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1 Introduction

Copulas play an increasingly important role in econometrics. For an arbitrary multivariate
distribution they allow to separate the marginal distributions and the dependency model. As
a result we obtain a convenient tool to analyse the complex relationship between variables. In
particular, all common measures of dependence can be given in terms of the copula function.
Modeling using copulas offers wide flexibility in terms of the form of dependence and is often
encountered in applications from financial econometrics, hydrology, medicine, etc.

The copulas were first introduced in the seminal paper of Sklar (1959). Here we restate the
Sklar’s theorem.

Theorem 1. Let F' be an arbitrary k-dimensional continuous distribution function. Then the
associated copula is unique and defined as a continuous function C : [0,1]% — [0, 1] which satisfies
the equality

F(‘rlv"ka) = C{Fl(xl)77Fk<xk)}7 L1y, Tk € R7

where Fy (1), ..., Fi(xy) are the respective marginal distributions.

Alternatively the copula can be defined as an arbitrary distribution function on [0,1]* with
all margins being uniform. As it follows form the theorem, the copula function captures the
dependency between variables, with the impact of the marginal distributions being eliminated.
The Sklar’s Theorem allows to express the copula function directly by

Cugy ... ,ug) = F{Ffl(ul), e ,F,;l(uk)}, ug, ... ug € 10,1],
where F;(-),..., F;_!(:) are the corresponding quantile functions.

If the cdf F belongs to the class of elliptical distributions, for example, the Normal distribution,
then this results in an elliptical copula. Note, however, that this copula cannot be given explicitly,
because F' and the inverse marginal distributions F; have only integral representations. This de-
preciates the usefulness of the elliptical copulas. As a result, an important class of Archimedean
copulas has evolved. The k-dimensional Archimedean copula function C' : [0,1]F — [0,1] is

defined as

Cut,...,up) = ¢p{o  (ur) +---+ o (ur)}, u,...,ux €0,1], (1)

where ¢ with ¢(0) = 1 and ¢(c0) = 0 is called the generator of the copula. McNeil and Neslehova
(2008) provide necessary and sufficient conditions for ¢ to generate a feasible Archimedean
copula. The generator ¢ is required to be k-monotone, i.e. differentiable up to the order k — 2,
with (=1)'¢®(z) > 0,4 = 0,...,k — 2 for any = € [0,00) and with (—1)¥"2¢*~2)(z) being
nondecreasing and convex on [0,00). We consider a stronger assumption that ¢ is a completely
monotone function, i.e. (—1)'¢®(x) > 0 for all i > 0. The class of feasible generator functions
we define by (see Kimberling (1974), Theorem 1 and Theorem 2)

L={¢:[0;00) = [0,1] | $(0) = 1, ¢(00) = 0; (~1)’¢ > 0; i =1,...,00}.

A detailed review of the properties of Archimedean copulas can be found in McNeil and Ne§lehova
(2008). Table 4.1 of Nelsen (2006) contains a list of common one-parameter generator functions.
Throughout the paper we also consider only the generator functions with a single parameter,
however, most of the theory can be easily extended to the case of several parameters.



From the Bernstein’s Theorem (Bernstein (1928)) it follows that each ¢ € L is a Laplace
transform of some distribution function. This allows us to relate the Archimedean copulas
to the Laplace transforms (see Joe (1996)). Let M be the cdf of a positive random variable and
¢ denotes its Laplace transform, i.e. ¢(t) = [ e ™dM (w). For an arbitrary cdf F' there exists
a unique cdf G, such that

Pla) = / G (@) dM (0) = d{—n G(x)}.
0

Now consider a k-variate cumulative distribution function F' with margins Fi, ..., Fx. Then it
holds that

o0 k k
F(ai,...,z1) = / Gf (1) Gii(wy)dM (@) = ¢ {— Sl Gim)} =0 [Z ¢ Fi(w:)}
0 i=1 i=1

This implies that the copula of F' is given by (1). The representation of the copula in terms
of the Laplace transforms is very useful for simulation purposes (see Whelan (2004), McNeil
(2008), Hofert (2008), Marshall and Olkin (1988)).

Note that the Archimedean copula is symmetric with respect to the permutation of variables, i.e.
the distribution is exchangeable. Furthermore, the multivariate dependency structure depends
on a single parameter of the generator function ¢. This is very restrictive and we can use
Laplace transforms to derive flexible extensions. First, note that G{ - --- - G} can be seen as
a product copula of the cumulative distribution functions G¢,...,Gf. Second, note that the
whole model depends on a single cumulative distribution function M. Replacing the product
copula G - --- - G with an arbitrary multivariate copula K(G¢,...,GY) and replacing M («)
with some k-variate distribution My, such that the jth univariate margin has Laplace transform
¢j, j=1,...,k, we obtain a more general type of dependency (Joe (1997)). This implies, for
example, the following copula

C(ul,...7uk): (2)

/ e / G?l (Ul)Ggl (UQ)dMl (011, 012) G?Q (Ug)dMQ(OéQ, Oég) e szil(uk)de_l(Ozk_l).
0 0

This generalisation of the multivariate Archimedean copulas leads to the class of hierarchi-
cal Archimedean copulas (HAC). Other orders of integration and combinations of G; functions
lead to different dependencies. For example, the fully nested (2) HAC C(uq,...,ux) can be
rewritten in terms of the generator functions arising from the cumulative distribution functions
My, ..., My_q as

Cugy ... ug) =
= o1[ér ' 0 dalo [0 0 B {eyty (wa)+
+ bty (u2)} + ¢ty (ua)] - + ¢y (u—1) } + 97 (un)]
= ¢1{¢7 " 0 Colun, .. up1) + 67 ()} = Cr{Calur, ... up—1), ur}.
The sufficient conditions on the generator functions which guarantee that C'is a copula are given

in Theorem 4.4 McNeil (2008). Let £* denote the class of functions with a completely monotone
first derivative

L£*={w:[0;00) = [0,00) |w(0) = 0, w(oo) = o0; (—1)" 'w® >0;i=1,...,00}.



Table 1: Sufficient conditions on the parameters of generator function of Nelsen (2006), Table
4.1 to guarantee the existence of HAC.

family ) ot ¢9_11 o ¢, conditions

Gumbel exp{—xz1/%} (—Int)? x01/02 01 <6, 0 €[l,00)
Clayton (O 4 1)~1/? F(@0—1) é{(@gx 4 1)0:/02 1} 61 <63, 6 € (0,00)
Nel. 422 1 —z!/f (1—2)? x01/02 01 <0, 0 €[1,00)
Nel. 4.2.3 1% In 1=00=2) gy ey 01 <0, 6€0,1)
Frank —sIn{e®(e?-1)+1} —In e;it:ll —In {1+eit(ij9217_1)1}91/92_1 01 <05, 0 € (0,00)

It holds that if ¢; € £ for ¢ = 1,...,k — 1 and ¢; o ¢;+1 € L* has a completely monotone
derivative for i = 1,...,k — 2 then C' is a copula. As noted by Lemma 4.1 in McNeil (2008), the
fact that ¢; 0 941 € L* for it =1,...,k — 2 also implies that ¢; 0o p;yp € L* for i =1,...,k—2.

Note that generators ¢; within a HAC can come either from a single generator family or from
different generator families. If ¢;’s belong to the same family, then the complete monotonicity
of ¢; o ¢;+1 imposes some constraints on the parameters 61,...,60;_1. Table 1 provides these
constrains for different generators from Nelsen (2006), Table 4.1. For the majority of the copulas
the parameters should decrease from the lowest to the highest level, to guarantee a feasible
HAC. However, if we consider the generators from different families within a single HAC, the
condition of complete monotonicity is not always fulfilled and each particular case should be
analysed separately.

The aim of this paper is to provide distributional properties of HACs. First we show that if the
true distribution is based on HAC then we can completely recover the true structure of HAC from
all bivariate marginal distributions. This property is helpful in applications, when we estimate
the HAC from data. For Normal distribution, for example, the form of the dependency is fixed
and only the correlation coefficients must be estimated. For HAC both the structure and the
parameters of the generators function are unknown. The established result implies that we can
first estimate all bivariate copulas and then recover the tree of the HAC. Alternatively, we are
forced to enumerate all possible trees, estimate the corresponding multivariate copulas and apply
goodness-of-fit tests to determine the HAC with the best fit. This approach is computationally
much more demanding compared with the aggregation of bivariate copulas.

Further we derive the distribution of the value of the HAC. This generalises the results of Genest
and Rivest (1993) to the HAC. We take explicitly into account the hierarchical structure of the
HAC and provide recursive formulas for the cdf by different types of aggregation. The results
given in Section 3 can be used for developing of confidence intervals and goodness-of-fit tests.
Section 4 summarises the multivariate dependence measures used in the multivariate setup and
argues which of them are most convenient to be used with HAC. Section 5 contains results on
the dependence orderings of HAC-based distributions. It is shown under which conditions on the
generator functions one HAC is more concordant than another one. Finally Section 5 discussed
the properties of HAC from the perspective of extreme value theory and provides a detailed
analysis of tail dependence. In this section we establish the form of the extreme value copula
and provide explicit formulas for two upper and lower tail dependence measures. All proofs are
given in the appendix.



