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Abstract: We give an explicit PDE characterization for the solution of the problem

of maximizing the utility of both terminal wealth and intertemporal consumption under

model uncertainty. The underlying market model consists of a risky asset, whose volatility

and long-term trend are driven by an external stochastic factor process. The robust utility

functional is defined in terms of a HARA utility function with risk aversion parameter

0 < α < 1 and a dynamically consistent coherent risk measure, which allows for model

uncertainty in the distributions of both the asset price dynamics and the factor process.

Our method combines recent results by Wittmüss (2007) on the duality theory of robust

optimization of consumption with a stochastic control approach to the dual problem of

determining a ‘worst-case martingale measure’.

1 Introduction

Recently, there has been considerable interest in studying optimization problems in which

the target functional is defined in terms of a coherent or convex risk measure. These

optimization problems can be called robust since optimization involves an entire class Q of

possible probabilistic models and thus takes into account model risk; see, e.g., [24] and the

references therein. This link between model uncertainty and risk measures is particularly

transparent in the theory of investors preferences under model uncertainty as developed

by Gilboa and Schmeidler [12]. By introducing an axiom called ‘uncertainty aversion’

within an extended von Neumann-Morgenstern framework, Gilboa and Schmeidler [12]

derive the following representation for the corresponding utility functional:

X 7−→ inf
Q∈Q

EQ[U(X) ],

∗Supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
AMS 2000 subject classification: 91B28, 49L20, 90C47, 60H10

Key words and phrases: optimal consumption, robust control, model uncertainty, incomplete markets,
stochastic volatility, coherent risk measures, convex duality
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where Q is a set of probability measures, and U is a utility function. A natural question is

now to study some of classical problems of mathematical finance and economics within this

setup. Optimal investment problems for such robust utility functionals were considered,

among others, by Talay and Zheng [27], Korn and Wilmott [19], Quenez [22], Schied [23],

Korn and Menkens [17], Gundel [13], Schied and Wu [26], Föllmer and Gundel [8], Korn

and Steffensen [18], and Hernández-Hernández and Schied [14, 15].

The present paper is a continuation of [14], where the problem of maximizing the

robust utility of the terminal wealth was studied in a stochastic factor model and for

HARA utility functions

U(x) =
xα

α
, x > 0,

with risk aversion parameter α < 0. Here, we will discuss the case α > 0, which is more

difficult than the case α < 0 and requires completely different methods. We will moreover

allow for intertemporal consumption strategies, which is important for several fascinating

applications in macro-economic theory; see, e.g., Barillas et al. [1] and the references

therein. Also the setup of our market model is more general than in [14] and now includes

local volatility models.

Our method relies first on an application of the duality results for the robust optimiza-

tion of consumption obtained by Wittmüss [28] (earlier results on the same problem were

obtained by Burgert and Rüschendorf [2], but they are not applicable to our situation,

due to more restrictive assumptions). The idea of using convex duality so as to transform

the original minimax problem into a minimization problem was first used by Quenez [22].

After using [28] to set up the dual problem as a two-parameter minimization problem, we

then use stochastic control techniques to derive a Hamilton-Jacobi-Bellman equation for

the value function v. Our main result states that v is in fact a classical solution of this

quasi-linear PDE. In particular, we avoid the use of (non-smooth) viscosity solutions and

thus obtain explicit formulas for the optimal strategy in terms of v and its derivatives.

The increased difficulty of the problem for α > 0 in comparison to the case α < 0

is related to the fact that a ‘worst-case martingale measure’ may not exist and that

the infimum may only be attained within a larger class of sub-probability measures.

This phenomenon is well-known also in standard utility maximization; see Kramkov and

Schachermayer [20, Section 5]. On the analytical side, it corresponds to the possible

unboundedness of the gradient of the value function v in the case α > 0; see Lemma 3.5

and its proof. Establishing the boundedness of this gradient in the case α < 0 was the

key step in [14].

The paper is organized as follows. In the next section, we introduce our model and

state our main result. Its proof is given in Section 3.

2 Statement of main results

We consider a financial market model with a locally riskless money market account

dS0
t = S0

t r(Yt) dt (1)
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with locally risk-free rate r ≥ 0 and a risky asset defined under a reference measure P
through the SDE

dSt = Stb(Yt) dt+ Stσ(Yt) dW
1
t . (2)

Here W 1 is a standard P-Brownian motion and Y denotes an external economic factor

process modeled by the SDE

dYt = g(Yt) dt+ ρ(Yt) dW
1
t + ς(Yt) dW

2
t (3)

for a standard P-Brownian motion W 2, which is independent of W 1 under P. We suppose

that the economic factor can be observed but cannot be traded directly so that the market

model is typically incomplete. Models of this type have been widely used in finance and

economics, the case of a mean-reverting factor process with the choice g(y) := −κ(µ− y)
being particularly popular; see, e.g., Fleming and Hernández-Hernández [4], Fouque et

al. [10], and the references therein. We assume that g belongs to C2(R), with derivative

g′ ∈ C1
b (R), and r, b, σ, ρ, and ς belong to C2

b (R), where Ck
b (R) denotes the class of

bounded functions with bounded derivatives up to order k. We will also assume that

σ(y) ≥ σ0 and a(y) :=
1

2
(ρ2(y) + ς2(y)) ≥ σ2

1 for some constants σ0, σ1 > 0. (4)

The market price of risk with respect to the reference measure P is defined via the function

θ(y) :=
b(y)− r(y)

σ(y)
.

