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Abstract

Recently, Frittelli and Scandolo ([9]) extend the notion of risk measures, originally introduced by Artzner, Delbaen,

Eber and Heath ([1]), to the risk assessment of abstract financial positions, including pay offs spread over different

dates, where liquid derivatives are admitted to serve as financial instruments. The paper deals with σ−additive

robust representations of convex risk measures in the extended sense, dropping the assumption of an existing

market model, and allowing also unbounded financial positions. The results may be applied for the case that a

market model is available, and they encompass as well as improve criteria obtained for robust representations of

the original convex risk measures for bounded positions ([4], [7], [16]).
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0 Introduction

The notion of risk measures has been introduced by Artzner, Delbaen, Eber and Heath (cf. [1]) as the key

concept to found an axiomatic approach for risk assessment of fincancial positions. Technically, risk measures are

functionals defined on sets of financial positions, satisfying some basic properties to qualify riskiness consistently.

An outcome of such a functional, that means the risk of a position, is usually interpreted as the capital requirement

of the position to become an acceptable one. Genuinely, risk measures has been defined for one-period positions.

Recently Fritelli and Scandolo ([9]) provide a general framework which extends considerations to abstract financial

positions including pay off streams with liquid derivatives as hedging positions. Applied to the risk assessment of

pay off streams such general risk measures are used for an a priori qualification, which means to take the static

perspective. In contrary the dynamic risk assessment take into account adjustments time after time. Readers who

interested in this topic are referred to e.g. [8], [18], [21].

The main goal of this paper is to investigate risk measures ρ which admit a robust representation of the form

ρ(X) = sup
Λ

(−Λ(X)− β(Λ)),

where X denotes a financial position, Λ a linear form on the set of financial positions, and β stands for a penalty

function on the set of linear forms. Special attention will be paid to the problem when these representing linear

forms may in turn be represented by (σ−additive) probability measures. We shall speak of a robust representation

of ρ by probability measures or a σ−additive robust representation. Necessarily, only so-called convex risk mea-

sures, that means risk measures which are convex mappings, may have such a robust representation. The basic

assumption of this paper is that the investors are uncertain about the market model underlying the outcomes of

the financial positions. Within this setting a robust representation by probability measures offers an additional

economic interpretation of the risk measures. As suggested by Föllmer and Schied (cf. [7]) such a representation

means that an investor has a set of possible models for the outcomes of the financial positions in mind, and

evaluates the worst expected losses together with some penalty costs for misspecification w.r.t. these models.

The problem of σ−additive robust representations of convex risk measures in the genuine sense has been completely

solved in the case that the investors have market models at hand. Ruszczynski and Shapiro showed that convex

risk measures always admit robust representations by probability measures if for any real p > 1 every integrable

mapping of order p is available (cf. [19]). However the used methods can not be applied to essentially bounded

positions. Drawing on methods from functional analysis, Delbaen as well as Föllmer and Schied succeeded in

giving a full characterization (cf. [4], [7]) by the so-called Fatou property. As pointed out by Delbaen, the Fatou

property fails to be sufficient in general when the investor is faced with model uncertainty. Moreover, the problem

of σ−additive robust representation is still open when a market model is not available. Restricting considerations

on bounded one-period positions, Föllmer and Schied (in [7]) suggested a strict sufficient criterion, Krätschmer
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showed that it is in some sense also necessary, and he adds some more general conditions ([16]).

This paper may be viewed as a continuation of the studies in [7] as well as in [16]. The generalizations will be

proceeded in several directions. First of all multiperiod positions and liquid hedging instruments will be allowed.

Secondly we shall drop the assumptions that only bounded positions are traded. This is in accordance with

empirical evidences that the distributions of risky assets often show heavy tails. Thirdly we want to investigate

the issue of strong robust representations by probability measures in the sense that the optimization involved in the

σ−additive robust representation has a solution. This is a quite important technical issue from the practical point

of view. In many cases the calculation of outcomes of risk measures has to be employed by numerical optimization

algorithms, and the most customary ones assume the existence of solutions. In presence of a market model, Jouini,

Schachermayer and Touzi (cf. [11]) have given a full solution to the problem of strong robust representations.

Finally, the criteria should encompass the results already derived within a fixed market model.

The paper is organized as follows. Section 1 introduces the concept of Frittelli and Scandolo to define risk

measures in general, and some representation results of risk measures will be presented as starting points for the

investigations afterwards. The following section 2 deals with the question when the Fatou property might be used

as a sufficient condition. In general, as a rule a nonsequential counterpart is more suitable unless in some special

cases. However, it also seems that even the nonsequential Fatou property is appropriate in quite exceptional

situations only. Therefore an alternative general criterion is offered in section 3, extending a former result in [16]

to unbounded positions, within a nontopological framework. It will be used for strong robust representations of

risk measures by probability measures in section 4. We shall succeed in giving a complete solution. In particular

the aboved mentioned strict criterion by Föllmer and Schied will turn out to be necessary and sufficient. The

investigations of the sections 1 - 4 will then be applied to recover in section 5 the already known representation

results within a given market model. The proofs of the main results will be provided separately in the sections 7,

8 and 9 as well as in appendix B. They rely on some technical arguments gathered in section 6 and a measure

theoretical tool presented in appendix A.

1 Some basic representations of convex risk measures

Let us fix a set Ω. Financial positions will be expressed by mappings X ∈ RΩ. As a special case Ω = eΩ × T witheΩ denoting a set of scenarios, equipped with a family (Ft)t∈T of σ−algebras, and T being a time set, we may

consider financial positions X ∈ RΩ×T with X(·, t) being Ft−measurable for every t ∈ T. They may be viewed

as discounted pay off streams, liquidated at the dates from the time set. The available financial positions are

gathered by a nonvoid vector subspace X ⊆ RΩ containing the constants. Sometimes we shall in addition assume

that X ∧ Y := min{X,Y }, X ∨ Y := max{X,Y } ∈ X for X,Y ∈ X. In this case X is a so-called Stonean vector
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lattice. For the space of bounded positions from X the symbol Xb will be used. Furthermore let us fix a vector

subspace C ⊆ X of financial positions for hedging, including the constants. In particular we may take into account

liquid derivatives like put and call options as financial instruments. They are associated with a positive linear

function π : C → R, π(1) = 1, where π(Y ) stands for the initial costs to obtain Y. Prominent special cases of this

setting are the following:

• T = {1, ..., n}, (Ft)t∈T family of σ−algebras on a set of scenarios eΩ, X consisting of all X ∈ RΩ×T with

X(·, t) Ft −measurable for t ∈ T, C = Rn, π(y1, ..., yn) := 1
n

nP
i=1

yi

n−period positions, one-period positions if n = 1

• T = [0, T ], (Ft)t∈T be a filtration of σ−algebras on a set of scenarios eΩ, X set of financial positions X with

X(ω, ·) being a cadlag function, C = R, π identity on R

cadlag positions

Let us now introduce the concept of risk measures suggested by Frittelli and Scandolo in [9]. As for one-period

positions we may choose the axiomatic viewpoint, defining a risk measure w.r.t. π to be a functional ρ : X → R

which satisfies the properties

• monotonicity: ρ(X) ≤ ρ(Y ) for X ≥ Y

• translation invariance w.r.t. π: ρ(X + Y ) = ρ(X)− π(Y ) for X ∈ X, Y ∈ C

The meaning of these conditions may be transferred from the genuine concept of risk measures. Moreover, it can

be shown that a risk measure ρ w.r.t. π satisfies ρ(X) = inf{π(Y ) | Y ∈ C, ρ(X + Y ) ≤ 0} for any X ∈ X ([9],

Proposition 3.6). Regarding ρ−1(] − ∞, 0]) as the acceptable positions, an outcome ρ(X) expresses the infimal

costs to hedge it. This retains the original meaning of risk measures as capital requirements.

