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1. Introduction

Multivariate time series that arise in economics and business are often observed in
mixed frequencies.  For example, data available from the database of the Bureau
of Economic Analysis, the Bureau of Labor Statistics, and the Bureau of the
Census are often in mixed frequencies, mostly with quarterly, monthly or weekly
sampling intervals.  Although cointegration, which represents a long-run
equilibrium among the components of nonstationary multivariate time series, has
been one of the most extensively investigated research topics, especially, in
economics and business during the past two decades since Engle and Granger
(1987), studies of cointegration have been limited to the case where all the
components of a multivariate series are observed at the same frequency.

Data observed in mixed frequencies are usually transformed to a single
frequency by temporally aggregating higher-frequency data to lower frequencies,
or by interpolating lower-frequency data to higher frequencies.  However,
temporal aggregation destroys sample information (Zadrozny, 1990).  Granger and
Siklos (1995) examined the misinterpretation of the long-run component of a time
series constructed by temporal aggregation.  Marcellino (1999) theoretically
derived the effects of temporal aggregation on cointegration such as the
asymptotic invariance of cointegrating (CI) rank and vectors.  However, he
illustrated some possibilities of the loss of power of cointegration tests due to a
decline in the number of available observations.  Haug (2002) showed in Monte
Carlo experiments with various cointegration tests and data generating processes
(DGPs) that these power losses indeed occur and assessed their extents in samples
of typical size used in empirical work.

For the case of interpolation of mixed-frequency data, Chow and Lin (1971,
1976) used the conventional regression approach.  Other researchers, for example,
Bernanke et al. (1997), Cuche and Hess (2000), and Liu and Hall (2001), used the
state-space framework suggested by Harvey and Pierse (1984) where interpolation
is based on univariate regression.  When the goal is to estimate a multivariate
model for forecasting or other purposes, this kind of interpolation is at best an
intermediate nuisance and at worst a source of distortion in the data to be used for
estimation (Zadrozny, 1990, p. 2).

Recently, Mariano and Murasawa (2003, 2004) considered multivariate
models for constructing a new index of economic indicators using mixed-
frequency data, which overcome the drawbacks of a univariate approach and
exploit the cross-frequency sample information.  However, they used differenced
data instead of levels data.  This causes a loss of information on the long-run
dynamics among the variables.

In this paper we develop a method for “directly” modeling the cointegrated
multivariate time series with mixed-frequency data, which is based on the state-
space representation of the error correction model (ECM).  We use the state-space
formulation for mixed-frequency data in our development by fully utilizing the
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structure of multivariate data as well as the available sample information.  For the
analysis, we exploit an expectation maximization (EM) algorithm.  The method is
applied to estimate the parameters and the missing observations of the low-
frequency variables and to construct forecasts of their future values.

We introduce notation which is used in this paper: mI  denotes an mm×
identity matrix; mO , nmO × , and m0  denote an mm×  zero matrix, an nm×  zero
matrix, and an 1×m  zero vector; )(vec ⋅  vectorizes a matrix columnwise from left
to right, and )(vech ⋅  vectorizes the lower triangular part of a matrix columnwise;
the symbol ⊗  denotes the Kronecker product.

The structure of the paper is as follows.  In Section 2, we describe
preliminary concepts for mixed-frequency data and set up the state-space
representation for the ECM of cointegration.  In Section 3, we develop the
procedures for estimating the parameters of the cointegrated model using the EM
algorithm and discuss initial conditions for the procedures.  In Section 4, we
consider models with different types of deterministic terms.  In Sections 5, we
comment on smoothing, forecasting, and logarithmic transformation.  In Section
6, we conduct Monte Carlo experiments for the investigation of the performance
of the developed method.  In Section 7, we consider a numerical example to
illustrate the method and we conclude the paper in Section 8.

2. Model with mixed-frequency data

In this section, we define mixed-frequency data and the ECM for multivariate
cointegrated time series.

2.1 Mixed-frequency data

We define high-frequency variables as those observed at the fundamental shortest
sampling interval and define low-frequency variables as those observed at longer
sampling intervals, either as temporal aggregates or as skip samples of their high-
frequency values.  A variable is skip sampled when, for example, it is generated
every month but is sampled every third month, say, in the last month of every
quarter.  See, for example, Zadrozny (1988).  We assume that the underlying data
generating process of a multivariate time series of mixed-frequency data,
composed of both the high and the low-frequency variables, operates at the
highest frequency, as in Zadrozny (1990), Mittnik and Zadrozny (2004) and
Mariano and Murasawa (2003, 2004).  All variables are assumed to be produced
at the highest frequency, but some variables are not observed at the highest
frequency.  For example, we consider a bivariate time series of the consumer price
index (CPI) observed monthly and the gross domestic product (GDP) observed
quarterly.  CPI is the high-frequency variable and GDP is the low-frequency
variable.  The fundamental interval or highest frequency is monthly and GDP is in
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principle ‘produced’ monthly but is observed only quarterly.  Variables like GDP
observed as temporal aggregates are often called flows, while variables observed
at the fundamental frequency are often called stocks.

2.2 Error correction model and state-space representation

Let tu  be an n-dimensional vector autoregressive process of order p, )(VAR p ,
which operates at the highest frequency with CI rank h , and consider the
corresponding error correction form

t

p

j
jtjtt uubau ε+∆Ψ+′=∆ ∑

−

=
−−

1

1
1 , (1)

where a and b are hn×  matrices with nh <<0  and dnh −= , jΨ , for
1,,1 −= pj L , are nn×  matrices, and tε  is an independent ),0( ΩnN  random

vector.  We assume that the elements of tu  are ordered such that the last hnd −=
elements are not cointegrated.  This assumption permits the normalization

][ 0 ′′= βhIb  for identification, as in Ahn and Reinsel (1990), where 0β  is a hd ×
matrix.  The characteristic equation of model (1) has exactly d  roots equal to one
and all other roots are assumed to be outside the unit circle, so that tu  is
cointegrated of order (1,1) (Engle and Granger, 1987).

