforms close to the market

clearing one, i.e. to platforms with βi = 1 + δ. If this hypothesis would be correct,
the chosen platforms would nearly resemble market clearing ones as long as the grid
of feasible biases is fine enough. The next proposition, however, shows that this
hypothesis is in general false. For simplicity, consider identical buyers with a demand
function d(p) and denote the price elasticity of demand by εp(p) = −pd0(p)

d(p)
.

Proposition 10. Assume independent inertia, identical buyers and |M | = |N |. If
the grids B and F are fine enough and εp is not much larger than one, then

18The grid can be assumed to be ex ante fine enough by a uniform continuity argument.
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i) there exists no Nash equilibrium (σ∗i , σ
∗
j) (possibly in mixed strategies) where

both designers introduce only platforms with βi = βj = 1 + δ;
ii) there exists no pure strategy Nash-equilibrium (s∗i , s

∗
j) of the design game with

β∗i = β∗j = 1 + δ.

This proposition shows that equilibrium designs (beyond the features highlighted
in Theorem 9) are in general rather sensitive to details of the economy and the
learning process. For example it cannot be excluded that in equilibrium designers
choose ”near market clearing” platform characteristics for some specifications of the
learning dynamics and/or of the demand functions. But in general the equilibrium
choices are not ”near market clearing” platforms.

5. Discussion
We have shown that if several trading platforms are available, traders will learn to
coordinate on a platform with prices systematically above the market clearing level,
if such a platform is feasible. This forces competing market designers to create such
non-market clearing platforms. On the other hand a monopolistic market designer will
always introduce a market clearing platform in order to maximize his profits. Hence,
we derive the paradoxical result that platform competition induces non-competitive
market outcomes. This result could also explain why so many B2B platforms exhibit
institutional designs that are notorious for biased (non-market clearing) prices (e.g.
posted offer markets, proxy auctions with “hard-close” or Dutch auctions).
The result of our paper depends of course on several assumptions we have made.

First, we have assumed sellers to be producers endowed with a technology with con-
stant returns to scale. Although this is a focal, economically meaningful case, it
clearly simplifies the analysis and allows for a clear-cut derivation of the results. Un-
der production technologies exhibiting decreasing returns to scale, the results are not
so sharp and a characterization of the limit invariant distribution requires both a fur-
ther specification of the learning behavior of the traders and a further specification of
demand and supply. In Appendix B we provide an extended example with decreas-
ing returns to scale where our main result still holds. It shows, however, that the
optimality of a price bias is no longer independent of details like learning velocities.
Nonetheless, this clearly illustrates that the scope of the paradox identified here goes
beyond the constant returns to scale case.
Second, we have focused on an asymmetric rationality model where market de-

signers are sophisticated when compared to traders. Furthermore, by focusing on
long-run profits we have implicitly assumed that it is much more difficult for de-
signers to change the properties of their platforms than for traders to switch trading
platforms. In Appendix B we analyze the case of boundedly rational designers who
have to learn how to design a platform through a regular (trial-and-error) design re-
vision process. Our main result - the emergence of non-market clearing institutions -
carries over to such a setting.
These robustness checks show that neither the assumption of constant returns to

scale technology nor that of rational designers drive our results. Rather, it is indeed
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platform competition that leads to the emergence of non-market clearing trading
platforms.
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APPENDIX

A. Proofs
A.1. Proof of Lemma 1. We first prove the following preliminary claim. The
monomorphic state ω∗i can be reached with positive probability from any state where
platform j 6= i is inactive. To see this, simply notice that, by Assumptions A and B1,
there is positive probability that traders will switch away from the inactive platform
j until ω∗i is reached. An immediate consequence of this claim is that, from the
“cross-states” where both platforms are inactive, i.e. all buyers are at one platform
and all sellers are at the other platform, both monomorphic states can be reached.
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(a) Let β1 > 1 and β2 > 1. First note that the monomorphic states are absorbing,
because at the corresponding platform both buyers and sellers make strictly positive
profits and the other platform is inactive. Thus traders stay at the active one.
To complete the proof, it is enough to show that there exists a positive probability