In the following we shall focus on so-called convex risk measures, defined to mean risk measures which are convex

mappings. Convexity is a reasonable condition for a risk measure due to its interpretation that diversification

should not increase risk. From the technical point of view convexity is a necessary property for the desired dual

representations of risk measures.

Let us now fix a convex risk measure ρ : X → R w.r.t. π. It is associated with the so-called Fenchel-Legendre

transform

βρ : X∗ →]−∞,∞], Λ 7→ sup
X∈X

(−Λ(X)− ρ(X)),

where X∗ gathers all real linear forms on X. It is easy to verify that every Λ from the domain of βρ has to be a

positive linear form extending π. The standard tools from convex analysis provide basic representation results for

ρ with βρ as a penalty function.

Proposition 1.1 Let X∗π
+ denote the space of all positive linear forms on X which extend π, and let τ be any

topology on X such that (X, τ) is a locally convex topological vector space with topological dual X′. Then ρ(X) =
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max
Λ∈X∗π

+

(−Λ(X)− βρ(Λ)) for every X ∈ X. Moreover, ρ(X) = sup
Λ∈X∗π

+ ∩X′
(−Λ(X)− βρ(Λ)) holds for every X ∈ X if

and only if ρ is lower semicontinuous w.r.t. τ.

The proof may be found in Appendix B.

The aim of the paper is to improve the representation results by allowing only representing linear forms which

are in turn representable by probability measures. For notational purposes let us introduce the counterpart of βρ

w.r.t. the probability measures on the σ−algebra σ(X) on Ω generated by X

αρ : M1 →]−∞,∞], P 7→ sup
X∈X

(−EP[X]− ρ(X)).

HereM1 is defined to consist of all probability measures P on σ(X) such that all positions from X are P−integrable,

and EP[X] denotes the expected value of X w.r.t. P . We shall speak of a robust representation by probability

measures from M or a σ−additive robust representation of ρ w.r.t. M if M ⊆ M1 nonvoid, and

ρ(X) = sup
P∈M

(−EP[X]−αρ(P)) for every X ∈ X. As an immediate consequence of Proposition 1.1 we obtain a first

characterization of such representations.

Proposition 1.2 Let F be a vector space of bounded countably additive set functions on σ(X) which separates

points in X such that each X ∈ X is integrable w.r.t. any µ ∈ F. Then in the case that the set M1(F ) of all

P ∈M1 ∩ F with EP|C = π is nonvoid

ρ(X) = sup
P∈M1(F )

(−EP[X]− αρ(P)) for all X ∈ X

if and only if ρ is lower semicontinuous w.r.t. weak topology σ(X, F ) on X induced by F.

Remark 1.3 Retaking assumptions and notations from Proposition 1.2, ρ admits a robust representation in terms

of M1(F ) if F contains the Dirac measures, and if lim inf
i

ρ(Xi) ≥ ρ(X) holds for every net (Xi)i∈I in X which

converges pointwise to some X ∈ X.

In general the lower semicontinuity of ρ w.r.t. the topology from Proposition 1.2 is not easy to verify. Therefore we

are looking for more accessible conditions. The considerations will be based on the idea to reduce the investigations

to bounded financial positions. As shown in Lemma 6.5 below, in case of X being a Stonean vector lattice, this

may be achieved if the linear forms from the domain of βρ are representable by finitely additive set functions

in the sense explained there. Fortunately, we might express this condition equivalently by the property that

lim
n→∞

ρ(−λ(X − n)+) = ρ(0) ((X − n)+ positive part of X − n) is satisfied for every λ > 0 and any nonnegative

X ∈ X, which is obviously true if all positions in X are bounded (cf. Proposition 6.6 below).

Before going into the development of criteria for σ−additive representations let us collect some necessary conditions.

In the case that the positions from X are essentially bounded mappings w.r.t. a reference probability measure of
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a given market model the so-called Fatou property plays a prominent role. Adapting this concept, we shall say

that a risk measure ρ fulfill the Fatou property if lim inf
n→∞

ρ(Xn) ≥ ρ(X) whenever (Xn)n denotes a uniformly

bounded sequence in X which converges pointwise to some bounded X ∈ X. The Fatou property implies obviously

that ρ|Xb is continuous from above, defined to mean ρ(Xn) ↗ ρ(X) for Xn ↘ X. Both conditions coincide if

sup
n
Xn ∈ X for any uniformly bounded sequence (Xn)n in X.

Proposition 1.4 Let ρ admit a σ−additive robust representation w.r.t. some nonvoid M⊆M1, then ρ satisfies

the Fatou property and ρ|Xb is continuous from above. Moreover, if X is a Stonean vector lattice, and if L ⊆ X

denotes any Stonean vector lattice which contains C as well as generates σ(X), then ρ(X) = sup
X≤Y ∈E

inf
Y≥Z∈X

ρ(Z)

for every bounded nonegative X ∈ X, where E := {sup
n
Yn | Yn ∈ L, Yn ≥ 0, sup

n
Yn bounded}.

The proof may be found in section 7.

As mentioned in the introduction, a robust representation of ρ by probability measures is not guaranteed in general

by the Fatou property or continuity from above, even if X contains bounded positions only. In the next section

we shall investigate additional conditions to guarantee the sufficiency by the Fatou property and a nonsequential

counterpart.

2 Representation of convex risk measures by probability mea-

sures and the Fatou properties

It will turn out by the investigations within this section that in the case of uncertainty about the market model

the nonsequential counterpart of the Fatou property takes over partly the role that the Fatou property plays when

a reference probability measure is given. We shall say that ρ satisfies the nonsequential Fatou property if

lim inf
i

ρ(Xi) ≥ ρ(X) holds whenever (Xi)i∈I is a uniformly bounded net in X which converges pointwise to some

bounded X ∈ X. The following condition provides an important special situation when the Fatou property and its

nonsequential counterpart are equivalent.

(2.1) For any r > 0, every Z ∈ Xb from the closure of Ar := {X ∈ Xb | ρ(X) ≤ 0, sup
ω∈Ω

|X(ω)| ≤ r} w.r.t. the

topology of pointwise convergence on Xb is the pointwise limit of a sequence in Ar.

Lemma 2.1 Under (2.1) ρ satisfies the nonsequential Fatou property if and only if it fulfills the Fatou property.

The proof is delegated to section 9.

Remark:
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The sequential condition (2.1) is closely related with the concepts of double limit relations. For a comprehensive

exposition the reader is referred to [15]. In general one may try to apply double limit relations to the sets Ar from

(2.1) and suitable sets of bounded countably additive set functions on σ(X).

The main result of this section relies on the following assumption, denoting by B(Ω) the space of all bounded

real-valued mappings on Ω.

(2.2) The sets Br := {X ∈ Xb | sup
ω∈Ω

|X(ω)| ≤ r} (r > 0) are closed w.r.t. the topology of pointwise convergence

on B(Ω).

Theorem 2.2 Let either X = Xb or X be a Stonean vector lattice such that lim
n→∞

ρ(−λ(X −n)+) = ρ(0) holds for

any nonnegative X ∈ X, λ > 0. Furthermore let F denote a vector space of bounded countably additive set functions

on σ(X) which contains all Dirac measures as well as at least one probability measure P with EP|C = π such that

every X ∈ X is integrable w.r.t. any µ ∈ F. Additionally, F is supposed to be complete w.r.t. the seminorm ‖ · ‖F ,

defined by ‖µ‖F := sup{|
R
X dµ| | X ∈ Xb, sup

ω∈Ω
|X(ω)| ≤ 1}. Consider the following statements:

.1 ρ satisfies the nonsequential Fatou property.

.2 ρ has a σ−additive robust representation w.r.t. M1 ∩ F.