We reorder the elements of tu  to form ),( 21 ′′′= ttt zzz  such that an 11×n
vector tz1  corresponds to high-frequency variables and an 12 ×n  vector tz2

corresponds to low-frequency variables, where 21 nnn += .  For brevity, we
assume that the low-frequency variables are observed as temporal aggregates
because the method can be easily modified to accommodate the alternative case of
skip-sampled data.  The reordering implies tt Vuz = , where V is an nn×
permutation matrix.  Substituting tu  with tzV 1−  and pre-multiplying both sides of
equation (1) by V, we can rewrite model (1) as

t

p

j
jtjtt ezzz +∆Γ+′=∆ ∑

−

=
−−

1

1
1βα , (2)

where Va=α , Vb=β , VV jj ′Ψ=Γ , tt Ve ε= , ),0(~ ΣNet , and VV ′Ω=Σ .  Also,
note that VV ′=−1 .  For convenience of estimation, we write 021 ββ VIV h += ,
where 1V  and 2V  are hn×  and dn×  matrices, such that [ ]21 VVV = .  The
VAR(p) representation of model (2) is

t

p

j
jtjt ezz +Φ=∑

=
−

1
, (3)

where 11 Γ+′+=Φ βαnI , 1−Γ−Γ=Φ jjj , for 1,,2 −= pj L , and 1−Γ−=Φ pp .
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In practice, as mentioned above, the low-frequency variables, tz2 , are not
observed directly at the highest frequency, but either as temporally-aggregated
flows or as skip-sampled stocks.  Flows can be expressed as ttt zCy ξ+= 202 ,
where ∑ = −= v

j jtjt zC1 2ξ  is the lagged part in a temporal aggregation.  Here, v
denotes the maximum degree of aggregation and the jC ’s are 22 nn ×  diagonal
indicator matrices with zeros and ones on the principal diagonal.  By adjusting the
diagonal elements of jC , Zadrozny (1990) suggested a way to treat a variable
which is observed directly as a stock, but with a delay.

We now construct a state-space representation of model (3).  Let
),,(),(~

21 ′′′′=′′′= tttttt zzzz ξξ  be an 1~×n  vector with 21 2~ nnn += .  We define the
1×s  state vector )~,,~( 1 ′′′= +−rttt zzx L , where ),max( vpr =  and rns ~=  for

Tt ,,1 L= .  Then, we define the state equation, as in Zadrozny (1990), by

ttt GeFxx += −1 , (4)

where the initial state, 0x , is assumed to be a normal random vector with mean
vector λ  and ss×  covariance matrix Λ .  Here, F  and G  denote ss×  and ns×
matrices defined by

⎥
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⎥
⎥
⎥
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⎢
⎢
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⎦
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⎢
⎣

⎡
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O
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2
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nnj
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O
,  [ ]jnnj COC

12

*
×= ,

nj O=Φ , if pj > , and 2nj OC =  if vj > , so that *
jΦ  and *

jC  are nn ~~×  and
nn ×2  matrices.

Next, assuming no observation errors, we define the measurement equation

t
t

t
t x

H
H

y
y

y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

2

1

2

1 , (5)

where tt zy 11 = , [ ])(1 111 nsnn OIH −×≡ , and [ ])~(02 2212 nsnnnn OICOH −××≡ .  The
matrix 1H  picks out the high-frequency variables from state vector tx  and the
matrix 2H  picks out the low-frequency variables from the state vector.  We
introduce a new series, +

ty2 , which is observed only at lower frequencies, in order
to deal with the missing observations in ty2 .  As in Brockwell and Davis (1991),
we fill in missing observations of ty2  with random vectors which are independent
of ty  and are distributed independently of the parameters in model (2).
Accordingly, we modify measurement equation (5) as
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⎭
⎬
⎫

⎩
⎨
⎧

=
× otherwise
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2

22
2
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t
t O

yH
H ,  
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⎫
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⎨
⎧

=
otherwise

observable is  if

2

2 2
2

n

tn
t I

yO
Q ,

and tw  is an independent random vector distributed ),0( 22 nn IN .  We also define
],[ 21 ′′′= tt HHH  and ],[ 221 ′′′= × tnnt QOQ , which will appear in equations (16) and

(20) and in Appendix B.  In the implementation, because the realization of tw  is
independent of ty , setting 0=tw  is the preferred simple choice (Brockwell and
Davis, 1991; Mariano and Murasawa, 2003).  Instead of using tw , a selection
matrix may be used for constructing a measurement equation in order to control
the mixed-frequency data, as in Zadrozny (1990).

We note that when the low-frequency variables are stocks, with missing
data attributable to skip-sampling, we do not need to define ty2 , tξ , jC , and tz~ .
Instead, we redefine 21

~ nnnn +== , )2,max( pr = , jj Φ=Φ* , and
[ ])(2 2212 nsnnnn OIOH −××≡ .  We need 2=r  in order to construct the state equation

even though the autoregressive order is one. Similar adjustments can be applied to
more complicated cases, where the low-frequency variables are observed as both
stocks and flows.

3. Maximum likelihood estimation of parameters

In this section, we consider maximum likelihood estimation (MLE) of parameters
in error correction model (2) in the state-space form (4) and (6).

3.1 EM algorithm

Dempster et al. (1977), Shumway and Stoffer (1982), and Watson and Engle
(1983) developed and illustrated the EM algorithm for estimating a model in state-
space form, when some variables are partly or completely unobserved (latent).

Let )0;( stxX ts ≤≤=  and )1;( styY ts ≤≤= ++  be information sets.  In
order to develop an EM algorithm for estimating the parameters of the state-space
model in (4) and (6), we consider several transformations for forming the
likelihood function with respect to the complete data TX  and +

TY .  Let

[ ]11 −ΓΓ=Γ pLα , [ ]111
*

−ΓΓ′=Γ pV Lα ,

[ ])2( 22 nnsnnnnn OIOIA −−×× −= , and [ ])(2 nsdOVD −×′= ,
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where 121 −− ′= tt zVDx .  Define
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⎥
⎥
⎥
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⎥
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⎢
⎢
⎢

⎣

⎡
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* ,

where ),,,( 1111 ′′∆′∆′= +−−−− ptttt zzzBx Lβ , ),,,( 1111
* ′′∆′∆′= +−−−− ptttt zzzxB L , and B

and *B  are snph ×−+ })1({  and snp×  matrices.  We consider two
transformations for forming the likelihood function and estimating Γ , Σ , and 0β .

