
Kunz, Werner

Working Paper

Visualization of competitive market structure by
means of choice data

SFB 649 Discussion Paper, No. 2007,032

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Kunz, Werner (2007) : Visualization of competitive market structure by
means of choice data, SFB 649 Discussion Paper, No. 2007,032, Humboldt University of Berlin,
Collaborative Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25204

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25204
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 

 
 
 
 
 

SFB 649 Discussion Paper 2007-032 

Visualization of 
Competitive Market 

Structure by Means of 
Choice Data 

 
Werner Kunz* 

* Humboldt-Universität zu Berlin, Germany 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



Visualization of Competitive Market Structure  

by Means of Choice Data 

Werner Kunz 

Institute of Marketing, Humboldt-Universität zu Berlin,  

Unter den Linden 6, D-10099 Berlin 

Summary 

This paper presents a method for visualizing competitive market structures based on scanner panel data 

where asymmetries are taken into account. For this, I combined consumer choice models based on mixed 

logit models with three-mode principal component analysis. This approach can be used to unfold a 

competitive market structure map. The methodology presented is able to quantify the clout and receptivity of 

various brands. The results can then be visualized over time. Using this approach, guidelines for promotional 

activities of new brands can be provided, and possible threats from the competition detected. 
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1 Motivation 

A clear picture of the competitive market structure is essential for the development of solid 

marketing strategies. An understanding of consumer response to marketing activities and the impact 

of marketing instruments are especially important (Cooper 1988). Therefore, store-tracking data in 

which this information is integrated is a valuable resource for brand managers.  

However, some points must be noted for the analysis of market structure: First, the analysis of 

marketing mix variables is intrinsically tied to problems with non-symmetric effects of marketing 

activities across brands. Thus, the impact of a company’s marketing activity can differ across the 

brands; and if two companies are in the same strategic group a similar effect on them is more 

assumable. Second, in real competitive markets, dynamic effects across time often exist. Therefore, 

it is possible that the balance of power within the market can change from one time segment to 

another, and a static analysis of the market is not very appropriate to describe such markets (Baird 

et al. 1988). Finally, reaction to brand activities is usually not equal for all consumers and hence 

consumer heterogeneity should be considered within a market structure analysis because of its 

significance (Kamakura and Russell 1989; Wedel et al. 1999). 

The goal of a market structure analysis is to detect the interrelationships between different market 

brands and to evaluate their strengths and weaknesses (Elrod et al. 2002). Elasticities serve as a 

measure of competition within a market, and  various analytical tools have been developed to 

analyze market structure based on elasticity matrices (Cooper and Klapper 1996; Elrod et al. 2002; 

Hildebrandt and Klapper 2001; Kamakura and Russell 1989; Klapper 1998). The elasticity matrices 

over time give insights into competitive strengths and weaknesses, reflect the asymmetries within 

the market and describe market structure changes over time. Therefore, an analysis of elasticity is 

critical to understanding competitive effects within a market. Elasticity matrices for different time 

periods constitute a multi-dimensional data array of the market structure. To get a realistic view of 
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the market, all dimensions and the interaction effects of the complex data array should be analyzed 

simultaneously. Therefore, specific data-reduction procedures have been developed (Kroonenberg 

1983; Smilde et al. 2004). Here, the Tucker3 model from Tucker (1966) is one of the most general 

approaches and has been applied very often in chemometrics (Smilde et al. 2004), psychometrics 

(Hofstee et al. 1997) and econometrics (Cooper and Klapper 1996; Hildebrandt and Klapper 2001). 

Cooper (1988) was one of the first researchers to use multi-mode data reduction procedures to 

visualize market structure based on elasticity matrices. By means of the CCHM-Model, he 

calculated the elasticity matrices for all time periods based on aggregated retail data which were 

visualized by the Tucker3 approach for every week. Hildebrandt and Klapper (2001) have also used 

elasticity matrices for the visualization of market structure and further integrated prior knowledge 

of promotion activities into the estimation of the competitive situation. Both approaches used 

aggregated data for the visualization of the market structure. In the case of individual choice data, 

the data has to be aggregated, and consumer heterogeneity cannot be taken into account. 

Furthermore, no characteristic competitive market situations for specific time segments were 

estimated where a dynamic changeover of the market power from one competitive situation to 

another can be visualized. 