2 Determining the structure

In contrary to other distributional models, in HAC both the structure and the parameters of the
copula must be specified or estimated. Okhrin, Okhrin and Schmid (2009) consider empirical
methods for determining and estimation of the structure. If the structure is fixed, we can
apply the maximum-likelihood approach to estimate the parameters. However, the choice of the
structure itself is not obvious. One possible approach is to enumerate all structures, estimate the
parameters and apply a goodness-of-fit test to determine the best one. This method is, however,
unrealistic in higher dimensions. The results established in this section help to overcome this
problem. In particular we show that if the true distribution is based on HAC, then we can
completely recover the true distribution from all bivariate margins. This implies that instead of
estimating all multivariate structures it suffices to estimate all bivariate copulas and use then to
recover the full distribution. This makes the estimation of HAC particularly attractive in terms
of computational efforts. The next proposition summarises the result.

Proposition 1. Let F' be an arbitrary multivariate distribution function based on HAC. Then
F' can be uniquely recovered from the marginal distribution functions and all bivariate copula
functions.

Assuming that marginal distributions are continuous, from the Sklar Theorem we know that
the multivariate distribution function F' can be split into margins and the copula function.
Therefore, to recover the distribution we need to recover the structure of the HAC. The proof
of the proposition consists of three parts. First, we show that any bivariate margin is a copula
with the generator function which is equal to one of the generators of the full structure. Second,
we show that the for any bivariate copula with a generator function from the full structure,
there exists a couple of variables with the same joint bivariate distribution. Third, we suggest
an aggregation procedure and show that the recovered HAC is unique.

Let
Fir1 = {C1 : [0; l]k — [0;1] : C1 = d)g[qb;l(ul)—k. ) .+¢;1(uk)],¢ €L,0€O,uy,...,u € [0;1]}

be the family of simple k-dimensional Archimedean copulas, where © is the set of allowable
parameters of . The elements of © could be of any dimension, but in general they are scalars.
Based on this class we introduce the family of k-dimensional HACs with r nodes

Fir = {Chr:[0; 1% — [0;1] :

Crr = C{Ck1r1 (uk‘o:la R uk1)v AR C/fm—k’mflﬂ’m (u’fmfl""l’ T ’ukm:k)}’

m

C € Frty Coymty v € Froymiey_ 1 rinVi=1,...,m, ZTi =r— 1},
=1

where r; denotes the number of nodes in the i-th subcopula and the variables are reordered
without loss of generality. If k; — k;—1 = 1 then r;, = 1 and Ci1(u;) = wu;. For example,
C = C1{Cs(u1,u2),us} € Fza, where C1,Cy € Fy; are nodes, which are also copulas. Let
N (C) denote the set of the generator functions used in the HAC C. Let also €, denote the
operator which returns a k-dimensional copula given a generator functions

Co(f)(ur, - yur) = FAFHun) + . f 7 (un) )



Based on this notation, €2{N(C)} C Fa is the set of all bivariate Archimedean copulas used
in the structure of C € Fy,.

Let now a k-dimensional HAC C € Fj, be fixed. The next remark shows that for any bivari-
ate copula with generator from N(C) there exists a pair of variables with the same bivariate
distribution.

Remark 1. Vi,j=1,...,k, i # j, E”Cij S Q:Q{N(C)} C .7:2’1 : (XZ',XJ') ~ CZJ
As an example we consider the following 4-dimensional case with
C(ul, ... ,U4) = 01{02(ul, UQ), Cg(U3, U4)} with Q:Q{N(C)} = {Cl, Cs, 03}

For an arbitrary pair of variables w; and u; from uq,...,u4, there exists a copula C;; from
{C1,C5,C3} such that (u;,uj) ~ Cjj. For example (u1,u3) ~ Ci{Ca(u,1),C3(us,1)} =
C1(u1,us3). This implies that the bivariate margins use the same generators as the generators
in the nodes of the HAC.

The second step of the proof of proposition shows the inverse relationship between the bivariate
margins and the set of all bivariate copulas with the generator function from A (C). In particular
it shows that for a generator on any node, there exists a pair of variables with the bivariate
distribution given by an Archimedean copula with the same generator.

Remark 2. VCLJ‘ € Q:Q{N(C)} - .7'-271, Hi*,j* = 1, .. .,/{7 : (Xi*,Xj*) ~ C”

Next we describe the algorithm of recovering the structure from the bivariate margins. Let Cy
denote such bivariate copula that each variable belongs to at least one bivariate margin given
by C. This copula is the top-level copula. From the Remark 1 if the copula

C = Cl{CQ(’U,l, co ,ukl), e 7Cm(ukm_1+1’ N ,uk)}

then (ui,uj) ~ (1, where i € [il, ig] NN,j € ([1, k‘]\[’il,ig]) NN, (i1,12) € {(1, k1), (kme1 +
1,k)}.

At the next step we drop all bivariate margins given by C; and identify the sets of pairs of
variables with the bivariate distributions given by Cs to C),. For the subtrees we proceed in
the same way as for C';. To show that the structure, that we recovered is equal to the true
one, one needs to explore all bivariate margins. A difference at one of the nodes would imply a

change in one or several bivariate margins. But the bivariate marginal distribution coincide by
construction.

For simplicity let us consider an example:
C(u1, ..., up) = C1{C2(u1, uz), C3{uz, Ca(us, us), ug}).

The bivariate marginal distributions are then given by



In line with Remarks 1 and 2 the set of bivariate margins is equal to
€2{"/\/’(Cj)} = {Cl('7 ')7 CQ('7 ')7 03(‘7 ')7 04('7 )}

We observe that each variable belongs to at least one bivariate margin given by C;. This implies
that the distribution of uy,...,us has C at the top level. Next we drop all margins given by
C1. Further we proceed similarly with the rest of the margins, in particular with Cs since it
covers the largest set of variables ug, u4, us, ug. This implies that C3 is at the top level of the
subcopula containing us, u4, us, ug. Having information only for the copulas C1 and Cj

ULyenn,Ug ~~ Cl{ul,@@, Cg(Ug, Ug, U5, Uﬁ)}

The remaining copula functions are Cy and C4 and they join ui,us and ug,us respectively.
Summarising we obtain

(ut,...,ug) ~ C1[Ca(u1,uz), C3{us, Ca(ua, us), ug}]

This results in the correct structure. Similarly we can apply inverse procedure by joining vari-
ables into pseudo-random variables, using low-level copulas. This problem is related to the
multidimensional scaling problem, where having all paired distances between the cities, one has
to recover the whole map, see Hérdle and Simar (2007).

3 Distribution of HAC

For testing purposes and construction of confidence intervals we are interested in the distribu-
tions of the empirical and the true copula. Let V' = C{Fi(X1),..., Fx(Xy)} and let K (t) denote
the distribution function (K-distribution) of the random variable V. Genest and Rivest (1993)
introduced a nonparametric estimator of K in the case £ = 2. It is based on the concept of
Kendall’s process. Suppose that an independent random sample X7 = (Xi1,..., X11)', ...,
X, = (Xn1,-- ., Xuk) of the vector X = (X7, .., Xi) is given. Let

1
n—+1

z": {X; <X;}

=1,

V;,n =

and K, denote the empirical distribution function of the V;,’s. Here the inequality a < b
means that all components of the vector a are less or equal than those of the vector b. Then
the Kendall process is given by

an(t) = Vn{Kn(t) — K(t)}.

Barbe, Genest, Ghoudi and Rémillard (1996) examine the limiting behavior of the empirical
process ay,(t) for k > 2 and derived explicit formulas of its density (¢) and its distribution
function K (t) for general multivariate copulas. The authors provide explicit results for product
and multivariate exchangeable Archimedean copulas. The paper of Wang and Wells (2000) used
Kendall’s process to determine the copula for failure data. In this section we adopt and extend
the results of Barbe et al. (1996) to find the K-distribution of a HAC.

At the first step we exploit the hierarchical structure of the HAC. We consider a HAC of the form
C’l{ul, CQ(UQ, e ,uk)} Let U; ~ U[O, 1] and let V5 = CQ(UQ, ce Uk) ~ Ks. In the next theorem
we propose a recursive procedure for calculating the distribution function of Vi = C1(Uy, V)
which is based on the knowledge of the distribution function of V5. This approach is particularly
useful when applied to fully nested HACs.