First,

tttptptttt eBxezzzzAx +Γ=+∆Γ++∆Γ+′=∆= −+−−−− 111111 Lβα , (7)

tptptttt ezzzVzVAx +∆Γ++∆Γ+′+′′= +−−−−− 111111120 Lαβα

ttt exBDx +Γ+′= −− 1
**

10βα
{ } ttt exBDx +Γ+′⊗= −− 1

**
01 )(vec)( βα , (8)

because })(vec{ 1010 ′′=′ −− tt DxDx βαβα  and { } )(vec)(})(vec{ 0101 βααβ ′⊗=′′ −− tt DxDx ,
which are obtained using the vectorization rule )(vec)()(vec BACABC ⊗′=
(Magnus and Neudecker, 1988).

Then, we express the log-likelihood function as

)()(
2
1||log

2
1),;(log 0

1
0 λλθ −Λ′−−Λ−= −+ xxYXL TT

∑
=

−
−

− Γ−Σ′Γ−−Σ−
T

t
tttt BxAxBxAxT

1
1

1
1 )()(

2
1||log

2
, (9)

or as

)()(
2
1||log

2
1),;(log 0

1
0 λλθ −Λ′−−Λ−= −+ xxYXL TT

∑
=

−− ×′′⊗−Γ−−Σ−
T

t
ttt DxxBAxT

1
011

** ])(vec})({[
2
1||log

2
βα
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)](vec})({[ 011
**1 βα ′⊗−Γ−Σ −−

−
ttt DxxBAx , (10)

where terms that do not contain the parameters, )(vec( 0 ′≡ βθ , )(vec ′Γ ,
))(vech ′′Σ , are omitted.  Version (9) of the log-likelihood function is used to

estimate the “stationary” parameters in Γ  and Σ .  Version (10) of the log-
likelihood function is used to estimate the remaining “nonstationary” parameters
in 0β .  The distribution of tw  in the measurement equation does not have any
effect on equations (9) and (10).  Because the log likelihood function depends on
the unobserved information, TX , the EM algorithm is applicable, conditional on
the observed information, +

TY .  Specifically, we define the estimated parameters at
iteration 1+l  as the value of θ  which maximizes

{ }++= TTTl
l YYXL |),;(logE)|(Q )( θθθ , (11)

where )(lθ  denotes estimated θ  after l iterations and }|{ +⋅ Tl YE  denotes the
conditional expectation with respect to a density containing )(lθ , given +

TY .  Then,
using the derivatives of (11) with respect to θ  stated in Appendix A, we obtain
the following equations for updating )1( +lθ  at the end of l iterations,

( ){ } ×′⊗Σ′=
−−+

1

11
)(1)()()1(

0 )()(vec DDMllll ααβ

{ }[ ])(1)(*)*(
1110 )(vec lll BMAMD α

−
Σ′Γ−′ , (12)

( )( ) 1)1(
11

)1()1(
01

)1( −++++ ′′=Γ llll BMBBAM , (13)

( )AMBAAMT lll ′Γ−′=Σ ++−+
10

)1()1(
00

1)1( , (14)

where, in equation (12), )(lα , )(lΣ , and )*(lΓ  are given by the previous iteration; in
equation (13), )1( +lB  is given by )1(

0
+lβ , according to equation (12); and, in

equation (14), )1( +Γ l  is given by equation (13).  In equations (12) to (14), 00M ,
01M , 10M , and 11M  are given by

( )∑∑
=

−−−−
=

+
−− +=′=

T

t

T
kt

T
jt

T
ktjt

T

t
Tktjtljk xxPYxxM

1
,

1
)|(E , (15)

for 1,0, =kj , where T
ktjtP −− ,  and T

jtx −  are produced by the prediction and
updating recursions of the Kalman filter.  In Appendix B, we adopt the fixed-
interval smoothing algorithm of De Jong (1989), which avoids inversion of large
matrices, and, hence, is computationally more efficient than the classical
smoothing equations (Durbin and Koopman, 2001).  We note that the mean vector,
λ , and the covariance matrix, Λ , of the initial state vector, 0x , cannot be
estimated simultaneously.  Following Shumway and Stoffer (1982, 2000), we
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preset the covariance matrix and estimate the mean vector as Tl x0
)1( =+λ  by

maximizing (11).
We summarize the iterative EM procedure as follows:

(1) Calculate jkM  for 1,0, =kj  using equations (B1) to (B6) in Appendix B,
with the initial values )0(λ , Λ , and )0(θ .

(2) Estimate Tx0
)1( =λ  and calculate )1(θ  using equations (12) to (14).

(3) Iterate on steps (1) and (2) above until the parameter estimates or the
likelihood values converge.  At each iteration, we calculate the innovations
form of the log-likelihood function (Schweppe, 1965),

∑
=

−+ ′+′−=
T

t
ttt

t
ttT QQHPHYL

1

1 ||log
2
1);(log θ

∑
=

−−−− −′+′′−−
T

t

t
tttttt

t
tt

t
ttt xHyQQHPHxHy

1

1111 )()()(
2
1 , (16)

and stop when the difference between );(log )1( ++
T

l YL θ  and );(log )( +
T

l YL θ  is
less than a predetermined small value.

As an alternative to the EM algorithm, the Newton-Raphson (NR) method
can be applied to maximize the likelihood.  However, the NR method is more
likely to fail because it is very sensitive to initial values; see Shumway and Stoffer
(2000) for more comparisons between the NR and EM algorithms.  Thus, we
recommend using the EM algorithm especially because in cointegration with
mixed-frequency data initial values of parameters are difficult to obtain.