Therefore, in this paper, a method of visualizing competitive market structures based on individual 

consumer choice data is presented. For this, I combine choice models based on mixed logit models 

with approaches of three-mode principal component analysis. The core matrix of the three-

dimensional data cube of elasticities over time can be unfolded to a competitive market structure 

map, and it is possible to quantify and visualize the clout and the receptivity of the brands over 

time. Furthermore, characteristic competitive market situations are identified, which illustrate the 

dynamic changeover of the market power. 

Elasticity Estimation as Key for the Market Interrelationships 

For the description of competitive market structure, two concepts have acquired a significant role 

(Cooper 1988; Kamakura and Russell 1989): The clout (Cloi) and the receptivity (Reci) of a brand. 
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Both concepts can be calculated based on the row or column elements of the elasticity matrix as 

follows 

2 2
i ji i ji

j j
Clo Rec= η = η∑ ∑  

where ηij is the price elasticity of brand j on the sales of brand i. Receptivity reflects the degree to 

which a brand is influenced by marketing activities, whereas clout indicates how a brand exerts 

influences on the sales of the competing brands. 

The meaning of receptivity is close to the concept of brand vulnerability where the diagonal 

element is excluded. Thus, receptivity reflects also the influence of own marketing instruments on 

one´s own sale. Further clout is often associated with brand strength. But high clout can also be 

induced by a price sensitivity of the consumer; thus brands with high clouts are not so independent 

in setting their price. Both receptivity and clout are central for the description of the competitive 

relationship and will therefore be utilized in our visualization approach.  

For the analysis of disaggregated data choice models, multinomial logit models have especially 

gained a major role in consumer choice analysis. In this study, I use a mixed logit approach based 

on the finite mixture logit model. The model estimates the choice probability using a discrete mixed 

distribution with a maximum likelihood approach. The specification is documented by Kamakura 

and Russell (1989). They have also shown that the elasticities of the entire model can also be 

estimated based on the discrete mixture distribution, where s indicates the specific part of the 

mixture distribution and πs is its share on the entire distribution. βs is the estimated effect coefficient 

and Psi is the choice probability for brand i given s. 
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2 Theory of the Three-Mode Analysis  

The decomposition of the Tucker3 model 

In the following, the fundamentals of the three-mode principal component analysis are briefly 

described, and an estimation approach for the Tucker3 model is presented. Further information 

about multi-mode data approaches can be obtained by Kroonenberg (1983) or Smilde, Bro & Geladi 

(2004). The basis of three-mode principal component analysis is a three-dimensional (I×J×K)-data 

array X, where every dimension is related to one mode (i.e. mode A, B, and C). 

Ledyard R. Tucker (1966) was the first to develop a model to analyze three-mode data arrays by 

integrating the cross-mode interaction effects. The Tucker3 model is a very general specification for 

data analysis and covers several other models (e.g. PCA, SVD, WPCA, Tucker2, PARAFAC). The 

major idea of this model is to conduct PCA on the mode level simultaneously, while the 

relationships between the modes remain in a core matrix. The data is composed on every mode 

level to specific components which are described by factor-loading matrices A, B, and C as well as 

a core matrix G of the component interrelationships (G is specified here as a (P×Q×R)-data array). 

Following the Tucker3 model, the three-dimensional data array X can be decomposed in the 

subsequent form using the slide notation of X as (I×J)-matrix. By means of the unfolded form of X 

as (I×J·K)-matrix and the kronecker product ⊗, it is possible to express the relationships in a more 

condensed form.  

R

k kr r r
r 1

X A c G B' E k 1 K
=

= + =∑ K   or  X AG(C B) ' E= ⊗ +%%  

where Gr and Er are the r-th slide of the core matrix G and the residual matrix E. The solution of the 

Tucker3 model is in general not unique. If A, B, and C are orthonormal and transformed by 

orthonormal matrices O, P, and Q, then a counter-rotation of the core matrix G exists to neutralize 

this.  

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆA AO, B BP, C CQ G O'G(Q P), X AG(C B) '= = = ⇒ = ⊗ = ⊗% %  
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Therefore, rotation procedures for factor structure simplification (e.g. Varimax or Oblimin) can also 

be applied and used for a better interpretation of the solution.  