Theorem 2. Let Uy ~ U[0,1], Vo ~ Ky and let P(U; < z,Va < y) = Ci{z, Ka(y)} with
Ci(a,b) = ¢{¢ " a)+ o1 (b)} for a,b € [0,1]. Assume that ¢ : [0,00) — [0,1] is strictly
decreasing with ¢(0) = 1 and ¢(oc0) = 0 and that ¢’ is strictly increasing and continuous.
Moreover, suppose that Ko is continuous. Suppose that the random variable Vo takes values in
[0,1]. Then the distribution function K of the random variable Vi = C1(Uy, Va) is given by

Ki(t) = t- / ¢' (67 (1) + ¢~ [K2{o(u)} —u])du for te0,1]. (3)

In Theorem 2 V5 is an arbitrary random variable on [0, 1] and not necessarily a copula. In the
special case that V5 is uniformly distributed on [0, 1] formula (3) reduces to Theorem 4.3.4 of
Nelsen (2006) or to the result of Genest and Rivest (1993).

Next we consider a copula of the type V3 = C3(Vy, Vs) with Vy = Cy(Uy,...,Uy) and V5 =
C5(Ups1, - .., Uy). Making use of the distribution functions of V4 and V5 a representation of the
distribution function of V3 is given in the next theorem.

Theorem 3. Let Vjy ~ Ky and V5 ~ K5 and P(Vy < z,V5 < y) = Cs{Ky(x), K5(y)} with
Cs(a,b) = ¢{¢~a)+ o1 (b)} for a,b € [0,1]. Assume that ¢ : [0,00) — [0,1] is strictly
decreasing with ¢(0) = 1 and ¢(c0) = 0 and that ¢ is strictly increasing and continuous.
Moreover, suppose that K4 and K5 are continuous and that ¢~ o K40 ¢ and ¢~ o K50 ¢ are

of bounded variation on [0,¢~1(t)]. Suppose that the random variables Vy and Vs take values in
[0,1] then the distribution function Ks of the random variable Vs = C3(Vy, Vs) is given by

d71(t)
Ks(t) = Ka(t) - / S0 K (o)) + 6 (Kalold™ () — w)]) } do™ [Ka{o(w)}] (4)

0

fort e [0,1].

If ¢~ '[K4{¢(x)}] has a continuous derivative then (4) can be written as

/¢'{¢ [K5{o(u)}] + ¢ (Kalp{o 1 (t) —

W)} g ,
¢ {(p~ o Kyo)~L(u)} Ki{o(u)}¢' (u)du

Ks(t)

and similarly for the second representation. Theorem 3 reduces to Theorem 2 if Vy or V5 are
uniformly distributed on [0, 1]. Moreover, by taking the derivative of the generator function it
can be shown that the expression in (4) is symmetric with respect to K4 and K.

Note that using these two results we can establish the distribution function for an arbitrary
grouping of the variables at the top level. For example, consider the copula Ci{uy, ua, Co(us, ..., ux)}.
From the properties of Archimedean copulas, this copula is equivalent to C1[u1, C1{u2, Co(us, ..., ux)}]
and thus the result of Theorem 2 can be applied.

Theorem 2 and Theorem 3 provide recursive presentations for certain copula structures. In the
next theorem we provide a direct formula for the distribution function of a copula of the form
C{u1, Cr—1(ua, ..., ur)}. It is an extension of the result of Barbe et al. (1996). Here we assume
that uy lies on the top level of the copula. Other cases could be derived for every single form of
the copula, but it is difficult to present a general result.



Theorem 4. Consider a HAC of the form

Clu,...,ug) = Cr{ur, Calu, ..., ur)} = é1 [¢),  (ug) + o7 {Ca(u, .., up)}] -

Assume that ¢ : [0,00) — [0, 1] is strictly decreasing and continuously differentiable with ¢1(0) =
1. Then the distribution function K1 of C(uq,..,ux) is equal to

t t
Ki(t)= [ k(z)dx = oo | hgp{x,ug, .. ugtdug .. dug de o for te[0,1],
i [ f

0 (0,1)k—1
where

& {or () — ¢1 ' o Colug, ..., up)}

oh{er ()}
c [qﬁl{qﬁfl(t) - gbfl o Co(ug, ... ,ug)},ug,..., uk]
{Cous, ..., ug) >t} for (us,...,ux) € [0,1]F 1.

hk<t,UQ, . ,uk) =

X

X

c(uy, .., ux) denotes the copula density of C.
The practical calculation of K7 using Theorem 4 seems to be quite difficult because of multi-
variate integration. As an example we consider the Clayton family.

Example 1. Here we consider the simplest three-dimensional fully nested Archimedean copula
with Clayton generator functions

do(t) = (0t +1)71/°,

The copula function is given by

1
_0a 0y
C(ur,us, us; 01, 02) = Co, {Cy, (ur,u2),us} = {(us ™ +ug ™ —1)" % fug® —1}
and
0 0 0 -2 g1 o2 b2 e
hs(u1,ug,t;01,62) = {ug LT (uz 1_ 1)} (wug)™ " prr @ <p1 +ro — 1)

S 2
X {1 — tel (p2 — 1)} 1 {pl(l + 601 + 92) —|—7~9f (91 — 92) + 69 — 91}

—01 —02 —0
|
X (1+92)I{“1 Ll <0}
1

0
with
O_it+3
pi = (ul_ei +up % — 1) % fori=1,2
ro= 1+t " — pa.

4 Multivariate Dependence Measures

If we consider a multivariate random vector we are often interested in the dependency measures
between the components of the vector. In case of the Gaussian distribution the whole dependence



can be uniquely characterized by the linear correlation coefficients. Since it is a measure of the
linear dependency between random variables, it is not an appropriate measure for non-linear
relationships. As an alternative correlation coefficients based on ranks of the ordered data can
be considered. The most popular measure is Kendall’s 7. For a bivariate copula it is defined as

1 1
:4//0 ul,U2 dC ul,U2)—1
0 0

The extension to the multivariate case is not straightforward and unique. A multivariate version
of Kendall’s 7 and its empirical representation is proposed in Barbe et al. (1996) as an affine
transformation of the expectations of the variables V and V,, respectively.

2k 2k 2k
2k 1 2k
=1

where k() is the density function of the cdf K(t). This justifies the name Kendall’s process in
the last section as coined by Genest and Rivest (1993).

Another popular measure of dependence is Spearman’s p. In the bivariate case it is given by

11 12 11
urug dC'(u1, ug) — = (u1,u2) du du—f
p2:fo fo 1U2 1( 1,U2) 2 fo fo 11 21 1 dug 12//07“,”2 ) duy dus—3.
12 37 1 00

Two alternative multivariate extensions are given by

Pk, = 2k_k(4];:_1){2k / C(u)du—l},

k+1 (o,

[0,1]

Pk, was introduced by Wolff (1980) and pg, in Joe (1997) and Nelsen (2006). Both measures
were thoroughly investigated by Schmid and Schmidt (2006a) and Schmid and Schmidt (2006b).
The explicit computation of pg, and py, is difficult for almost all copula functions. Therefore,
as a simplification a pairwise version of Spearman’s p was proposed in Kendall (1970)

K\ 2
Pr = 22 Z() / leuv)dmlv_l_(kl)kz%(m’kl—i_g)_l?

m<l 0.1]2

where Cp,; is the bivariate copula for the variables u,, and u; and psj; denotes the bivariate
Spearman’s p for ug and u;. The last representation of Spearman’s p is very useful for HACs,
because all bivariate sub copulas in a HAC are simple bivariate Archimedean copulas. Hence
prr could be easily computed for a HAC by calculating all bivariate Spearman’s p’s.

Example 2. For the simple exchangeable Archimedean copula the pairwise Spearman’s py, is

(k —2)!
24

where py is the bivariate Spearman’s p based on the generator function of the given copula.

Pkr = (PZ + 3) - 1)

10



As the third multivariate dependence measure we discuss Blomqvist’s 3. In the bivariate and
in the multivariate cases it is computed as follows

fa = P{x—=x)(y—y) >0} —P{(x-x)(y —y) <0},
2k—1

B = g {C(/2,...,1/2) + T(1/2,...,1/2) - 2175},

where X and ¥ are the population medians, and C(u) = 1+ Y, s(—1)Cy(uj; j € s) is the
survival copula and S is the set of all subsets of {1, ..., k}. Schmid and Schmidt (2006¢) provide
a detailed discussion of these measures.

