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Abstract

We experimentally investigate four allocation mechanisms - all based on the

fair division approach, with varying bid elicitation methods and price rules -

in terms of their allocation efficiency, distributional effects, and regularities

in individual bidding behavior. In a repeated design, an indivisible good is

assigned that generates profits for its owner but, at the same time, exerts

negative externalities on the non-acquiring bidders. Both the bidders’ valua-

tions of the good and their potentially incurred damages are stochastic and

denote private information, inciting strategic bidding and complicating an effi-

cient allocation. Indeed, observed bidding is dominated by strategic reporting

which, however, only marginally diminishes efficiency. One particular alloca-

tion mechanism, relying on sparse information elicitation and the first-price

rule, is found to yield economically superior results to both more complex and

second-price based allocation mechanisms.
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1 Introduction

Allocating scarce resources in efficient ways to achieve desirable goals in the future

is a central objective of administrative and managerial activity. Regularly, decision

makers have to make irrevocable decisions with important economic consequences

while they are only incompletely informed about the private and social costs and

gains of the projects under consideration. Depending on the particular context, sce-

narios of this kind can be classified into individual and strategic decisions problems.

In the following, we will focus our attention on the latter case. More specifically,

we are interested in exploring behavioral regularities and typical outcomes in allo-

cation settings in which agents compete for a single, indivisible good via an auction

mechanism. In this vein, we study four different auction scenarios. In the pertain-

ing literature on ’implementation,’ such bidding contests generally are considered as

suitable approaches to elicit private valuations of a good of unknown quality and to

determine the winning bidder (see Hendricks and Paarsch, 1995; Klemperer, 2004,

for recent surveys).

In contrast to the bulk of the auction literature, our concern is to explore a

particular auction framework in which a traded good is assumed to exert negative

externalities on its environment. Think of these externalities as third-party spillovers

which arise from production and/or consumption activities that inflict damages via

air and water pollution or noise emission. In the considered scenario, neighboring

communities negotiate about where to site an industrial facility that, on the one side,

generates profits for the hosting community but, on the other side, simultaneously

causes damages to neighboring communities. This framework differs from traditional

modeling approaches of noxious facility siting since the traded object is assumed to

be profitable for, rather than damaging to its owner.1

Our model features similarities with those of several other studies on noxious

facility siting (e.g., Kunreuther et al., 1987; O’Sullivan, 1993) in the sense that elic-

iting the bidders’ valuations of the indivisible resource is a necessary, but insufficient

step to bring about the efficient allocation. At the same time, it is indispensable

to also reveal the magnitude of the damages that accrue to affected parties as a

result of the good’s negative externalities. Hence, any mechanism that is supposed

to increase allocation efficiency crucially depends on two pieces of information from

each bidder; her valuation of the resource in case of acquiring it and the size of the

damage that she suffers otherwise.

Searching for suitable mechanism candidates, we note that most standard auc-

1 Classical “not-in-my-backyard” (or NIMBY) scenarios are, for instance, investigated by
Frey et al. (1996) and Marchetti and Serra (2003).
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tion formats like open and closed single unit auctions (e.g., English-, Dutch-, and

variants of sealed bid auctions) by default only elicit one-dimensional private in-

formation from the bidders. In most standard (single-unit) auctions, one seller

and several buyers interact whereby the latter are asked to reveal their actual val-

uation of the auctioned resource, i.e., their reservation price. Once all bids are

collected, the auction mechanism unambiguously assigns the good to the bidder

with the highest bid who, supposedly, derives the largest utility from the good.

Conversely, the seller obtains the revenue equivalent to the winning agent’s or - de-

pending on the price rule - a subsequent agent’s bid. This class of auction formats

garnered substantial interest among economists for the last two decades and, as a

result, brought about an abundant theoretical and empirical literature on the is-

sue (cf., Milgrom and Weber, 1982; McAfee and McMillan, 1987; Wolfstetter, 1996;

Klemperer, 1999). In many of these studies, the authors share the ambition to

identify optimal mechanisms, i.e., means to maximize the expected revenue of the

seller and to characterize these mechanisms’ central properties (cf., Myerson, 1981;

Riley and Samuelson, 1981; Bulow and Roberts, 1989).

Auction formats which more closely pertain to our research interest - in the sense

of eliciting entire bid vectors rather than only inquiring scalar bids from the agents

- are less frequently encountered in the literature. These approaches which are also

referred to as “multidimensional allocation mechanisms” often employ combinato-

rial or multi-unit auctions in which bidders place bids on whole combinations or

packages of goods (cf., Cramton et al., 2006). The above mechanisms have the ad-

vantage of lending more flexibility to the allocation process, but simultaneously pose

new economic and computational challenges with respect to incentive-compatibility,

suitable bid elicitation methods, and the unambiguous determination of the winning

bidder.

Let us briefly enumerate several contributions in this field that feature some

overlap with our study. McAfee and McMillan (1988) explore an allocation scenario

in terms of its incentive-compatibility in which players’ types are, analogously to our

scenario, modeled as being multidimensional. Yet closer to our research problem,

Jehiel et al. (1999) investigate an auction with externalities where bidders exhibit

a vector of payoffs for several outcomes. In line with our study, they also discuss

the issues of the mechanism’s incentive-compatibility, participation constraints, and

endogenous and type-dependent outside options. Finally, Währer (2003) focuses

on instances of hazardous facility siting within a group of neighboring communities

whose damages depend on the identity of the hosting community and are only known

to the communities to whom they accrue.
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Apart from auction mechanisms, a variety of suggestions was made on how

to solve allocation problems which resemble our scenario of interdependent agents

and (winner) identity-dependent payoffs. These comprise lotteries (Kunreuther and

Portney, 1991), insurances policies (Goetze, 1982), and equitable division schemes

(cf., Crawford and Heller, 1979; Tadenuma and Thomson, 1995; Brams et al., 2003).

Bearing in mind that our research focus is set on auction based solution concepts,

we deliberately omit the initial two approaches and concentrate our attention on

the latter one. In the economic literature on social choice, the above scheme is also

known as the “fair division mechanism” and its basic properties already have been

extensively studied (see, e.g., Güth and van Damme, 1986; Güth et al., 2002). In

the fair division game, a single, indivisible good is collectively owned by a group of

bidders. The aim of the mechanism is to assign the good to the bidder with the

highest valuation who, in a second step, has to compensate the other bidders by

transferring equitable shares of her valuation to the former. Due to these monetary

side payments that are inherent to this mechanism, every bidder (and not only the

auction winner) benefits from the allocation outcome.

More broadly, this paper contributes to the literature on (nearly) efficient al-

location mechanisms by characterizing four distinct auction environments and by

assessing their relative economic performance. As a secondary goal, we also eval-

uate the mechanisms’ social welfare implications, i.e., their degree of “equity” in

distributing the benefits from the allocation (cf., Bouveret and Lang, 2005).2 In our

view, equity concerns with respect to the distribution of proceeds from allocation

outcomes are (at least politically) relevant, as they may significantly ease or hamper

the introduction of the respective mechanisms in the first place. If a mechanism

is perceived as being neither procedurally fair nor largely equitable in dividing the

allocation surplus, it will - in all likelihood - lack the necessary political support

for either its initiation or retention. To the contrary, those mechanisms that yield

outcomes which are both (largely) efficient and equitable should enjoy widespread

acceptance. In the same vein, seminal contributions such as the ones by Rabin

(1993) and Kaplow and Shavell (2002) further underline the academic interest in

the relationship between fairness and social welfare.

The remainder of the paper is structured as follows. The next section introduces

the central characteristics of the fair division approach and presents the four alloca-

tion mechanisms that will subsequently be examined. In section 3, we present the

experimental protocol. In section 4, we discuss observed regularities in individuals’

2 Generally, the criteria of “equity” and “envy-freeness” are seen as relevant mechanism prop-
erties in fair division games. In the following we, however, will restrict our analysis to the former
and leave the investigation of the mechanisms’ envy-freeness property to a follow-up study.
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bidding behavior and compare the aggregate performance of the distinct allocation

mechanisms. Lastly, in section 5, we summarize our findings and conclude.