path from any state to some of the monomorphic states. By the preliminary claim,
this is true if any platform is inactive. Consider, thus, an arbitrary ω ∈ Ω such that
1 ≤ |Ni(ω)| ≤ |N |− 1 and 1 ≤ |Mi(ω)| ≤ |M |− 1.
Without loss of generality, suppose p(si) ≤ p(sj). Buyers weakly prefer platform

i to platform j. By B1 and B2, there is positive probability that all buyers at j
receive revision opportunity in successive periods and only sellers at j receive revision
opportunity. Hence, buyers will switch away from j and no new seller will switch to j.
Thus, either the monomorphic state ω∗i is eventually reached, or j becomes inactive,
leading again to ω∗i with positive probability.
(b) Let βj ≤ 1 and βi > 1. Provided i is active, sellers strictly prefer it to

platform j, regardless of prices. As above, the monomorphic state ω∗i is absorbing.
The monomorphic state ω∗j is not. To see this, note that sellers always receive zero
profits at j and will switch to i with positive probability even if profits there are
zero (the latter due to randomization in case of indifference). Thus, starting at ω∗j ,
with positive probability j becomes inactive such that ω∗i is reached with positive
probability.
By the preliminary claim, from any state where platform j is inactive the monomor-

phic state ω∗i can be reached. If i is inactive, then ω
∗
j is reached, but then the dynamics

leads to ω∗i with positive probability.
Consider an arbitrary ω such that 1 ≤ |Ni(ω)| ≤ |N | − 1 and 1 ≤ |Mi(ω)| ≤

|M |−1. By B1 and B2, there is positive probability that all sellers at j receive revision
opportunity in successive periods and only buyers at j receive revision opportunity.
Hence, sellers will switch away from j and no new buyer will switch to j. Eventu-

ally, either the monomorphic state ω∗i is reached, or j becomes inactive (which again
leads to ω∗i with positive probability).
(c) Last, suppose βi ≤ 1 and βj ≤ 1. If both βi < 1 and βj < 1, both platforms

are always inactive. Hence every trader randomizes when given revision opportunity,
thus the process is obviously irreducible.
If βj < 1 and βi = 1, sellers always receive zero profits and always randomize.

Buyers, though, switch away from the inactive platform j whenever platform i is
active and they receive revision opportunities, while they randomize whenever i is
inactive. Thus, from any state, there is always positive probability to reach the
monomorphic state ω∗i . From this state, any state in

ΩB
i = {ω |Ni(ω) = N }

can be reached. Further, since sellers simply randomize, they might eventually all
switch to platform j, reaching the cross state in which all sellers are at j and all
buyers are at i. As long as all sellers are in j, buyers merely randomize. That is, any
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state in
ΩS
j = {ω |Mj(ω) =M }

can be reached. Consider an arbitrary state ω0 with |Ni(ω
0)| > 0. This state can

be reached from a state ω ∈ ΩS
j with Ni(ω) = Ni(ω

0) by letting sellers switch to
i and giving revision opportunity only to buyers at i, who will stay there. Finally,
consider a state ω0 with Ni(ω

0) = ∅, i.e. Nj(ω
0) = N . This state can be reached from

the monomorphic state ω∗j ∈ ΩS
j by letting sellers randomize appropriately, because

buyers who receive revision opportunity are indifferent (both platforms are inactive)
and will stay at j with positive probability.
In summary, any state can be reached from ω∗i , and the latter can be reached from

any state. This completes the argument if βj < 1 and βi = 1.
The only remaining case is βi = βj = 1. In this case, sellers always obtain zero

profits and hence randomize. Buyers in turn want to move away from inactive plat-
forms. If both platforms are inactive, they randomize, too. However, since sellers
simply randomize, it is clear that, from an arbitrary state, any platform might even-
tually become inactive by lack of sellers. It follows from the preliminary claim that,
from any state, both monomorphic states can be reached.
>From the monomorphic states, since sellers still simply randomize, all states at

ΩB
i and ΩB

j (see above) can be reached - in particular the cross states. Then, buyers
also randomize. As long as sellers stay concentrated at one platform, buyers strictly
prefer that platform if it became active. That is, we can construct positive probability
paths to any state in ΩS

j and ΩS
i (see above). Again, since sellers merely randomize,

we can construct positive probability paths to any state ω0 with 0 < |Ni(ω
0)| < |N |

by letting sellers switch appropriately and giving revision opportunity only to buyers
who are already at i. This completes the argument if βi = βj = 1.