.3 ρ fulfills the Fatou property.

If (2.2) is valid, then .1 ⇒ .2 ⇒ .3, and all statements are equivalent provided that condition (2.1) holds in

addition. In the case that the sets Ar from (2.1) are even relatively compact w.r.t. the weak topology σ(X, F ) we

have .1 ⇔ .2 ⇒ .3.

The proof will be performed in section 9.

Remark 2.3 The nonsequential Fatou property is not necessary for a σ−additive representation of risk measures.

Take for example X the space of all boundend Borel-measurable mappings on R, and define ρ by ρ(X) = −EP[X],

where P denotes any probability measure which is absolutely convex w.r.t. the Lebesgue-Borel measure on R.

Obviously, on one hand ρ is a convex risk measure w.r.t. the identity on R, having a trivial σ−additive robust

representation. On the other hand, consider the set I of the cofinite subsets of R, directed by set inclusion, and the

net (Xi)i∈I of all its indicator mappings. It converges pointwise to 0, but unfortunately lim inf
i

ρ(Xi) = −1 < 0 =

ρ(0).

Remark 2.4 Let F be any vector space of bounded countably additive set functions on σ(X) such that each X ∈ X

is integrable w.r.t. every µ ∈ F, and such that Xb separates points in F. Additionally, F is supposed to be closed

w.r.t. the norm of total variation. Then the sets Ar from (2.1) are relatively σ(X, F )−compact if and only if Xb

may be identified via evaluation mapping with the topological dual of F w.r.t. the norm of total variation (cf. proof

in section 9).
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In the case of an at most countable Ω, we have a simplified situation which admits an application of the full

Theorem 2.2. The reason is that then the topology of pointwise convergence on the space B(Ω) is metrizable.

Corollary 2.5 Let Ω be at most countable, and let X ⊆ B(Ω) be sequentially closed w.r.t. the pointwise topology

on B(Ω). Then ρ has a robust representation by probability measures from M1 if and only it satisfies the Fatou

property, or equivalently, if and only if ρ is continuous from above.

As another application of Theorem 2.2 we shall retain in the proof of Theorem 5.3 below the above mentioned

result that in face of a market model the Fatou propery describes equivalently robust representations of convex risk

measures for essentially bounded positions by probability measures. Unfortunately, it is unclear whether we may

avoid in Theorem 2.2 condition (2.2) in order to guarantee a σ−additive robust representation of risk measures by

the nonsequential Fatou property. Moreover, the nonsequential Fatou property is unsatisfactory in the way that

it does not work for trivial representations like those indicated in Remark 2.3. However, we may only provide

a sufficient substitution by the Fatou property under the quite restrictive condition (2.1). So it seems that in

presence of model uncertainty the Fatou property and its nonsequential counterpart are appropriate conditions for

σ−additive representations of convex risk measures in quite exceptional situations only. Therefore we shall look

for alternatives in the following section.

3 Robust representation of convex risk measures by inner regu-

lar probability measures

Throughout this section let X be a Stonean vector lattice, and let L ⊆ X denote any Stonean vector lattice

which contains C as well as generates σ(X) and which induces the set system S := {
∞T

n=1

X−1
n ([xn,∞[) | Xn ∈

L nonnegative, bounded, xn > 0}. Additionally, let E consist of all bounded sup
n
Yn, where (Yn)n is a sequence

of nonnegative bounded positions from L. In view of the inner Daniell-Stone theorem (cf. [14], Theorem 5.8,

final remark after Addendum 5.9) every probability measure P ∈ M1 has to be inner regular w.r.t. S, i.e.

P(A) = sup
A⊇B∈S

P(B) for every A ∈ σ(X). So within this setting we are dealing with robust representations of ρ by

probability measures from M1(S) defined to consist of all probability measures belonging to M1 which are inner

regular w.r.t. S and which represent π on C. We are ready to formulate the general representation result w.r.t.

inner regular probability measures.

Theorem 3.1 Let ∆c (c ∈] − ρ(0),∞[) gather all P ∈ M1(S) with αρ(P) ≤ c, and let ρ satisfy the following

properties.

(1) ρ(X) = sup
X≤Y ∈E

inf
Y≥Z∈X

ρ(Z) for all nonnegative bounded X ∈ X,
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(2) inf
Y≥Z∈X

ρ(Z) = inf
Y≥Z∈L

ρ(Z) for Y ∈ E,

(3) ρ(Xn) ↘ ρ(X) for any isotone sequence (Xn)n of bounded positions Xn ∈ L with Xn ↗ X ∈ L, X bounded,

(4) lim
n→∞

ρ(−λ(X − n)+) = ρ(0) for every nonnegative X ∈ X and λ > 0.

Then we may state:

.1 The initial topology τL on M1(S) induced by the mappings ψX : M1(S) → R, P 7→ EP[X], (X ∈ L) is

completely regular and Hausdorff.

.2 Each ∆c (c ∈]− ρ(0),∞[) is compact w.r.t. τL, and furthermore for every Λ from the domain of βρ there is

some P ∈M1(S) with Λ|L = EP|L and αρ(P) ≤ βρ(Λ).

.3 ρ(X) = sup
P∈M1(S)

(EP[−X]− αρ(P)) for all X ∈ X.

The proof of Theorem 3.1 is delegated to section 7.

Remarks 3.2 In view of Proposition 1.4, assumption (1) in Theorem 3.1 is necessary for a robust representation

of ρ by probability measures. Let us now point out some special situations where the assumptions on ρ, imposed in

Theorem 3.1, may be simplified:

.1 If X is restricted to bounded positions, then assumption (4) is redundant. Also (1), (2) hold in general in

the case X = L.

.2 By Lemma 6.4 below assumption (3) is fulfilled in general whenever L+b, consisting of all nonnegative

bounded X ∈ L, is a so-called Dini cone, i.e. inf
n

sup
ω∈Ω

Xn(ω) = sup
ω∈Ω

inf
n
Xn(ω) for any antitone sequence

(Xn)n in L+b with pointwise limit in L+b. The most prominent Dini cones are the cones of nonnegative

upper semicontinuous and nonnegative continuous real-valued mappings on compact Hausdorff spaces due to

the general Dini lemma (cf. [12], Theorem 3.7).

.3 If E ⊆ X, then assumptions (1), (2) read as follows:

(1) ρ(X) = sup
X≤Y ∈E

ρ(Y ) for all nonnegative bounded X ∈ X,

(2) ρ(Y ) = inf
Y≥Z∈L

ρ(Z) for Y ∈ E.

We may specialize to X = L, and a direct application of Theorem 3.1 in combination with Lemma 6.4 below

leads to the following condition to ensure that every linear form Λ from the domain of βρ is representable by a

probability measure. Note that here M1(S) = M1.

Corollary 3.3 Let X be a Stonean vector lattice, and let lim
n→∞

ρ(−λ(X−n)+) = ρ(0) be valid for every nonnegative

X ∈ X, λ > 0. Then every linear form from the domain of βρ is representable by some probability measure from M1

if and only if ρ(Xn) ↘ ρ(X) whenever (Xn)n is an isotone sequence of bounded positions from X which converges

pointwise to some bounded X ∈ X.
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Remark:

Corollary 3.3 extends a respective result for bounded one-period positions ([16], Proposition 3).

Let us now consider some special situations where Theorem 3.1 might be used.