Example 3. For the k-dimensional exchangeable Archimedean copula the Blomquist’s 3 in terms
of the generator functions is given by

2k—1

-1 e % k - —1 1-k
b= g |l /) + o0 (4 ation a2 -2

Example 4. Blomquist’s 3 for the simplest two-dimensional fully nested Archimedean copula
C(u1,ua,us, b1,02) = Cp,{Cp, (u1,uz2),us} with the generator functions ¢p, and ¢g, respectively
s given by

@=§mﬁw$um»+§%ﬁwﬁﬂﬂﬂ—L

For different generator functions this reduces to the expressions summarized in the following
table.

family B33

Clayton %(291‘*‘1 — 1)_1 01 + %(292+1 _ 1)—1 B2 _
Gumbel -1+ %(exp{—21/91 In2} + 2exp{—2'/%1n 2})
Nelsen 4.2.2  L(9 —21+1/61 _ 92+1/61)

The considered measures depend on the copula function and can be used to measure the de-
pendence of copula-based distributions. Unfortunately, there are numerous drawbacks of these
measures. First, there is no unique decision on the superiority of one of the measures. There
are papers which compare these measures in the bivariate framework (Chen (2004), Durrleman,
Nikeghbali and Roncalli (2000), Fredricks and Nelsen (2004), etc.), however, nothing similar has
been done in the multivariate case. Second, it is very restrictive to use a single scalar measure to
quantify all the relationships between the components of a k-dimensional random vector. Third,
Kendall’s 7 and Spearman’s p are difficult to compute explicitly because of the multivariate in-
tegrals of the copula functions. Nevertheless, the estimators are readily available. Fourth, there
is no unique method how to extend a bivariate dependence measure to the multivariate case.
This inflates the number of candidates for dependence measures and makes the conclusions of
empirical studies less transparent. Summarizing, due to their simplicity, we recommend to use
the multivariate extension of Blomqvist’s 3 or the pairwise multivariate Spearman’s pg, for the
HAC models.
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5 Dependence Orderings

Dependence orderings allows us to compare the strength of the dependence imposed by different
copula functions. In this section we show some necessary conditions under which one HAC is
more concordant than other. By definition (Joe (1997), p.37), C’ is more concordant than C' if

C <.C" = C(x) < C'(x) and C(x) < C'(x) ¥Yx € [0;1]*.

This type of the ordering is also called positive quadrant ordering (PQD) or upper orthant
ordering (see Miiller and Stoyan (2002)). The case of two multivariate normal distributions
gives us interesting insights into this ordering. Let X ~ Ni(p,X) and X' ~ Ni(p/,X'). If
Wi = i, o = oy for i =1,...,k, and oy gal’-j for 1 <i< j <kthen X <. X'

In the bivariate case the most concordant is the Fréchet upper bound and the most discordant
copula is the Fréchet lower bound. Another peculiarity of the bivariate case is the relationship
between the concordance ordering the dependence measures. It appears that if C1 and Cs are
two copulas with Kendall’s taus 71, 72, Spearman rhos p1, ps, tail dependence parameters Ay,
A2, Blomqvist’s betas (1, O2 respectively, then C7 <. Co implies that 71 < 19, p1 < p2, A1 < A9
(Joe (1997)) and 1 < (B2 (Schmid and Schmidt (2006¢)).

Several interesting results can be derived if C' is an Archimedean copula. First note that there is
no sharp lower bound for the general class of copulas, however McNeil and Neslehové (2008) con-
struct the sharp lower bound in the class of Archimedean copulas. Thus there is an Archimedean
copula CF, such that C* <. C for any Archimedean copula C. Joe (1997) considers in Theorem
4.8, 4.9 and 4.10 three and four dimensional HACs with different fixed structures. The theorems
provide the conditions on the top level generator functions to guarantee the concordance of the
HACs, assuming that the generators at lower levels are the same. In Joe (1997) the author also
states that these theorems could be easily extended to any messy structure of the copula. Next
we provide a general results for an arbitrary tree. The proof uses explicitly the hierarchical
structure of the copula.

Theorem 5. If two feasible hierarchical Archimedean copulas C' and C? differ only by the
generator functions on the top level satisfying the condition ¢1_1 o ¢ € L*, then C1 <. C?.

In the next theorem we generalize this result to changes at an arbitrary level of the copula.

Theorem 6. If two hierarchical Archimedean copulas C' = CY (uq,...,ug) and C? = C% (uq,...
1 2

differ only by the generator functions on the level r as

¢1 = (¢1?"' 7¢T*17¢a ¢T+17"'7¢p) and ¢2 = (¢17"' a¢7‘*1a¢*a¢r+17"'7¢p)

with ¢~ o ¢* € L*, then C' <, C2.

Note that the condition we impose on the generator function is the sufficient condition to con-
struct a HAC (see Theorem 4.4 of McNeil (2008)). For example, consider two HACs with the
same structure and with the same generator functions on the corresponding levels. For some
fixed level, let 8 be the parameter of the generator function for the first copula, and 6, for the
second. If the conditions given in the last column hold, then the first copula is more concordant
than the second.
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6 Extreme Value Theory and Tail Dependency

6.1 Extreme Value Copula

In the univariate case the distribution of the maxima or minima of a sample is defined as follows
(see Embrechts, Kliippelberg and Mikosch (2001))

Definition 1. For independent identically distributed random variables X,, if there exist con-

d

stants b, > 0, ap, € R, a non-degenerating function F* with %;b" — F* where m* =

max{X1,...,Xpn}, then

+ 1/7
F*(w,m‘*‘):exp{— <1—7‘m 2 a) }

with (1 — T@) >0 and v = (7,a,b).

The multivariate extreme value distribution can be characterised by the following theorem

Theorem 7 (Deheuvels (1978)). Let {X1;,..., Xkiti=1,..n be a sequence of the random vec-

tors with the distribution function F', marginal distributions Fi, ..., F}, and copula C. Let also
M](n) = maxi<;<n Xji, j = 1,...,k be the componentwise mazima. Then
M(n) _ M(n) _
lim P ﬁgxl,...,ugm = F*(x1,...,zk),
n—00 bln bkn

with bj, >0, 7=1,...,k, n>1 if and only if

1. for all j = 1,...,k there exist some constants aj, and bj, and a non-degenerating limit
distribution F such that

M — ajp
lim P{H < 1:]} = Fi(z;), Vzj €R;

2. there exists a copula C* such that

C*(u,...,ux) = lim C"(uyn, ... ,u,i,/n).

n—oo

In this case we say that copula C* is the extreme valued copula and the copula C belongs to
the maximum domain of attraction of the copula C* (written C € M DA(C™*)). This implies
that a multivariate distribution with all margins being extreme-valued distributions and with an
extreme-valued copula is a multivariate extreme-valued distribution. Genest and Rivest (1989)
show that the only Archimedean extreme-valued copula is the Gumbel copula. Thus, each
bivariate Archimedean copula belongs to the domain of attraction of the Gumbel copula. Using
Proposition 1 and the result of Genest and Rivest (1989) we state the next theorem.

Theorem 8. If C € F,,,, C* € Fpy, and C € MDA(C*) then 11 = ra, Vg € N(C*), ¢g =
exp{—a:l/e} and the structure of C' is equal to the structure of C*.

13



6.2 Tail Dependency

Next we consider the tail dependence of HAC. The tail behavior characterises the tendency of
random variables to take extreme values simultaneously. The upper and lower tail indices of
two random variables X; ~ F; and X5 ~ Fy are given by

Ay = lim P{X, > Fy'(u) | X1 > F; M (u)}

u—1-
R O )P S T e 6 10
u—l— 1 —u u—1- 1—wu
Ap = lim P{X, < Fytu) | X < F{ Y (w)}
= lim 7C(u,u)'
u—0+ U

The upper index is equal to limit of the probability that one variable exceed some predeter-
mined limit conditional on the fact that another variable exceeded this limit. Similarly the
lower limit describes the tendency to simultaneous undershooting some limit. We replicate the
Corollary 5.4.3 of Nelsen (1997) which states explicitly the tail dependency indices for bivariate
Archimedean copulas.

Theorem 9 (Nelsen (1997)). For a bivariate Archimedean copula with the generator ¢ it holds

gy L0020 1= 6(w)
e e T L s
A= lim 22T 0Qw)

w0+ U w—oo P(w)

In this section we extend the concept of the tail dependence to multivariate distributions and
consider several alternative definitions of it. First we consider the straightforward extension of
the bivariate definition. Let IC = {1,...,k} and s is a subset of . Then we denote by C; the

marginal copula of the variables with indices in s, i.e. Cs(u;,i € s) = C(u1,...,ux|lu; =1,j & s).
Let the upper and lower tail indices of k& random variables X; ~ F; for i = 1,...,k are given by
)\8)(“17 cees ug|Uug)
= lim, P Xi1>F2 (1= i), Xip1 > FL (1= uigu),... | Xi > F7H (1 — wu)}
~ lim C(1—uguy ..., 1 —ugu)
u—0t U; U
1 S C O~y e o)
u—0t U; U
= Z (—1)|S|+1 lim 1- CS(l — UJU,] < S) = l Z /887
u—0Tt U;u U;
SCK,s#0 s€S,5#0
A%)(ul, ey Uk |ug)
= u]i)r(r)l7L P{ .. 7Xi—1 § Fi__ll(ui_lu),XiH S Fijrll(ui+1u), e ’ Xz' S Fi_l(uiu)}
. C(uru, ..., upu) 1
=1 = —A .
gt ugu up t (- )
Ag)(ul, ..., uy) defines the limit of the probabilities that all random variables simultaneously

exceed the thresholds 1—u;u conditional on the fact that one particular random variable exceeded

14



its limit 1 — w;u as v — 0". Similar motivation holds for )\(Ll) too. By setting u; = u* for all

j=1,...,k we obtain a definition similar to the bivariate definition above. For example,

AP = a1 = tim PL L X < BT (u), X < FRL (), | X < F N (w)}

u—0t
~ lim C(u,...,u)’
u—0+t U
and similarly for )\(LQ) = )\(LZ)(I, ooy 1) =lim, - a“;"’“).