2 Model and treatment design

We consider four allocation mechanisms which partly differ in their bid elicitation

protocols and price rules, but uniformly allow for compensating side payments (cf.,

Güth, 1998; Güth et al., 2002). The manner in which the regulation of negative

externalities is implemented in the various mechanisms was substantially influenced

by preceding works on noxious facility siting (cf., O’Sullivan, 1993; Jehiel et al.,

1996). While the allocation mechanisms universally satisfy individual rationality,

i.e., induce bidders to voluntarily participate in the auction in anticipation of a

positive expected profit, the mechanisms, however, are not incentive compatible,

i.e., do not incite bidders to truthfully reveal their private information.3

More specifically, the allocation mechanisms are characterized by the following

properties:

• A single, discrete good is assigned within the group of bidders.

• The good generates profits for the winning bidder, but simultaneously harms

all non-acquiring bidders.

• Valuations of the good and incurred damages denote private information of the

pertaining bidders and are independently drawn from uniform distributions.

• While incurred damages of non-acquiring bidders do not depend on the identity

of the winning bidder - i.e., they are a bidder-specific constant - the magnitudes

of side payments crucially condition on the winning bidder’s identity.

Furthermore, an economically sensible allocation mechanism that incorporates

the fair division property should specify

• the bidder who acquires the good (e.g., the right to establish a polluting plant),

and

• whether, and if so, how incurred damages are to be regulated (e.g., how com-

pensation payments should be quantified and directed).

3 Given the mechanisms’ compliance with individual rationality, strategic “threats” (cf.,
Jehiel et al., 1996) to enforce the bidders’ participation need not be considered.
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Bidding in the four treatments takes place in groups of size n. Each bidder i in

the group is characterized by her type (Hi, Ki) which is comprised of her private

valuation of the good (Hi) in case of winning the auction and her damage (Ki) which

she incurs otherwise. Both parameters are independently drawn for each bidder i

from two uniform distributions, i.e., valuations Hi and damages Ki are uncorrelated.

Jehiel et al. (1996) and Jehiel et al. (1999) explore a centralized allocation mech-

anism (a vertical contracting scenario) through which a seller vends a particular right

to one of several potential buyers and derive the seller’s profit maximizing mecha-

nism. By contrast, we are interested in decentralized allocation mechanisms in which

bidders collectively own an indivisible resource. As an illustration of our scenario,

think of political negotiation processes in the spirit of the “Kyoto Environmental

Conference.” Therein, the participating nations as a group own the right to define

rules on how pollution at the international scope shall be treated. To reach a con-

sensual agreement, the participating nations must balance their particular interests,

a task which also comprises the regulation of external effects. These externalities are

assumed to be pervasive in the sense that they cannot simply be avoided by refusing

to participate in the negotiation. Analogously, the bidders’ outside option in our

model, i.e., their payoff in case of not acquiring the good, is endogenous and directly

depends on the winning bidder’s valuation. Conversely, damages of non-acquiring

bidders are assumed to be independent of the winning bidder’s identity.

Let us point out the primary similarities and differences between the four treat-

ments. All mechanisms share that a single, indivisible good is assigned to the bidder

i whose net trade νi with

νi = ηi −
∑

j 6=i

κj, (1)

i.e., the difference between her stated valuation of the good ηi and the sum of the

(n − 1) co-bidders’ damage claims κj is maximized
(

νi = ν(n)

)

.

Constituting the first treatment variable, the allocation mechanisms differ in how

the (expected) net trade νi is elicited from the bidders.4 Whereas the expected net

trade is only indirectly elicited in the more complex two-dimensional treatments

(T1/2) (via eliciting valuations and damages), bidders in the one-dimensional treat-

ments (O1/2) are directly asked to state their expected net trade. As a second line

of comparison, we separately examine both classes of treatments (T1/2) and (O1/2)

to quantify the partial effects of the alternative (first- vs. second-) price rules. The

4 In (O1/2), each bidder is asked to predict the surplus that would be generated if she were
assigned the good. This evaluation is not trivial, considering that bidder i must speculate about
the likely realization of two stochastic processes (her two co-bidders’ damages κ−i) of which only
the type of the underlying distribution is known.
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Table 1: Factorial treatment design

Elicited information
Price rule Valuation & damage Expected net trade

Highest net trade (T1) (O1)
Second highest net trade (T2) (O2)

composition of the four allocation mechanisms as a 2 × 2 factorial design is shown

in Table 1. The bidders’ payoff functions and the formulation of their (expected)

net trades in the distinct treatments are presented in Table 2.

We start by introducing the class of two-dimensional trading mechanisms (T1/2),

in which individual valuations of the good ηi and incurred damages κi are directly

elicited. The difference between bidder i’s valuation ηi and the sum of her co-bidders’

stated damages
∑

j 6=i

κj yields bidder i’s net trade denoted by νi. Hence, individual

net trades are determined by all bidders’ types rather than by a single bidder’s type

alone.

In a second step, the bidders’ net trades are ranked and the bidder with the

largest net trade
(

νi = ν(n)

)

, with ν(n) being the n-th order statistic of the set of

net trades) wins the auction and, hence, obtains the good. The determination

of payoffs in the distinct treatments universally follows the same structure. The

first of each payoff function’s two additive terms denotes the bidder’s income if she

wins the auction. In this case, bidder i earns her actual valuation Hi but, at the

same time, must compensate the other bidders −i for their stated damages
∑

κ−i

and, additionally, must cede (n − 1) equitable portions of her net trade νi to the

latter. Depending on whether the first or second price rule applies, the highest

(ν(n)) or second highest net trade (ν(n−1)) is equally divided among the n bidders.

By contrast, the payoff functions’ latter additive term denotes bidder i’s income if

she is surpassed in the auction by another bidder. In that case, bidder i suffers

the damage Ki and receives an equitable portion of the winner j’s net trade νj in

compensation.5

Summarizing, the bidders’ ex-post roles are determined by the rank of their

stated net trades, whereby the good always is assigned to the bidder with the high-

est net trade. Depending on the applicable first- (or second-) price rule, the winning

bidder then is required to transfer an equitable share of her stated net trade, i.e.,

5 For simplicity, the magnitude of the bidder i’s damage is assumed to be independent of the
winning bidder j’s identity. In this respect, our modeling of externalities structurally differs from
the one in Jehiel et al. (1996).
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Table 2: Payoff functions across treatments

Treatment Payoff function (Expected) net trade

(T1) πi (ηi, κi) =

[

Hi −
∑

j 6=i

κj −
(n−1)·ν(n)

n

]

· Prob
(

νi = ν(n)

)

+

[ ν(n)

n
− Ki

]

· Prob
(

νi < ν(n)

)

νi = ηi −
∑

j 6=i

κj

(T2) πi (ηi, κi) =

[

Hi −
∑

j 6=i

κj −
(n−1)·ν(n−1)

n

]

· Prob
(

νi = ν(n)

)

+

[ν(n−1)

n
− Ki

]

· Prob
(

νi < ν(n)

)

(O1) πi (νi) =
[

Hi −
(n−1)·ν(n)

n

]

· Prob
(

νi = ν(n)

)

+

[ ν(n)

n
− Ki

]

· Prob
(

νi < ν(n)

)

νi

(O2) πi (νi) =
[

Hi −
(n−1)·ν(n−1)

n

]

· Prob
(

νi = ν(n)

)

+

[ν(n−1)

n
− Ki

]

· Prob
(

νi < ν(n)

)
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either ν(n) or ν(n−1), to each of her co-bidders. General truth-telling would prompt

the bidders to equate their statements of ηi and κi with their actual type charac-

teristics (Hi, Ki). However, since the four auction mechanisms are not incentive

compatible6, bidders uniformly are incited to strategically misrepresent their types.