A.2. Proof of Lemma 5. It has been shown in the proof of Lemma 4 that
γ(ω∗j , ω

∗
i ) = 2 if βi, βj > 1 and pi ≤ pj. Hence, a necessary and sufficient condition

for the stochastic stability of ω∗j is γ(ω
∗
i , ω

∗
j) = 2.

Since pi < pj, buyers never switch to platform j as long as i is active. Hence,
ω∗j has to be reached through switching of all sellers to platform j and a subsequent
switch of all buyers to the only remaining active platform.
In case (a), under independent inertia there is positive probability that all sellers

at platform j simultaneously receive the opportunity to revise. If one seller and buyeren ∈ N are already present at platform j, sellers will switch to j if dn(
βjc

1−fj )(βj − 1) ≥
1

|M |−1DN\{n}

³
βic
1−fi

´
(βi − 1). Hence, this condition is sufficient for the stochastic

stability of ω∗j . To see that it is also necessary suppose that it is violated. Then no
seller will switch to j after one seller and any buyer en induced trade on this platform.
As a consequence, more than 2 mutations are needed to reach ω∗j .
In case (b), under asynchronous learning only one trader has the opportunity

to revise its platform choice in any given period. Suppose one seller and buyeren switch to platform j by mutation. Suppose furthermore that in the subsequent
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rounds only sellers and buyers at platform i receive the opportunity to revise their
decision (this happens with strictly positive probability due to B1 and B2). If
1

|M |−1dn(
βjc

1−fj )(βj − 1) ≥ DN\{n}

³
βic
1−fi

´
(βi− 1) it follows that 1

|Mj |dn(
βj
1−fj )(βj − 1) ≥

1
|M |−|Mj |DN\{n}

³
βi
1−fi

´
(βi−1) for allMj with 1 ≤ |Mj| ≤ |M |−1. Hence, sellers pre-

fer platform j whenever it is active and there are at least one and less than |M | sellers
already there. Thus, there is a positive probability path with just two mutations from
ω∗i to ω

∗
j where first all sellers move to platform j and subsequently all buyers switch

to j as it is the only active platform. Hence, the condition displayed in the Lemma is
sufficient for the stochastic stability of ω∗j . To see that it is also necessary, suppose it
is not fulfilled. Then a seller at platform i prefers to stay there if all other sellers are
at platform j together with any buyer en. Under asynchronous learning this implies
that at least a third mutation is needed to reach ω∗j , which implies that this state
cannot be stochastically stable by Theorem 2(a).

A.3. Proof of Proposition 10. Note first that Lemma 5 (a) implies that if
βic
1−fi <

βjc

1−fj , ω
∗
j is stochastically stable iff

d

µ
βjc

1− fj

¶
(βj − 1) ≥ d

µ
βic

1− fi

¶
(βi − 1). (*)

Proof of i) Assume to the contrary for all platform characteristics in the support
of σ∗i and σ∗j , β = 1 + δ. Denote by f i the highest fee of a platform in the support
of σ∗i , and by f j the highest fee of a platform in the support of σ∗j . Without loss of
generality assume that f j ≥ f i. We can distinguish between three cases:
a) f j > f i: Condition (*) shows that full coordination on platform sj = (1+δ, f j)

is not stochastically stable vis a vis any platform characteristics in the support of σ∗i .
Hence, this strategy earns designer j zero profits, and since it is assumed to be in
the support of j’s equilibrium strategy, j’s equilibrium profits would be zero. But j
could always guarantee himself a strictly positive profit by playing the same (possibly
mixed) strategy as i. Hence, case (a) is inconsistent with Nash equilibrium.
b) f i = f j > fmin .. Condition (*) shows that full coordination on platform

si = (1+δ, f i) is not stochastically stable vis a vis any platform characteristics in the
support of σ∗j but platform sj = (1 + δ, f j). Furthermore, Lemmata 2 and 3 imply
that μ∗(ω∗i ) = μ∗(ω∗j) =

1
2
if si is chosen by i and sj is chosen by j. Therefore,

πD,i(si, σ
∗
j) = σ∗j(sj)

1

2
f i
(1 + δ)c

1− f i
|N |d

µ
(1 + δ)c

1− f i

¶
.