The assumption of time-independent coefficients is for convenience in the exposition only

and can be relaxed by standard arguments. Similarly, it is easy to extend our results to

a d-dimensional stock market model replacing the one-dimensional SDE (2).

Remark 2.1 By taking ς ≡ 0, ρ(y) = σ(y), g(y) = b(y) − 1
2
σ2(y), and Y0 = logS0 it

follows that Y coincides with logS. Hence, S solves the SDE of a local volatility model:

dSt = Stb̃(St) dt+ Stσ̃(St) dW
1
t , (5)

where b̃(x) = b(log x) and σ̃(x) = σ(log x). Thus, our analysis includes the study of the

robust optimal investment problem for local volatility models given by (5), and it will be

easy to derive the corresponding equation as a special case of our main result, Theorem

2.2.

In most economic situations, investors typically face model uncertainty in the sense

that the dynamics of the relevant quantities are not precisely known. One common

approach to coping with model uncertainty is to admit an entire class Q of possible prior

models. Here, we will consider the class

Q :=
{
Q ∼ P

∣∣ dQ
dP

= E
( ∫

0

η1t dW
1
t +

∫
0

η2t dW
2
t

)
T
, η = (η1, η2) ∈ C

}
,
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where E(M)t = exp(Mt−〈M〉t/2) denotes the Doleans-Dade exponential of a continuous

local martingale M and C denotes the set of all progressively measurable processes η =

(η1, η2) such that ηt belongs dt⊗ dP-a.e. to some fixed compact convex set Γ ⊂ R2. Note

that due to Novikov’s theorem we have a one-to-one correspondence between measures

Q ∈ Q and processes η ∈ C (up to dt⊗ dP-nullsets).

Let A denote the set of all pairs (c, π) of progressively measurable process π and c

such that c ≥ 0,
∫ T

0
cs ds < ∞, and

∫ T

0
π2

s ds < ∞ P-a.s. For (c, π) ∈ A we define Xx,c,π

as the unique solution of the linear SDE

dXx,c,π
t =

Xx,c,π
s πs

Ss

dSs +
Xx,c,π

s (1− πs)

S0
s

dS0
s − cs ds and Xx,c,π

0 = x. (6)

Then Xx,c,π describes the evolution of the wealth process of an investor with initial en-

dowment Xx,c,π
0 = x > 0 who is consuming at the rate cs and investing the fraction πs of

the current wealth Xx,c,π
s into the risky asset at time s ∈ [0, T ]. By A(x) we denote the

subclass of all (c, π) ∈ A that are admissible in the sense that Xx,c,π
t ≥ 0 P-a.s. for all t.

The objective of the investor consists in

maximizing inf
Q∈Q

EQ

[ ∫ T

0

γe−λtU(ct) dt+ U(Xx,c,π
T )

]
over (c, π) ∈ A(x), (7)

where γ, λ ≥ 0, and the utility function U :]0,∞[→ R will be specified in the sequel as a

HARA utility function with risk aversion parameter α > 0:

U(x) =
xα

α
. (8)

By taking γ = 0, we obtain as a special case the optimization problem for the terminal

wealth:

maximize inf
Q∈Q

EQ[U(Xx,0,π
T ) ] over π such that (0, π) ∈ A(x).

For the case α < 0, this problem was studied in [14], but the case α > 0 requires completely

different methods. Finally, recall that a = 1
2
(ρ2 + ς2) and let us define

β :=
α

1− α
.

Theorem 2.2 There exists a unique strictly positive and bounded solution v ∈ C1,2(]0, T ]×
R) ∩ C([0, T ]× R) of the quasilinear PDE

vt = γe−λ(T−t) + avyy + (g + βρθ)vy −
1

2
ας2

v2
y

v
+ βrv

+ inf
η∈Γ

[(
ρ(1 + β)η1 + βςη2

)
vy +

β(1 + β)

2
(η1 + θ)2v

]
(9)

with initial condition

v(0, ·) ≡ 1, (10)
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and the value function of the robust utility maximization problem (7) can then be expressed

as

u(x) := sup
(c,π)∈A(x)

inf
Q∈Q

EQ

[ ∫ T

0

γe−λtU(ct) dt+ U(Xx,c,π
T )

]
=
nα

Tx
α

α
v(T, Y0)

1−α, (11)

where nT := γ
λ
(1 − e−λT ) + 1. If η∗(t, y) is a measurable Γ-valued function that realizes

the maximum in (9), then an optimal strategy (ĉ, π̂) ∈ A(x) can be obtained by letting

π̂t = π∗(T − t, Yt) for

π∗(t, y) =
1

σ(y)

[
(1 + β)(η∗1(t, y) + θ(y)) + ρ(y)

vy(t, y)

v(t, y)

]
and by consuming at a rate proportional to the current total wealth Xx,bc,bπ

t :

ĉt =
γe−λt

v(T − t, Yt)
Xx,bc,bπ

t .

Moreover, by defining a measure Q̂ ∈ Q via

dQ̂

dP
= E

( ∫
0

η∗1(T − t, Yt) dW
1
t +

∫
0

η∗2(T − t, Yt) dW
2
t

)
T
,

we obtain a saddlepoint ((ĉ, π̂), Q̂) for the maximin problem (7).

Remark 2.3 For γ = 0 the HJB equation (9) can be simplified by passing to the log-

transorm w := log v; see [14].

3 Proof of the main result

We will first set up the dual problem to (7) following Wittmüss [28]. To check for the

applicability of the results in [28], note first that our choice (8) obviously satisfies [28,

Assumption 2.2]. Moreover, the convex risk measure

ρ(Y ) := sup
Q∈Q

EQ[−Y ], Y ∈ L∞(P),

is continuous from below on L∞(P). This follows by combining [14, Lemma 3.1], [26,

Lemma 3.2], and [9, Corollary 4.35]. Hence, [28, Assumption 2.1] is also satisfied.