Estimation of the Tucker3 model 

To determine the solution of the Tucker3 model, the residual matrix E has to be minimized. One of 

the most prominent approaches is the Alternating Least Square Approach (TuckALS3) of 

Kroonenberg and de Leeuw (1980). The optimization problem can be specified as follows: 

2

,,,
)'(~~min BCGAX

GCBA
⊗−  

If the mode matrices A, B, and C are restricted to be orthonormal, the core matrix G can be 

calculated based on A, B, C and X (i.e. G = A’X(C⊗B)) and only a solution for A, B, and C must 

be found. Further, it can be shown that A is an eigenvector matrix of the following specific SVD: 

[ ]X AG(C B) ' A, D, V svd(X(CC BB'))= ⊗ ⇒ = ⊗  

The TuckALS3-algorithm starts with three arbitrary orthonormal initial matrices of A, B, and C and 

estimates alternating updates of each mode matrix based on the other and the data array X until an 

exit criteria is reached (e.g. square sum of residuals). Kroonenberg showed that the algorithm 

converged if A, B, and C are orthonormal (Kroonenberg 1983). Andersson and Bro (1998) showed 

that for the estimation of the eigenvector matrices within the TuckALS3-algorithm, the Nonlinear 

Iterative Partial Least Squares (NIPALS)-algorithm is one of the most efficient approaches. 

Restrictions on the matrices can be implemented if the restricted parameters are recovered to their 

initial values after each updating iteration (Hildebrandt and Klapper 2001).  

Visualization of the Tucker3 model 

The interpretation of the core matrix can become quite complicated. One possibility for the 

interpretation is to visualize the core matrix by means of joint plots (Kroonenberg 1983). For this, 

the product of the core matrix slides Gr and the two mode matrices A and B (defined as the inner 
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product matrix IPr of the r-th component of C) can be decomposed into two equally sized matrices 

by means of SVD of the core matrix slides Gr, in the following form 

( )( ) )1('' 2
1

2
1

44'

'

RrBVAUBVAUBAGIP

VUG

rrI
J

rrJ
I

rrrrr

rrrr

Κ=ΛΛ=Λ==

Λ=
 

where Λr is a diagonal matrix of the singular values; Ur and Vr are the orthonormal eigenvector 

matrices of the SVD. The two parts of this decomposition represent the elements of the modes A 

and B in a joint space, and the dimension of this space depends on the number of extracted singular 

values. The joint plot is rotational invariant. If an element is far away from the origin, it indicates a 

strong impact of this element on all other elements. Two elements of the same mode are similar if 

the distance between them is low. Two elements of different modes correspond to each other if the 

angle between them is low and both elements are relatively far away from the origin. The inner 

product matrices can be used to estimate idealized slides of X and it is later used to estimate 

idealized elasticities for specific competitive situations. To estimate the idealized slides, the inner 

product matrices were weighted by the factor loadings of predefined characteristic weeks.  

R

s sr r
r 1

A B c IP s S K
=

× = ∈ ⊆∑  

3 Visualization of the Market Structure  

In the following, I demonstrate the strengths of visualizing the competitive structure of a specific 

market. The necessary analyzing procedures have been implemented in the Matlab software 

package. The application is based on scanner panel data provided by the GFK, Nuremberg. I used 

consumer choice data of personal-care products which cover the purchase behavior of 1,905 

households over a period of 52 weeks. The market is dominated by eight brands which comprise 

72% of the total market. In the following, these brands are referred to as Brand 1 to Brand 8 for 

confidentiality reasons. 
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The marketing activities considered are price, display and feature of every competitor per week. 

The paid price, the use of displays and features were explicitly reported in the raw data for the 

specific chosen brand. The marketing instruments of the competition are calculated based on the 

weekly mean values. To avoid multi-colinearity problems, a new variable “promotion” is 

introduced which indicates the joint use of display and feature for a brand. Accordingly, “display” 

and “feature” indicate only the exclusive use of a display or a feature. Table 1 shows the market 

shares, the mean price, the number of promotion, display, and feature weeks of the eight brands 

over the complete period of time. Because features are seldom used exclusively, I only consider 

price, promotion and display in the further analysis.  

 
 Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 Brand 6 Brand 7 Brand 8 

MS 6.0 8.4 4.8 8.6 12.3 15.9 4.6 11.0

Price .70 .73 .64 .66 .95 .69 .59 .74

Promotion 1 2 4 9 6 9 0 7

Display 6 7 18 15 16 24 0 23

Feature 0 0 3 9 0 2 0 3

Table 1: Description of the data set 

Estimation of elasticity over time 

For the estimation of the price-elasticities, a mixed logit approach based on the finite mixture logit 

model is used (Train 2003). The underlying choice model is based on a random utility model, where 

the choice utility (U) of the brand i for customer n is specified as follows  

2

sni i 1s i 2s i 3s i i i 6U Pr ice Pr om Display EV(0, )π= α +β ⋅ +β ⋅ +β ⋅ + ε ε ∈   

where s indicates the index of the mixture distribution and εi is the extreme value distributed 

residual term of the utility. Furthermore, a brand-specific constant αi is estimated for every brand. 