3.2 Initialization

To start the EM algorithm with the Kalman filter, we need to specify the initial
values, )0(λ , Λ , and )0(θ .  When the state equation is nonstationary, the
unconditional distribution of the state vector is not defined.  Usually, the initial
distribution of 0x  must be specified by a diffuse or noninformative prior because
genuine prior information is generally not available (Harvey, 1991).  Therefore,
we set 0)0( =λ  and Iδ=Λ , where δ  is a large value, for example, 810=δ .

Regarding initial values of parameters, we first obtain an estimate of the
nonstationary parameters by using single-frequency data that are usually obtained
by transforming the high-frequency variables, ty1 , to match the low frequency of

ty2 .  Then, we use the relationship between the nonstationary parameters in
mixed-frequency non-temporally-aggregated and single-frequency temporally-
aggregated models, estimated using mixed- and single-frequency data, in order to
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obtain an initial estimate of the nonstationary parameters in )0(
0β .  For example,

see Marcellino (1999) and Pons and Sansó (2005) for the explicit formulas for the
relationship in several cases.  For the remaining stationary parameters, however, it
is not easy to obtain an explicit formula to describe the relationship between the
parameters of models of mixed- and single-frequency data.  Therefore, treating the
initial estimate )0(

0β  as known, and, thus, fixed in equation (2), we obtain initial
estimates of the stationary parameters, )0(Γ  and )0(Σ , using the iterative EM
algorithm.  Henceforth, we call this the “initial EM” algorithm.  We use the output
from the initial EM algorithm to produce initial values for the “main EM”
algorithm which we are advocating.  Accordingly, we obtain a better starting
value )0(λ  for the main EM algorithm than the starting value 0)0( =λ  used for the
initial EM algorithm.

In order to prespecify the CI rank in the analysis of cointegration with
mixed-frequency data, we use the fact stated by Marcellino (1999) that the CI
rank is invariant to temporal aggregation.  Then, we can use the CI rank, obtained
by applying the CI rank test to the temporally-aggregated single-frequency data.  

We select as “best” the VAR(p) model whose MLE yields the lowest values
of Akaike’s information criterion (AIC) and Schwartz’s Bayesian information
criterion (SBC),

)}dim(2);ˆ(log2{AIC 1 θθ +−= +−
TYLT ,

}log)dim();ˆ(log2{SBC 1 TYLT T θθ +−= +− ,

where log L(θ̂ ; +
TY ) is given by equation (16), θ̂  is the MLE of θ , obtained using

the main EM algorithm, and )dim(θ  is the dimension of θ .

4. Model with deterministic terms

In this section, we describe a state-space representation that can accommodate
constant and linear trend terms in model (1).  To this end, we consider the model

t

p

j
jtjtt uubatu εγγ +∆Ψ+′+−+=∆ ∑

−

=
−−

1

1
121 )1( , (17)

where 1γ  and 2γ  are 1×n  vectors. If γ1 and γ2 are restricted, they can be
reparameterized as jj aργ =  and incorporated into the cointegration relationship
as

[ ]
⎟
⎟
⎟

⎠

⎞

⎜
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⎜

⎝

⎛
−′′′=′+−′+′

−

−

1
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)1(
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u
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For brevity of exposition, we assume γ1 and γ2 are all unrestricted in this section.
For cases with restrictions, see Appendix C, where we consider state-space
representations for various combinations of deterministic terms, as in Johansen
(1996).  Then, model (2) is rewritten as

t

p

j
jtjtt ezztz +∆Γ+′+−+=∆ ∑

−

=
−−

1

1
121 )1( βαµµ , (18)

where 11 γµ V=  and 22 γµ V= .  For model (18), we obtain a state-space
representation by replacing state vector tx  with ),,1(~ ′′= tt xtx , so that state
equation (4) becomes

ttt eGxFx ~~~~
1 += − , (19)

where

⎥
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1
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~
21

2

µµ , ⎥
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⎤
⎢
⎣

⎡
= ×

G
O

G n2~ ,

and, correspondingly, measurement equation (6) becomes

ttttt wQxHy +=+ ~~ , (20)

where [ ]tnt HOH 2
~

×= .
Using state-space representation (19), we can similarly get transformation

(7) or (8).  First, we define matrices

][~
2 AOA n×= ,  ][~

21 Γ=Γ µµ ,  ][~ *
21

* Γ=Γ µµ ,

⎥
⎦

⎤
⎢
⎣

⎡
=

×−

B
O

B
np

hh

2)1(

00
ρ ,  ⎥

⎦

⎤
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⎣

⎡
= ×

ρB
OI

B s22~ .

Then, we obtain

ttttt exBexBtxA +Γ=+Γ+−+= −− 1121
~~~~)1(~~

ρµµ , (21)

ttttttt exBxDexBDxtxA +Γ+′=+Γ+′+−+= −−−− 1
**

101
**

1021
~~~~~)1(~~ βαβαµµ , (22)

where
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Similarly to the case with no deterministic terms, by using equations (21) or
(22), we can obtain estimated parameters at iteration 1+l  of the EM algorithm by
using derivatives of conditional expectation (11), namely

( ){ } ×′⊗Σ′=
−−+ 1

11
)(1)()()1(

0
~~~)()(vec DMDllll ααβ

{ }[ ])(1)(*)*(
1110 )~~(~~~~vec lll BMAMD α

−
Σ′Γ−′ , (23)

( )( ) 1)1(
11

)1()1(
01

)1( ~~~~~~~ −++++ ′′=Γ llll BMBBMA , (24)

( )AMBAMAT lll ~~~~~~~
10

)1()1(
00

1)1( ′Γ−′=Σ ++−+ , (25)

where for 1,0, =kj ,

( )∑∑
=

−−−−
=

+
−− +=′=

T

t

T
kt

T
jt

T
ktjt

T

t
Tktjtljk xxPYxxM

1
,

1

~~~)|~~(E~ , (26)

and T
ktjtP −− ,

~  and T
jtx −

~  are obtained using the Kalman filter, as in the case with no
deterministic terms.