In Appendix B, we present a series of numerical benchmarks for the distinct allo-

cation mechanisms and discuss why it therein is not individually rational for the

bidders to truthfully report their types. More specifically, we show that by strategi-

cally misrepresenting their valuation and damage statements, bidders can influence

the allocation outcome, i.e., the winning bidder’s identity and the structure of side

payments, to their personal economic advantage.7

Having introduced the two-dimensional bid elicitation mechanisms (T1/2), let

us now address their one-dimensional equivalents (O1/O2). Whereas the former

mechanisms were designed to directly elicit the bidders’ types (Hi, Ki), an indirect

elicitation procedure is chosen in (O1/2). The latter mechanism design is based on

the conjecture that rational bidders will invariably misrepresent their actual types in

any direct and non strategy-proof mechanism. This strategic reporting of valuations

and damages (Hi 6= ηi and Ki 6= κi) generally diminishes the value of the elicited

information and - particularly in asymmetric settings - reduces the efficiency of

allocation decisions which crucially depend on truthful type statements.

Anticipating the manipulability of the (T1/2) mechanisms, we simplify the elic-

itation procedure in (O1/2) from a bid vector to a scalar bid, as a result bidders

only are prompted to state their expected net trade νi (see Equation 1). Since this

elicitation format aims at revealing νi directly (thereby constituting a direct mech-

anism), it is not longer necessary to define a functional relationship between ηi, κi,

and νi. We speak of a net trade “expectation,” because bidder i cannot perfectly

quantify her co-bidders’ (stochastically determined) damages κ−i. Rather, bidder

i may predict νi via stochastic inference, i.e., by identifying the mean of the value

range of possible realizations of κ (∈ U (κ, κ)) and multiplying that value by (n−1).

The relevant design tweak of the mechanisms (O1/2) is that the stated net trades of

the various bidders are now independent, as bidders cannot anymore influence their

co-bidders’ net trades ν−i by strategically misrepresenting their own damage claims

κi.

6 A mechanism is considered to be “incentive compatible” or “strategy-proof” if it is the subject’s
best response to truthfully reveal the private information that the mechanism asks for.

7 The simulation exercise yields that the bias is especially pronounced in treatments (T1/2)
which elicit damage claims in a clearly non-incentiviced manner. By contrast, the bias is weaker in
treatments (O1/2) of which the latter treatment shares similarities with the incentive compatible
Vickrey auction format (Vickrey, 1961).
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Determining the winning bidder and deriving the bidders’ profits is straightfor-

ward in treatments (O1/2). The winning bidder i always is the one who states

the largest expected net trade (νi = ν(n) > ν−i) within the group of bidders. She

earns her valuation Hi and passes on
(n−1)ν(n)

n
in (O1), respectively

(n−1)ν(n−1)

n
in

(O2) to her (n − 1) co-bidders. Each losing bidder i incurs the negative externality

Ki and receives the amount
ν(n)

n
(O1), respectively

ν(n−1)

n
(O2) from the winning

bidder in compensation. Moreover, since damage claims of unsuccessful bidders are

no longer considered, negative externalities actually may not be fully compensated.

This situation occurs when the equitable portion of the winning bidder’s net trade

is insufficient to cover the non-acquiring bidder i’s actual damage
ν(n)

n
< Ki in (O1)

or
ν(n−1)

n
< Ki in (O2).

3 Laboratory protocol

The computerized experiment was conducted at the Max Planck Institute in Jena

(Germany) in May 2006. The experiment was programmed in z-Tree (Fischbacher,

2007) and lasted between 80 and 90 minutes. Overall, we ran four sessions which

altogether comprised 120 participants, all of them being undergraduate students at

the University of Jena.8 Thirty participants each took part in the four treatments

in a between-subject design.

The experiment employs a factorial design across bid structures (valuation- and

damage- vs. expected net trade elicitation) and price rules (first- vs. second-price).

In each treatment, they were confronted with an interactive decision task that was

repeated for 50 times (see Appendix A for detailed instructions). After each decision

task, participants were reassigned to form new groups in a random stranger design.9

While the bid elicitation formats differed across treatments, the same parameter-

ization was uniformly applied in all four sessions. Each decision task comprised

n(= 3) interacting bidders whose two-dimensional types (constituted by valuation

Hi and damage Ki) were independently drawn from the two uniform distributions

Hi ∈ U (125, 200) and Ki ∈ U (1, 50).10 The value ranges of Hi and Ki were chosen

such that bidders always would want to participate in the four allocation mecha-

nisms, given that bidding games uniformly are profitable (H − 2K > 0).

Analogously to the restrictions on Hi and Ki, the permissible ranges for partic-

8 Participants were invited via the online recruitment system ORSEE (Greiner, 2004).
9 The employed matching design did not consider matching groups and, consequently, yielded

only one independent observation per treatment. To deal with the issue of dependent observations,
we limit our statistical testing to the appropriate cases and focus on regression analysis instead.

10 Note that bidder types were limited to discrete vectors, i.e., draws from uniform distributions
were rounded to integers.
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ipants’ valuation and damage claims also were limited. More precisely, valuation-

(ηi), damage- (κi), and expected net trade statements (νi) had to be stated within

the limits of ηi ∈ {125, . . . , 200}, κi ∈ {1, . . . , 50}, and νi ∈ {1, . . . , 198}.11 If, by

contrast, statements of ηi, κi, and particularly νi had been unbounded in (T1/2),

the undesirable case may have occurred that winning bidder i’s net payoff becomes

negative as she is required to compensate her co-bidders’ to the amount of their

claimed damages Hi −
∑

j 6=i

κj −
(n−1)ν(n)

n
< 0. Anticipating this strategic opportunity,

non-acquiring bidders would be incited to exaggerate their damage claims to obtain

a larger compensation from the winning bidder. As a result, winning the auction

would become a dominated strategy, as the winner of the auction - in all likelihood

- incurs an economic loss. Additionally, the game would no longer be individually

rational, considering that potential winners would prefer to altogether abstain from

the auction.

In the same vein, it is evident that the four net trade-based allocation mech-

anisms crucially depend on the presence of informative net trade statements to

perform efficiently. If these statements were to exhibit very unfavorable information-

to-noise ratios - in the sense that they are not helpful anymore in identifying the

bidder who maximizes the transaction’s allocation efficiency (e.g., due to grossly

overstated damage claims) - the distinct allocation algorithms would be reduced to

inefficient random processes.

All choice variables (valuations, damages, and net trade claims) and outcome

statistics (periodic and final profits) in the experiment were denoted in the fictitious

currency ECU. Throughout each treatment, periodic profits were aggregated to fi-

nally be converted into euros at the rate of 100 ECU = e0.50. The resulting amount

was then disbursed to the participants in cash. Total earnings in the experiment

ranged from e6.97 to e14.37 (excluding a show-up bonus of e2.50) with a mean of

10.41 and a standard deviation of 1.42. Lastly, and barring further refinements, the

treatment variable by itself (i.e., the four distinct allocation mechanisms) was not

found to significantly affect payoffs (p = 0.356, Kruskal-Wallis test).12

4 Experimental results

We start our analysis by identifying behavioral regularities in competitive bidding.

In particular, we examine the participants’ truthfulness in revealing their private

11 All preceding information was made commonly known in the instructions (see Appendix A).
12 Irrespective of this initial assertion, we will subsequently show that the partial effect of the

price rule (but not the one of the bid elicitation format) in fact is significant.
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information. In a second step, we evaluate the partial effects of the two treat-

ment variables, i.e., the sophistication of the mechanisms’ elicitation format and the

underlying price rule, on individuals’ bidding behavior. Finally, we assess the mech-

anisms’ economic performance at the aggregate level while focusing on the former’s

allocation efficiency, distributional effects, and desirability from a welfare-economic

viewpoint.

4.1 Bidding behavior

In a first step, we explore regularities in the individuals’ bidding behavior in treat-

ments (T1) and (T2) which involve the elicitation of the bid vector (ηi, κi). Figure

1 contrasts the bidders’ actual and stated valuations of the good (Hi vs. ηi) and

their equivalents with respect to damages (Ki vs. κi).