Remark 3.4 Let Ω = eΩ×T with eΩ denoting a set of scenarios, equipped with a metrizable topology τeΩ as well as

the induced σ−algebra B(eΩ), and T being a time set, endowed with a separably metrizable topology τT as well as

the generated σ−algebra B(T). Furthermore let X consist of all bounded real-valued mappings on eΩ× T which are

measurable w.r.t. the product σ−algebra B(eΩ)⊗B(T), and let L be the set of all bounded real-valued mappings oneΩ×T which are continuous w.r.t. the product topology τeΩ × τT. Finally S is defined to gather the closed subsets ofeΩ×T w.r.t. the metrizable topology τeΩ×τT. Using the introduced notations, σ(X) = B(Ω)⊗B(T) is generated by S,

L ⊆ X, and we may restate Theorem 3.1 with E being the space of all bounded nonnegative lower semicontinuous

mappings on eΩ × T. This version generalizes an analogous result for the one-period positions (cf. [16], Theorem

2), and will be proved in section 7.

We may also utilize Theorem 3.1 for cadlag positions.

Remark 3.5 Let T = [0, T ],C = R, let (Ft)t∈T be a filtration of σ−algebras on some nonvoid set eΩ, and let X

be the set of cadlag positions. Then σ(X) is the so-called optional σ−algebra. We may associate for stopping

times S1, S2, S1 ≤ S2, the stochastic interval [S1, S2[, defined by [S1, S2[(ω, t) := 1 if S1(ω) ≤ t < S2(ω), and

[S1, S2[(ω, t) := 0 otherwise. I stands for the set of all such stochastic intervals. It can be shown that σ(X) is

generated by the stochastic intervals [S,∞[ (cf. [5], IV, 64).

For L let us choose the vector space spanned by the stochastic intervals [S,∞[, which is also spanned by the positions

max
i∈{1,...,r}

[Si, eSi[ (r ∈ N), where [Si, eSi[ ∈ I for i ∈ {1, ..., r}. Moreover, L is indeed a Stonean vector lattice, and

{X−1([x,∞[) | X ∈ L nonnegative, x > 0} is an algebra consisting of all the subsets
rS

i=1

`
[Si, eSi[

´−1
({1}) with r ∈ N

and [Si, eSi[ ∈ I for i ∈ {1, ..., r}.

Using the introduced notations, we may restate Theorem 3.1.

Theorem 3.1 may be used as a basis to derive conditions for a strong robust representation of ρ, i.e. a σ−additive

robust representation where solutions of the associated optimization problems exist. We shall succeed in finding a

full characterization in the next section.
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4 Strong robust representation of convex risk measures by prob-

ability measures

We want to look for conditions which induce a strong robust representation of ρ by probability measures in the

sense that

ρ(X) = max
P∈M1

(−EP[X]− αρ(P))

holds for any X ∈ X. The considerations are reduced to a Stonean vector lattice X being stable w.r.t. countable

convex combinations of antitone sequences of financial positions. In this case the following result gives a complete

answer to the problem of strong robust representations.

Theorem 4.1 Let X be a Stonean vector lattice and let us assume that for every antitone sequence (Xn)n in

X with Xn ↘ 0 and each sequence (λn)n in [0, 1] with
∞P

n=1

λn = 1 there is some pointwise limit
∞P

n=1

λnXn of

(
mP

n=1

λnXn)m belonging to X. Then the following statements are equivalent:

.1 ρ(X) = max
P∈M1

(−EP[X]− αρ(P)) holds for every X ∈ X.

.2 ρ(Xn) ↘ ρ(X) for Xn ↗ X.

.3 lim
n→∞

ρ(−λ(X−n)+) = ρ(0) hold for arbitrary nonnegative X ∈ X, λ > 0, and ρ(Xn) ↘ ρ(X) for any isotone

sequence (Xn)n of bounded positions from X with Xn ↗ X, X being bounded.

In any of these cases every linear form from the domain of βρ is representable by a probability measure. Moreover,

for any Stonean vector lattice L ⊆ X which contains C as well as generates the same σ−algebra as X and induces

the set system S consisting of all sets
∞T

n=1

X−1
n ([xn,∞[) (Xn ∈ L∩Xb nonnegative, xn > 0) any of the statements

.1 - .3 is implied by

.4 lim
n→∞

ρ(−λ(X − n)+) = ρ(0) hold for arbitrary nonnegative X ∈ X, λ > 0, and inf
1An≥Z∈X

ρ(λZ) ↘ ρ(λ) for

λ > 0 whenever (1An)n is an isotone sequence of indicator mappings of subsets An ∈ S with
∞S

n=1

An = Ω.

We have even equivalence of the statements .1 - .4 if the indicator mappings 1A (A ∈ S) belong to X.

The proof may be found in section 8.

For bounded one-period positions, Theorem 4.1 enables us to give an equivalent characterization of convex risk

measures that admit strong robust representations by probability measures.

Corollary 4.2 Let F denote some σ−algebra on Ω, and let X consist of all bounded F−measurable real-valued

mappings. Then the following statements are equivalent:

.1 ρ(X) = max
P∈M1

(−EP[X]− αρ(P)) holds for every X ∈ X.
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.2 ρ(Xn) ↘ ρ(X) for Xn ↗ X.

.3 ρ(λ1An) ↘ ρ(λ) for λ > 0 whenever (1An)n is an isotone sequence of indicator mappings of subsets An ∈ F

with
∞S

n=1

An = Ω.

Let us adapt Theorem 4.1 to the special situations of Remarks 3.4, 3.5.

Corollary 4.3 In the special context of Remark 3.4 with the notations introduced there all the statements .1 - .4

of Theorem 4.1 are equivalent.

Remark:

Corollary 4.3 generalizes a result for one-period positions (cf. [16], Theorem 1).

Remark 4.4 Let T = [0, T ],C = R, let (Ft)t∈T be a filtration of σ−algebras on a set of scenarios eΩ, and let X

be the set of cadlag positions. Then all statements .1 - .4 from Theorem 4.1 are equivalent, choosing L to be the

vector space spanned by the stochastic intervals [S,∞[ (cf. Remark 3.5).

5 Robust representations of convex risk measures in presence of

given market models

Througout this section we assume that we have a market model with a reference probability measure P on a

σ−algebra F on the set of scenarios Ω. In the following we shall retain, and partly generalize, already known

results concerning the σ−additive robust representations of the convex risk measure ρ within the setting of a

market model. The point is that they may be derived from the results presented in the sections 1, 2 and 4. We

shall use the following notations. The spaces of P−integrable mappings of order p ∈ [1,∞[ and P−essentially

bounded mappings will be denoted by Lp(Ω,F ,P) and L∞(Ω,F ,P) respectively. For p ∈ [1,∞] the symbol

Lp(Ω,F ,P) will be used for the space formed by identifying functions in Lp(Ω,F ,P) that agree P−a.s.. The

equivalence class of any X ∈ Lp(Ω,F ,P) will be indicated by < X > .

The first result may be found in [19] for π being the identity on R. Using Propostion 1.1, we obtain a slight

generalization.

Proposition 5.1 Let X = Lp(Ω,F ,P) (p ∈ [1,∞[) with conjugate space Lq(Ω,F ,P). Furthermore let ρ(X) = ρ(Y )

for X = Y P a.s.. If M1(q) denotes the set of all Q ∈M1 having some P−density from Lq(Ω,F ,P), then

ρ(X) = max
Q∈M1(q)

(−EQ[X]− αρ(Q)) for all X ∈ Lp(Ω,F ,P).
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Proof:

Let Lp(Ω,F ,P) be equipped with the order �, defined by < X >�< Y > if X ≥ Y P−a.s., which induces the

operations of minimum and maximum. It is known that (Lp(Ω,F ,P), ‖ · ‖p,�) (‖ · ‖p Lp − norm) is a Banach

lattice, and therefore all positive linear forms w.r.t. � are continuous w.r.t. ‖ · ‖p (cf. [10], p. 151/152, Corollary

3). Next notice that βρ(Λ) < ∞ implies that Λ(Z) = 0 holds for Z = 0 P−a.s., so that Λ̂(< X >) := Λ(X)

describes a well defined positive linear form on Lp(Ω,F ,P) w.r.t. � . Then the claimed representation of ρ follows

immediately from Proposition 1.1 and the representation result for norm-continuous linear forms on Lp(Ω,F ,P).