From Theorem 9 it follows that the tail indices of Archimedean copulas are closely related to the
regular variation of the generator functions. Here we replicate the definition of regular variation
of functions at zero and and infinity following Shorack (2000).

Definition 2. Call V() > 0 regularly varying at 0 with characteristic exponent (tail index)
A >0 (written V € Ry) if lim,_,o+ V (tz)/V(t) = 7.

From the monotone density theorem (see Shorack (2000), Theorem 9.1) it follows that

VeR, iff li%1+ tV'(t)/V(t) = \.
t—
Definition 3. Call V() > 0 on (0, 00) regularly varying at infinity with characteristic exponent
A >0 (written V € Uy) if limy o V(tz)/V (t) = 27

The limits exist for a very wide family of functions and all common generator functions of
Archimedean copulas. Since the dependency of the copula is uniquely determined by its structure
and generator functions, the multivariate tail indices can be given in terms of the tails indices
of generator functions. For further exposition we find useful the following proposition which
relates the variability of a function with the variability of the inverse function. Here restrict the
discussion only to generator functions.

Proposition 2. Let for the non-increasing generator function ¢ € L it holds that

) 11— ()
oy = dule), lim 5o

= @2(1‘),

where ®;(x) # const and ®; # co fori = 1,2. Then for the inverse generator function ¢!, i.e.
¢ 1(y) = inf{x : ¢(x) > y} it holds that

lim ¢ (at) = <I>1_1(x), lim o~ (1 —at)

e |
SHEPRI0 A Aoy W

Relying on these results, the next theorem extends Theorem 9 to HAC. We derive both measures
for a HAC of an arbitrary structure and with arbitrary generator functions. The theorem
provides a recursive method for determining the lower and upper tail dependencies depending
on the functions ®; for i = 1,2. We discuss the case when the generator function is regularly
varying at zero and/or infinity in remarks below.

Theorem 10. Let Xq,..., X ~ C such that

C(ul, e ,uk) = C(){Cl(ul, . ,ukl), - '7Cm(ukm—1+17 . ,ukm),ukm+1, e ,uk},
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where Cy is an Archimedean copula with the generator ¢o € L and C; for i = 1,...,m are
Archimedean or hierarchical Archimedean copulas with the upper and lower tail dependence in-
dices )\8’)1. and )\(Ll’)z respectively. Further we assume that for the generator ¢g it holds that
O, (x) # const and ®;(x) # oo for i = 1,2. Then the upper and lower tail dependency indices
for C are given by

k
1 _
)‘(Ll)(ula"wuk‘ui)_*@l[z(b I{ALz(u’% 1+17"'7uki)}+ Z (I)ll(uj)}
1 1 s —1
)\(U)(ul, couglug) = w Z |+1<I>2{ ZCI’ (Bsi) + Z P, (“j)}7
SEK, 50 i€s\Uj2%) 55

1-Cs, (1—uju,j€s;Cs)
u

for the first-level subcopulas of

where Bs;’s denote the limits lim,,_ o+
CS{CSI (u,;,z' S 81), ey Csms (ui,i € 5ms)7u\s\ms+1> . ,u‘s‘}

with [8lm, =32 [si]-

The last theorem gives a recursive tool for determining the tail index of a HAC with arbitrary
structure. Next we consider several special simplifying examples. First, assume that uy = --- =
uy, = 1. Thus we consider the same threshold for each variable. In this case the upper and lower
tail indices are given by

)\(Ll)(la 1) = 1iI[I)1 u'P(X; < F; ' (u) for alli =1,...,k)
= {Z@ D+ k= k }
ML) = lim wT PG > BT (L - ) forall i = 1. k)
= > ST a () + 1| — Ish,
s€S,s7#0 =1

Second, let C' be a k-dimensional Archimedean copula with the generator function ¢g. Let Ay
denote the tail index of ¢g at infinity and A9 denotes the tail index of 1 — ¢g at zero. Then

-1
k ' k o faa—1(1 _ k . k
S (R
= ()

Next we discuss the lower tail dependency index in more details. Let the generator function ¢q

be regularly varying at infinity, i.e. ¢o € Uy and P1(x) = limy_~ d;;’o((tg) = g~*~. Note that

o (uy) = u; “Hre S 1 for uj € [0,1]. This implies that the argument of ®; in the expression
for )\g) (u1, ..., ug|u;) is larger than one. It follows that ®(z) = 2=~ € [0,1] for > 1 and,
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(1)

therefore, A} '(uq,...,u;) € [0,1]. If uy = -+ = uy, = 1 the strength of the dependence increases

as )\(Ll)(l, ..., 1) increases from zero to one.

The following two special cases deserve additional discussion. The weakest dependency (lower
tail independence) is achieved if the tail index Ay, of the generator ¢ at the top level is zero.
Thus the generator function is a slowly varying function at infinity. This leads to ®;(x) = 0,
®;'(z) = 1 and )\(Ll)(l, ...,1) = 0. In the general case the tail independency implies that
the probability of exceeding the threshold by all variables is independent on the crossing the
threshold by the benchmark variable. The strongest dependence (perfect dependence) is obtained
if Ao tends to infinity and implies that the generator function is a strongly varying function
with ®1(2) = 1 and ®;'(x) = co. In this case the tail index of the HAC is u; and equals
the probability that the i-th variable exceeds the threshold. This implies that the variables
take extremely small values always simultaneously. Note that in these extreme cases the tail
dependency index is independent on the generator functions and tails indices at lower level. It
is completely characterised by the behaviour of the top-level generator.

For the upper tail dependency index the situation is slightly different. Let the generator function
1 — ¢g be regularly varying at zero. From the monotonicity properties of the generator function
it follows that ®a(z) = lim, o+ o2 = 2. This implies that ®;'(z) = #'/%. Similarly
as for the lower tail, the weakest dependence (upper tail independence) is achieved for \g = 1,

while the strongest (perfect upper tail dependence) is attained if A\ tends to zero.

Remark on non-strict generators

A generator ¢ is strict if ¢p(oo) = 0. In this case we have a correctly specified inverse gener-
ator. If the generator is not strict, then there exists a constant ¢; such that ¢o(t) = 0 for all
t > c1. Additionally there exists another constant cg, such that ¢, 1(0) = ¢o. This implies that
<I>1_1 = 1 and ®; is not specified uniquely. However, if we recall that regularly varying function
@fl(x) = gz~ /A then for non-strict generators the tail index equals Aoo = 0. This implies
®; = 0. Thus a non-strict generator at the top level of the copula implies lower tail index equal
to zero. This result is independent on the tail indices or strictness of the generators at lower
levels. Note that it must hold that ¢¢(0) = 1 to guarantee the properties of the distribution
function.

Now we consider a generalisation of the above definition of the multivariate tail dependency.
)\g) defines the probabilities that all random variables simultaneously exceed the thresholds u;
conditional on the fact that a subset S of the random variable exceeded them and similarly for
AP,
Ag)(ul, couglug, i €8S)
= lim P{X; > F;'(1—uu) for i¢gSCK=A{1,....k} = | X; > F, (1 —uju) for j €S}

u—07t
K]
. 6(1_u1u’71_uku) . ZsleK(il)l‘SlH—l{l7031(1711’3'“7]' € 51)}
= lim — = lim .
u—=0t O(1 —wjpu, ... T —ujgu) w0t Yepes(—1)s2H 1 — Oy, (1 — wju, j € s9)}

S|
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Table 2: Functions ®; and @, for all strict generator functions from (Nelsen, 2006), Table 4.1.

¢ Pi(z) Po(x) ¢ Pi(z) Po(x)
1 o/ T 12 Y0 g1/
3 0 T 13 0 T
4 0 /0 14 o=t 2?0
5 0 T 16 27t T
6 0 1/ 17 T
9 0 T 19 T
10 0 T 20 T
)\(LQ)(ul, R ,uk\ui,i € S)
= lim P{X; < F; '(uu) for i ¢ SCK={1,....k} | X;j < F; (uju) for j €S}
IK]
) C(l—uu,...,1 —ugu)
= lim .
u—0+ O(1 —uju,..., 1 —uj5u)
S|

The next theorem readily follows from Theorem 10.