If bidders’ statements were truthful, we would expect pairs of Hi and ηi, as

well as of Ki and κi, to be located along the 45 degree line. By contrast, we

observe that the regression line explaining stated valuations and damages and the 45

degree line are far from coinciding in all four scatterplots, revealing that systematic

truthful bidding does not occur.13 Strikingly, only 5.1% (13.2%) of all bid statements

perfectly (approximately, i.e., ±10%) depict the bidders’ actual types. Most subjects

seemingly determine their bid vector (ηi, κi) via bid functions that feature a positive

intercept (β0 > 0) and slope parameter (β1 < 1). As a result, we discern a positive,

but only moderately strong correlation between actual and claimed valuations and

damages (ρ = 0.46 for valuations and ρ = 0.15 for damages, Pearson correlations).

Summarizing, we find that most bidders (81.7%) do not truthfully reveal their

type, but strategically adjust their valuation and damage claims. Generally, val-

uations are reported more truthfully (ρ = 0.456 in (T1), ρ = 0.391 in (T2)) than

damages (ρ = 0.146 in (T1), ρ = 0.120 in (T2)), with the latter ones being systemat-

ically overstated.14 This finding is unsurprising considering that the winning bidder

i must compensate her co-bidders to the amount of their stated damages κ−i. Con-

sequently, it is lucrative for non-acquiring bidders to deliberately exaggerate their

damage claims to extort a higher transfer from the winning bidder.

Nonetheless, the strategy of uniformly demanding the largest possible compen-

sation (κi = κ) may not necessarily be dominant. Rather, it should also be taken

into account that by overstating her damages, the bidder raises the probability of

winning the auction. This follows because, by raising κi, bidder i decreases each co-

13 Given that bidders’ payoffs are directly related to their statements of (ηi, κi), it is evident
that truthful reporting with respect to κi must be a dominated strategy.

14 In 24.5% (48.9%) of all cases, bidders in T1 (T2) overstate their actual valuations. Damages,
by contrast, are overstated by 77.7% (75.1%) of all bidders.
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Figure 1: Bidding behavior in treatments (T1/2)

Note: Horizontal axes denote actual valuations and damages while vertical axes denote corresponding
valuation and damage claims. The solid (dashed) line marks the regression line (45 degree line).
Valuations and damages are transformed via division by 200 (0.625 ≤ Hi, ηi ≤ 1 and 0 < Ki, κi <

0.25).
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bidder j’s net trade νj = ηj −
∑

i6=j

κi which, in turn, increases the chance that her net

trade νi exceeds the ones of her co-bidders. If, in this case, the bidder’s valuation is

far below her co-bidders’ ones (Hi ≈ H ≪ H−i), the allocation outcome clearly will

be inefficient. Yet, stating inappropriately low damage claims (Ki > κi ≈ κ) also

is risky. Should bidder i eventually lose the auction, this strategy would invariably

limit her receivable transfer from the winning bidder j (κi ≪ κ). As yet another

possibility, the interdependence between valuations and damages actually may work

in both directions. For instance, a bidder i who were to incur a relatively large

damage (Ki ≈ K) may want to increase her stated valuation beyond her actual

valuation (ηi > Hi) to raise her net trade νi and, thereby, to improve her chance of

winning the auction. If successful, she then effectively circumvents the damage Ki

that she otherwise would have suffered.

However, by comparing the above conjectures with the results of the simulation

exercise (see Appendix B), we find that stating damages below the largest possible

compensation (κi < κ) is suboptimal and, as a result, cannot constitute equilibrium

play. By contrast, we find support in the simulation results for the conjecture that

individuals’ stated valuations should strongly (positively) correlate with their actual

damages (β2 > 0 for (T1/2) in Table 5).

To more thoroughly explore the influence of bidders’ actual valuations, damages,

and their interaction on ensuing valuation and damage claims, we turn to regres-

sion analysis. More specifically, we estimate two linear mixed-effects models per

treatment which explain the bidders’ valuation- (ηi) and damage (κi) statements.

The set of covariates comprises an intercept, the bidders’ actual valuations (Hi) and

damages (Ki), and the period of observation (Period) to control for learning. Table

3 presents the regression results of the four models that are related to treatments

(T1/2).15

Let us first inspect how, on average, valuation statements are derived from the

bidders’ actual valuations and damages. If valuations were reported truthfully, the

coefficient estimates of the bid function ηi (Hi, Ki) - which is used to predict valua-

tions - should satisfy β0 = 0, β1 = 1, and β2 = 0. However, this conjecture must be

rejected in light of the estimation results (β1 ≤ 0.540 and β2 ≥ 0.237). Our initial

presumption that at least a sizable minority of bidders would refrain from strate-

gically misrepresenting their valuations and damages to avoid inefficient allocation

outcomes thus cannot be uphold.

Most bidders overstate (understate) their actual valuations of Hi for low (high)

15 Further, it also provides the regression results of two corresponding models in (O1/O2) that
will be addressed later in this section.
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Table 3: Empirical bid functions

Treatment Dependent Coefficient estimates
variable Intercept Valuation (Hi) Damage (Ki) Period

(β0) (β1) (β2)
(T1) ηi 0.307∗∗∗ 0.540∗∗∗ 0.237∗∗∗ −0.001∗∗∗

κi 0.197∗∗∗ −0.037∗ 0.145∗∗∗ 0.001∗∗∗

(T2) ηi 0.394∗∗∗ 0.512∗∗∗ 0.277∗∗∗ −0.001∗∗∗

κi 0.169∗∗∗ −0.013 0.117∗∗∗ 0.001∗∗∗

(O1) νi −0.110∗∗∗ 0.935∗∗∗ 0.653∗∗∗ 0.002∗∗∗

(O2) νi 0.278∗∗∗ 0.606∗∗∗ 0.276∗∗∗ 0.002∗∗∗

Note: ηi, κi, and νi denote the bidder’s stated valuation, damage, and expected net trade. Stars
indicate significance levels, i.e., significant at the 10% (*), 5% (**), or 1% (***) level.

realizations of Hi. On average, they only partially account for their true valuations

and damages - as expressed by β1 < 1 in ηi (Hi, Ki) and β2 < 1 in κi (Hi, Ki) - while

adding a sizable fixed markup β0 > 0 in compensation. As expected, underbidding

actual valuations under the first-price rule is significantly more pronounced than

under the second-price rule (mean bid shading of 13.17 and -1.06 in (T1) and (T2);

p < 0.001, one-sided MWU-test). Note that bidding above one’s actual valuation

Hi in (T1/2) need not necessarily imply irrational behavior, because the winning

bidder i merely has to pass on a fraction of her profit πi, namely
∑

j 6=i

κj + 2νi

3
, to her

co-bidders, which may still ensure her a positive profit.

We expectedly find that bidder i’s valuation Hi is the factor with the highest

explanatory power with respect to her stated valuation ηi (ρ = 0.405, Pearson corre-

lation). Moreover, the claimed valuation also is significantly affected by her damage

parameter κi. This indicates that bidders, on average, take the interdependence

between actual valuations Hi and damages Ki into account when determining their

claims ηi and κi. In doing so, they raise their net trade vi which, in turn, decreases

the risk of suffering the anticipated negative externality Ki. By contrast, when

defining their damage claims κi, most bidders entirely disregard their valuations Hi

and merely set κi to a sizable, but otherwise largely arbitrary amount (ρ = 0.121

between Ki and κi).

Overall, we discern that the empirically derived bid functions and their corre-

sponding simulation-based equivalents show meaningful similarities (compare Ta-

bles 3 and 5). While the intercepts in the empirical bid functions are systematically

larger than their benchmark counterparts, we observe some conformity with respect

to the scaling factor for valuations (β1). The scaling factor for damages (β2), to
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the contrary, is substantially smaller in treatments (T1/2) than in the benchmark

case. While the benchmark for damage claims equates to κi = κ = 0.25, the em-

pirical estimate for κi(= 0.20) is significantly below this level (p < 0.001, one-sided,

one-sample Wilcoxon signed rank test).

