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On the Existence of the Moments of the Asymptotic Trace
Statistic ∗

Deniz Dilan Karaman Örsal1 and Bernd Droge2

Humboldt-Universität zu Berlin
18th February 2009

Abstract

In this note we establish the existence of the first two moments of the asymptotic trace
statistic, which appears as weak limit of the likelihood ratio statistic for testing the cointe-
gration rank in a vector autoregressive model and whose moments may be used to develop
panel cointegration tests. Moreover, we justify the common practice to approximate these
moments by simulating a certain statistic, which converges weakly to the asymptotic trace
statistic. To accomplish this we show that the moments of the mentioned statistic converge
to those of the asymptotic trace statistic as the time dimension tends to infinity.

Keywords: Cointegration, Trace statistic, Asymptotic moments, Uniform integrability.
JEL classification: C32, C33, C12

1 Motivation and Framework

Cointegration tests play an important role in the empirical analysis of long-run relationships
among integrated variables, but they often suffer from low power properties due to the small
time span of the available time series. The performance of the tests could be improved by
enlarging the data basis, e.g. by considering additional cross-sectional units (individuals)
with similar data. Therefore the cointegration methodology has been extended to the panel
data framework. Similar to the case of testing for unit roots, panel cointegration tests may
be based on standardizing the average of individual cointegration test statistics. By some
central limit theorem, standard normal quantiles may then serve as critical values. However,
the justification of such a procedure requires the existence of the first two moments of some
distribution. For example, Larsson et al. (2001) used the likelihood framework to present a
test for the cointegrating rank in heterogeneous panels. Their test, which they refer to as
standardized LR-bar test, is based on the likelihood ratio (LR) test statistic developed by
Johansen (1995) for vector autoregressive (VAR) models. Under the null hypothesis and as
the time dimension approaches infinity, the LR statistic converges weakly to the asymptotic
trace statistic, whose moments are thus used for standardizing the average of the individual
LR test statistics.

∗This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 “Economic
Risk”.

1Institute for Statistics and Econometrics, School of Business and Economics, Humboldt-Universität zu
Berlin, Spandauer Str. 1, 10099 Berlin, Germany, E-mail: karamand@staff.hu-berlin.de

2Institute for Statistics and Econometrics and CASE - Center for Applied Statistics and Economics, School
of Business and Economics, Humboldt-Universität zu Berlin, Spandauer Str. 1, 10099 Berlin, Germany,
E-mail: droge@wiwi.hu-berlin.de

1



The existence of the first two moments of the asymptotic trace statistic is claimed in
Larsson et al. (2001), but their proof is incorrect as explained in Section 3. Therefore we
provide a corrected version of the proof. Moreover, the asymptotic moments are usually
approximated by simulating a certain statistic which converges weakly to the asymptotic
trace statistic. To justify this approach we show that the first two moments of the mentioned
statistic converge to those of the asymptotic trace statistic.

To be more specific, we consider, as Larsson et al. (2001), a sample of N cross-sections (in-
dividuals) observed over T time periods and suppose that for each individual i (i = 1, . . . , N)
the K-dimensional time series yit is generated by the following heterogeneous VAR(pi) model:

yit =
pi∑

j=1

Aijyi,t−j + eit, i = 1, . . . , N ; t = 1, . . . , T, (1)

where the initial values yi,−pi+1, . . . , yi0 are fixed, Aij are (K ×K) coefficient matrices and
the errors eit are stochastically independent across i and t with eit ∼ NK(0, Ωi) for some
nonsingular covariance matrices Ωi. The components of the process yit are assumed to be
integrated at most of order one and cointegrated with cointegrating rank ri with 0 ≤ ri ≤ K.
The error correction representation of model (1) is

∆yit = Πiyi,t−1 +
pi−1∑

j=1

Γij∆yi,t−j + eit, i = 1, . . . , N ; t = 1, . . . , T,

where the (K ×K) parameter matrices Γij = −(Ai,j+1 + . . . + Ai,pi) describe the short-run
dynamics, and the (K×K) matrix Πi = −(IK−Ai1− . . .−Ai,pi) can be written as Πi = αiβ

′
i

with (K × ri) matrices αi and βi of full column rank.
Interest is in testing whether in all of the N cross-sections there are at most r cointe-

grating relations among the K variables. Thus, the null hypothesis

H0(r) : rank(Πi) = ri ≤ r, for all i = 1, . . . , N,

is tested against the alternative

H1 : rank(Πi) = K, for all i = 1, . . . , N.

According to Johansen (1988), the cointegrating rank of the process may be determined by a
sequential procedure. First, H0(0) is tested, and if this null hypothesis is rejected then H0(1)
is tested. The procedure continues until the null hypothesis is not rejected or H0(K − 1) is
rejected.