But choosing the alternative platform design s0i with f 0i = f j − γ, and β0i = 1 + δ

implies that 1+δ
1−f 0i

c < 1+δ
1−fj

c and d
³
1+δ
1−fj

c
´
δ < d

³
1+δ
1−f 0i

c
´
δ. Hence, again by (*)

μ∗(ω∗i ) = 1 if s
0
i is chosen by i and sj is chosen by j, which yields

πD,i(s
0
i, σ

∗
j) ≥ σ∗j(sj)(f i − γ)

(1 + δ)c

1− f i + γ
|N |d

µ
(1 + δ)c

1− f i + γ

¶
.
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If the grid of F is fine enough, i.e. if γ is small enough, this implies πD,i(s
0
i, σ

∗
j) >

πD,i(si, σ
∗
j), a contradiction with Nash equilibrium.

c) f i = f j = fmin - both designers choose the platform characteristics si = sj =

(1 + δ, fmin) for sure. Then Condition (*) guarantees the existence of a β
0

j > 1 + δ
and a f 0j > fmin such that platform j is stochastically stable vis a vis sj if the
grid F is sufficiently fine, i.e. if γ is sufficiently small. Furthermore, if εp is not
much larger than 1, designer j’s profits from full coordination on his platform with
design s0j, i.e. |N | f 0j

β0jc

1−f 0j
d
³

β0jc

1−f 0j

´
, is strictly larger than the respective profit from

choosing sj, i.e. |N | f j (1+δ)c1−fj
d
³
(1+δ)c

1−fj

´
. It remains to show that no decrease in μ∗(ω∗j)

overcompensates this effect. To see this suppose that β
0

j > βj = 1 + δ in such a way
that d(p0j)(β

0
j − 1) > |M ||N |d(pi)δ (feasible if δ is sufficiently small). Then sellers

prefer platform j with characteristics s0j whenever it is active, while buyers prefer
platform i with characteristics si. For a learning dynamics with independent inertia
and with |M | = |N | this establishes symmetry of the transition matrix P such that
μ∗(ω∗i ) = μ∗(ω∗j) = 1/2. Therefore, choosing in this case β

0
j > 1 + δ and f 0j > f j does

not reduce μ∗(ω∗j) while it strictly increases revenue in ω
∗
j . Hence, sj with βj = 1+ δ

and f i = fmin can not be a best response to si = (1 + δ, fmin).
Proof of ii) Follows immediately from i).

B. Robustness of the Results
The results in the paper have been derived under two crucial assumptions. First,
designers are assumed to be rational while traders are not (asymmetric rationality).
Even though this assumption seems to be justified in a wide range of applications, one
might be interested in the robustness or our results with respect to the (bounded)
rationality of designers. We will discuss the case of learning designers in section
B.1. Second, we assumed that sellers have a constant-returns-to-scale technology. In
section B.2 we will analyze an example with decreasing returns that illustrates the
robustness of our findings.

B.1. Boundedly Rational Designers. To account for learning designers, we
have to extend the state space by the feasible design configurations, and we have to
redefine the (unperturbed learning process).
The state space is given by Ω = {1, 2}n × {1, 2}m × S2. A state ω ∈ Ω denotes

the location of buyers and sellers and the design of both platforms. Traders learn as
specified in Assumption A. The learning process of designers is defined as follows.

Assumption C A designer who gets the opportunity to revise, observes the revenues
and designs of platforms in the last period. If the platforms have different de-
signs, he chooses the design which has led to a higher revenue (Imitation). In
case of identical revenues designers randomize their choice, with both designs
chosen with strictly positive probability. Choice probabilities may depend on
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the outcomes (or designs) but not on the platform’s name. If designs are identi-
cal and a designer obtains zero revenues he randomizes over all possible design
alternatives in the next round (Innovation).19

We further assume B1 and B2 (on the enlarged state space and for three instead of
two different types of players) as detailed in the paper.20 To illustrate the robustness
of our results with respect to boundedly rational designers, we prove the counterpart
of Lemma 1 in the modified learning model.

Lemma 11. Assume A, B1, B2, and C. Then the absorbing sets are all sets of the
form Ai,β,f = {ω ∈ Ω|Ni(ω) = N,Mi(ω) = M,βi = β, fi = f} ∀β > 1, f ∈ F , and
i = 1, 2.