In the case of X = L∞(Ω,F ,P) we may generalize the equivalent characterization of strong robust representations

for ρ shown in [11].

Theorem 5.2 Let X = L∞(Ω,F ,P), and ρ(X) = ρ(Y ) for X = Y P a.s.. Then ρ(X) = max
Q∈M1

(−EQ[X] −

αρ(Q)) for all X ∈ L∞(Ω,F ,P) if and only if ρ(Xn) ↘ ρ(X) for Xn ↗ X P−a.s..

Proof:

The statement follows immediately from Theorem 4.1 since the condition ρ(Xn) ↘ ρ(X) for Xn ↗ X P−a.s. is

equivalent with the property ρ(Xn) ↘ ρ(X) for Xn ↗ X.

The next result retains an equivalent characterization of the robust representations for ρ which may be found in

[7] (Theorem 4.31).

Theorem 5.3 Let X := L∞(Ω,F ,P) and π be the identity on C = R. Furthermore ρ is supposed to satisfy

ρ(X) = ρ(Y ) for X = Y P−a.s.. If M1(P) denotes the set of probability measures on F which are absolutely

continuous w.r.t. P, then the following statements are equivalent.

.1 ρ(X) = sup
Q∈M1(P)

(−EQ[X]− αρ(Q)) for all X ∈ L∞(Ω,F ,P).

.2 ρ(Xn) ↗ ρ(X) for Xn ↘ X P−a.s..

.3 lim inf
n→∞

ρ(Xn) ≥ ρ(X) whenever (Xn)n is a uniformly P−essentially bounded sequence in L∞(Ω,F ,P) with

Xn → X P−a.s..

Proof:

First of all, bρ : L∞(Ω,F ,P) → R, bρ(< X >) := ρ(X) is well defined.

Next let SL1+ := {< g >∈ L1(Ω,F ,P) | g ≥ 0 P−a.s., EP[g] = 1} be endowed with the relative topology of

the L1−norm topology on L1(Ω,F ,P). We may introduce, via Φ(< X >)(< g >) = EP[Xg], an injective vector

space homomorphism Φ from L∞(Ω,F ,P) onto a vector subspace of Cb(SL1+), defined to consist of the bounded,
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continuous real-valued mappings on SL1+,. The inverse mapping Φ−1 : Φ(L∞(Ω,F ,P)) → L∞(Ω,F ,P) may be

used to define the convex risk measure eρ := bρ ◦Φ−1 on eX := Φ(L∞(Ω,F ,P)) w.r.t. to the identity π̃ on R. Notice

that Φ(R) consists of all constant real-valued mappings on SL1+ .

Furthermore let F̃ be the linear span of the Dirac measures δ<g> (< g >∈ SL1+). For any ν ∈ F̃ there is

some < g >∈ L1(Ω,F ,P) such that
R

Φ(< X >) dν =
R
Xg dP holds for every < X >∈ L∞(Ω,F ,P), and

‖ν‖F̃ := sup{|
R

Φ(< X >) dν| | sup
<g>∈SL1+

|Φ(< X >)(< g >)| ≤ 1} = ‖ < g > ‖1. Here ‖·‖1 denotes the L1−norm.

Conversely, for each < g > from L1(Ω,F ,P) with arbitrary representation < g >=
rP

i=1

λi < gi > (r ∈ N, λi ∈ R,

< gi >∈ SL1+ ; i = 1, ..., r), we may define ν :=
rP

i=1

λiδ<gi> ∈ F̃ which satisfies
R

Φ(< X >) dν =
R
Xg dP for

every < X >∈ L∞(Ω,F ,P). Therefore F̃ is complete w.r.t. the seminorm ‖ · ‖F̃ , and in order to apply Theorem

2.2 we have to show that the conditions (2.1), (2.2) are fulfilled for the sets Ar := ρ̃−1(] − ∞, 0]) ∩ Br and

Br := {Φ(< X >) ∈ eX | sup
<g>∈SL1+

|Φ(< X >)(< g >)| ≤ r} (r > 0).

For this purpose fix r > 0. Since L∞(Ω,F ,P) represents the norm dual of L1(Ω,F ,P), the application of the

Banach-Alaoglu theorem yields that Φ−1(Br) is σ(L∞(Ω,F ,P), L1(Ω,F ,P))−compact. This in turn implies by

construction that Br is compact w.r.t. the topology σ(eX, F̃ ) of pointwise convergence.

Moreover, by definition of Φ, the mapping ϕ : eX → L1(Ω,F ,P),Φ(< X >) 7→< X >, is injective, and continuous

w.r.t. σ(eX, F̃ ) and the weak topology on L1(Ω,F ,P). Since the closure cl(Ar) w.r.t. σ(eX, F̃ ) is even compact,

the restriction ϕ|cl(Ar) : cl(Ar) → ϕ(cl(Ar)) is a homeomorphism w.r.t. the associated relative topologies. In

particular ϕ(cl(Ar)) is the weak closure of ϕ(Ar), and hence, by Eberlein-Smulian theorem, every element is the

limit point of a sequence in ϕ(Ar) w.r.t. the weak topology. Therefore each point from cl(Ar) is the pointwise

limit of a sequence in Ar.

Now in view of Proposition 1.4 the relationships .1 ⇒ .2 ⇔ .3 are clear. The implication .3 ⇒ .1 follows from

Theorem 2.2 by the following argument. Let (Xn)n be a sequence in L∞(Ω,F ,P) and let X ∈ L∞(Ω,F ,P) such

that (Φ(< Xn >)n is uniformly bounded and converges pointwise to Φ(< X >). We may find a subsequence

(Xi(n))n with lim inf
n→∞

ρ(Xn) = lim
n→∞

ρ(Xi(n)). Since the P−essential sup norm on L∞(Ω,F ,P) coincides with

the operator norm w.r.t. ‖ · ‖1, the sequence (Xn)n is P−essentially bounded. Therefore Komlos’ subsequence

theorem (cf. [7], Lemma 1.69) guarantees a sequence (Yn)n of convex combinations Yn from {Xi(m) | m ≥ n}

which converges P−a.s. pointwise to X and satisfies lim inf
n→∞

ρ(Xn) ≥ lim inf
n→∞

ρ(Yn).

6 Some auxiliary results

Throughout this section we want to gather some technical arguments which will be often used when proving

the main results of the paper. In the following ρ denotes a convex risk measure w.r.t. π associated with the
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Fenchel-Legendre transform βρ and its counterpart αρ for the probability measures.

Lemma 6.1 Let X1, X2 ∈ X with X1 ≤ X2. Then there exists some c∗ ∈]− ρ(0),∞[ such that the representation

ρ(Y ) = max
Λ∈{βρ≤c∗}

(−Λ(Y ) − βρ(Λ)) holds for every Y ∈ X with X1 ≤ Y ≤ X2. Moreover, for every Y ∈ X with

X1 ≤ Y ≤ X2 we have βρ(Λ) ≤ c∗ if ρ(Y ) = −Λ(Y )− βρ(Λ).

Proof:

Let Y ∈ X with X1 ≤ Y ≤ X. By Proposition 1.1 there is some Λ ∈ β−1
ρ (R) with ρ(Y ) = −Λ(Y )− βρ(Λ). Then

βρ(Λ) = −Λ(2Y )− ρ(Y ) + Λ(Y ) ≤ ρ(2Y ) + βρ(Λ)− ρ(Y ) + Λ(Y ) = ρ(2Y )− 2ρ(Y ) ≤ ρ(2X1)− 2ρ(X2).

Therefore any c > max{ρ(2X1)− 2ρ(X2),−ρ(0)} is as required.