In the second stage of this section, we characterize the allocation mechanisms

(O1) and (O2). To this end, we first descriptively summarize individuals’ bidding

behavior. In a second step, we then compare identified behavioral regularities with

those from the (T1/2) treatments. Figure 2 shows the partial correlation between

bidders’ expected net trades νi and their actual valuations Hi and damages Ki.

Inspecting the correlation between actual valuations Hi and corresponding stated

net trades νi, we observe that the regression line nearly coincides with (largely cor-

responds to) the dashed 45 degree line in (O1) (in (O2)). This implies that bidders,

on average, derive their net trade claim νi almost exactly from their valuation Hi

(ρ = 0.502 in (O1) and ρ = 0.346 in (O2)). Aligning net trade claims with actual

valuations (νi ≈ Hi) is slightly more pronounced in (O1) whereas some overbidding

of actual valuations is observed for smaller realizations of Hi in (O2). Conversely,

the impact of actual damages Ki on νi is negligible, meaning that actual damages

- irrespective of their magnitude - do not significantly affect stated net trades. The

weak correlation between Ki and νi (ρ = 0.221 in (O1) and ρ = 0.107 in (O2),

Pearson correlation) also is illustrated by the almost flat regression line in both

respective scatterplots.

The above bidding pattern, i.e., the manner in which net trade claims νi are

defined, is corroborated by two linear regressions that are based on bidders’ actual

valuations and damages (see Table 3). We find that bidders primarily condition their

net trade claims on their actual valuations (β1 = 0.935 in (O1) and β1 = 0.606 in

(O2)) whereas actual damages only are partially considered (β2 = 0.653 in (O1) and

β2 = 0.276 in (O2)). Analogously to the benchmark comparison for (T1/2), similar-

ities between the empirical bid functions in (O1/2) and their simulation equivalents

are discerned. In both cases, net trade claims νi strongly react to changes in actual

valuations Hi (β1 ≥ 0.720 (β1 ≥ 0.606) in the benchmark (empirical) bid functions).

Differently, the empirical bid functions are less responsive to changes in actual dam-

ages Ki than the ones of the simulation benchmark (β2 ≥ 0.276 vs. β2 ≥ 0.750

).

In interpreting the two models, we take the view that bidders correctly discern

the central role of their actual valuations in quantifying their net trade statements.

In all, we conclude that while bidding behavior in (O1/2) does not yet closely ap-

proximate equilibrium play, it nevertheless can be described as largely regular and
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Figure 2: Bidding behavior in treatments (O1/2)

Note: Horizontal axes denote actual valuations and damages while vertical axes denote bidders’
stated net trades. The solid (dashed) line marks the regression line (45 degree line).
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economically sensible.

To conclude this section, let us briefly examine the data with respect to pos-

sible temporal dynamics in bidding behavior. In the preceding analysis, learning

dynamics were primarily noticeable via the coefficient “Period” which was included

in the series of regressions that are summarized in Table 3. In all six regressions, the

presence of learning dynamics is affirmed, as the coefficient universally is significant.

Hence, individual learning clearly is directional, resulting in valuation claims being

lowered whereas damage- and expected net trade claims are being raised as time

progresses.

Further evaluating the impact of experience on regular bid choices, we also fitted

another series of regressions. Replicating the above regressions and allowing for a

quadratic “Period” term yields that the latter term also is significant. This implies

that the effect of time (hence learning) on valuation-, damage-, and net trade claims

is characterized by a concave function, in the sense that initial familiarizing with

the allocation mechanisms leads to more pronounced revisions in subjects’ bidding

strategies than subsequent continued play.

4.2 Mechanism performance

In this section, we evaluate the economic suitability of the four allocation mecha-

nisms with respect to their performance in regulating externalities, attaining high

levels of allocation efficiency, and implementing socially desirable income distribu-

tions. While the former two evaluation criteria are apparent, the third one may

require some further motivation. Performance appraisals of allocation mechanisms

in general and auctions in particular typically assume the seller’s perspective and ad-

dress the mechanisms’ revenue equivalence or -disparity. Mechanisms based on the

fair division property, by contrast, feature a common ownership structure which pre-

cludes argumentations centered on the seller’s revenue. In this setting, the welfare-

economic property of income variance minimization comes to mind as an alternative

benchmark.

Regulation of externalities

As one central evaluation criterion, we rate the distinct mechanisms by their

ability to regulate negative externalities. Theoretically, both the one- (O1/2) and

the two-dimensional mechanisms (T1/2) perfectly protect bidders against net losses

that result from the allocation outcome. In (T1/2), truthful bidding (κi = Ki)

guarantees the neutralization of incurred damages, while the same result is achieved
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in (O1/2) by stating an expected net trade satisfying νi ≥ 3Ki. If the bidder

acquires the good in the latter case, she earns 2νi

3
≥ 0 in (O1/2) whereas, otherwise,

she earns
ν(n)

3
− Ki ≥ 0 in (O1) and

ν(n−1)

3
− Ki ≥ 0 in (O2). Irrespective of the

particular allocation outcome, bidders thus are able to secure themselves a non-

negative income.

We discern that bidders, on average, make sensible choices in all four auction

formats and commonly manage to avoid economic losses. Putting economic gains

and losses into perspective, we find that the sum of realized losses in (T1) merely

amounts to 0.7% of the corresponding sum of realized gains. In the remaining treat-

ments, this rate is even less pronounced (≤0.6%). Nonetheless, we discern a small

minority of bidders who commit apparent bidding errors and, consequently, sporad-

ically suffer losses in single periods. In a series of histograms, Figure 3 shows the

relative frequency of realized losses in the various treatments. Such incidences are

most frequent in (T2), but are economically most severe in (T1). Inefficiencies in

(T1/2) are primarily related to overstating one’s valuation (ηi > Hi) rather than to

understating one’s damage (κi < Ki).
16 Differently, inefficiencies in (O1/2) are pri-

marily attributable to stating unduly low expected net trades (νi < 3Ki) or grossly

overstating one’s valuation (νi > 3Hi

2
).17 Summarizing, all four allocation mech-

anisms perform adequately in regulating negative externalities and in preventing

individuals from realizing economic losses.
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Figure 3: Frequency of realized losses

Allocation efficiency

An allocation mechanism’s efficiency is arguably the most important economic

decision criterion for or against its implementation. We consider two efficiency

16 57% (75%) of all bidders in T1 (T2) at least once succumb to the former error whereas only
30% (42%) at least once commit the latter one.

17 7% (40%) of all bidders in O1 (O2) at least once commit the former error and 10% (23%)
commit the latter one.
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statistics which are commonly employed in the literature (see Davis and Holt, 1992).

Once, one may be interested in the mechanism’s relative efficiency E which is based

on the realized surplus of the allocation S and the maximal possible surplus S and is

computed as E = S

S
. Alternatively, we may consider the mechanism’s rate of optimal

allocation outcomes O which relies on the number of realized optimal allocations m

in relation to the number of allocation tasks n and is described by O = m
n
. Timeline

charts for the two efficiency statistics E and O are shown in Figure 4. To put the

empirical efficiency rates in perspective, consider that random bidding, on average,

yields a relative efficiency of E = 0.835 and an allocation efficiency of O = 0.333.18
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Figure 4: Efficiency and learning

Inspecting the relative efficiency of allocation outcomes yields that the empiri-

cal value range of E actually is rather small (E ∈ [0.79, 1]). Considering its small

variation - which is a regular finding in appraisals of allocation mechanisms’ relative

efficiency (e.g., Isacsson and Nilsson, 2003) - the E-statistic is not very indicative

and, arguably, not the best criterion to rank allocation mechanisms by their per-

formance. The rate of optimal allocation outcomes O, by contrast, features more

dispersed efficiency realizations in the range of [0.40, 0.71] and, hence, may be seen

as the more suitable ranking criterion. In fact, efficiency improvements over time

become more apparent when the O-statistic is used and amount to 0.60% per period

in (O2), where the improvement is the strongest, and 0.04% in (T1), where it is the

18 Assuming that there are three bidders who uniformly state random bids, it is trivial to see
that each of these agents, on average, wins the auction once in three periods. By contrast, the
relative efficiency benchmark is less apparent and was derived by simulating 10000 allocation tasks
in which bidders made random statements concerning ηi and κi in (T1/2) or νi in (O1/2).
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Table 4: Linear regression explaining (relative) efficiency

Coefficient Estimate Std.Error p-value

Intercept 92.586 0.717 < 0.001
Bid vector -1.229 0.768 0.110
2nd price -3.889 0.768 < 0.001

Bid vector × 2nd price 0.625 1.063 0.557
Period 0.090 0.018 < 0.001

# obs.: 2000 adj.R2: 0.032

weakest.