5. Comments

One of the important purposes of the paper is to estimate missing or unobserved
low-frequency variables, ty2 , which satisfy the structure of the cointegrated
multivariate time-series model.  This can be done by estimating T

tx , together with
its covariance matrix T

tP , using smoothing equations (B5) and (B6) in Appendix
B.  One of the advantages of the proposed method is that we can use it to forecast
low-frequency variables which are generated jointly with variables observed at
higher frequencies.  For example, with quarterly GDP and other monthly
variables, we can forecast monthly GDP even if GDP is observed only quarterly.

Usually, logarithms of variables are taken before fitting a multivariate time-
series model, especially to stabilize the variances of series.  This creates no
difficulties for high-frequency series (Harvey and Pierce, 1984).  However, for a
temporally-aggregated low-frequency series, although the sum of the original
variables is observed, the logarithm of a sum is not equal to the sum of the
logarithms.  In such a case, we assume that the logarithms of the data are
integrated of order 1.  Furthermore, we assume that temporally-aggregated
variables are geometric means of unobserved high-frequency variables.  This is
not a common accounting identity that links high- and low-frequency variables.
Usually, low-frequency values are arithmetic means of high-frequency values.  In
this case, the low-frequency values are geometric means of the  high-frequency
values.  Otherwise, we would have to work with a nonlinear state-space model,
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using the extended Kalman filter, as in Anderson and Moore (1979, pp. 193-195).
See also Harvey and Pierce (1984) and Mariano and Murasawa (2003).

6. Monte Carlo experiments

Monte Carlo experiments are conducted to investigate the performance of the
proposed method.  The data generating process we consider is similar to the one
in Ahn and Reinsel (1990), except that we consider a 3-dimensional process,
specifically,

tttttt ubauuuu εγ +′+=′∆∆∆=∆ −11321 ),,( ,

where ),0(i.i.d.~ 3 ΩNtε , for Tt ,,1 L= , and 1γ  denotes an unrestricted constant
term.  The parameters are set at the following values:

)3.0,1.0,2.0(),,( 3121111 ′−=′= γγγγ , )4.0,1,6.0(),,( 321 ′=′= aaaa ,

)3,2,1(),,( 321 ′−=′= bbbb  and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=Ω

15.15.2
5.195.7
5.25.725

,

so that tu  is cointegrated with rank one.
For convenience, we assume that permutation matrix V  is an identity

matrix, that is, tu2  and tu3  are not cointegrated.  Then, tt zu =  and the parameters
in models (17) and (18) are identical.  After generating tu , we set tt uy 11 =  and

tt uy 22 = , making them high-frequency variables, and, then, generate the low-
frequency variable, ty3 , in the following two ways.  First (CASE I), we set

231333 −− ++= tttt uuuy , for L,9,6,3=t , which makes ty3  a temporally-
aggregated flow variable.  Second (CASE II), we set tt uy 33 = , for L,9,6,3=t ,
which makes ty3  a skip-sampled stock variable.  The remaining values of ty3 , for

L,9,6,3≠t , are assumed to be unobserved.
We generate 1,000 replications of the series for sample sizes 120=T  and

240=T , which represent 10 and 20 years of monthly data, such that the first 50
values are discarded in order to reduce dependence on starting values.  We
estimate a VAR(1) with an unrestricted constant.

Because, to our best knowledge, there is no other method available to
analyze mixed-frequency data with cointegration, we evaluate the performance of
the proposed method against the case in which all variables are observed at the
highest frequency, that is, there are no missing data.  We expect our method to
perform nearly as well with intermittently-missing mixed-frequency data as with
complete high-frequency data.  The same issue arose in Chen and Zadrozny
(1998), where a similar Monte Carlo experiment was conducted to evaluate the



14

performance of their method for estimating a stationary VAR model using mixed-
frequency data, relative to using complete high-frequency data.

The method of Ahn and Reinsel (1990) is used for estimating with the
complete high-frequency data.  As mentioned before, the initial estimate of the
cointegrating vector for the proposed method is obtained using low-frequency
data obtained by temporally-aggregated high-frequency data.  The remaining
initial estimates of the stationary parameters are obtained by treating the initial
estimate of the cointegrating vector as if it were known.

Tables 1 and 2 contain the results of the simulations for CASEs I and II.
We observe that the differences in the tables are generally fairly small and that the
main EM method performs well with the mixed-frequency data, compared with
the complete data, in terms of biases and root mean-squared errors (RMSEs) of
estimated parameters.  As expected, neither the initial nor the main EM algorithms
perform better using mixed-frequency data than using complete high-frequency
data.

It is interesting to compare tables 1 and 2 with tables 2 to 7 in Chen and
Zadrozny (1998), which show how MLE and extended Yule-Walker (XYW)
parameter estimates deteriorate, in terms of RMSE, when going from complete to
mixed-frequency data.  In their table 5, the RMSEs of MLE increase about 44%,
whereas the best RMSEs of XYW increase about 77% or more.  Consider how the
RMSEs change in table 1, for 240=T , as we move from using complete data to
using mixed-frequency data and the main EM algorithm.  The RMSEs increase
from 5.7% to 65.1%, on average by 40.3%.  We conclude that MLEs of
parameters in both stationary and nonstationary (cointegrated) VAR processes lose
a similar amount of RMSE accuracy when going from complete to mixed-
frequency data.  However, we should be cautious in drawing this as a general
conclusion because it surely also depends on whether the VAR process is
stationary or not, on the dimension of the process, and on the sample size.