Theorem 11. Let Xq,..., X} ~ C such that

Clu, ... ug) = Co{Cr(uty .. uky)s- vy Con( Wy g 15 e v s Wkyy )y U1 - -+ s Uk}

where Cy is an Archimedean copula with the generator ¢ € L and C; for i = 1,...,m are
Archimedean or hierarchical Archimedean copulas. Let S be an arbitrary subset of the variables,
such that )\8) (uj,7€8)#0 and )\g)(uj,j € 8) 0. Then the upper and lower tail dependence
indices for C' are given by

AD (. AP (g,
L (. u) and Ag)(ul,...,uk]ui,iES): v (U up)

)\(Ll)(ui,i €3S) AS)(ui,i €sS) '
Example 5. Next we provide the expressions for the function ®1 and ®o for different strict
generator functions (see Nelsen (2006), Table 4.1). Note, that the generators provided in Nelsen
(2006) correspond to ¢~' in our notation. By setting k = 2 we obtain the results in Nelsen

)\g)(ul, o uglug,i €8S) =

(2006), p. 215. The possible values of the functions ®1 and Py provide interesting insights into
the tail dependencies of copulas. If ®;(x) is independent on the parameter 6 then the tail index
depends only on the structure and the parameters at different levels do not influence the strength
of the dependency in the tails. Note that most of the generators imply lower and upper tail
independency. This observation is particularly important for applications and shows the need
for new generator families, which allow for tail dependencies.

7 Appendix

Proof of Remark 1. We consider here two cases. First let u; and u; be on different subnodes of
the first level of the copula

C(ul, cey Ugy e ey Uy e .,uk) = C]ﬂ.{ .. 7Ckg/*kg/_lfg/(ukg/_ﬁrl? cees Ugy e e ,uké/), ey

SR Ckg//—ky/,hre// (uk51171+17 sy Ugy e 3uk‘4//)7 .. '}7
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where r is the number of all nodes, Ck, », € Fgyris-- s Chpo—kp_1,r0,, € Fhmorm the subcopulas
on the first level and the root Cy, € F,, 1. From the properties of multivariate distributions the
bivariate margin of u; and w; is given by

(ui,uj) ~ C’(l,...,ui,...,uj,...,l)
= Ckr{...,Ckg/,kg/_l,rg,(l,...,ui,...,1),...,Ckg,,,ke,,_lme,,(l,...,Uj,...,l),...}.

Since C(1,...,1,u,1,...,1) =w and C(1,...,1) = 1 it follows that

(ui,uj) ~ C’(l,...,ui,...,uj,...,l):Ckr(l,...,ui,...,uj,...,l)
= {7 W)+ o N (w) o T () T}
= {0, (us) + ¢~ (uj)} = Cra(us, uy)

where Cyo € Fa1 and Cio € €{N(C)} by construction. Thus we showed, that if two variables
lie in different subcopulas of the top level, their bivariate distribution is given by the top level
copula. On the other case if u; and u; be on the different subnodes of the second level in the
copula then

C(ul,.. <y Ugy - .,uj,...,uk) = Ckr{ . . ’Ckz/*kz/—lvre/(uke’—1+1’" s Ugy - e ,uj,...,uké,),...,

) Cke/l_kel/7177’£/l (u/i‘Z//,1+1a R 7uk41/)7 e }

Proceeding with the copula Ck,, k,,_, r, With generator ¢, in the same way as with the original
copula C' in the first part of Remark, we obtain that (u;, u;) ~ ¢a{dy* (u;)+¢5 ' (u;)}. Continuing
the recursion we complete the proof. O

Proof of Remark 2. The proof is similar to the proof of Remark 1. Let us fix the bivariate copula
C5 € €{N(C)}. Without loss of generality assume that the generator ¢ = N(C5) is used to
construct the subcopula at the second level of the original copula C. We reorder the variables
for simplicity. Then

C(ul,...,uk) = C’kr{...,C;(ul*,...,um*),...}
= Gl d1{o7 0 CL(), ..., 07 o Cp()}, ... ]

Now we proceed as in Remark 1 by taking two variables from different subcopulas of the second
level of C5. Without loss of generality we take one variable u from copula C, and another v
from ép. This shows that there exist a pair of random variables (u,v) with the joint bivariate
distribution function given by C5(u,v). O

Proof of Theorem 2. Let t € [0, 1] be fixed.
a) Then it holds that {V; < t} N{U; < t} = {U; < t} since U; < t is a subset of V] < ¢.
Moreover,

{1 <t} {U1 >t} ={Vo < g:(U1)} N{U; > t}
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with gi(x) = ¢(¢~(t) — ¢~ 1(z)) for z € [t,1]. The function g¢(.) : [t,1] — [0,1] is strictly
decreasing with g¢(t) = 1.
Consequently it follows that

P(Vlgt) = P(V1§tﬂU1§t)+P(V1§tﬁU1>t) (5)
= t+P{V2§gt(U1)ﬁU1>t} (6)

because P(Uy <t) =t.
b) In order to calculate the second quantity of (6) we consider a partition ¢t =ty < t; < .. <
ty =1 of the interval [¢,1]. Then it holds that

N
P{Va<g(U)NUL >t} = Y P{Va<g(Ur)Ntiog < Uy < 3}
i=1

IN

SN P(Va < gi(tioa) Nty < Uy < ty)
> YN P(Va<gilti)Ntio <Up <t;)

since g¢(t;) < gi(Ur) < g¢(ti—1) if tio1 < Uy < ;.
c¢) First we consider the upper bound. We get that

P{Vo <g(tici)Ntizi <Ur <t} = P{UL<tinVa < gi(tizn)} —
— P{U; <tiiNVa < gi(tio1)}
= Cifty, Ko{gi(ti-1)}] — Calti—1, Ko{ge(ti-1)}]
= oo (t:) + ¢ [Ka{gi(tio1)}]) —
— (o (tic1) + o [Ka{ge(tim1)}])-

Now we determine the partition by choosing ty_; = ¢(iw/N) for i = 0,.., N with w = ¢~1(¢).
This choice fulfills the requirement that ¢t = tg < t; < .. < ty < 1. Moreover, g;(t;) = tn—;.
With the notation ((z) = ¢~ [Ka{¢(x)}] — = there exists such £y ; that

w

P{Va < gi(tim1) Ntioa <Up <t} = ¢{w—N+C<i]_\,1 )}_¢{w+<<i—le>}

= g {wrc(Fre) -l

with 0 < ¢n; < w/N. Now let § > 0. Since ¢ is strictly decreasing it holds for N > Ny that

P(Va < gilti) Nty < Uy <6} < — 3 ¢’{w—5+C<iN1 )}

Because

N .
T i
Jm 3o fu-see(

1=

! ——w’w— x)}dx
w>}— 0/¢{ 5+ C()}d

it follows that

(V1<tﬁU1>t)<hm1nf /qb{w d+¢(z)}dx| = /¢{w+< x)}dz.
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d) Next we consider the lower bound. We obtain by analogy to c¢) and with {y; as above that

P{Vo < gi(ti)Ntiog <Up <t} = —% ¢’ {w+< (Jifw> —§N,z}

Sofeecin)}

Vv

Consequently
w
P tnUi>0) 2 - [ ¢+ ((e)de
0
Because the upper and the lower bound are the same this completes the proof. O

Proof of Theorem 8. The proof is based on a similar argumentation as the proof of Theorem 2.
Using the above arguments we get that

P(V3 <t)=Ky(t)+ P(V3 <tNVy>t)

and

IN

Zf\il P{Vs < gi(ti—1) Ntic1 < Vi < t;}
P(Va<tnVy>t)
> SN P{Vs < gilti) Ntiog < Vi <t}

a) Moreover,
P{Vs <gitici) Ntica <Va<tip = P{Va<tinVs <gi(ti-1)}—
— P{Vi<tiiiNVs<gtiz1)}
= Cs[Ky(ti), Ks{ge(ti-1)}] — Cs[Ku(ti-1), K5{ge(ti-1)}]

= (o {Eu(ti)} + ¢ [Ks{ge(tim1)}]) —
— (o {EKu(tic1)} + ¢ [Ks{ge(ti-1)}])

- ol -}
- ofafe- o) oo ()

with C4(2) = 7! [Ku{¢(2)}] and (5(x) = ¢7 [K5{¢()}]. Then

P{Vs < gilti)) Ntimg < Vi <t} = {C‘* <w - Jifw> ~ (w - iJ_VlU])}
oo (5 ot

with (i — 1)/N < €y, <i/N. Because (s{w(i — 1)/N} < ¢s(wép,;) it follows that

ip{% <gi(tic) Nt < Vi <t} < ZN:{Q <w— ]i,w> — G4 (w— i]_\rlw>}

i=1 i=1

x ¢ {Cs(wéN,i) + Ca(w — ng,i)}
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- /<z>{<5 (tw) + Calw — tw)} dC(w — tw) /¢{g5 )+ Calw — w)} dCa(us).

b) For the lower bound we get

P{Vs<g(t)Ntii <Vi<t} = ¢{g4 <w_]i7w)+g5 (11\#“)}_

- ofa (o) e ()}

= fo(o o) e (o)
W{@<;w)+@@m4@gg}

with (i —1)/N < &y; < i/N. Since (5(w§; y) < ¢5(wi/N) we obtain that

X

ivjp{%fgt(til)mtil<v4§ti} > i{@(w&u) C4< Z]_Vlw>}><

i=1 i=1

x ¢ {(5(“16\/,1') + Ga(w — wﬁv,i)}

and thus the result follows as in a). O

Proof of Theorem 4. We follow the idea of the proof of Theorem 2 of (Barbe et al., 1996). The
copula is given by

Clur, ... up) = ¢i{ey (ur) + 7' 0 Chy(ug, ... up)}
= P{F(X1) <upy..., Fp(Xk) < ugl.