Based on this, the maximum likelihood estimator of the finite mixture logit approach is specified 

and the estimation is done for every week separately. Thus, time interdependencies of the purchases 
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were kept in the result of these estimations and were analyzed later by the tucker model. The price 

elasticities per week were estimated by the approach of Kamakura and Russell (1989). 

Price-elasticity effects in a real market vary extremely over time if they are calculated on short 

periods. This can be caused by short-term context effects that are not integrated into the model (e.g. 

promotion that is not reported, income effects at the end of the month). Because I am interested in 

the major development of the market structure, such short-term effects can be interpreted as noise. 

To avoid an over-fitting of the elasticities on such short-term effects, I integrate the adjacent weeks 

in the parameter estimation per week. This procedure will smooth the estimation in the sense of 

moving average (Hamilton 1999). If the focus of the analysis would be the description of a 

predefined specific market scenario, such an approach is not recommendable. For this, Hildebrandt 

and Klapper (2001) have shown an approach where a predefined market situation can be integrated 

into the estimation of a constrained Tucker3 model.  

Because the sample size of the dataset per week is relatively small (132 purchases per week on 

average), the heterogeneity of the dataset is considered by a two segment finite mixture distribution 

and no store dummy variables were integrated into the model. A more sophisticated model may fit 

the data better, but the stability of the estimation for every week cannot be ensured. Further, I 

expected the purchase decisions of one household per week to be independent, because purchase 

incidents of the underlining product usually do not happen more than once per week. As a result of 

the choice model, I got a three-mode data array consisting of price-elasticities of all brands for 

every week.  

Estimation of the Tucker3 model 

For the calculation of the Tucker3 model I applied the TuckALS3-algorithm proposed by 

Kroonenberg and de Leew (1980). For the initial solution of the algorithm, random matrices for A, 

B and C are used and the NIPALS-Algorithm applied for the SVD within each iteration,. The 

estimation of the Tucker3 model mainly relies on the N-way toolbox developed by Andresson and 

Bro (2000) for the Matlab software environment. 
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To detect the right mode configuration, different configurations from (1×1×1) until (5×5×9) were 

estimated and compared by the marginal increase of explained variance. The last high increase of 

variance is contributed by the (5×5×3)-configuration and the explained variance for this is total 

92%. The stability of the solution was tested by a split half-method. The correlation between the 

different parameter estimation was .98. Furthermore, the residual plot of the three-mode data array 

was observed and shows in total a good fit of the solution with the original data. No characteristic 

pattern could be detected.  

 A1 A2 A3 A4 A5  B1 B2 B3 B4 B5 

Brand 1 -.01 -.01 -.04 -.20 .79  .02 .09 -.21 -.54 .35

Brand 2 -.02 -.04 .02 .29 .39  -.01 .03 -.12 .06 .19

Brand 3 .98 -.03 -.01 -.02 -.01  

1,0

0 .00 .00 .00 .00

Brand 4 -.04 .92 -.03 -.06 -.02  .00 .99 .01 .01 -.02

Brand 5 -.01 -.02 .99 -.03 -.02  .00 .02 .96 -.03 .06

Brand 6 -.17 -.37 -.13 -.36 -.13  .00 -.03 .08 .07 .90

Brand 7 -.02 -.03 .03 .25 .44  -.01 .02 -.09 -.05 .11

Brand 8 -.04 -.08 -.06 .83 -.13  .01 .04 -.10 .83 .15

Exp. 

Variance .29 .21 .25 .11 .14  .24 .18 .42 .05 .13

Table 4: Factor loadings of A and B  
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Figure 1: Factor loadings of mode C  

 C1 (exp Var. = .10) C2 (exp Var. = .11) 

 B1 B2 B3 B4 B5 B1 B2 B3 B4 B5 

A1 5.5 2.0 -5.4 -.9 -1.5 -22.2 3.6 3.3 3.1 9.7 

A2 1.4 -12.1 -.4 1.8 4.8 1.1 -4.6 -1.7 1.1 4.7 

A3 -2.3 -.2 -35.1 6.4 -3.7 1.1 -.6 -27.1 4.7 2.4 

A4 -1.2 1.5 15.6 -11.8 -3.1 1.3 -.3 14.4 -14.9 4.4 

A5 -.4 3.6 14.8 8.5 -1.6 1.3 -1.7 21.4 16.2 -2.6 

 C3 (exp Var. = .79)      