In all cases, regardless of the value of T , the main EM algorithm performs
better than the initial EM, in terms of bias and RMSE.  For longer series, biases
and RMSEs of both the initial and main algorithm are smaller.  In table 3, we
report decline rates of RMSEs for estimated parameters in CASEs I and II, when
T doubles from 120 to 240.  For stationary parameters, a  and ijΩ , and
nonstationary parameters, b , RMSEs in tables 1 and 2 are consistent with the
respective convergence rates of )( 2/1−TOp  and )( 1−TOp .  RMSEs of stationary
parameters generally decline by 29% ( 240/1201−= ) or more when T  doubles
from 120 to 240 and RMSEs of nonstationary parameters generally decline by
50% ( 240/1201−= ) or more when T  doubles.  However, changes in the RMSEs
of stationary parameters, γ , are ambiguous, because their RMSEs decline faster
than is predicted for stationary parameters but slower than is predicted for
nonstationary parameters.  Most importantly, this also occurs when we apply the
method of Johansen (1988) or Ahn and Reinsel (1990) to the analysis of complete
data and the RMSEs of the stationary parameters, γ, do not decline more than
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those of the nonstationary parameters.
Figure 1 shows RMSEs of estimates of missing values of ty3 , for

L,9,6,3≠t , for CASEs I and II.  The figure shows all except two starting
values for CASE I and one starting value for CASE II.  Two final outlying values
(0.588 and 0.693, for 118=t  and 119, when 120=T , and 0.556 and 0.626, for

238=t  and 239, when 240=T ) are omitted from Figure 1, because they are
spuriously large due to endpoint effects, which arise as a result of the backward
smoothing recursions (B3) to (B6), with 01 =+Tr  and 01 =+TR  being a sort of
initialization.  In Figure 2, this phenomenon is weaker because the aggregation
order of the variable is regarded as one.  From Figures 1 and 2, we see that as T
doubles from 120 to 240, the RMSEs decline by 8.87% and 9.05% in CASEs I
and II.  Therefore, for stationary parameters, RMSEs of estimates of missing
values decline more slowly than the expected convergence rate )( 2/1−TOp .
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Table 1.  Performance of EM algorithm in complete versus mixed-frequency data,
for CASE I of temporally-aggregated mixed-frequency data

120=T 240=T
Mixed-freq. data Mixed-freq. dataComplete

data Init.
EM

Main
EM

Complete
data Init.

EM
Main
EM

6.01 =a
Mean 0.585 0.566 0.578 0.593 0.583 0.588
RMSE 0.049 0.069 0.056 0.035 0.042 0.037

12 =a
Mean 1.007 0.987 0.995 1.002 0.987 0.993
RMSE 0.032 0.064 0.040 0.020 0.036 0.025

4.03 =a
Mean 0.399 0.391 0.396 0.399 0.394 0.397
RMSE 0.011 0.028 0.016 0.007 0.015 0.010

21 −=b
Mean -1.999 -1.949 -1.990 -2.001 -2.003 -2.001
RMSE 0.030 0.171 0.050 0.011 0.058 0.015

32 =b
Mean 2.997 2.896 2.980 3.002 3.009 3.003
RMSE 0.066 0.380 0.112 0.023 0.126 0.033

2.011 −=γ
Mean -0.148 0.013 -0.199 -0.203 -0.473 -0.276
RMSE 0.860 3.568 1.650 0.466 1.669 0.665

1.021 =γ
Mean 0.114 0.362 0.019 0.071 -0.386 -0.052
RMSE 1.229 6.186 2.652 0.590 2.743 0.953

3.031 =γ
Mean 0.314 0.418 0.271 0.294 0.107 0.240
RMSE 0.480 2.457 1.065 0.232 1.103 0.383
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Table 1.  (Continued)
120=T 240=T

Mixed-freq. data Mixed-freq. dataComplete
data Init.

EM
Main
EM

Complete
data Init.

EM
Main
EM

2511 =Ω
Mean 24.470 27.767 25.891 24.843 26.186 25.483
RMSE 3.114 5.163 3.874 2.240 2.894 2.537

5.712 =Ω
Mean 7.374 12.365 9.816 7.469 9.644 8.642
RMSE 1.508 6.390 3.999 1.074 3.066 2.226

5.213 =Ω
Mean 2.461 5.209 3.773 2.486 3.690 3.090
RMSE 0.511 3.504 2.175 0.352 1.676 1.173

922 =Ω
Mean 8.806 16.121 12.950 8.931 12.434 11.063
RMSE 1.177 8.899 5.957 0.863 4.500 3.352

5.123 =Ω
Mean 1.461 5.266 3.590 1.474 3.345 2.572
RMSE 0.307 4.575 3.034 0.216 2.343 1.692

133 =Ω
Mean 0.976 2.782 1.931 0.984 1.853 1.461
RMSE 0.132 2.188 1.400 0.092 1.095 0.758
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Table 2.  Performance of EM algorithm in complete versus mixed-frequency data,
for CASE II of skip-sampled mixed-frequency data

120=T 240=T
Mixed-freq. data Mixed-freq. dataComplete

data Init.
EM

Main
EM

Complete
data Init.

EM
Main
EM

6.01 =a
Mean 0.585 0.576 0.576 0.593 0.587 0.587
RMSE 0.049 0.060 0.058 0.035 0.039 0.038

12 =a
Mean 1.007 0.989 0.989 1.002 0.990 0.991
RMSE 0.032 0.054 0.047 0.020 0.032 0.029

4.03 =a
Mean 0.399 0.394 0.394 0.399 0.396 0.396
RMSE 0.011 0.022 0.020 0.007 0.013 0.011

21 −=b
Mean -1.999 -1.988 -1.993 -2.001 -2.000 -2.001
RMSE 0.030 0.087 0.055 0.011 0.034 0.019

32 =b
Mean 2.997 2.972 2.984 3.002 3.001 3.002
RMSE 0.066 0.194 0.121 0.023 0.074 0.041

2.011 −=γ
Mean -0.148 0.026 -0.104 -0.203 -0.206 -0.238
RMSE 0.860 2.140 1.631 0.466 1.014 0.704

1.021 =γ
Mean 0.114 0.420 0.196 0.071 0.070 0.014
RMSE 1.229 3.566 2.672 0.590 1.626 1.069

3.031 =γ
Mean 0.314 0.431 0.341 0.294 0.289 0.267
RMSE 0.480 1.417 1.066 0.232 0.654 0.429
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Table 2.  (Continued)
120=T 240=T

Mixed-freq. data Mixed-freq. dataComplete
data Init.