Since ¢; (1) = 0 it holds that C(1,us,...,uy) = Ca(ua, ..., ut). Differentiating C' with respect
to u; we get that

OC(ur, ) Ao (w) + 61 {Colup, . ur)}]

Ouy oi{or (un)}

Next consider conditional copula P{F(X1) < u1|Fa(X2) < wa,..., Fi(Xk) < ug} which we

denote as C'(u1|ug,...,ux) = % Thus it follows that

P{C(ul,...,uk) < t}

P{C<u1’u27 v ,’U,k) ' CQ(U27 .o .,Uk) < t}

t
= plC TR 7T [ —
{ (UIIU2 Uk) CQ(UQ, e ,uk) }

Let us consider the following function

Q(t) = inf{u; € [0,1] : C(uyl|ug,...,ux) >t}
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for t € [0,1]. It follows as in the proof of Theorem 2 of Barbe et al. (1996) that

Kift) = / ;Q{M}

(0,1)k71202(u2,...,u1€)2t
t

X Ck [Q{CM}’U2’,U]€:| du2...duk.

Next we compute %Q{m} Note that by definition of () it holds that

t
¢ [Q{M}7u27yuk] = t.

Differentiation with respect to t leads to

BC(ul, N ,uk)

1 =
8U1

,,,,,

-1
0 t oC (u1,...,ug
&Q{CQ(UQ,...,U]C)} - ( ouq )u1 Q{Cz(u2 77777 “k)}]
_ [a{asﬁooz(w,...,uk)wl (u)} ]
ooy (u1)} w=Q{ st |
_ i{or' (1)}
6 (017" 0 Q{ oy } + 7" 0 Caluz, )|
1{¢1 ()}

-1 t '
¢{l opy oC [Q{Ck,l(ul,...,ukfl)} U2, - ’uk}
Using the following algebraic and probabilistic transformations

t
Quzyeun {C(l,um e Ug) } -

' t
= inf {ul € [0,1] : C(uy|ug, ... ,ug) > C(l,UQ,---auk‘)}

=inf{u; € [0,1] : P{F1(X1) < w1 | Fa(X2) <wuo;...; Fp(Xk) < up}

[0,
X P{F5(X3) <wg;...; Fp(Xg) <wugt >t}
= inf {u; €[0,1] : P{Fl(Xl) <wupy...; Fp(Xg) <ugl >t}
=inf {u; € [0,1] : C(uq,...,ux) >t}
= inf {ul €10,1] : ¢4 {¢1 (u1) + (bl_l o Cy(ug,...,up)} > t}
= inf {u1 €0,1] :uy > gbl{qbfl(t) - q[)fl o Cy(ug, .. ,uk)}}

= ¢1{d1 (1) — ¢y ' 0 Calua, ... i)}
we get the final form of h;

S {dr () — 61! 0 Caluz, .. up) }

Pi{o~1 (1)}
c [cbl(gbl_l(t) - <;51_1 o Ca(ug, ... ,ug)), uz,. .., uk}
I{Co(us, ... ,uy) >t} for (u,...,ux) € [0,1]".

hk(t,UQ, cee uk) =

X

X
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Further simplification of the previous formula is unfortunately too difficult because of unknown
recursive formula for the HAC density, which is difficult to derive in general form. O

Proof of Theorem 5. Let X ~ C! and X’ ~ C2. To show the concordance property it is neces-
sary to prove that

and
P{XZ‘>xi,i:1,...,k}SP{X£>$Z‘,Z':1,...,/€}. (8)

for all x € (0,1)*. The first inequality is identical to that C!(x) < C?(x), for all x € (0, 1),
while the second one is equivalent to c' (x) < c’ (x), for all x € (0,1)*, where C is the survival
copula of C.

As mentioned in Chapter 1, Archimedean copulas arise from the Laplace transform

Xk
S0~ )+ o+ 67w} = [ T165 () dbty(a,
0 =1

)

where the generator function ¢(s) = fooo e " dMg(w), s > 0 is a Laplace transform of the some
univariate cumulative distribution function Mg(-) of a positive random variable and G ;-1 (u) =
exp{—¢~!(u)}. From the statement of the theorem, C' and C? are proper HACs and they differ
only by the generator function on the highest level such as gzbfl o ¢y € L*. If we denote the
second level copulas as the z;, i =1,...,m then

C'(u) = CHCyp (U1, tuky)s s Chyy oy o Wk 15 -+ Uy =) }
= G107 {Chyry (ur, - )} 4+ 7 H{Ch ks i Wk 15 -5 Uk =) }]
= {7 (z) + - 4 07 (2m)}

C%*(u) = C’Z{C'/W1 (Uiy ooy )y oo s Cliyn—ke 1o Wk 1415+« - s Uk =k) }
= ¢y {Clhyry (U - )+ + 05 {Chi ko1 (Whpa 115+« - Uki—) }]
= do{dy (1) + -+ 03 (2m)}

Let v = ¢;' o ¢p € L*, then from Theorem A.2 ((Joe, 1997)) Xa(u) = exp{—av(u)} is the
Laplace transform of some M, (-; «). This means that

Ya(u) = explagy ! o d(u)} = / e AN, (€, ).
0
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Similarly to the case of Archimedean copulas C! and C? ca be then transformed as follows
Cl = o{or'(a) + o1 (am)} = di{vo gy (a) + o+ vody! (am)}

= /6042?11 u{¢§1(z¢)}dM¢l(a) /H [efau{fb;l(m)}} dMy, ()
o =1

0

= / T et (20)}] dMy, (@) = / 11 / %2 ) dM, (v, ) | dMg, (a)
0 =1 0 i=1 0

= [11|[ & it | dbtoyfa) =61 § =210 ] [ 671z dbuira)
0 =1 0 i:lo

C* = ¢ofey (z) + -+ 65 (2m)} = drov{dy ' (21) + -+ + &5 (zm)}

— [ explar(e3" () + -+ 63 ()Mo (@) = [ o 103" () 4+ 03" )} D,
0 0

_ //e Tt ba (1) dM,,(fy,a)de(a)://ﬁev% () dM,, (v, a)d My, (a)
0 0 0o 0 =1

= [ 116 dnturayint, (@) = én |-
0 0

=1

Note that ¢1{—alog(-)} is decreasing as a composition of continuous monotone decreasing func-
tions. Since the concordance order is invariant under monotone transformations, to prove (7) it
is sufficient to show that

[e.9]

I1 /6. oamna /HG;21 5) dMy (7,0).
0 i=1

=1

~.

For simplicity and to emphasise the argument with respect to which we integrate, we write

I1 [ s amz.a </ng-(v)dMy(%oa),
i:lo =1

where g¢;(v) = Gzﬁgl(zi) are bounded and decreasing functions in v > 0 from the properties
of exp{-}, while GZ),I(ZZ-) = exp{—7yb, ' (z;)}. To prove the inequalities we can use the same
approach as in Joe 31997). Each bounded decreasing function can be represented as a limit of
an infinite sum of a piecewise constant functions » ; ¢ili0.p;1 for positive constants c¢; and b;. As
the both sides of the inequality are linear in each g;(y) it is sufficient to prove the inequality
for gi(v) = Iy, (v), 5 =1,...,k. Let By,..., By ~ My(-, ) for some fixed a and are iid. By
the Fréchet upper bound inequality holds that P{B; <y;, j=1,...,n} < P{B; < minjy;} =
min; P{B; < y;} this proves the inequality (7). This means, that the copula C' is less positively
lower orphant dependent than the copula C?. To show the whole concordance order we have to
prove that the copula C! is less positively upper orphant dependent than the copula C2. Thus
we need to prove the same inequality but for the survival functions.