Lemma 6.2 Let X ∈ X with X ≤ inf
Z∈E

Z, where E ⊆ X is assumed to be downward directed, i.e. for Z1, Z2 ∈ E

there is some Z ∈ E with Z ≤ min{Z1, Z2}. Furthermore let Λ ∈ β−1
ρ (R).

Then inf
Z∈E

Λ(Z) = Λ(X) if inf
Z∈E

ρ(−λ(Z −X)) = ρ(0) for arbitrary λ > 0.

Proof:

For arbitrary λ > 0 and every Z ∈ E we have βρ(Λ) ≥ −Λ(−λ(Z − X)) − ρ(−λ(Z − X)), and therefore by

assumption

0 ≤ inf
Z∈E

Λ(Z −X) ≤ βρ(Λ) + ρ(0)

λ
.

Finally, by taking λ ↑ ∞, we obtain inf
Z∈E

Λ(Z−X) = 0 because 0 ≤ βρ(Λ)+ ρ(0) <∞. The proof is now complete.

We may divide the domain of βρ into the classes {βρ ≤ c} (−ρ(0) = inf βρ < c < ∞). The following topological

property of these classes is crucial.

Lemma 6.3 {βρ ≤ c} is compact w.r.t. the product topology on RX for every c ∈]− ρ(0),∞[.

Proof:

Let c ∈] − ρ(0),∞[, and let (Λi)i∈I be a net in {βρ ≤ c} which converges to some Λ ∈ RX w.r.t. the product

topology. Obviously, Λ is a positive linear form on X which extends π. Furthermore

−Λ(X)− ρ(X) = lim
i

(−Λi(X)− ρ(X)) ≤ lim sup
i

βρ(Λi) ≤ c for X ∈ X.

Therefore {βρ ≤ c} is closed w.r.t. the product topology, and the proof may be completed by the application of

Tychonoff’s theorem because {βρ ≤ c} ⊆
X ∈ X

[−c− ρ(X), c+ ρ(−X)].
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As an application of Lemma 6.3 we may show the following useful technical argument.

Lemma 6.4 Let E ⊆ X consist of nonnegative positions, and let E be upward directed, i.e. for Z1, Z2 ∈ E there is

some Z ∈ E with Z ≥ max{Z1, Z2}. Furthermore let X := sup
Z∈E

Z ∈ X, and let Y ∈ X be nonnegative and bounded.

Then inf
Z∈E

ρ(Z − Y ) = ρ(X − Y ) holds if inf
Z∈E

(Λ(X)− Λ(Z)) = 0 for every Λ ∈ β−1
ρ (R).

Proof:

Due to Lemma 6.1 there exists some real c∗ > −ρ(0) with ρ( eX − Y ) = sup
Λ∈{βρ≤c∗}

(−Λ( eX − Y ) − βρ(Λ)) for all

eX ∈ E ∪ {X}. Then we may conclude

0 ≤ inf
Z∈E

ρ(Z − Y )− ρ(X − Y ) ≤ inf
Z∈E

sup
Λ∈{βρ≤c∗}

FZ(Λ),

where FZ : {βρ ≤ c∗} → R, Λ 7→ Λ(X)− Λ(Z), for Z ∈ E.

In the view of Lemma 6.3 ({βρ ≤ c∗}, τ) is a compact Hausdorff space, where τ denotes the relative topology

of the product topology on RX to {βρ ≤ c∗}. Since E is upward directed, M := {FZ | Z ∈ E} is a downward

directed family of real-valued mappings, i.e. for Z1, Z2 ∈ E there exists some Z ∈ E with FZ ≤ min{FZ1 , FZ1}.

Furthermore all functions from M are continuous w.r.t. τ, and inf
Z∈E

FZ(Λ) = 0 for Λ ∈ {βρ ≤ c∗} by assumption.

Therefore the application of the general Dini lemma (cf. [12], Theorem 3.7) leads to inf
Z∈E

sup
Λ∈{βρ≤c∗}

FZ(Λ) = 0,

which completes the proof.

In the next step we want to look for conditions which allow to reduce investigations to bounded positions. For this

purpose we have to recall some concepts from integration theory, adapted to our setting. If Q denotes a probability

content on the σ−algebra σ(X), i.e. a finitely additive nonnegative set function with Q(Ω) = 1, then we shall call

a σ(X)−measurable mapping X with positive and negative part X+ and X− integrable w.r.t. Q if

∞Z
0

Q({X+ ≥ x}) dx,
∞Z
0

Q({X− ≥ x}) dx <∞.

The terminology stems from the fact that Q may be extended via the so-called asymmetric Choquet integral

EQ defined by ([6], Chapter 5, p. 87)

EQ[X] :=

∞Z
0

Q({X+ ≥ x}) dx −
∞Z
0

Q({X− ≥ x}) dx.

It is a positive linear form on the space of all Q−integrable mappings (cf. [6], Proposition 5.1, Theorem 6.3,

Corollary 6.4), and hence the restriction to the bounded ones is even continuous w.r.t. to the sup norm. Therefore

the restriction of EQ to the bounded σ(X)−measurable mappings is just the respective integral defined in functional

analysis (e.g. [7], Appendix A.5). Using the introduced notions, a real linear form Λ on X is defined to be
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representable by a probability content if there is some probability content Q such that every X ∈ X is

integrable w.r.t. Q and Λ(X) = EQ[X].

If X is a Stonean vector lattice, then X ∧ Y = min{X,Y }, X ∨ Y = max{X,Y } ∈ X for X,Y ∈ X in particular

X+ := X ∨ 0, X− := (−X) ∨ 0 ∈ X for any X ∈ X. In this case, if all linear forms from the domain of βρ are

representable by probability contents, then ρ is concentrated on the bounded positions, and as a consequence ρ

admits a robust representation by probability measures if its restriction to the bounded positions does so.

Lemma 6.5 Let X be a Stonean vector lattice, and let every linear form Λ ∈ β−1
ρ (R) be representable by some

probability content Q on σ(X). Then we can state:

.1 The sequence
`
ρ(X+ − (X− ∧ n))

´
n

converges to ρ(X) for every X ∈ X.

.2 The sequence
`
ρ((X ∧m)− Y )

´
m

converges to ρ(X − Y ) for nonnegative X,Y ∈ X, Y being bounded.

.3 inf{|ρ((X+ ∧m)− (X− ∧ n))− ρ(X)| | m,n ∈ N} = 0 for X ∈ X, and in addition

sup
X∈X

(−EQ[X]− ρ(X)) = sup
X∈Xb

(−EQ[X]− ρ(X))

for every probability content Q on σ(X) such that each X ∈ X is integrable w.r.t. Q .

.4 If M⊆ α−1
ρ (R) with ρ(X) = sup

Q∈M
(−EQ[X]− αρ(Q)) for all bounded X ∈ X, then

ρ(X) = sup
Q∈M

(−EQ[X]− αρ(Q)) for all X ∈ X.

Proof:

The most important tool of the proof is Greco’s representation theorem. The reader is kindly referred to [14]

(Theorem 2.10 with Remark 2.3).