EM
Main
EM

Complete
data Init.

EM
Main
EM

2511 =Ω
Mean 24.470 26.146 25.893 24.843 25.591 25.523
RMSE 3.114 3.932 3.855 2.240 2.585 2.570

5.712 =Ω
Mean 7.374 10.341 9.928 7.469 8.893 8.743
RMSE 1.508 4.402 4.134 1.074 2.441 2.350

5.213 =Ω
Mean 2.461 3.952 3.769 2.486 3.187 3.124
RMSE 0.511 2.272 2.159 0.352 1.229 1.189

922 =Ω
Mean 8.806 14.003 13.338 8.931 11.599 11.291
RMSE 1.177 6.894 6.422 0.863 3.832 3.625

5.123 =Ω
Mean 1.461 4.039 3.689 1.474 2.799 2.633
RMSE 0.307 3.388 3.148 0.216 1.862 1.756

133 =Ω
Mean 0.976 2.104 1.938 0.984 1.543 1.466
RMSE 0.132 1.521 1.411 0.092 0.811 0.764
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Table 3.  Decline rates of RMSE in CASEs I and II as T  goes from 120 to 240
CASE I: temp. agg. CASE II: skip sampledPara-

meter
Complete

data Init. EM Main EM
Complete

data Init. EM Main EM
1a 29% 39% 34% 29% 35% 34%

2a 38% 44% 38% 38% 41% 38%

3a 36% 46% 38% 36% 41% 45%

1b 63% 66% 70% 63% 61% 65%

2b 65% 67% 71% 65% 62% 66%

11γ 46% 53% 60% 46% 53% 57%

21γ 52% 56% 64% 52% 54% 60%

31γ 52% 55% 64% 52% 54% 60%

11Ω 28% 44% 35% 28% 34% 33%

12Ω 29% 52% 44% 29% 45% 43%

13Ω 31% 52% 46% 31% 46% 45%

22Ω 27% 49% 44% 27% 44% 44%

23Ω 30% 49% 44% 30% 45% 44%

33Ω 30% 50% 46% 30% 47% 46%

Note:  Decline rate = 1 – (RMSE for T=240) / (RMSE for T=120)



21

Figure 1.  RMSE of monthly estimated ty3  for CASE I
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Note: The dotted lines denote average values of the corresponding RMSE.

Figure 2.  RMSE of monthly estimated ty3  for CASE II
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7. Examples

We illustrate the proposed main EM algorithm using mixed-frequency U.S. data
of monthly CPI and quarterly GDP, from December 1959 to December 2003,
which comprises 176 quarters or 529 months of observations.  The CPI and GDP
data are from the Bureau of Labor Statistics (www.bls.gov) and from the Bureau
of Economic Analysis (www.bea.gov), are seasonally adjusted, have a base CPI
value of 100 in 1982-1984, and have a unit of GDP in billions of current dollars.
The original data, denoted tCPI  and tGDP  in month t, were transformed to tcpi
and tgdp  by taking natural logarithms and subtracting from them the natural logs
at the starting dates, as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)log()log(
)log()log(

12:1959

12:1959

GDPGDP
CPICPI

gdp
cpi

y
t

t

t

t
t .

Henceforth, the lower-case variable names, cpi and gdp, will refer to these
transformations of CPI and GDP.

As mentioned in section 3.2, we first estimate the CI rank and the CI vector
by using a quarterly single-frequency sample, obtained by picking one monthly
value of cpi per quarter (we call this “skip-sampling”) and keeping quarterly gdp
as is.  In Figure 3, the quarterly single-frequency data indicate that the estimated
model may have unrestricted, constant and linear, deterministic terms.  The model
selection criteria, minimum AIC and SBC, both indicated choosing a VAR(4)
model.  Then, applying Johansen’s trace test to the VAR(4) model, estimated
using the single-frequency data, we obtained a p-value of .0437, which indicated a
CI rank of one.  The corresponding estimate of the CI vector was )041.1-,1( ′ .  For
the mixed-frequency observations on ),( ′= ttt gdpcpiy , we obtained )3.123-(1, ′
as the estimate of the cointegrating vector by using the relationship in Pons and
Sansó (2005).
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Figure 3.  Quarterly tcpi  and tgdp  from 1960:1 to 2003:12
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Note: Quarterly tcpi  are skip samplings of observed monthly tcpi  in a quarter.

Table 4 reports minimum AIC and SBC, used to select the best monthly
(highest frequency) model and associated log-likelihood values.  Both AIC and
SBC select the VAR(2) model,
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as the best VAR(p) model.  For this model, we computed monthly smoothed
estimates of tgdp  and monthly forecasts of tcpi  and tgdp .

Table 5 shows monthly smoothed estimates of gdpt, from 2003:1 to
2003:12,  as examples of monthly smoothed estimates of gdpt in the sample
period. Two types of estimates are computed, temporally aggregated and not
temporally aggregated. The temporally-aggregated estimates reflect low-
frequency quarterly aggregated gdpt, i.e., sums of three consecutive monthly gdpt.
The not-temporally-aggregated estimates reflect high-frequency monthly
disaggregated gdpt, i.e., monthly gdpt by itself. We note that in the table the not-
temporally aggregated estimates are multiplied by 3 in order to be in quarterly
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form comparable to observed quarterly gdpt.
Tables 6 and 7 state out-of-sample (that is, out of model estimation sample)

forecasts of tcpi  and tgdp  for 2004 and compare these with true values. The
tables show smaller forecast errors when using mixed-frequency data than when
using single-frequency data. Specifically, the forecast errors for mixed-frequency
data are smaller on average by about 52% in Table 6 and about 32% in Table 7.