Besides, the data analysis brings up two further insights. One is that the rel-

ative efficiency rate E and the rate of optimal allocation outcomes O are strongly

correlated. Hence, the more efficient an allocation mechanism becomes in terms of

E, the more frequently it coincides with the optimal allocation based on the bid-

ders’ (un)truthful reports on their types. And second, we discern that applying the

first- (second-) price rule leads to, on average, higher (lower) levels of allocation effi-

ciency. This finding is not novel, bearing in mind that the same conclusion already

was drawn in related experimental studies on auction- and fair division allocation

mechanisms (see, e.g., Güth et al., 2002).

One possible explanation for this regularity is that bidders simply are more

familiar with the first-price rule which they may know from practical economic

interactions. Additionally, they may appreciate the mechanism’s plainness, in the

sense that bids and payments are equivalent. The second-price rule, by contrast,

arguably is more sophisticated and may confuse inexperienced bidders, as a result

of which they may bid less systematically and, ultimately, less efficiently.19 Lastly,

according to theoretical considerations, both auction formats should bring about the

efficient allocation whereas the expected price for the seller may vary, in particular

if buyers are risk averse (e.g., Matthews, 1987).

To evaluate the systematic influence of the alternative elicitation methods and

price rules more thoroughly, we fit a linear model explaining the relative efficiency

E in the four allocation treatments. The corresponding regression results are shown

in Table 4.

The explained variable is expressed as a rate and is bounded between [0, 100]. As

covariates, we include the bid elicitation format “Bid vector” (vs. “scalar bid”), the

19 Further discouraging factors of second-price auctions that are regularly mentioned in the
auction literature are the fear of (bid-taker) cheating and disincentives for bidders to follow truth-
revealing strategies (cf., Rothkopf et al., 1990)
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price rule “2nd price” (vs. first-price), and their interaction term “Bid vector × 2nd

price.” Lastly, to control for learning dynamics, we also include the time dummy

“Period.” The estimated model corroborates our preceding conjectures. Strikingly,

the relative efficiency E of allocation outcomes universally is high across treatments.

Moreover, we find that the relative efficiency of allocation outcomes significantly con-

ditions on the implemented price rule in the sense that implementing the first-price

rule uniformly leads to more efficient results. Conversely, the partial effect of the

employed bid elicitation format on the mechanism’s relative efficiency is negligible,

as is the interaction effect between the bid elicitation format and the price rule.

Finally, we discern that bidders achieve to systematically - even if only marginally

- improve their bidding strategies over time, as a result of which E steadily increases.

Income distribution

In evaluating the allocation mechanisms’ distributional effects, we first compare

the profits of winning- and non-acquiring bidders and, in a second step, contrast

the distinct mechanisms at the aggregate level. Figure 5 shows a series of boxplots

that summarize the winning bidder’s (W) and the indemnified bidders’ (I) periodic

profits in the four treatments. We immediately discern a characteristic pattern

in the distribution of profits between the two ex-post bidder roles. In treatments

(T1/2), indemnified bidders, on average, earn significantly more than their winning

counterparts in (T1), respectively realize comparable profits in (T2).20 Conversely,

the payoff ranking for the two roles is reversed in (O1/2). In these treatments,

winning bidders earn significantly more than their non-acquiring co-bidders.21

The primary reason for this regularity is that in (T1/2), the winning bidder i is

obliged (by the mechanism design) to compensate the two non-acquiring bidders to

the amount of their stated damages κ−i. Additionally, bidder i also has the liability

to pass on equitable shares of ν(n), respectively ν(n−1) to her co-bidders. Bidders

in (O1/2), to the contrary, exclusively compete in terms of their stated net trades

νi. Any damages κ−i which are incurred by the non-acquiring bidders may only be

neutralized through the equitable transfer
ν(n)

3
in (O1) or

ν(n−1)

3
in (O2) from the

winning bidder. In these two treatments, a direct compensation for stated damages

does not exist.

Most bidders quickly become aware of the non-negligible income gap between the

two ex-post bidder roles and - with experience - persistently work toward obtaining

20 πW < πI in 33 out of 50 periods in (T1) (p < 0.05, one-sided MWU-tests), respectively
πW = πI in 44 out of 50 periods in (T2) (p < 0.05, two-sided MWU-tests).

21 πW > πI in 41 (34) out of 50 periods in O1 (O2) (p < 0.05, one-sided MWU-tests).
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Figure 5: Periodic profits

Note: W (I) denotes the group of winning (indemnified) bidders.

the more rewarding bidder role in their treatment.22 To this end, they systematically

decrease their stated valuation in (T1/2), respectively post higher stated net trades

in (O1/2). As yet another income-raising strategy, many bidders in (T1/2) also

overstate their damages κi to take advantage of this risk-free income premium κi−Ki

in case that they eventually should become a non-acquiring bidder.23

Turning to aggregate statistics, Figure 6 shows the cumulative distribution func-

tion (CDF) of the relative efficiency rate (left panel) and the income concentration

rate (right panel) of the four allocation mechanisms. With respect to the latter rate,

the degree of income concentration within a group is expressed by the corresponding

Gini coefficient. Although the respective CDF-curves generally run in close proxim-

ity, we observe that the CDF for (O1), the bold curve, is almost universally below

(above) the three other CDF-curves in the relative efficiency (income concentration)

plot. The former point signifies that (O1) brings about more highly efficient alloca-

tion outcomes than any other of the remaining allocation mechanisms. The latter

22 Bidders in the less-earning ex-post bidder role, i.e., winning bidders in (T1/2) and non-
acquiring bidders in (O1/2), generally are successful in improving their income at the expense of
their respective counterpart. As a result, winning bidders in (T1) and non-acquiring bidders in
(O1/2) are able to significantly reduce their gap in period income over time (p ≤ 0.044, periods
1-25 vs. periods 26-50, one-sided MWU-tests).

23 We already pointed out these learning dynamics while discussing the results of a series of
regression models explaining individuals’ empirical bid functions (see Table 3).
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point reveals that in (O1) - out of the four treatments - the generated income from

the allocation is most evenly distributed among the bidders.
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Figure 6: Efficiency and income concentration

Altogether, treatment (O1) combines three attractive properties: First, the allo-

cation mechanism almost perfectly resolves negative externalities and, hence, secures

a non-negative income for all participating bidders. Second, it provides for the, on

average, highest level of allocation efficiency. And third, it achieves the most equi-

table income distribution of the four inspected allocation mechanisms.

5 Discussion

We experimentally implemented four distinct allocation mechanisms - which all ex-

hibit the fair division property - with two main research goals in mind. The primary

objective of the study was to characterize individuals’ bidding behavior, to identify

regularities, and to evaluate the conformity between participants’ empirical bidding

behavior and a normative benchmark. The secondary objective then was to charac-

terize and compare the various mechanisms’ (welfare-) economic performances.