The standardized LR-bar statistic for the panel cointegrating rank test is defined by

ΥLR(r) =

√
N

[
1
N

∑N
i=1

(
−T

∑K
j=r+1 ln(1− λ̂ij)

)
− E(Zd)

]
√

Var(Zd)
,

where λ̂ij is the jth largest eigenvalue to a suitable eigenvalue problem for the ith cross-
section defined in Johansen (1995). Moreover, E(Zd) and Var(Zd) denote the mean and the
variance, respectively, of the asymptotic trace statistic

Zd = tr

[(∫ 1

0
W (s)dW (s)′

)′(∫ 1

0
W (s)W (s)′ds

)−1 ∫ 1

0
W (s)dW (s)′

]
, (2)
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where W (s) is a d-dimensional standard Brownian motion with d = K − r. Note that (2) is
the limiting null distribution of the trace statistic (LR statistic) for a given individual i, i.e.
of −T

∑K
j=r+1 ln(1− λ̂ij); see, e.g., Johansen (1995).

Under the null hypothesis and assuming suitable conditions, Larsson et al. (2001) applied
a central limit theorem to establish the asymptotic normality of their standardized LR-bar
statistic, so that standard normal quantiles may serve as critical values for the test. Moreover,
they approximated the first two moments of the asymptotic trace statistic Zd for different
values d by simulation as sample moments of

ZT,d = tr


 1

T

T∑

t=1

εtX
′
t−1

(
1
T 2

T∑

t=1

Xt−1X
′
t−1

)−1
1
T

T∑

t=1

Xt−1ε
′
t


 , (3)

where εt ∼ Nd(0, Id) i.i.d. and Xt =
∑t

i=1 εi for t = 1, . . . , T . This is motivated by the weak
convergence of ZT,d to Zd as T →∞. Consequently, the proposed procedure relies crucially
on the fact that the first two moments of the asymptotic trace statistic exist and may be
obtained as limits of the corresponding moments of ZT,d.

2 Results

On account of the weak convergence of ZT,d to the asymptotic trace statistic Zd, the first two
moments of Zd exist if the sequence {Z2

T,d} is uniformly integrable. A sufficient condition for
this is established in Lemma 2, which states that the fourth moments of ZT,d are uniformly
bounded in T . We start with showing that all moments of ZT,d exist. To ensure that the
inverted matrix appearing in (3) is nonsingular with probability one, we assume T > d.

Lemma 1. Assume that T > d. Then all moments of ZT,d defined by (3) exist.
Proof. As Larsson et al. (2001), we introduce the (T × d) matrices ε = (ε1, ε2, ..., εT )′

and X = (X1, X2, ..., XT )′ as well as the (T × T ) matrices

A =




1 0 · · · · · · 0
1 1 0 · · · 0
...

...
. . . . . .

...
...

...
. . . . . . 0

1 · · · · · · · · · 1




and B =




0 · · · · · · · · · 0
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0




.

Then, X = Aε and the (d× d) matrices appearing in (3) can be rewritten as

AT :=
1
T 2

T∑

t=1

Xt−1X
′
t−1 =

1
T 2

ε′A′B′BAε, BT :=
1
T

T∑

t=1

Xt−1ε
′
t =

1
T

ε′A′B′ε. (4)

Defining D = BA and Y = Dε, we obtain therefore

ZT,d = tr(B′
T A−1

T BT ) = tr[ε′Dε(ε′D′Dε)−1ε′D′ε] (5)
= tr(ε′PY ε) ≤ tr(ε′ε), (6)

where PY = Y (Y ′Y )−1Y ′ denotes the projection matrix onto the column space of Y . The
assumption εt ∼ Nd(0, Id) i.i.d. now implies tr (ε′ε) =

∑T
t=1 ε′tεt ∼ χ2

Td, which completes the
proof, since all moments of a χ2-distributed random variable exist. ¥
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Note that inequality (6) cannot be used to bound the moments of ZT,d uniformly in T ,
because the moments of a χ2-distributed random variable depend on the degrees of freedom.

Lemma 2. Let ZT,d be defined as in (3). Then there exist some constants a and b such
that, for all T > d,

(i) E
(
Z2

T,d

)
< a,

(ii) E
(
Z4

T,d

)
< b.