Let us denote by M the set of all progressively measurable processes ν such that∫ T

0
ν2

t dt <∞ P-a.s., and define

Zν
t := E

(
−

∫
θ(Ys) dW

1
s −

∫
νs dW

2
s

)
t
.

Moreover, we introduce the conjugate function Ũ(z) = supx≥0(U(x)− zx) and the prob-

ability measure

µT (dt) =
1

nT

(
γe−λtI

[0,T ]
(t) dt+ δT (dt)

)
,
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where nT denotes the normalizing constant. It then follows from [28, Remark 2.7] and

[16, Proposition 4.1] that, up to the normalizing constant n−1
T , the dual value function of

the robust utility maximization problem is given by

ũ(z) := inf
η∈C

inf
ν∈M

E
[ ∫

Dη
t Ũ(zZν

t /(D
η
t S

0
t ))µT (dt)

]
, (12)

where

Dη
t = E

( ∫
0

ηs dWs

)
t
.

Due to [28, Theorem 2.5], the primal value function u can then be obtained as

u(x) = nT min
z>0

(ũ(z) + zx). (13)

Moreover, the same result yields that if ẑ > 0 minimizes (13) and there are control

processes (η̂, ν̂) minimizing (12) for z = ẑ, then, for I(y) := −Ũ ′(y), the choice

ĉt =
1

nT

γe−λtI
( ẑZbν

t

Dbη
t S

0
t

)
and Xx,bc,bπ

T =
1

nT

I
( ẑZbν

T

Dbη
TS

0
T

)
(14)

defines an optimal strategy (ĉ, π̂) ∈ A(x). Here the factors γe−λt/nT and 1/nT come from

the fact that in (6) we have introduced c as the consumption density with respect to the

Lebesgue measure rather than with respect to µT as is required by [28]; Xx,c,π
T plays the

rol of a lump consumption at the terminal time T . In our specific setting (8), we have

Ũ(z) = z−β/β with β = α/1− α. Thus, we can simplify the duality formula (13) as

follows. First, the expectation in (12) equals

E
[ ∫

Dη
t Ũ

( zZν
t

Dη
t S

0
t

)
µT (dt)

]
=
z−β

β

∫
E

[
(Dη

t )
1+β(Zν

t )−β(S0
t )

β
]
µT (dt) =:

z−β

β
Λη,ν .

Optimizing over z > 0 then yields that

min
z>0

(z−β

β
Λη,ν + zx

)
=

1 + β

β
xβ/(1+β)Λ1/(1+β)

η,ν =
xα

α
Λ1−α

η,ν ,

where the optimal z is given by

ẑ =
(Λη,ν

x

)1/(1+β)

=
(Λη,ν

x

)1−α

. (15)

Using (12) and (13) now yields

u(x) = nT
xα

α

(
inf

ν∈M
inf
η∈C

Λη,ν

)1−α
. (16)

By taking the strategy (c, π) ≡ (x/(T + 1), 0) in the definition (11) of u we obtain

u(x) ≥ nT (x/(T + 1))α/α for all x > 0. Combining this fact with (16) yields

inf
ν∈M

inf
η∈C

Λη,ν ≥
( 1

T + 1

)β

> 0. (17)
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Our next aim is to further simplify Λη,ν . To this end, note that

(Dη
t )

1+β(Zν
t )−β(S0

t )
β

= E
( ∫ (

(1 + β)η1s + βθ(Ys)
)
dW 1

s +

∫ (
(1 + β)η2s + βνs

)
dW 2

s

)
t

(18)

× exp
( ∫ t

0

q(Ys, ηs, νs) ds
)
,

where the function q : R× R2 × R → [0,∞[ is given by

q(y, η, ν) =
β(1 + β)

2

[
(η1 + θ(y))2 + (η2 + ν)2

]
+ βr(y).

The Doleans-Dade exponential in (18) will be denoted by ∆η,ν
t . If

∫ T

0
ν2

t dt is bounded,

then E[ ∆η,ν
T ] = 1. In general, however, we may have E[ ∆η,ν

T ] < 1 and this fact will create

some technical difficulties in the sequel.

Our aim is to minimize Λη,ν over η ∈ C and ν ∈M0. To this end, for t ≥ 0 and κ ≥ 0,

we introduce the measures

µ̃t(ds) := κeλ(t−s)I
[0,t]

(s) ds+ δt(ds)

and, for Y0 = y, the function

J(t, y, η, ν) := E
[ ∫

(Dη
s )

1+β(Zν
s )−β(S0

s )
β µ̃t(ds)

]
= E

[
∆η,ν

t

∫
exp

( ∫ s

0

q(Yr, ηr, νr) dr
)
µ̃t(ds)

]
so that by taking κ := γe−λT we get J(T, Y0, η, ν) = nT Λη,ν . To make the dependence of

Y on its initial value explicit, we will sometimes also write Y y for the solution of the SDE

(3) with initial value Y0 = y.

We will now use dynamic programming methods to solve the stochastic control prob-

lem with value function defined by

V (t, y) := inf
ν∈M

inf
η∈C

J(t, y, η, ν).

By taking T := t and γ := κeλt, the inequality (17) yields

V (t, y) ≥ nt

( 1

t+ 1

)β

> 0 for all t, y. (19)

For simplicity, we denote

a(y) :=
1

2
(ρ2(y) + ς2(y)) and g̃(y) := g(y) + βρ(y)θ(y).