The experiment relied on a 2 × 2 factorial design in which the applicable price

rule (first- vs. second-price, denoted by (. . . 1) and (. . . 2)) and the underlying bid

elicitation format (valuation and damage statements vs. expected net trade claims,

denoted by (T . . .) and (O . . .)) were systematically varied. Bearing in mind that the

bidders’ valuations and damages constituted private information, the investigated

mechanisms represent games of incomplete information. This fact immediately raises
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questions concerning the mechanisms’ practical incentive compatibility which can be

assessed by inspecting the prominence of both truthful reporting and strategic bid

manipulations. With respect to the secondary objective, we quantified the distinct

mechanisms’ relative and allocation efficiency and investigated their distributional

effects.

Most bidders exhibit largely systematic and economically sensible bidding pat-

terns. As a general rule, stated bids (i.e., valuations, damages, or expected net

trades) monotonically increase in the value of their underlying values (i.e., the bid-

ders’ types). We further observe that the empirical bid functions in the various

treatments and their simulation counterparts feature meaningful similarities. Most

bidders immediately discern the lacking incentive compatibility of all four allocation

mechanisms and, as a result, strategically misrepresent their private information

with the aim of appropriating extra rents. While private valuations of the auctioned

good are partly under- (T1) and partly overstated (T2), potential damages - due

to the good’s external effect - are almost uniformly overstated. Truthful reporting

despite the mechanisms’ adverse incentive structure only is observed in a small mi-

nority of bidders (14% in (T1/2)) and, moreover, is found to further decline with

experience.

This regularity is indicative in pointing out that - when having to choose between

truthfully reporting one’s private information or bidding strategically in auction

settings - a sizable fraction of individuals will opt for the latter. In view of our results,

individuals, on average, do not entertain strong intrinsic preferences for truth-telling

in auction scenarios that feature asymmetric information and lack the economic

incentives to make truthful reporting the dominant strategy. More broadly, this

behavioral attitude takes on economic relevance when we consider that deviations

from truthful reporting increase the likelihood of inefficient allocation outcomes.

Nonetheless, we also observe that bidders converge in their individual behavior

over time such that - despite strategic bid manipulations - the bidder with the

actually superior net trade is correctly identified with increasing probability. As

a consequence, both allocation efficiency and individual profits systematically rise

over time to eventually attain appreciable levels. Despite the mechanisms’ lack

of incentive compatibility, the efficiency of observed allocation outcomes thus only

is marginally inferior to the full efficiency outcome that would result from truthful

reporting. In all, it seems that the absence of strategy proofness in the four allocation

mechanisms only is of secondary economic relevance.

Corroborating preceding experimental findings (e.g., Güth et al., 2002), we fur-

ther provide supporting evidence that allocation mechanisms implementing the first-
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price rule may systematically outperform their second-price counterparts. By con-

trast, we do not discern structural differences between one- and two-dimensional

allocation mechanisms in terms of their respective efficiency, once the applicable

price rule is controlled for. Lastly, we identify one allocation mechanism which

relies on eliciting expected net trades and employs the first-price rule (i.e., mecha-

nism (O1)) to systematically outperform all other considered mechanisms in terms

of externality regulation, allocation efficiency, and an equitable income distribu-

tion. Hence, this mechanism may be considered as a helpful tool to solve particular

classes of allocation problems that involve private information, asymmetric bidders,

and negative externalities.

26

Jena Economic Research Papers 2008-030



References

Bouveret, S. and Lang, J. (2005). Efficiency and envy-freeness in fair division of

indivisible goods: Logical representation and complexity. Working paper.

Brams, S., Edelman, P., and Fishburn, P. (2003). Fair division of indivisible items.

Theory and Decision, 55(2):147–180.

Bulow, J. and Roberts, J. (1989). The simple economics of optimal auctions. Journal

of Political Economy, 97(5):1060–1090.

Cramton, P., Shoham, Y., and Steinberg, R. (2006). Combinatorial Auctions. MIT

Press.

Crawford, V. and Heller, W. (1979). Fair division with indivisible commodities.

Journal of Economic Theory, 21(1):10–27.

Davis, D. and Holt, C. (1992). Experimental Economics. Princeton University Press.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experi-

ments. Experimental Economics, 10(2):171–178.

Frey, B., Oberholzer-Gee, F., and Eichenberger, R. (1996). The old lady visits

your backyard: A tale of morals and markets. Journal of Political Economy,

104(6):1297–1313.

Goetze, D. (1982). A decentralized mechanism for siting hazardous waste disposal

facilities. Public Choice, 39(3):361–370.

Greiner, B. (2004). The online recruitment system ORSEE 2.0 - A guide for the

organization of experiments in economics. Working paper.
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A Experimental instructions

The following instructions originally were written in German.

Welcome and thank you for participating in this experiment. For arriving in

time, you receive a fixed amount of e2.50. Please read the following instructions -

which are identical for all participants - carefully and, from now on, do not talk to

fellow participants anymore. In the experiment you can earn money whose amount

will depend on your own choices, as well as on the choices of other participants.

As a general rule, all of your decisions remain anonymous and cannot be related

to your name. If you have questions, please raise your hand. An experimenter will

then come to your place and answer your questions individually.

The general setting

In this experiment, you and other participants repeatedly bid for a single license

to implement a project which generates profits but, at the same time, hurts its

environment (e.g., an industrial plant). Throughout the experiment, you take part

in fifty bidding games in each of which you interact with two other bidders who were

randomly assigned to your group (of size three).

In each bidding game, every bidder is informed about two individual character-

istics that were randomly assigned to her, namely her “valuation” of the project

and her incured “damage” from the project. The former value denotes the bidder’s

economic gain if she were awarded the license. Think of this gain as earnings that

directly result from the profitable operation of an industrial plant. Valuations are

randomly and independently drawn for each bidder from the interval [125, 200]. In

this interval, all values have the same probability of being chosen.

The latter of the two values refers to the economic damage that the bidder

incurs if the license were issued to another bidder. In this case, the damage is

caused via negative side effects that originate from the winning bidder’s operating

facility. Analogously to valuations, damage values are randomly and independently

drawn from the interval [1, 50] with, again, all values therein being equally likely.

Bidders differ in the extent to which they derive benefits from implementing their

own project, as well as in the extent to which they are harmed by another bidder’s

production activity. Consequently, bidders’ individual valuations and damages are

very likely to - at times even substantially - differ.

Summarizing, each bidder hence is characterized by her “valuation” of the project,

i.e., the profit that she derives from implementing the project provided that she is

30

Jena Economic Research Papers 2008-030



awarded the license, and her “damage” from the project, i.e., the loss she suffers if

another bidder is awarded the license instead.

As a general rule, the license is awarded to the bidder

• for whom the difference between her stated valuation of the project and the

sum of the stated damages of her co-bidders is maximal (in (T1) and (T2)),

respectively

• who states the largest difference between her own valuation of the project and

her expectation about her co-bidders’ sum of damages (in (O1) and (O2)).

Prior to placing their bids, each bidder is informed about her individual valua-

tion and damage parameters. Note that each bidder only is informed about her own

characteristics, i.e, does not receive any information about her co-bidders’ character-

istics. At the end of each bidding game, bidders learn whether they were successful

in acquiring the license and are informed about their period incomes. In the follow-

ing, all participants are randomly reassigned to form new groups, as a consequence

they - in all likelihood - interact with a different set of bidders in the subsequent

bidding game.

In a nutshell, the four bidding mechanism can be summarized as follows:

• In (T1/2): Each bidder must state her individual valuation and damage

whereby these statements may - but need not - conform to the bidder’s true

valuation and damage. Stated valuations (damages) must assume values in

the interval [125, 200] ([1, 50]).

• In (O1/2): Each bidder must state her expected net trade which corresponds

to the difference between the bidder’s valuation and the sum of her co-bidders’

expected damages (as predicted by the bidder herself). The stated value must

lie within the interval [1, 198].

• Universally: One of the three bidders in a group - namely the one who wins the

bidding process - eventually is awarded the single license. More specifically,

the license is acquired by the bidder for whom the difference between her

stated valuation and the sum of the co-bidders’ stated damages is the maximal

(T1/T2), respectively who states the largest expected net trade (O1/2).