The usual representation of the survival copula is given by

—1+Z HC (uj; j € s).

SES
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In terms of the Laplace transforms the survival copula differs from the copula by taking Hy-1(u) =
1 —Gy1(u) =1 —exp{—¢ ' (u)} instead of the function G-1(u). Let us denote Hy-1 ., (u) =
1- Gl_l(u). Moreover, all z;, ¢ = 1,...,m are replaced by Z;, ¢ = 1,...,m which correspond
to the respective components of the survival copula. For example if

21 = ¢ HOs1(ur, us, uz)}
P C51{Co1 (w1, us), us}]
= ¢_1 o ¢[¢" 0 &{€ (ur) + & N (ua)} + ¢ (ug)]

Gl () = //G ()G (12)dMy 1 (7 )G () dMy 105,

then the corresponding z; is
H¢—17n(§1) = 1- Gg,l(él)

=l//ﬂ ()M = G () }My g (7, B){1 — G2 () AM 1003, )

= //Hg 1 ’LL1 Hg (U2)}dM¢>— o§(77ﬁ)H¢ ﬂ(u3)}dM1Z) 10¢(6’ )
0 0

Using similar transformation as in the case of positive lower orphant concordance, we have to
prove the following inequality

[T [ o @aree) < [T] 0 G dits0) )
i:10 0 i=1

[ [ massre) < [ T]me) dnsaior.)

i=1 0 0 =1

where h;(v) = H %71’7(21-) =1-G ¢;177(§i) are bounded and increasing functions in vy > 0.
Similarly as in case presented above, any increasing and bounded function can be approximated
by the series > j Cilip; 00)- It is sufficient to consider only one component of the sum. Similarly
taking B, ..., By ~ M, (-, «) for some fixed «, it holds by the Fréchet upper bound inequality
that P{B; > y;, j = 1,...,m} < P{B; > max;y;} = min; P{B; > y;}. This proves the
inequality (8) and completes the proof of C' < C2. O

Proof of Theorem 8. Consider X1 = (Xi1,...,X1%) .-, Xn = (Tn1,...,2px) as a random
sample from C(uq,...,ux), and then M; = max{X;1},..., My = max{X;;}, follow the distri-
bution

P{M; < z1,..., My, < 23} = Cp(an,..., zp),

where the copula C), have the same structure as copula C but is based on the generator functions
Gen = [Ge(t)]™, £ =1,...,r, and inverse generator functions gi)é_nl = ¢Zl(t1/”), {=1,...,r. For
example in a three dimensional example with the copula function

Clur,ug,uz) = Ci{Calur,us),us} = 17" 0 da{dy " (u1) + o3 (u2)} + o7 (us)]
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the extreme value copula is given by

P{M; < ay, My < a9, M3 < a3} = (¢1[d7" o do{dy (x1) + 5" (z2)} + &7 ' (23)])"
= in{dn, ([02{07 " (x1) + 63 (22)}]") + 61, (25) }
= Gnldr, © dan{d, (@) + 5t (5)} + o1, (25)]

= Ch(x1,z2,73).

Next step we have to prove the existence of the limit of Cy,(x1,. .., z;) when n tends to infinity.
By mimicking Genest and Rivest (1989) this limit exist if and only if exists

ey ' (1)/ (67 1)' (1))
ot

, where £ =1,... k.
t=1

Taking into account that extreme-value distribution belong to its own domain of attraction we

have

Cn(z1,...,x) = C(21,...,21), for 0 < xq,...,28 < 1. (10)
Let us fix some numbers 1 < j; < jo < k then, for z; =1, j € {1,...,k} \ {1, 72} copula
c1,...,1,z5,1,...,1,2,1,...,1) is a simple bivariate Archimedean copula with some gener-
ator function ¢y,,, where (12 € {1,... k}

c(,..., Lz, 1,.... Lz, 1,..., 1) = C1(.’L‘j1,x]‘2) = ¢£_11{¢512(wj1) + ¢512(xj2)}

with the property Cy(1,...,1,2;,1,...,1,z5,,1,...,1) = C(1,...,1,z;5,1,...,1,25,,1,...,1),
from this implying Genest and Rivest (1989) we get that ¢; is the Gumbel generator. Similarly
by taking all other possible pairs 1 < j; < ja < k could be proved that ¢y, ¢ € {1,...,k} are
Gumbel generators. As given in the statement of the theorem that the extreme-value copula
belong also to HAC family than by Proposition 1 we finish the proof, because all the bivariate
margins are uniquely determined by the previous steps of the proof. O

Lemma 1. If f(x) is the continuous monotone function for x € R and f(x,n) is continuous
with respect to both arguments and monotone with respect to the first argument function for
z,n € R such that

f(a.n) — f(a), Vo e R

n—oo

then the inverse of the function f(x), Yx € R exists and ezists the inverse with respect to the
second argument of the functions f(x,n),Vx,n € R and holds that

f Y x,n) — f(z), Vz €R.

n—oo

Proof. For the proof of Lemma see (Billingsley, 1995), (Resnick, 1998). O

Proof of Proposition 2.  a. Let G¢(z) = ﬁg), while ¢(¢) is decreasing then G¢(x) is increasing
for all ¢t. Since limy oo G¢(z) = ®;(x) it follows from Lemma 1, that limy_, G *(y) =

®'(y). Note that Gy(z) = ¢(xt)/é(t) = y and = = ¢~ {yo(t)}/t = G;*(y). Since
lim_oo ¢(t) = 1 it follows that

-1 1 -1
(I)l_l(y) — tgnolo Gt—l(y) — tllglo (,ZS {?igb(t)} t'_qb: () tl_i)%l Z_l(éég) )
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b. Let Hy(x) = 11 q;(( )) while ¢(t) is decreasing then H;(x) is also decreasing for all ¢. Since

lim,_g+ Hy(x) = ®o(z) it follows from Lemma 1 (see Appendix), that lim, o+ H; '(y) =

;' (y). Note that Hy(z) = {1 — ¢(zt)}/{1 — ¢(t)} =y and z = ¢~ '[1 — y{1 — $(t)}]/t =
H;'(y). Similar as above it follows that

—1 o -

iy = dim ) = )i%id) 1 yil o(1))]
t=¢~ (1) . o H1—y(1—1)} b1t . M
R e T R AP T R

Proof of Theorem 10. From the definition of )\(Ll) it follows that

1
)‘(Ll)(ula ey UE) = ulﬂ%l uC(ulu o U

- h%—&- Ed)() [¢61{C1(u1u, s 7uk1u)} +o ¢51{Cm(ukm71+1uv s 7ukmu)}
k
+ Z qbal(uju)]

We write ¢ ' (C}) for ¢y {C; (Ug;_y 41U, - - -, up,;u)} with kg = 0 to simplify the notation. Since
A

lim, .o+ Cj/u = L,j(ukj—1+17 ..+, Uk, ) We obtain
1 k
1 . _ _ _
)\(L)(ul, CoyUE) = hrél+ Efﬁo{% Yu-Cr/u) + -+ ¢y H(u- Cpfu) + Z o (uju)}
v j—km+1

= hrn d)o{qbo 17)1)—|-—|—¢ )\(1) Z ¢0 (uju)

-0t U
J=km+1

m k
= Jim {000+ S 65w}

From Proposition 2 it follows that
)
by ( A u) ot (u;
AV G, u) = lim ~god ST B e
u—Or {; ¢y (u) j kz:ﬂ ) }
m . k
= tim oo [{ 00D+ D @) oyt w)
u i=1 j=km+1
m k
== (u 1 - -
St i L [(SSaraf) s Y )]
o\t i=1 J=km+1
m k
_ 1 _
=0 [ YO A w07 ().
i=1 j=km+1

(1)

To prove the statement for A;;” it is sufficient to derive the expression for a single 3,. Without
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the loss of generality, we consider

1
= lim — [1 —Co{C1(1 —uwiu,...,1 —upu),...,Co(1 —ug,, 414, ..., 1 —ug,, u),

u—0t U
1 — up 41, ..., 1 — upu}]
m k
T —1/. -1 ,
i -a{ St £ a-u)
m k
.1 _ 1-G; 7
= hm+a 1—¢0{Z¢01<1— - 'u>+ Z ¢01(1—uju)H
u—0 - i=1 J=km+1
- m k
_ . —-11 _ 11—
= u{%ﬂ " _1 ¢0{ ; ¢y (1 — Biu) +j:kzz+1 ¢y (1 “J“)H
1 gt (L— Bu) oo (l-wu)
= lim —|1—¢ — dg (1 —u)+ — ¢ (1 —u)
U=t U 0{ ; o'(l—w) J—%n:ﬂ dp (1—u) " H
_ 1 o105 _
SR (R0 SL IR SR S
i= i=km
k
e[y et e+ Y 05w
i=1 j=km+1
The expressions for §;’s are then derived in a recursive way. ]
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