Theorem 3.1 The function V (t, y) is the unique bounded and strictly positive classical

solution of the HJB equation

vt = κeλt + avyy + g̃vy + inf
ν∈R

inf
η∈Γ

([
ρ(1 + β)η1 + ς

(
(1 + β)η2 + βν

)]
vy + q(·, η, ν)v

)
(20)

with initial condition

v(0, y) = 1.
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The proof of this theorem will be prepared by several auxiliary lemmas. The first one

deals with the possibility E[ ∆η,ν
T ] < 1. This happens when Zν is only a local martingale

and not a true martingale. To deal with this situation, we will follow Föllmer [6, 7] and

introduce the enlarged sample space Ω̄ := Ω×]0,∞] endowed with the filtration

F̄t := σ
(
A×]s,∞] |A ∈ Fs, s ≤ t

)
.

A finite (Ft)-stopping time τ is lifted up to an (F̄t)-stopping time τ̄ by setting τ̄(ω, s) :=

τ(ω)I
]τ(ω),∞]

(s). Now let ν ∈M be given. Although we may have E[Zν
T ] < 1 it is possible

to associate Zν with a probability measure P̄ν on (Ω̄, F̄∞), where F̄∞ = σ(
⋃

t F̄t) as usual.

This measure is called the Föllmer measure associated with the positive supermartingale

Zν , and it is characterized by

P̄ν [A×]t,∞] ] = E[Zν
t∧T I

A
], 0 ≤ t, A ∈ Ft;

see [6, 7]. This identity carries over to the case in which the deterministic time t is replaced

by a stopping time τ .

Lemma 3.2 Suppose η ∈ C and ν ∈ M are given, and (σn) is a localizing sequence for

the local P-martingale Zν. Then

E
[
(Dη

t∧σn
)1+β(Zν

t∧σn
)−β(S0

t∧σn
)β

]
↗ E

[
(Dη

t )
1+β(Zν

t )−β(S0
t )

β
]
.

In particular, the integrands converge in L1(P) if E[ (Dη
t )

1+β(Zν
t )−β(S0

t )
β ] <∞.

Proof: Since (S0
t∧σn

)β increases to the bounded random variable (S0
t )

β, we may assume

r ≡ 0 without loss of generality. Let Q be the probability measure in Q associated with

η, and let us write D := Dη and Z := Zν .

First, we clearly have

lim inf
n↑∞

E
[
(Dt∧σn)1+β(Zt∧σn)−β

]
≥ E

[
(Dt)

1+β(Zt)
−β

]
(21)

due to Fatou’s lemma.

Next, let P̄ν be the Föllmer measure associated with the positive supermartingale Z

and let Q̄ := Q⊗ δ∞ the extension of Q to (Ω̄, F̄∞). Since Z is strictly positive, we obtain

that for t ≤ T and A ∈ Ft

Q̄[A×]t,∞] ] = E[DtIA ] = E
[
Zt
Dt

Zt

I
A

]
=

∫
Dt(ω)

Zt(ω)
I
A
(ω)I

]t,∞]
(s) P̄ν(dω, ds).

Hence, Q� P̄ν and the density process is given by

dQ̄

dP̄ν

∣∣∣
F̄t

(ω, s) =
Dt(ω)

Zt(ω)
I
]t,∞]

(s), t ≤ T.
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Replacing t by a stopping time τ ≤ T on the right, we thus obtain the density of Q̄ with

respect to P̄ν on F̄τ̄ , due to the optional stopping theorem. Hence, for two stopping times

σ ≤ τ ≤ T ,

E
[
(Dτ )

1+β(Zτ )
−β

]
=

∫ (Dτ (ω)

Zτ (ω)

)β

I
]τ(ω),∞]

(s) Q̄(dω, ds)

= EP̄ν

[ ( dQ̄
dP̄ν

∣∣∣
F̄τ̄

)1+β ]
≥ EP̄ν

[ ( dQ̄
dP̄ν

∣∣∣
F̄σ̄

)1+β ]
= E

[
(Dσ)1+β(Zσ)−β

]
,

where the inequality follows from Jensen’s inequality for conditional expectations, and the

last identity follows by reversing our previous steps. In particular, E[ (Dt∧σn)1+β(Zt∧σn)−β ]

is increasing in n and bounded above by E[ (Dt)
1+β(Zt)

−β ]. By combining this fact with

(21), the result follows.

The following lemma is a version of a standard verification result. Later on, it will first

be applied with the choice I := [−M,M ], which corresponds to restricting the control

space for ν in (20). The fact that I is compact will later on allow us to apply existence

results for classical solutions vI of the corresponding HJB equation.

We will say that a function v : [0, T ] × R → R is of polynomial growth if there exist

constants c and p ≥ 0 such that |vI(t, y)| ≤ c(1 + |y|p) for all y ∈ R and 0 ≤ t ≤ T .

Lemma 3.3 Let I be a nonempty closed real interval, and suppose that the HJB equation

vt = κeλt + avyy + g̃vy + inf
ν∈I

inf
η∈Γ

([
ρ(1 + β)η1 + ς

(
(1 + β)η2 + βν

)]
vy + q(·, η, ν)v

)
(22)

admits a classical solution vI of polynomial growth satisfying the initial condition

vI(0, y) = 1. (23)

In case I is non-compact, we assume in addition that vI is bounded and strictly positive.