Proof. We proceed in two steps. First, we show that Ai,β,f is indeed absorbing
for any i, f , and β > 1. Second, we show that there is always a positive probability
path from any ω ∈ Ω\ ∪i,f,β>1 Ai,β,f to an ω0 ∈ ∪i,f,β>1Ai,β,f .
Fix any i, f and β > 1, and consider any ω ∈ Ai,β,f . As β > 1 buyers and

sellers receive strictly positive payoffs at i, and no type of trader wants to switch
to the inactive platform j. By Assumption C, designer i will not change the design
of his platform while designer j will innovate (randomize over S) if si = sj in the
last period, and he will imitate (choose sj = si) otherwise. Hence, once the system
reaches a state in Ai,β,f buyers, sellers, and designer i will not alter their choices and
designer j will alternate between sj = si and a random draw out of S - the system
will not leave Ai,β,f .
Now fix a state ω ∈ Ω\ ∪i,f,β>1 Ai,β,f and denote the designs of platform i and j

in this state by si = (βi, fi) and sj = (βj , fj), respectively. We distinguish four cases.
If (i) βi, βj > 1 or (ii) βi > 1 and βj ≤ 1, it follows from the proof of Lemma 1 that
the unperturbed dynamics will reach the monomorphic state ω∗i (with βi > 1) with
positive probability from any non-monomorphic state or any monomorphic state ω∗j
with βj ≤ 1. By B1 and B2, there is positive probability that only designers with
highest revenues receive revision opportunities (and do not change design) until a
state ω0 with Ni(ω

0) = N , Mi(ω
0) = M is reached. If (iii) βi = βj = 1, the proof of

Lemma 1 shows that a cross-state will be reached with positive probability. In such
a state designers randomize, thus there is a positive probability path to a cross-state
with βi > 1, and a subsequent positive probability path to a state in Ai,β,f (due
to randomizing traders). Finally consider (iv) βi, βj < 1. Traders randomize and
a cross-state is reached with positive probability. Again designers randomize and
a cross-state with βi > 1 can be reached. As traders continue to randomize, the
dynamics reaches a state in Ai,βi,fi with positive probability.

19For simplicity, we assume that designers randomize over S with full support. Our results would
carry over to more realistic treatments where designers use more sophisticated innovation methods.
20This specification also allows for different learning speeds for traders and designers, respectively.

Our model covers, for instance, the likely situation that buyers and sellers revise with a larger
probability than designers.
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Hence, in every absorbing set all traders are located at a platform i with βi > 1
while designers of the other platform randomize over S = B × F (i.e. unsuccessfully
innovate). As transition costs between any two absorbing sets are 1 (starting in a
state in Ai,β,f just one experiment by designer i is required to end up in any other
Ai0,β0,f 0) all absorbing states characterized in Lemma 11 are also stochastically stable.
This establishes Theorem 9 for boundedly rational designers.
We conclude that boundedly rational platform designers exhibit qualitatively the

same behavior as rational ones: Platform competition forces them to introduce only
non-market clearing platforms.

B.2. Decreasing Returns to Scale. Consider the following example. Two iden-
tical sellers produce with costs given by c(q) = 1

2
q2. For given prices (pi) and fees

(fi) at a platform i, their profit is πm,i(q, pi) = (1 − fi)piq − 1
2
q2 and maximization

leads to the supply function s(pi) = (1 − fi)pi. Two identical buyers, each with
income of one unit, consume q units of the commodity traded at the platforms and
x units of a second commodity which price is normalized to 1. The buyers’ util-
ity is given by πn(q, x) = 2

√
q + x and utility maximization for a given price pi at

the respective platform yields the buyer’s demand function d(pi) = 1/p2i . Equat-
ing demand and supply gives the market clearing price at platform i in state ω
p∗i (ω) = ri(ω)

1/3(1 − fi)
−1/3 (with ri(ω) =

|Ni(ω)|
|Mi(ω)|). Traders’ and designers’ profits

depend on state and design and are calculated the same way as before. For our
purposes it suffices to note that sellers are not rationed whenever βi ≤ 1 and their
corresponding profit πm,i(Mi(ω), Ni(ω), si) =