Proof. Using an inequality of Coope (1994), we get, on account of (5),

ZT,d = tr(A−1
T BT B′

T ) ≤ tr(A−1
T )tr(BT B′

T ), (7)

since A−1
T and BT B′

T are symmetric and nonnegative definite matrices of the same order.
To deal with AT , let λ1 ≥ ... ≥ λT−1 ≥ λT ≥ 0 and v1, . . . , vT be the eigenvalues and the

associated orthonormal eigenvectors, respectively, of the symmetric and nonnegative definite
(T × T ) matrix F = D′D. Then, for any m ∈ {1, . . . , T − 1},

F =
T∑

t=1

λtvtv
′
t º λm

m∑

t=1

vtv
′
t =: Fm , (8)

where º denotes the Löwner partial ordering for symmetric matrices. Because of the or-
thonormality of the matrix V = (v1, . . . , vT ), V ′ε has the same distribution as ε, that is, with
the notation of Muirhead (1982), V ′ε ∼ N(0, IT ⊗ Id). This implies

ε′Fmε = λmU, with U :=
m∑

t=1

ε′vtv
′
tε ∼ Wd(m, Id),

and thus, in view of (4) and (8),

AT =
1
T 2

ε′Fε º 1
T 2

ε′Fmε =
λm

T 2
U =: AT,m. (9)

Clearly, AT,m is almost surely positive definite if m ≥ d. Then (9) leads to A−1
T,m º A−1

T , so
that we arrive at

tr(A−1
T ) ≤ tr(A−1

T,m) =
T 2

λm
tr(U−1). (10)

Observing

D = BA =




0 0 . . . . . . 0
1 0 . . . . . . 0
1 1 0 . . . 0
...

...
. . . . . .

...
1 1 . . . 1 0




, F = D′D =




T − 1 T − 2 T − 3 . . . 1 0
T − 2 T − 2 T − 3 . . . 1 0
T − 3 T − 3 T − 3 . . . 1 0

...
...

...
. . .

...
...

1 1 1 . . . 1 0
0 0 0 . . . 1 0




,

it follows λT = 0, and λ1, . . . , λT−1 are the eigenvalues of the positive definite matrix F̃
obtained from F by deleting the last column and the last row. This matrix can be represented
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as the inverse of a tridiagonal Minkowski matrix (see Neumann, 2000, and Yueh, 2006), i.e.

F̃ =




T − 1 T − 2 T − 3 . . . 2 1
T − 2 T − 2 T − 3 . . . 2 1
T − 3 T − 3 T − 3 . . . 2 1

...
...

...
. . .

...
...

2 2 2 . . . 2 1
1 1 1 . . . 1 1




= (−1)




−1 1 0 . . . 0 0
1 −2 1 . . . 0 0

0 1 −2
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . −2 1

0 0 0 . . . 1 −2




−1

.

Using Theorem 2 of Yueh (2005), the positive (ordered) eigenvalues of F can be represented
as

λt =
1

2
[
1− cos

(
(2t−1)π
2T−1

)] for t = 1, . . . , T − 1.

The series expansion of the cosine function provides, for a fixed m ∈ {1, . . . , T − 1} and as
T →∞ ,

1− cos
(

(2m− 1)π
2T − 1

)
=

(2m− 1)2π2

2(2T − 1)2
+ o(T−3)

and therefore
T 2

λm
−→

T→∞
(2m− 1)2π2

4
=: c1 < ∞. (11)

Note that, for fixed m and T →∞, λm is of the same order T 2 as the sum of all eigenvalues
of F , since

∑T
t=1 λt = tr(F ) = T (T − 1)/2.

With the notation εt = (εt1, . . . , εtd)′, the last term in inequality (7) may be written as

tr(BT B′
T ) =

1
T 2

tr(ε′D′εε′Dε) =
d∑

i=1

d∑

j=1

α2
ij , where (12)

αij =
1
T

T∑

s=1

T∑

t=s+1

εsjεti.

To prove (i), we first take the second power in (7) and apply the Cauchy-Schwarz in-
equality, which gives

E(Z2
T,d) ≤ E

[
tr(A−1

T )tr(BT B′
T )

]2 ≤ {
E[tr(A−1

T )]4 E[tr(BT B′
T )]4

}1/2
. (13)

Consequently, it suffices to verify that both expectations on the right-hand side of inequality
(13) are uniformly bounded in T > d.

In view of (12), E[tr(BT B′
T )]4 is uniformly bounded in T if, for i, j ∈ {1, . . . , d},

supT E(α8
ij) < ∞. But this follows from εt ∼ N(0, Id) i.i.d. and

E
(
α8

ij

)
=

1
T 8

[
T∑

s1=1

. . .
T∑

s8=1

T∑

t1=s1+1

. . .
T∑

t8=s8+1

E (εs1j . . . εs8jεt1i . . . εt8i)

]
,

because E (εs1j . . . εs8jεt1i . . . εt8i) = 0 if more than eight of the subscripts s1, . . . , s8, t1, . . . , t8
differ.
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Finally, to bound E[tr(A−1
T )]4 uniformly, we recall U ∼ Wd(m, Id) and use results of von

Rosen (1988, 1997) on moments for the inverted Wishart distribution. In particular it is
known that the qth moments of U−1 exist if m− d− 2q + 1 > 0. Consequently,

E[tr(U−1)]4 ≤ c2 < ∞ for m ≥ d + 8, (14)

so that an application of inequality (10) for m = d+8 (assuming T > m) together with (11),
(14) and Lemma 1 yields the desired result.