Then we have vI(t, y) = V I(t, y), where

V I(t, y) := inf
η∈C

inf
ν∈MI

J(t, y, η, ν)

for MI denoting the set of all I-valued ν ∈M0. In particular, we have

vI(t, y) ≥ nt

( 1

t+ 1

)β

for t ≤ T and y ∈ R. (24)
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Proof: Let us write v = vI throughout the proof. Let η ∈ C and ν ∈ MI be controls

such that such that J(u, y, η, ν) <∞ and define

dMs := ρ(Ys) dW
1
s +ς(Ys) dW

2
s −ρ(Ys)

(
(1+β)η1s +βθ(Ys)

)
ds−ς(Ys)

(
(1+β)η2s +βνs

)
ds.

Then the SDE for Y can be rewritten as

dYs = dMs +
{
g̃(Ys) + ρ(Ys)(1 + β)η1s + ς(Ys)

(
(1 + β)η2s + βνs

)}
ds.

For any ν̃ ∈ I and η̃ ∈ Γ we define a differential operator Aeη,eν by

Aeη,eν = −∂t + a∂yy +
(
g̃ + ρ(1 + β)η̃1 + ς

(
(1 + β)η̃2 + βν̃

))
∂y.

Then, by Itô’s formula and (22),

d
[
e

R t
0 q(Ys,ηs,νs) dsv(u− t, Yt)

]
= e

R t
0 q(Ys,ηs,νs) ds

[
vy(u− t, Yt) dMt +

(
Aηt,νtv(u− t, Yt) + q(Yt, ηt, νt)v(u− t, Yt)

)
dt

]
≥ e

R t
0 q(Ys,ηs,νs) ds

[
vy(u− t, Yt) dMt − κeλ(u−t) dt

]
. (25)

Next let

σn := inf
{
t ≥ 0

∣∣ |vy((u− t)+, Yt)| ≥ n or

∫ t

0

ν2
s ds ≥ n

}
.

Then (σn) is a localizing sequence for the local P-martingale Zν . Defining a probability

measure P n by dP n = ∆η,ν
u∧σn

dP, it follows from Girsanov’s theorem that (Mσn
t )0≤t≤u is a

P n-martingale. By taking expectations with respect to P n, we hence get

v(u, Y0) ≤ En
[
e

R u∧σn
0 q(Ys,ηs,νs) ds v(u− u ∧ σn, Yu∧σn) +

∫ u∧σn

0

κeλ(u−t)e
R t
0 q(Ys,ηs,νs) ds dt

]
.

(26)

We will first look at the second term on the right:

En
[ ∫ u∧σn

0

κeλ(u−t)e
R t
0 q(Ys,ηs,νs) ds dt

]
=

∫ u

0

κeλ(u−t)E
[
∆η,ν

t∧σn
e

R t
0 q(Ys,ηs,νs) ds I{t≤σn}

]
dt

=

∫ u

0

κeλ(u−t)E
[
(Dη

t∧σn
)1+β(Zν

t∧σn
)−β(S0

t∧σn
)β I{t≤σn}

]
dt,

and an application of Lemma 3.2, together with monotone convergence and our assump-

tion J(u, y, η, ν) <∞, implies that the latter expression converges to∫ u

0

κeλ(u−t)EQ

[
(Dη

t )
β(Zν

t )−β(S0
t )

β
]
dt.

The first expectation in (26) is equal to

EQ

[
(Dη

u∧σn
)β(Zν

u∧σn
)−β(S0

u∧σn
)βv(u− u ∧ σn, Yu∧σn)

]
. (27)
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We will argue below that the integrands in (27) are uniformly integrable with respect to

Q. Due to the initial condition (23) and the continuity of v, we will thus get

v(u, Y0) ≤ EQ

[ ∫
(Dη

t )
β(Zν

t )−β(S0
t )

β µ̃u(dt)
]

= J(u, y, η, ν) (28)

and in turn v ≤ V I .

Let us now show that the integrands in (27) are uniformly integrable. For unbounded I,

this follows from the boundedness of v, Lemma 3.2, and our assumption J(u, y, η, ν) <∞.

For bounded I, one easily shows that the integrands have uniformly bounded L2(Q)-

norms. Indeed, we have

EQ

[
(Dη

t∧σn
)2β(Zν

t∧σn
)−2β(S0

t∧σn
)2βv(u− u ∧ σn, Yu∧σn)2

]
≤ EQ

[
(Dη

t∧σn
)4β(Zν

t∧σn
)−4β(S0

t∧σn
)4β

]1/2

EQ

[
v(u− u ∧ σn, Yu∧σn)4

]1/2

.

The uniform boundedness of the first term on the right now follows by an application

of Lemma 3.2 for β′ := 4β. The second term can be bounded in the form C(1 +

EQ[ |Yu∧σn|4p ]), due to the polynomial growth condition of v. It is well known and easy

to show that, under the original measure P, the random variable supt≤T |Yt| has moments

of all orders. Since the process η is bounded, the same is true under Q, and the desired

uniform integrability follows.

In order to prove the reverse inequality v ≥ V I , let us first consider the case of a

compact interval I. Due to compactness, we then may find Markov controls

(η∗, ν∗) ∈ argmin
ν∈I,η∈Γ

{[
ρ(1 + β)η1 + ς

(
(1 + β)η2 + βν

)]
vy + q(·, η, ν)v

}
,

which by a measurable selection argument can be chosen as measurable functions η∗(t, y),

ν∗(t, y) of t and y. Using the controls ν∗s := ν∗(u−s, Ys) ∈MI , η∗s := η∗(u−s, Ys) ∈ C, we

get an equality in (25) and hence in (26) and (28). Thus, v(t, y) ≥ J(t, y, η∗, ν∗) ≥ V I(t, y).