 B1 B2 B3 B4 B5      

A1 -69.9 15.1 3.7 7.5 30.3      

A2 6.2 -59.1 .6 5.4 33.6      

A3 .9 1.9 -60.2 11.7 3.9      

A4 3.6 6.9 36.3 -6.4 19.6      

A5 6.5 11.4 40.6 6.2 17.9      

Table 5: Core matrix of the Tucker3 solution 

C1         C2 C3
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To ensure a better interpretation of the results, I applied VARIMAX-Rotation and further 

orthonormal transformation to the mode matrices A, B, and C. The mode A indicates the receptivity 

and mode B the clout of the different brands. Mode C represents a time mode consisting of 52 

weeks. The resulting factor loading matrices for A and B are shown in Table 4. The loadings of the 

three components of C are illustrated in Figure 1. 

The time mode C is decomposed into three components. It can be clearly seen that the components 

split the 52 weeks in three major parts (weeks 6-20  C1; weeks 20-33  C2; 33-52  C3). The 

most part of the variance is explained by the last component C3. The relations between the different 

modes are represented by the core matrix which is shown in Table 5 (unfolded form). 
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Figure 2: Joint plots of the three core slides  

Mode A (Receptivity)

Mode B (Clout)

Mode A (Receptivity)

Mode B (Clout)

the 3rd Dimension is additionally 
indicated by a vertical line. 
 
C2, C7, R2 and R7 are all close to 
zero and were eliminated to clarify the 
picture.   
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Graphical illustration of the core matrix 

For the interpretation of the market structure, joint plots of each time component were calculated 

based on the Tucker3 solution. Because in all time components the contribution of the third 

dimension is critical for the visualization, I decide to unfold three dimensional joint plots (C1: 

2D:67,7% 3D: 86,4%; C2: 2D:63,9% 3D: 88,8%; C3: 2D:61,7% 3D: 86,7%). The plots of the three 

time components are shown in Figure 2. 

Based on the inner products, an idealized elasticity matrix can be calculated (idealized criteria: 

factorloadings ≥ .1). The receptivity and clout of the brands relative to the mean value in every 

scenario are further measurements to illustrate the power balance within every time component. The 

results are plotted in a two-dimensional space. For the three time components, the plots are shown 

in Figure 3.  

The plots indicate the dominance of Brand 5 in the first time component and the rise of Brand 3 and 

later of Brand 4 in the following time components, while the partial rise of Brand 8 and Brand 1 in 

the second time component can also be observed. The relative receptivity-clout-plot shows the 

power relationships within a market structure for the different time components, but detailed 

information about the interaction effects within specific competitive groups are not visualized by 

this plot. 
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Figure 3: Relative receptivity and clout for the different time components  

4 Summary 

This paper presents a method for visualizing competitive market structures based on consumer 

choice behavior affected by different marketing activities. For this, a combination of consumer 

choice models with approaches of n-way data analysis is used. The approach significantly reduces 

the complexity of competitive relations in the data and obtains interaction effects between the 

different dimensions simultaneously. Furthermore, elasticity changes between specific time 

components can be visualized over time and asymmetries between the brands are considered.  

Our methodology used scanner panel data which is becoming more and more available for 

companies. Even small and medium-sized enterprise can today participate from this information at 

lower rates. Even though today store-tracking data are easy to achieve, managers who are 

responsible for planning are mostly overstrained by vast amounts of data. With this approach I have 

shown an easy way to reduce this amount of information into a compact form from which deep 

managerial implications can be derived.  

rel. clout rel. clout rel. clout 

rel. 
recep- 
tivity 

C1      C2     C3 
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It allows the detection of relative power of different brands for specific time components. 

Furthermore, interaction effects between the brands can be visualized and specific groups of 

competition can be identified. The methodology presented is also able to quantify and visualize the 

clout and receptivity or vulnerability between brands. By means of this, potential threats and own 

weaknesses can be noticed at an early stage.  

The application has been focused on price promotion, but also other marketing instruments can be 

taken as a basis for the visualization. Hence, the method can give managerial guidance for holistic 

promotional planning. Thus, the relevant competitors can be detected, where the price competition 

is important, while other competitive groups can be identified if considering a display campaign. 
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