1
2
(1−fi)4/3β2i r

2/3
i is increasing in βi and

decreasing in fi. Analogously, sellers are rationed for βi > 1 and profits amount to
πm,i(Mi(ω), Ni(ω), si) = (1−fi)4/3 1βi r

2/3
i (1− 1

2β3i
) which is also monotonically decreas-

ing in fi but reaches a (global) maximum at βi = 2
1/3.21

Full coordination on any platform is a singleton-absorbing set (both types of
traders get strictly positive profits on any active platform). Analogously to Lemma
1, it is easy to see that these states are the only absorbing sets. Moreover, it can
be shown that these monomorphic states are also stochastically stable for a wide
range of design configurations. The designers’ profits, though, depend not only on
the support of the limit invariant distribution μ∗, but also on its weights for the
different (monomorphic) states. Hence, this setting can not be analyzed with the
tools discussed before. To obtain μ∗ in this example, we can use Lemma 3.1 from
Freidlin and Wentzell ([20])22. They derive the limit invariant distribution μ∗ from
an analysis of graphs in the state space Ω that are induced by the stationary Markov-
process P as follows. Fix an ω ∈ Ω. An ω− tree T is a spanning tree in Ω such
that for every vertex ω0 6= ω there exists a unique directed path from ω0 to ω. Let Tω
be the set of all ω− trees and define qω ≡

P
T∈Tω Π(ω0,ω00)∈TP (ω

0, ω00) (i.e. qω is the
product of all transition probabilities on a given ω−tree summed over all ω−trees).
21We assume for simplicity from now on that δ is such that 21/3 ∈ B.
22For a detailed explanation see Kandori et al. [26] or Young [43].
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Then Lemma 3.1 of Freidlin and Wentzell [20] states that μ∗(ω) = qω

ω∈Ω qω
. In the

limit of small mutation probability (ε → 0) μ∗(ω) is determined by those ω−trees
that imply the smallest possible number of mutations necessary to form a spanning
tree in Ω. Hence, we will restrict ourselves to those minimal-cost trees.
For expositional ease we further specify the learning model and assume indepen-

dent inertia within types. That is, in every round any seller m ∈ M is allowed to
revise his location decision with probability ρS ∈]0, 1[ while every buyer is allowed to
revise with probability ρB ∈]0, 1[.
Then, a minimal-cost tree in Tω∗i has edges as depicted in the following table.

ω0 Pω0,ω∗i
(0,0) ε2P(1,1),ω∗i
(0,1) ε(1− ρB)P(1,1),ω∗i
(0,2) ερS
(1,0) ε(1− ρS)P(1,1),ω∗i
(1,1) P(1,1),ω∗i
(1,2) ρS
(2,0) ερB
(2,1) ρB

The respective table for ω∗j can be derived by a permutation of indices B and S.

Hence,
μ∗(ω∗j )

μ∗(ω∗i )
= ρ2Bρ

2
S(1 − ρB)(1 − ρS)

³
P(1,1),ω∗j

´4
/ρ2Bρ

2
S(1 − ρB)(1 − ρS)

¡
P(1,1),ω∗i

¢4
.

Note that this expression is continuous in ρS and ρB. This leads to the following
useful result (as sellers and buyers are identical profits only depend on the number of
sellers and buyers at a platform).

Lemma 12. Suppose πm,i(1, 1, si) > πm,j(1, 1, sj). Then for every ε > 0 there is a
ρS < 1 such that μ∗(ω∗j) < ε for all ρS > ρS.

Proof. First recall that the monomorphic states are the only absorbing sets.
Moreover, it is easy to see that ω∗i is the only stochastically stable state if and
only if πm,i(1, 1, si) > πm,j(1, 1, sj) and πn,i(1, 1, si) > πn,j(1, 1, sj) (as it then needs
more than 2 mistakes to get from ω∗i to ω∗j). If πm,i(1, 1, si) > πm,j(1, 1, sj) and
πn,i(1, 1, si) = πn,j(1, 1, sj), P(1,1),ω∗i = ρS(1− ρB)ρB +

1
2
ρB(1− ρS)ρS +

1
2
ρBρS while

P(1,1),ω∗j =
1
2
ρB(1 − ρS)ρS. Hence, P(1,1),ω∗j/P(1,1),ω∗i approaches zero if ρS → 1 such

that limρS→1 μ
∗(ω∗j) = 0.