In particular, (24) follows from (19).

If I is unbounded, we note first that the supremum of the nonlinear term in (22) with

respect to all ν ∈ R is attained in

ν̂ = −η2 −
ς

1 + β
· vy

v
, (29)

which is always well-defined, due to our hypothesis of strict positivity of v. Hence, the

supremum with respect to ν ∈ I is also attained, and we can define processes ν∗s :=

ν∗(u − s, Ys) and η∗s := η∗(u − s, Ys) as above, for which we get an equality in (25). We

clearly have η∗ ∈ C and that ν∗ is I-valued. In addition, for any (t, y), the function ν∗(t, y)

is either of the form (29) with η2 replaced by η∗2(t, y) or takes its value in the boundary of

I, and so the boundedness of η∗2, the continuity of vy and v, and the strict positivity of v

imply that
∫ T

0
ν∗(T − t, Yt)

2 dt <∞ along any continuous sample path of Y . This yields

an equality in (28).
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According to [5, Theorem IV.4.3 and Remark IV.4.1], the equation (22)–(23) admits

a unique classical solution vI of polynomial growth as soon as I is compact. By the

preceding lemma, this solution is equal to the value function V I . Our goal is to show

that the unconstrained value function V can be obtained as an appropriate limit of the

functions vI = V I when I ↑ R. To this end, we will prove some a priori estimates, which

hold uniformly with respect to I.

Lemma 3.4 Suppose I is a compact real interval containing 0. Then,

0 ≤ vI
t (t, y) ≤ C1v

I(t, y),

where

C1 := inf
x∈Γ

(
‖q(·, x, 0)‖∞ + eλ(κ+ λ)

)
e‖q(·,x,0)‖∞ .

In particular, vI is uniformly bounded on [0, T ]× R:

1 ≤ vI(t, y) ≤ eC1T .

Proof: We will use the representation of vI as the value function V I . Let us take δ ∈]0, 1]

such that 0 ≤ t + δ ≤ T . Since I is compact, ∆η,ν is a P-martingale for all η ∈ C and

ν ∈MI . Hence, in proving the lower bound we may argue that

V I(t+ δ, y)− V I(t, y) ≥ inf
ν∈MI ,η∈C

[
J(t+ δ, y, η, ν)− J(t, y, η, ν)

]
= inf

ν∈MI ,η∈C
E

[
∆η,ν

(t+δ)

( ∫
e

R s
0 q(Yu,ηu,νu) du µ̃t+δ(ds)−

∫
e

R s
0 q(Yu,ηu,νu) du µ̃t(ds)

) ]
,

and one easily sees that the difference of the two integrals is nonnegative, due to our

assumption r ≥ 0.

To prove the upper bound, take ε > 0, x ∈ Γ, and processes ν̃ ∈ MI and η̃ ∈ C such

that V I(t, y) + εδ ≥ J(t, y, η̃, ν̃) and, for s ∈ [t, t+ δ], ν̃s = 0 and η̃s = x. It follows from

Lemma 3.2 that

V I(t+ δ, y)− V I(t, y)− εδ

≤ J(t+ δ, y, η̃, ν̃)− J(t, y, η̃, ν̃)

= E
[

∆eη,eν
t+δ

{
e

R t
0 q(Ys,eηs,eνs) ds

(
e

R t+δ
t q(Ys,x,0) ds − 1

)
+ κ

∫ t

0

eλ(t−s)e
R s
0 q(Yu,eηu,eνu) du(eλδ − 1) ds

+ κ

∫ t+δ

t

eλ(t+δ−s)e
R t
0 q(Yu,eηu,eνu) due

R s
t q(Yu,x,0) du ds

} ]
≤ δJ(t, y, η̃, ν̃)

(
‖q(·, x, 0)‖∞ + eλ(κ+ λ)

)
e‖q(·,x,0)‖∞ ,

which gives the upper bound.
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Lemma 3.5 Suppose that I is a compact nonempty real interval containing zero, and vI

is the classical solution of polynomial growth to (22)–(23). Then there exists a constant C2,

depending only on α, κ, λ, Γ, and the coefficients in (1)–(3), such that |vI
y | ≤ C2(1 + |y|)

and |vI
yy| ≤ C2(1 + |y|2).

Proof: Let w := log vI = log V I ≥ 0. We have |vI
y | = vI |wy| and |vI

yy| ≤ vI(|wyy| + w2
y).

Since vI ≤ eC1T by Lemma 3.4, it is sufficient to obtain analogous estimates on |wy| and

|wyy| from above. The function w satisfies the equation

wt = κeλte−w + a(wyy + w2
y) + (g + βρθ)wy (30)

+ inf
ν∈I

inf
η∈Γ

([
ρ(1 + β)η1 + ς

(
(1 + β)η2 + βν

)]
wy + q(·, η, ν)

)
with initial condition

w(0, ·) ≡ 0.

Moreover, we have

0 ≤ wt ≤ C1, (31)

due to Lemma 3.4.

Next, the boundedness of w implies that, for fixed t, the function y 7→ |wy(t, y)| cannot

tend towards its supremum as y ↑ ∞ or y ↓ −∞. Hence, it is enough to estimate the

function wy(t, y) in its critical points. In these points, we have

wt = κeλte−w + aw2
y + g̃wy + φI(wy), (32)

where φI denotes the infimum in (30), considered as a function of wy (and implicitly also

of y). When taking the infimum over all ν ∈ R one finds that

0 ≥ φI(y, p) ≥ −1

2
ας2(y)p2 + ψ(y, p), p ∈ R, (33)

where

ψ(y, p) := inf
η∈Γ

([
ρ(y)(1 + β)η1 + ς(y)η2

]
p+

β(1 + β)

2
(η1 + θ(y))2

)
.