Since any Λ ∈ β−1
ρ (R) is representable by a probability content, statement .2 follows immediately from Greco’s

representation theorem and Lemma 6.4.

proof of .1:

Let X ∈ X, and let ε > 0. Then there exists some probability content Q with βρ(EQ|X) < ∞ such that the

inequality ρ(X)−ε < −EQ[X+]−βρ(EQ|X)+EQ[X−] holds. Application of Greco’s representation theorem leads

then to

ρ(X)− ε < −EQ[X+]− βρ(EQ|X) + lim
n
EQ[X− ∧ n] ≤ lim

n
ρ(X+ − (X− ∧ n)) ≤ ρ(X)

proof of .3:

Let Q be a probability content on σ(X) such that every X ∈ X is integrable w.r.t. Q, and let X ∈ X. Then for

ε > 0 we may choose by statement .1 and Greco’s representation theorem some n ∈ N with

| − EQ[X]− ρ(X)−
`
−EQ[X+ − (X− ∧ n)]− ρ(X+ − (X− ∧ n))

´
| < ε

3
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Moreover, due to statement .2 and Greco’s representation theorem again, there exists some m ∈ N such that

|EQ[X+ − (X− ∧ n)]− EQ[(X+ ∧m)− (X− ∧ n)]|, |ρ(X+ − (X− ∧ n))− ρ((X+ ∧m)− (X− ∧ n))| < ε

3

We may conclude by

−EQ[X]− ρ(X) < −EQ[(X+ ∧m)− (X− ∧ n)]− ρ((X+ ∧m)− (X− ∧ n)) + ε ≤ sup
Y ∈Xb

(−EQ[Y ]− ρ(Y )) + ε

and then sup
X∈X

(−EQ[X]− ρ(X)) = sup
X∈Xb

(−EQ[X]− ρ(X)). The rest of statement .3 follows easily from statements

.1, .2.

proof of .4:

By assumption ρ̂ : X → R, X 7→ sup
P∈M

(−EP[X]−αρ(P)), is a well defined convex risk measure w.r.t. π with ρ̂ ≤ ρ

and ρ̂(X) = ρ(X) for bounded X ∈ X. In particular β−1
ρ̂ (R) ⊆ β−1

ρ (R), which implies that every Λ ∈ β−1
ρ̂ (R) is

representable by a probability content due to the assumptions on βρ. Therefore the statements .1, .2 are also valid

for ρ̂, following the same line of reasoning used in the proof of them. Then firstly, fixing ε > 0, we may find for

X ∈ X an integer n ∈ N with

|ρ̂(X)− ρ̂(X+ − (X− ∧ n))|, |ρ(X)− ρ(X+ − (X− ∧ n))| < ε

4
.

Furthermore there is some m ∈ N such that

|ρ̂((X+ ∧m)− (X− ∧ n))− ρ̂(X+ − (X− ∧ n))|, |ρ((X+ ∧m)− (X− ∧ n))− ρ(X+ − (X− ∧ n))| < ε

4
.

Thus |ρ̂(X)− ρ(X)| < ε, and hence ρ̂(X) = ρ(X), which completes the proof.

In order to apply Lemma 6.5 we are now interested in conditions on ρ that ensure that linear forms from the

domain of βρ are representable by probability contents. We shall succeed in providing a full characterization.

Proposition 6.6 Let X be a Stonean vector lattice. Then every linear form from β−1
ρ (R) is representable by a

probability content if and only if lim
n→∞

ρ(−λ(X − n)+) = ρ(0) for every λ > 0 and nonnegative X ∈ X.

Proof:

For the if part let Λ ∈ β−1
ρ (R). Then by assumption and Lemma 6.2 the sequence

`
Λ((X − n)+)

´
n

converges to 0

for nonnegative X ∈ X. Hence, due to Greco’s representation theorem (cf. [14], Theorem 2.10 with Remark 2.3)

Λ is representable by a probability content.

Conversely, let every linear form from the domain of βρ be representable by a probability content, and let λ > 0 as

well as X ∈ X be nonnegative. In view of Lemma 6.1 there is some c∗ ∈]−ρ(0),∞[ with ρ(Y ) = sup
Λ∈{βρ≤c∗}

(−Λ(Y )−

βρ(Λ)) for any Y ∈ X with −λX ≤ Y ≤ 0. In particular

|ρ(−λ(X − n)+)− ρ(0)| ≤ sup
Λ∈{βρ≤c∗}

(Λ(λ(X − n)+)) for every n.
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In view of Greco’s representation theorem we have inf
n

Λ(λ(X − n)+) = 0 for any Λ ∈ β−1
ρ (R). So by Lemma 6.3

we may apply the general Dini lemma as in the proof of Lemma 6.4 to conclude lim
n→∞

|ρ(−λ(X −n)+)− ρ(0)| = 0.

This completes the proof.

Remark: If X is a Stonean vector lattice which consists of bounded positions only, then Proposition 6.6 is trivial.

7 Proof of Proposition 1.4 and Theorem 3.1

Throughout this section let L, E and S as in the context of Proposition 1.4 and Theorem 3.1. Furthermore X is

assumed to be a Stonean vector lattice. The next two results are for preparation.

Lemma 7.1 Let X+b consist of all nonnegative bounded X ∈ X, and let P be a probability measure on σ(X). Then

EP[X] = inf
X≤Y ∈E

EP[Y ] for every X ∈ X+b, and sup
X∈X+b

(−EP[X]− ρ(X)) = sup
X∈E

(−EP[X]− inf
X≥Z∈X

ρ(Z)).

Proof:

Let us use the abbreviations c := sup
X∈X+b

(−EP[X] − ρ(X)) and d := sup
X∈E

(−EP[X] − inf
X≥Z∈X

ρ(Z)). Setting T :=

{Ω\A | A ∈ S}, we have
˘ rP

i=1

λi1Gi | r ∈ N, λ1, ..., λr ∈]0,∞[, G1, ..., Gr ∈ T
¯
⊆ E, where 1A denotes the indicator

mapping of the subset A (cf. [14], Proposition 3.2). Since L generates σ(X), the inner Daniell-Stone theorem tells

us that P satisfies

P(A) = sup{P(B) | A ⊇ B ∈ S} = inf{P(B) | A ⊆ B ∈ T }

for every A ∈ σ(X) (cf. [14], Theorem 5.8, final remark after Addendum 5.9).

Every nonnegative bounded function from X may be described as a lower(!) envelope of a sequence of simple

σ(X)−measurable mappings. This implies EP[X] = inf{EP[Y ] | X ≤ Y ∈ E} for all bounded nonnegative

X ∈ X. In particular c ≤ d. Moreover for any X ∈ E and ε > 0 there is some Y ∈ X+b with Y ≤ X and

inf
X≥Z∈X

ρ(Z) + ε > ρ(Y ). This implies the inequalities −EP[X]− inf
X≥Z∈X

ρ(Z) ≤ −EP[Y ]− ρ(Y ) + ε ≤ c+ ε. Hence

d ≤ c, which completes the proof.

Lemma 7.2 Let P be a probability measure on σ(X) with sup
X∈L+b

(−EP[X] − ρ(X)) < ∞, where L+b = L ∩ X+b

with X+b consisting of all nonnegative positions from Xb. If condition (2) of Theorem 3.1 is satisfied, then every

X ∈ X is P−integrable, and sup
X∈Xb

(−EP[X]− ρ(X)) = sup
X∈L+b

(−EP[X]− ρ(X)).

Proof:

We have sup
X∈E

(−EP[X]− inf
X≥Z∈X

ρ(Z)) ≤ sup
X∈L+b

(−EP[X]− ρ(X)) by definition of E and condition (2) of Theorem

3.1. Moreover, L+b ⊆ E, and therefore the application of Lemma 7.1 with translation invariance of ρ leads to
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(*) sup
X∈Xb

(−EP[X] − ρ(X)) = sup
X∈X+b

(−EP[X] − ρ(X)) = sup
X∈E

(−EP[X] − inf
X≥Z∈X

ρ(Z)) = sup
X∈L+b

(−EP[X] −

ρ(X)) =: c <∞.

Let X ∈ X be nonnegative. It is an upper envelope of an isotone sequence (Xn)n of nonnegative simple

σ(X)−measurable mappings. Hence, in view of the monotone convergence theorem it remains to show that the

sequence (EP[Xn])n is bounded from above. Indeed, bearing (*) in mind, EP[Xn]− ρ(−Xn) ≤ c for each n, which

implies sup
n
EP[Xn] ≤ c+ ρ(−X). The proof is now complete.