• To avoid excessive waiting periods, bidders are encouraged to enter their val-

uations and damages (T1/2), respectively their expected net trades (O1/2)

within a timespan of sixty seconds.

31

Jena Economic Research Papers 2008-030



How your periodic income is determined

Both as the winner of the auction or as an non-acquiring bidder, your period income

consists of several additive payments. As the winning bidder, you earn your valu-

ation of the project from which a specific portion is transfered to your co-bidders.

As a non-acquiring bidder, you incur an economic loss equal to your damage value,

but simultaneously receive a positive payment from the winning bidder as a com-

pensation. The latter payment which is transfered from the winning to each of the

two non-acquiring bidders is determined as follows:

transfer = 1
3

* (winning bidder’s stated valuation -

sum of co-bidders’ stated damages) (T1/2)

transfer = 1
3

* (winning bidder’s stated expected net trade) (O1/2)

Your periodic income in either of the two possible ex-post roles then equates to:

Income winner (T1/2):

own actual valuation - sum of co-bidders’ stated damages - 2 * transfer

Income winner (O1/2):

own actual valuation - 2 * transfer

Income non-acquirer (T1/2):

own stated damage - own actual damage + transfer

Income non-acquirer (O1/2):

transfer - own actual damage

Your final payment

At the end of the experiment, your periodic earnings over the fifty bidding games

are summed up and converted into euros at the rate of 100 ECU = e0.50, to which

the above mentioned fixed amount of e2.50 is added. The resulting amount then is

disbursed to you in cash.

Miscellaneous

Before starting with the experiment, we kindly ask you to fill in a control question-

naire on your computer screen. The questions therein are asked to ensure that you

have fully understood how the allocation mechanism operates and how your and

others’ payoffs are determined.

If you brought a mobile phone with you, please switch it off now. Also, please

remain calmly seated at your place throughout the entire experiment. If you have
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any questions, please raise your hand and an experimenter will come to your place

and answer them.
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B Simulation exercise

In the following, we rely on numerical methods to generate suitable benchmarks for

the four allocation mechanisms. While we acknowledge that an analytic solution

clearly is preferable to a numerically derived one, we cannot yet present the former

at this point.

In particular, the following aspects are problematic. Bidders interact in a stochas-

tic model in which private valuations (Hi) and damages (Ki) are independently

drawn from uniform distributions. In each treatment, the bidders’ payoff function

thus comprises two stochastic elements and additionally relies on order statistics of

the set of (expected) net trades (ν(n) in (T1) and (O1), ν(n−1) in (T2) and (O2)).

As a result, the specification of the functional forms of the single bid function in

(O1/2) and the two separate bid functions in (T1/2) is not immediately evident.

For simplicity, we henceforth arbitrarily assume all bid functions to be linear. As

a second issue, it is not evident either whether the two bid functions that yield the

predictions for ηi and κi in (T1/T2) should incorporate both the bidders’ valuations

Hi and damages Ki or whether they should only consider one of the two parameters

(see also Table 3).24

Considering the above difficulties in deriving the analytic solutions of the four

allocation mechanisms, it seems legitimate to also consider alternative approaches.

Numerical optimization may be one of them. This computational technique can be

applied to study problems where real-valued target functions are to be maximized

or minimized. In the following, we are particularly interested in a derivative-free

optimization algorithm referred to as “hill climbing” (see Norvig and Russell, 2002).

This approach belongs to the family of local search algorithms, is relatively simply

applied, and frequently yields solutions that are close approximations of those of

more advanced search algorithms.

In our setting, the target function denotes the economic gain from a marginal,

unilateral deviation from a particularly defined (set of) bid function(s). This ap-

proach equates to solving a fixed point problem and relies on the Nash equilibrium

property. Evidently, the four simulation exercises (one per treatment) are imple-

mented under the same conditions and constraints as the four auction treatments.25

In the initial step of the simulation, an arbitrary vector of bid function coefficients is

defined. From this starting point, the algorithm then repeatedly evaluates the bid-

24 The question is whether a bidder’s damage parameter Ki (valuation Hi) also shapes her stated
valuation ηi (stated damage κi).

25 Hence, each auction format always involves three bidders whose types are randomly drawn
from corresponding uniform distributions.
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der’s gains from deviating into the immediate surroundings of that vector. In this

process, the algorithm for instance investigates whether it pays to state a marginally

higher (lower) valuation than what is suggested by the current bid function spec-

ification.26 In a second step, the vector of coefficients is marginally adjusted in

the direction of the steepest ascend in profits. As a result, the bidder’s expected

profit henceforth surpasses the ones of her co-bidders. And third, in response to

this unilateral deviation, the latter bidders adopt the perpetrator’s bid vector and

thereby neutralize her extra rent.27 This process is iterated during a large number

of repetitions until the simulation satisfies a predefined stopping criterion.

Although the algorithm leads to a substantial improvement over the (random)

initial bid vector - in the sense that it approximates a fixed point and minimizes the

expected profit from unilateral deviations - it, however, fails to converge to a clear-

cut terminal state. Rather, the estimated bid vector persistently fluctuates in the

vicinity of the presumed terminal state while the intensity of bid vector adjustments

fails to monotonically decrease toward zero. In part, this behavior may be due

to the imperfect mapping of the uniform distributions which underlie the bidders’

valuations and damages (i.e., computer-generated random values actually are not

random). Alternatively, the algorithm’s failure to converge may be caused by local

maxima, ridges, and plateaus in the fitness landscape, or may be due to the hill

climbing mechanism itself which is not guaranteed to uniformly converge. To at

least obtain a rough estimate of the “optimal” bid vector, we use the coefficient

means of the estimated bid vector as “approximate” benchmarks (see Figure 7 and

Table 5).28 In section 4, we compare these simulated benchmarks with the elicited

bids from the experiment and their derived bid functions.

The simulation results can be summarized as follows. Coefficient estimates vary

substantially in the precision of their interval predictions. While several coefficients

(e.g., β0 and β3 in (T1/2)) can be ascertained with relative accuracy - in the sense

that they feature only small variances and interquartile ranges - others (e.g., β2 in

all treatments) can only be roughly approximated. Most coefficients assume interior

26 The gain or loss of the ceteris paribus adjustment of a single coefficient of the bid vector
is averaged over a sample of 1000 random combinations of valuation and damage parameters for
the bidder under consideration and her co-bidders. The simulation script (written in R) can be
obtained from the author upon request.

27 Given the stated adjustment dynamics, the search algorithm is limited to approximating a
symmetric equilibrium only.

28 In a second step, the game theoretical benchmarks should be analytically derived. This
would allow to unambiguously determine the correct functional form of the bid function(s) and
to exactly quantify - rather than to numerically approximate - the former’s respective coefficients.
Additionally, this approach would enable a more thorough equilibrium analysis with respect to
potential systematic over- or underbidding.
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Figure 7: Simulation results

Note: Coefficient estimates are derived from the simulation exercise.
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Table 5: Normative benchmarks

Treatment Dependent Coefficient estimates
variable Intercept Valuation (Hi) Damage (Ki)

β0 or β3 β1 β2

(T1) ηi 0.13 0.57 0.55
κi 0.25

(T2) ηi 0.11 0.66 0.72
κi 0.25

(O1) νi 0.11 0.84 0.95
(O2) νi 0.31 0.72 0.75

Note: Coefficient estimates are derived from the simulation exercise.

values in their domain, with the exception of β0(≈ 0) in (T1/2) and (O1) and

β3(≈ κ = 0.25) in (T1/2) which may be interpreted as border solutions. Systematic

bid shading in the sense of underbidding one’s actual valuation ηi is observed in

all treatments (with β1 < 1 being the scaling factor of Hi) whereby underbidding

tends to be slightly more pronounced in (T1) than in (T2). With respect to damage

claims, the simulation yields that overstating actual damages (β3 ≈ κ) in (T1/2)

seemingly is the dominant strategy.
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