By using the upper bound in (31) and the lower bound in (33), we obtain

C1 ≥
1

2
(ρ2 + (1− α)ς2)w2

y + g̃wy + ψ(wy).

Next, due to the compactness of Γ, we have |ψ(y, p)| ≤ c1(1 + |p|) for a constant c1
depending on Γ, α, ‖ρ‖∞, ‖ς‖∞, and ‖θ‖∞. Using the fact that g̃(y) grows at most

linearly in y, we thus get

C1 ≥
1

2
(1− α)σ2

1w
2
y(t, y)− c2

(
1 + |wy(t, y)|(1 + |y|)

)
,

where σ1 is as in (4) and c2 is an appropriate constant depending on c1, g, α, ‖ρ‖∞, and

‖θ‖∞. Hence, √
c3 + c24(1 + |y|)2) ≥

∣∣wy(t, y)− c4(1 + |y|)
∣∣,

where c3 and c4 depend on C1, c2, α, and σ1, and from here the estimate on |wy| follows.

Also the one on |wyy| is now straightforward.
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Proof of Theorem 3.1: We first restrict the control space for ν to some bounded

interval I := [−M,M ]. As mentioned above, this guarantees the existence of a classical

solution vI of the constrained HJB equation (22)–(23) such that vI has at most polynomial

growth. By Lemma 3.3, this solution is unique and corresponds to the value function V I .

Moreover, it is bounded and ≥ 1 according to Lemma 3.4. As observed in (29), the

supremum with respect to ν ∈ I in (22) is achieved at

ν̂ = −η2 −
ς

1 + β
·
V I

y

V I
, (34)

when this expression belongs to the set I. Otherwise it will be achieved in the extremes

of this set. By Lemma 3.5, ν̂ will be given by (34) as soon as

M ≥M(y) := max
η∈Γ

|η2|+
‖ς‖∞C2

1 + β
(1 + |y|).

Thus, denoting In := [−M(n),M(n)] and vn := vIn , we conclude that vn locally satisfies

the unconstrained HJB equation, i.e.,

vn
t = κeλt + avn

yy + g̃vn
y + vnφ(vn

y /v
n), for |y| ≤ n,

with

φ(p) := inf
ν∈R

inf
η∈Γ

([
ρ(1 + β)η1 + ς

(
(1 + β)η2 + βν

)]
p+ q(·, η, ν)

)
.

It follows from the definition of the value functions that the functions vn = V In

pointwise decrease to a function v satisfying 1 ≤ v ≤ eC1T . Since the gradients vn
y

and time derivatives vn
t are locally uniformly bounded by Lemmas 3.5 and 3.4, it fol-

lows from the Arzela-Ascoli theorem that convergence holds even locally uniformly in

C([0, T ] × R). Moreover, by Lemma 3.5 also vn
yy is locally uniformly bounded. For each

t, another application of the Arzela-Ascoli theorem thus yields the existence of a subse-

quence (vnk(t, ·)) such that (vnk
y (t, ·)) converges locally uniformly in C(R) to vy(t, ·), hence

v ∈ C0,1([0, T ] × R). Furthermore, the locally uniform bounds on vn
t , vn

y , and vn
yy imply

that v is locally Lipschitz continuous on [0, T ]×R with |vt| ≤ C1v a.e. on [0, T ]×R and

|vy(t, y)| ≤ C2(1 + |y|) for all t ≤ T and y ∈ R. Moreover,

|vy(t, y)− vy(t, y
′)| ≤ C2(1 +K2)|y − y′| for y, y′ ∈ [−K,K].

Next, let fn(t, y) := κeλt + vn(t, y)φIn(vn
y (t, y)/vn(t, y)), so that the equation for vn

can be written as vn
t = avn

yy + g̃vn
y + fn. Since vn belongs to C1,2([0, T ] × R) and fn has

at most linear growth in y, we obtain the stochastic representation

vn(t, y) = 1 + E
[ ∫ t

0

fn(s, Ỹ y
s ) ds

]
,

where Ỹ solves (3) with g replaced by g̃. In fact, Lemma 3.5 even yields |fn(t, y)| ≤
C3(1 + |y|2) uniformly in n, t ≤ T , and y ∈ R for some constant C3. Hence, using the
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convergence of vn and vn
y and passing to the limit with dominated convergence, combined

with the fact that sups≤t |Ỹ y
s | has moments of all orders, yields

v(t, y) = 1 + E
[ ∫ t

0

f(s, Ỹ y
s ) ds

]
,

where f(t, y) := κeλt + v(t, y)φ(vy(t, y)/v(t, y)). If we can show that (t, y) 7→ f(t, y) is

continuous, then, since f satisfies a local Lipschitz condition in y uniformly in t ≤ T ,

Theorem 12 on p. 25 of [11] will imply that v is a bounded C1,2-solution of the linear

parabolic equation vt = avyy + g̃vy + f and in turn of (20). Moreover, Lemma 3.3 will

yield the identification v = V .

To prove the continuity of f , let us fix a flow of (Ỹ y
t )y∈R, t≥0 so that we have

∂Ỹ y
t

∂y
= e

R t
0 g′(eY y

s ) ds · E
( ∫

0

ρ′(Ỹ y
s ) dW 1

s +

∫
0

ς ′(Ỹ y
s ) dW 2

s

)
t
.