If πm,i(1, 1, si) > πm,j(1, 1, sj) and πn,i(1, 1, si) < πn,j(1, 1, sj), P(1,1),ω∗i = ρS(1 −
ρB)ρB while P(1,1),ω∗j = ρB(1− ρS)ρS. Hence, P(1,1),ω∗j/P(1,1),ω∗i again approaches zero
if ρS → 1 such that limρS→1 μ

∗(ω∗j) = 0.
Intuitively, if sellers learn much faster then buyers, only the platform that offers

higher revenues to sellers will survive with a positive probability if both platforms
are active. This induces the following strict Nash-Equilibrium.
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Proposition 13. There exists a ρS < 1 such that, for all ρS > ρS, the platform
profile (s∗i , s

∗
j) with f∗i = f∗j = fmin and β∗i = β∗i = 2

1/3 is a strict Nash equilibrium.

Proof. As seller’s profits decrease in fi and reach their global maximum in β = 21/3

it is clear that πm,i(1, 1, si) < πm,i(1, 1, s
∗
i ) for any si 6= s∗i . But then Lemma 12

indicates that for any ε > 0 there is a ρS such that μ
∗(ω∗i , s

0
i, s

∗
j) < ε for all ρS > ρS.

Hence, if ε is chosen small enough, we obtain πD,i(s
0
i, s

∗
j) < πD,i(s

∗
i , s

∗
j) for all ρS > ρS;

thus (s∗i , s
∗
j) is a strict Nash equilibrium.

It can be shown that, for ρS large enough, βi ≤ 1 is not chosen by any designer in
any pure strategy equilibrium. Moreover, in any mixed strategy equilibrium (σ∗1, σ

∗
2)

there is a least one designer i where si ∈ C(σ∗i ) implies that βi > 1.
23

The previous proposition shows that also for decreasing returns to scale com-
petition between market designers might lead to the design of non-market clearing
institutions. Note that the condition on ρS is a sufficient, but not a necessary one.
For a smaller ρS we cannot characterize the limit invariant distribution, and hence
do not know the equilibrium behavior of the designers. So our main result might still
hold even for ρS < ρS, but this depends on the details of the demand and supply
conditions.

C. A Markov Chains Dictionary
• A finite Markov Chain with stationary transition probabilities is a pair (Ω, P )
of a finite state space Ω and a transition probability matrix P : Ω× Ω→ [0, 1]
where P (ω, ω0) is the probability that the state will be in ω0 ∈ Ω in period t+1
given that it was in ω ∈ Ω in period t; thus

P
ω0∈Ω P (ω, ω

0) = 1 for each ω ∈ Ω.
Since in this paper we restrict ourselves to finite Markov chains with stationary
transition probabilities, we will drop both adjectives and refer to them simply as
Markov chains. A Path of such a Markov chain is a mapping from a countable
(time) set (in our case Z+) to the state space that depicts the evolution of the
process ω(·) : Z+ → Ω.

• An Absorbing Set (also Recurrent Communication Class or Limit Set) A ⊆ Ω is
a minimal subset of Ω that once entered is never abandoned (i.e. P (ω, ω0) = 0
∀ω ∈ A and ω0 /∈ A). States that do not belong to any absorbing set are called
transient. Note that any finite Markov chain has at least one absorbing set.

• An Absorbing State (or a Singleton Recurrent Communication Class) is a state
a ∈ Ω with P (a, a) = 1 (and as a consequence P (a, ω) = 0 ∀ω ∈ Ω\{a}).

• Every Markov chain induces (a set of) Invariant Distributions μ : Ω → [0, 1]
with

P
ω∈Ω μ(ω) = 1 (i.e. μ ∈ ∆(Ω)) and μ · P = μ (i.e. the probability

distribution μ over Ω is invariant with respect to P ). Every absorbing set
A ⊆ Ω corresponds to exactly one invariant distribution with support A (i.e.

23A proof of these claims and more detailed exposition of the material discussed in the Appendix
is available on request.
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μ(ω) > 0 if and only if ω ∈ A). The set of all invariant distributions of a Markov
Process is the convex hull of the invariant distributions of all its absorbing sets.