The proof of (ii) is analogous to that of (i) and thus only sketched. First, the Cauchy-
Schwarz inequality provides, using (7),

E(Z4
T,d) ≤ E

[
tr(A−1

T )tr(BT B′
T )

]4 ≤ {
E[tr(A−1

T )]8E[tr(BT B′
T )]8

}1/2
.

It is easy to see that E[tr(BT B′
T )]8 is uniformly bounded in T , since supT E(α16

ij ) < ∞.
Finally, E[tr(A−1

T )]8 is uniformly bounded by choosing m = d+16 and applying (10) together
with (11), because then E[tr(U−1)]8 ≤ c3 < ∞. This completes the proof. ¥

Theorem. It holds that E(Z2
d) < ∞ and lim

T→∞
E(Zq

T,d) = E(Zq
d) for q = 1, 2.

Proof. Recalling that ZT,d converges weakly to the asymptotic trace statistic Zd (Jo-
hansen, 1995), the result follows if {Z2

T,d} is uniformly integrable (see Theorem A on p.14 in
Serfling, 1980). A sufficient condition for the uniform integrability of {Z2

T,d} is that E|ZT,d|2+δ

is uniformly bounded for some δ > 0, i.e supT E|ZT,d|2+δ < ∞. But this is an immediate
consequence of Lemma 2 (ii), completing the proof. ¥

3 Discussion

Several authors have used the first two moments of the asymptotic trace statistic to base
panel cointegration tests on a standardized average of individual cointegration test statistics;
see, for instance, Larsson et al. (2001), Groen & Kleibergen (2003) and Breitung (2005).
Our Theorem provides a theoretical justification for such an approach. To the best of our
knowledge, the only attempt to establish this result is due to Larsson et al. (2001). However,
the proof of their Lemma 1, which coincides with our Lemma 2, is incorrect and has thus
initiated this note. In what follows, we comment in more detail on the proof by Larsson et
al. (2001).

In our notation, Larsson et al. (2001) assumed εt ∼ Nd(0,Ω) i.i.d for defining ZT,d in (3).
This seems to be unnecssary, but would not lead to complications in our proof. Moreover,
they used the spectral decomposition of the (random) positive definite (d×d) matrix AT (see
(4)), i.e.

AT =
1
T 2

T∑

t=1

Xt−1X
′
t−1 = G′ΓG,

where G is an orthogonal (d × d) matrix and Γ = diag(γ1, ..., γd), and defined ε̃ by ε = ε̃G.
Then they rewrote (3) as

ZT,d = tr(B′
T G′Γ−1GBT ) =

d∑

i=1

Hiiγ
−1
i ,
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(compare also (5)), where Hii are the diagonal elements of H = T−2ε̃′D′ε̃ε̃′Dε̃. Finally, they
applied the triangle and Cauchy-Schwarz inequalities to get

E(Z2
T,d) ≤

d∑

i=1

d∑

j=1

[
E(H4

ii)E(γ−4
i )E(H4

jj)E(γ−4
j )

] 1
4
,

so that it remains to bound E(H4
ii) and E(γ−4

j ) (uniformly in T ).
The major difficulty with the proof of Larsson et al. (2001) is that the authors seem

to ignore the randomness of the matrix G. They argue, for example, that ε̃ = εG′ has
the same distribution as ε since G is orthogonal; but G depends on ε (note that even for a
deterministic G the assumption ε ∼ N(0, IT⊗Ω) would generally imply a different distribution
of ε̃: ε̃ ∼ N(0, IT ⊗ GΩG′)). More importantly, to bound E(γ−4

j ) they state that Γ =
GAT G′ = T−2ε̃′D′Dε̃ follows some d-variate Wishart distribution with T − 1 degrees of
freedom. However, we do not see how the diagonal matrix Γ can be Wishart distributed.
Probably, the authors believe that AT = T−2ε′D′Dε is Wishart distributed and use the
orthogonality of G. As before, complications arise from the randomness of G. Moreover,
AT would be Wishart distributed if, for instance, the rows of Dε ∼ N(0, DD′ ⊗ Ω) are
independent or T−2D′D is a projection matrix, but both statements do obviously not hold.

As intended by Larsson et al. (2001), we establish the existence of the first two moments
of the asymptotic trace statistic by showing that the sequence {Z2

T,d} is uniformly integrable.
However, our corrected proof of their Lemma 1 uses basically inequality (8) and thus (9),
where we have to choose a fixed value of m in an appropriate way. On the one hand the
moments of the inverted Wishart variable U−1 (with m degrees of freedom) must exist, and on
the other hand the eigenvalue λm must be of order T 2, which requires a careful investigation
of the eigenvalues of the matrix F = D′D.
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