Table 4.  Model selection criteria of optimal VAR(p) for mixed-frequency data
p Log likelihood function ( 610× ) AIC ( 310× ) SBC ( 310× )
1 -1.7246 6.5326 6.5327
2 -1.7245 6.5323 6.5324
3 -1.7245 6.5323 6.5324
4 -1.7245 6.5323 6.5325
5 -1.7245 6.5324 6.5326
6 -1.7249 6.5337 6.5340
7 -1.7251 6.5346 6.5349
8 -1.7254 6.5356 6.5359
9 -1.7250 6.5341 6.5344
10 -1.7245 6.5325 6.5329

Table 5.  Monthly smoothed estimates of in-sample tgdp , 2003:1 to 2003:12
Year: month Observed Temp. agg. Not temp. agg.

2003:1 303.33 303.75
2003:2 303.74 304.14
2003:3 304.15 304.15 304.53
2003:4 304.56 305.01
2003:5 304.96 305.34
2003:6 305.44 305.44 305.97
2003:7 306.06 306.87
2003:8 306.82 307.62
2003:9 307.55 307.55 308.16
2003:10 308.14 308.64
2003:11 308.59 308.97
2003:12 308.93 308.93 309.18

Note: “Temporally aggregated” and “not temporally aggregated” estimates in
columns 3 and 4, respectively, reflect quarterly sums of monthly values ending in
the indicated month and monthly values for that month multiplied by 3, in order to
be in quarterly form comparable to observed quarterly gdp  in column 2.
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Table 6.  Monthly out-of-sample forecasts of tcpi
Single-frequency Mixed-frequencyYear: month Observed Forecast Error Forecast Error

2004:1 184.39 184.11 0.28
2004:2 184.71 184.32 0.39
2004:3 185.14 183.99 1.14 184.53 0.61
2004:4 185.35 184.73 0.62
2004:5 185.94 184.93 1.01
2004:6 186.20 184.39 1.81 185.13 1.07
2004:7 186.15 185.32 0.83
2004:8 186.20 185.50 0.70
2004:9 186.36 184.61 1.75 185.69 0.67
2004:10 186.94 185.87 1.07
2004:11 187.20 186.04 1.16
2004:12 187.20 184.75 2.45 186.22 0.98

Note: “Out-of-sample” means for months beyond earlier months, from 1959:12 to
2003:12, used to estimate the model which was used to produce the forecasts.

Table 7.  Monthly out-of-sample forecasts of tgdp

Single-frequency Mixed-frequencyYear: month Observed

Forecast Error Forecast
Low Freq.

Error Forecast
High Freq.

2004:1 309.22 309.51
2004:2 309.51 309.84
2004:3 310.71 309.47 1.24 309.83 0.88 310.14
2004:4 310.15 310.47
2004:5 310.46 310.77
2004:6 312.30 310.23 2.07 310.78 1.52 311.10
2004:7 311.09 311.40
2004:8 311.41 311.73
2004:9 313.65 310.74 2.91 311.72 1.93 312.03
2004:10 312.04 312.36
2004:11 312.35 312.66
2004:12 315.11 311.22 3.89 312.66 2.45 312.96

Note: Same as in Table 6.
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8. Conclusion

We have developed and illustrated a method, for estimating a multivariate
cointegrated VAR model with mixed-frequency time-series data, by using a state-
space representation of an error correction model.  The method allows us not only
to estimate such a model using mixed-frequency data, but also to estimate missing
or unobserved high-frequency values of the low-frequency variables.  Monte
Carlo experiments, applied to mixed-frequency data, with missing observations,
and to single-frequency data, with complete observations, indicate that the
proposed method performs well with missing data due to mixed frequencies.

Appendix A

To compute estimated parameters )1( +Γ l  and )1( +Σ l  at iteration 1+l  of the EM
algorithm, we differentiate equation (11) with respect to Γ  and 1−Σ , using
equation (9), and obtain
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where )(diag ⋅  denotes the diagonal matrix formed from the diagonal elements of
the argument matrix.  To find the estimated parameters )1(~ +lβ , we differentiate
equation (11) with respect to 0β , using equation (10), and obtain
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Appendix B

Let )|(E += stl
s
t Yxx , )|(cov += stl

s
t YxP  and )|,(cov 11,

+
−− = sttl

s
tt YxxP , where

)|(E +⋅ sl Y  and )|(cov +⋅ sl Y  denote the conditional expectation and conditional
covariance with respect to the density based on )(lθ .

We calculate the prediction and updating recursions using the following
equations (for example, Shumway and Stoffer, 2000).  For Tt ,,1 L= ,

1
1

1 −
−

− = t
t

t
t Fxx ,  GGFFPP t

t
t

t ′+′= −
−

− 1
1

1 , (B1)

)( 11 −+− −+= t
tttt

t
t

t
t xHyKxx ,  11 −− −= t

ttt
t

t
t

t PHKPP , (B2)

where 111 )( −−− ′+′′= ttt
t

ttt
t

tt QQHPHHPK .  We start iterations (B1) and (B2) by
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where 01 =+Tr , 01 =+TR , and )( ttst HKIFL −= .  Following Durbin and
Koopman (2001), we obtain the smoothing equations
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Appendix C

Here, we discuss the modifications of state-space equations (19) to (22) which are
necessary in order for the state-space representation to incorporate the constant
and linear deterministic terms of equation (17).  We follow the classifications of
the restrictions given by Johansen (1996).

TYPE 1 restrictions are 11 ργ a=  or 11 αρµ =  and 02 =γ  or 02 =µ .  In this
case, 1ρ  can be put into the cointegration relationship by replacing 0β  with

),(~
010 ′′′= βρβ , so that 1ρ  is estimated instead of 1µ .  TYPE 2 restrictions are an

unrestricted 1γ  and 02 =γ .  The model is easily correspondingly changed by
deleting the terms involving 2γ  and 2µ , which are now zero.  TYPE 3 restrictions
are an unrestricted 1γ  and 22 ργ a=  or 22 αρµ = .  In this case, 2ρ  is put into the
cointegration relationship and 0β  is replaced by ),(~

020 ′′′= βρβ .  Table 8 states
these modifications explicitly in algebraic notation.
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Table 8.  Definitions of state-space components for Type I to Type III restrictions
on deterministic terms
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