The stochastic exponential on the right is the density process with respect to P of a

probability measure P̃ under which Ỹ solves the SDE

dỸ y
t = ρ(Ỹ y

t ) dW̃ 1
t + ς(Ỹ y

t ) dW̃ 2
t + h(Ỹ y

t ) dt

for two independent P̃-Brownian motions W̃ i, i = 1, 2, and with h = g + ρρ′ + ςς ′. Note

that y 7→ f(s, y) is locally Lipschitz continuous on [−K,K] with a Lipschitz constant that

is uniform in t ∈ [0, T ] and growths at most as a constant times K4. Hence, dominated

convergence implies that

vy(t, y) = E
[ ∫ t

0

fy(s, Ỹ
y
s )
∂Ỹ y

s

∂y
ds

]
=

∫ t

0

Ẽ
[
fy(s, Ỹ

y
s )e

R s
0 g′(eY y

u ) du
]
ds.

The latter expression is Lipschitz continuous in t, locally uniformly in y. Together with

the already established local Lipschitz continuity of y 7→ vy(t, y), which holds uniformly in

t ∈ [0, T ], we obtain the continuity of (t, y) 7→ vy(t, y), which in turn yields the continuity

of f = κ+ vφ(vy/v).

Proof of Theorem 2.2: First, one easily checks that by taking the minimum over ν ∈ R
the two equations (9) and (20) become equivalent when taking κ := γe−λT . So let v be

the solution of (20).

To compute the optimal strategy (ĉ, π̂), recall from (14) and (15) that the optimal

consumption process and the optimal wealth process Xx,bcbπ
T are given by

ĉt =
1

nT

γe−λtI
( ẑZbν

t

Dbη
t S

0
t

)
and Xx,bc,bπ

T =
1

nT

I
( ẑZbν

T

Dbη
TS

0
T

)
,

where I(y) = −Ũ ′(y) = y−β−1, η̂t = η∗(T − t, Yt) and ν̂t = ν∗(T − t, Yt) are optimal

Markovian controls for (20) and

ẑ =
(Λbη,bν
x

)1/(1+β)

=
(v(T, Y0)

nTx

)1/(1+β)

.
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Let us show next that Zbν is a true P-martingale. First, it follows from (29) and

our bounds on the solution v that |ν̂t| ≤ C(1 + |Yt|) for some constant C. Since by

[21, Theorem 4.7] there exists δ > 0 such that sup0≤t≤T E
[

exp(δ|Yt|)
]
< ∞, we obtain

sup0≤t≤T E
[

exp(ε|ν̂t|)
]
< ∞ for ε = δ/C. According to [21], p. 220, the martingale

property of Zbν follows.

Next, by arguing as in the proof of [25, Theorem 2.5] and using the duality relations

as stated in [28, Theorem 2.5], one shows that

Mt :=
(Xx,bc,bπ

t

S0
t

+

∫ t

0

ĉs
S0

s

ds
)
Zbν

t

is a true P-martingale. Since M and Zbν are martingales, equation (6) yields that

dMt −
Mt

Zbν
t

dZbν
t =

[
Mt − Zbν

t

∫ t

0

ĉs
S0

s

ds
]
π̂tσ(Yt) dW

1
t , (35)

where the computation can be simplified by noting that all finite-variation terms must

cancel out, due to the martingale property. On the other hand, by the martingale property

of Zbν ,
Mt = E[MT | Ft ] = Zbν

t

∫ t

0

ĉs
S0

s

ds+
ẑ−β−1

nT

(Zbν
t )−β(Dbη

t )
1+β(S0

t )
β · Et,

where

Et = E
[ ∫ T

t

(Zbν
s

Zbν
t

)−β(Dbη
s

Dbη
t

)1+β(S0
s

S0
t

)β

µ̃T (ds)
∣∣∣Ft

]
.

Using the Markov property of Y and introducing the controls η̂
(t)
s := η∗(T − t− s, Ys) and

ν̂
(t)
s := ν∗(T − t− s, Ys), we obtain

Et = J(T − t, Yt, η̂
(t), ν̂(t)) = v(T − t, Yt).

Moreover, we have ẑ−β−1 = xnT/v(T, Y0), and thus get

Mt = Zbν
t

∫ t

0

ĉs
S0

s

ds+ x(Zbν
t )−β(Dbη

t )
1+β(S0

t )
β · v(T − t, Yt)

v(T, Y0)
. (36)

This gives

Xx,bc,bπ
t = x

( Zbν
t

Dbη
t S

0
t

)−1−β

· v(T − t, Yt)

v(T, Y0)
= ĉt

eλt

γ
v(T − t, Yt),

and this formula yields our claim for the form of ĉt.

To prove the formula for π̂, we take differentials in (36) and get

dMt −
Mt

Zbν
t

dZbν
t =

[
Mt − Zbν

t

∫ t

0

ĉs
S0

s

ds
][

(1 + β)
(
(θ(Yt) + η̂1t) dW

1
t + (ν̂t + η̂2t) dW

2
t

)
+
vy(T − t, Yt)

v(T − t, Yt)

(
ρ(Yt) dW

1
t + ς(Yt) dW

2
t

)]
=

[
Mt − Zbν

t

∫ t

0

ĉs
S0

s

ds
][

(1 + β)(θ(Yt) + η̂1t) + ρ(Yt)
vy(T − t, Yt)

v(T − t, Yt)

]
dW 1

t

where the martingale property again significantly simplifies the computation and the

second identity uses (34). Comparing this identity with (35) yields our formula for π̂ and

completes the proof of Theorem 2.2.
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