• By the Ergodic Theorem an invariant distribution which is induced by an ab-
sorbing set A ⊆ Ω describes the time-average behavior of the system once it
reached A. I.e. μ(ω) equals the (long-run) fraction of time that the system is
in state ω ∈ A, along almost any path of the chain that reaches a state in A.

• AMarkov chain is ergodic if it has a unique absorbing set. Note that the invari-
ant distribution of an ergodic Markov process is unique and thus depicts the
time-average behavior independent of the initial conditions (the initial proba-
bility distribution over states). If the chain is not ergodic, then several invari-
ant distributions exist, describing the long-run behavior along different sample
paths, i.e. the prediction depends on the initial conditions.

• A Markov chain is irreducible if it is ergodic and the unique absorbing set
coincides with the state space Ω.

• The matrix P describes the one-step transition probabilities. Let P k = P · k... ·P
describe the k-step transition probabilities. The period of a state ω is the
greatest common divisor of all integers k such that P k (ω) > 0. All states in
the same absorbing set have the same period. An absorbing set is aperiodic if
that period is one. An example of a non-aperiodic absorbing set would be one
containing a deterministic, non-trivial cycle, i.e. {ω1, ω2, ..., ωn} with n ≥ 2
such that P (ωi, ωi+1) = P (ωn, ω1) = 1 for all i ∈ {1, ..., n − 1}. Note that a
sufficient condition for the aperiodicity of an absorbing set A is that there is
an ω ∈ A such that P (ω, ω) > 0, i.e. that the Markov process exhibits some
inertia. Any absorbing state is obviously aperiodic.

• By the Fundamental Theorem of Markov Chains the invariant distribution μ
induced by an aperiodic absorbing set A ⊆ Ω describes the long-run probability
that the system will be in state ω, given that the path reaches A, i.e. μ(ω) =
limT→∞ νP T for every ω ∈ A and all probability distributions over states ν ∈
∆(Ω) whose support is contained in A.

• A Perturbed Markov Chain (Ω, P ε) is a Markov chain (Ω, P ) and a parameter
ε ≥ 0 such that (i) (Ω, P ε) is aperiodic and irreducible for every ε > 0, (ii)
all transition probabilities P ε(ω, ω0) are continuous in ε with P 0 = P , and (iii)
whenever P ε(ω, ω0) > 0 for some ε > 0, this implies that there is an r ≥ 0 such
that ∞ > limε→0 ε

−rP ε(ω, ω0) > 0. Such perturbations are also referred to as
regular, and r is referred to as the cost of transition from ω to ω0. Typically, the
dynamics is formulated in such a way that r can be interpreted as the number
of experiments or mistakes that agents must make for the transition to happen
with positive probability.
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• Any perturbed Markov chain is irreducible, hence its invariant distribution με is
unique. Moreover, the Limit Invariant Distribution μ∗ ≡ limε→0 μ

ε of a Markov
chain (Ω, P ) exists and is an invariant distribution of (Ω, P ) (see e.g. Theorem
4(i) in [43]). This implies that only absorbing sets can be in the support of
μ∗. Intuitively, the limit invariant distribution singles out a stable prediction of
the unperturbed dynamics, in the sense that, for any ε > 0 small enough, the
process approximates the one described by μ∗ in the long run.

• A state in the support of μ∗ (i.e. ω ∈ {ω ∈ Ω|μ∗(ω) > 0} ) is called a Sto-
chastically Stable State. Two states in the same absorbing set are either both
stochastically stable or not.

• For just two absorbing sets of the unperturbed learning process the set of sto-
chastically stable states can be characterized as follows.24 Suppose X and Y
are the only absorbing sets of a Markov process (Ω, P ). Denote by γ(X,Y ) the
minimal number of experiments necessary for a direct transition from X to Y ,
i.e. a positive probability path starting in an element of X and leading to an
element in Y , which does not go through any other absorbing set. Then the
states in X are stochastically stable if and only if γ(X,Y ) ≥ γ(Y,X).

24This is a special case of the results developed by Kandori et al. [26] and Young [43]. Detailed
overviews can be found e.g. in Ellison [13], Fudenberg and Levine [19] or Samuelson [39].
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