Proof of Proposition 1.4:

In view of Proposition 1.2 ρ is lower semicontinuous w.r.t. the weak topology σ(X, F ) where F is the space of

all bounded countably additive set functions on σ(X) such that every X ∈ X is integrable w.r.t. any µ ∈ F.

This implies that ρ satisfies the Fatou property, and thus ρ|Xb is continuous from above. The remaining part of

Proposition 1.4 follows immediately from Lemma 7.1.

Proof of Theorem 3.1:

Let X+b,L+b consist of all nonnegative bounded positions from X and L respectively. For any Λ from the domain

of βρ assumption (4) ensures it may be represented by a probability content Q in the sense explained just before

Lemma 6.5 (cf. Proposition 6.6). Then condition (3), Lemma 6.2 and the inner Daniell-Stone theorem (cf. [14],

Theorem 5.8, final remark after Addendum 5.9) provide a probability measure P on σ(X) with P(A) = sup
A⊇B∈S

P(B)

for every A ∈ σ(X) such that EP[Z] = Λ(Z) holds for every Z ∈ L ∩ Xb (note that L ∩ Xb generates σ(X)

by assumption on L since L is a Stonean vector lattice). Then any X ∈ X is P−integrable by condition (2)

with Lemma 7.2. In particular we may define for every Z ∈ L with positive and negative part Z+ and Z−

respectively, via Yn := Z+∧n−Z−∧n a sequence (Yn)n in L∩Xb which converges pointwise to Z and satisfies by

dominated convergence as well as the Greco theorem (cf. [14], Theorem 2.10) the idenities Λ(Z) = lim
n→∞

Λ(Yn) =

lim
n→∞

EP[Yn] = EP[Z]. This also means P ∈ M1(S) because C ⊆ L. Applying Lemma 7.2 again, and bearing

Lemma 6.5 with Proposition 6.6 in mind, we obtain αρ(P) = sup
X∈L+b

(−EP[X]− ρ(X)) ≤ βρ(Λ). Summarizing the

discussion we have shown

(*) For every Λ from the domain of βρ there is some P ∈M1(S) such that EP|L = Λ|L and αρ(P) ≤ βρ(Λ).

After these preliminary considerations we are ready to prove Theorem 3.1.

Statement .1 is borrowed from [17] (p.12 there).

proof of statement .2:

In order to verify statement .2 we may use (*), and it remains to show that the sets ∆c (c ∈]ρ(0),∞[) are compact

w.r.t. the topology τL introduced in statement .1. For this purpose let (Pi)i∈I be a net in ∆c with arbitrary
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c ∈]ρ(0),∞[. So (EP|X)i∈I is a net in {βρ ≤ c}, which in turn is compact w.r.t. to product topology on RX by

Lemma 6.3. Therefore there exist a subnet (Pi(k))k∈K and some Λ ∈ {βρ ≤ c} with lim
k
EPi(k) [X] = Λ(X) for

every X ∈ X. Then (Pi(k))k∈K converges to some P ∈ ∆c due to (*). This finishes the prove of statement .2.

proof of .3:

Drawing on Lemma 6.5 with Proposition 6.6 and the translation invariance of ρ it remains to show

ρ(X) = sup
P∈M1(S)

(−EP[X]− αρ(P)) for all X ∈ X+b.

For this purpose let X ∈ X+b, and let ε > 0. Then by (1), (2) and definition of E we may find an isotone sequence

(Yn)n in L+b with X ≤ sup
n
Yn ∈ E and ρ(X) < inf

n
ρ(Yn) + ε. In view of Lemma 6.1 and (*) there is some

c∗ ∈]− ρ(0),∞[ with ρ(Yn) = sup
P∈∆c∗

(−EP[Yn]−αρ(P)) for any n. Furthermore Fn(P) := −EP[Yn]−αρ(P) defines

an antitone sequence of mappings Fn := ∆c∗ → R which are upper semicontinuous w.r.t. the relative topology of

τL (see Lemmata 7.2, 6.5 again) such that Fn ↘ F, defined by F (P) := −EP[Y ]− αρ(P). Due to .2 we may apply

the generalized Dini lemma (cf. [12], Theorem 3.7) and obtain

ρ(X)− ε < inf
n
ρ(Yn) = sup

P∈∆c∗
(−EP[Y ]− αρ(P)) ≤ sup

P∈∆c∗
(−EP[X]− αρ(P)) ≤ ρ(X),

which completes the proof.

Proof of Remark 3.4:

Obviously, σ(X) = B(eΩ)⊗B(T), and any closed subset A of eΩ× T w.r.t. the metrizable topology τeΩ × τT may be

described by A =
∞T

n=1

X−1
n ([xn,∞[) for some sequence (Xn)n of nonnegative continuous mappings and a sequence

(xn)n of positive real numbers.

Now let X ∈ L. Then X(·, t) is B(eΩ)−measurable for t ∈ T and X(ω, ·) is continuous w.r.t. τT for ω ∈ Ω, which

implies X ∈ X because τT is separably metrizable (cf. e.g. [3], Lemma III-14). Therefore L ⊆ X, and σ(X) is

generated by S. Then the statement of Remark 3.4 follows immediately from Theorem 3.1.

8 Proof of Theorem 4.1

Obviously, .2 ⇒ .3, and statement .2 implies statement .4 if the indicator mappings 1A (A ∈ S) belong to X. So

in view of Corollary 3.3 and Proposition 1.1 it remains to prove the implications .1 ⇒ .2 and .4 ⇒ .3.

proof of .1 ⇒ .2:

Let Q consist of all sequences (λn)n in [0, 1] with
∞P

n=1

λn = 1. Aditionally, let (Xn)n be any isotone sequence in

X which converges pointwise to some X ∈ X. Then by assumption
∞P

n=1

λnXn is a well defined member of X for
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(λn)n ∈ Q. Then for arbitrary (λn)n ∈ Q, m ∈ N and every ω ∈ Ω

X1(ω)(1−
mX

n=1

λn) ≤
∞X

n=1

λnXn(ω)−
mX

n=1

λnXn(ω) ≤ X(ω)(1−
mX

n=1

λn).

This implies

(*) lim
m→∞

`
Λ(

∞P
n=1

λnXn)− Λ(
mP

n=1

λnXn)
´

= 0 for any Λ ∈ β−1
ρ (R).

Let us define ∆c := {αρ ≤ c}. Then in view of Lemma 6.1 and statement .1 there exists some real c∗ > −ρ(0) with

ρ(Y ) = max
Λ∈{βρ≤c∗}

(−Λ(Y )− βρ(Λ)) = max
P∈∆c∗

(−EP[Y ]− αρ(P))

for Y ∈ {X,
∞P

n=1

λnXn | (λn)n ∈ Q}.

The sequence (fn)n in R{βρ≤c∗}, defined by fn(Λ) = −Λ(Xn)− βρ(Λ), is uniformly bounded because

−2c∗ − ρ(−X) ≤ −βρ(Λ)− ρ(−X)− βρ(Λ) ≤ fn(Λ) ≤ ρ(Xn) ≤ ρ(X1).

Furthermore for (λn)n ∈ Q the mapping
∞P

n=1

λnfn is well defined with

∞X
n=1

λnfn(Λ) = lim
m→∞

(−Λ(

mX
n=1

λnXn)− βρ(Λ)

mX
n=1

λn) = −Λ(

∞X
n=1

λnXn)− βρ(Λ)

for βρ(Λ) ≤ c∗ due to (*). Hence

sup
Λ∈{βρ≤c∗}

∞X
n=1

λnfn(Λ) = ρ(

∞X
n=1

λnXn) = max
P∈∆c∗

(−EP

ˆ ∞X
n=1

λnXn

˜
− αρ(P)) = max

P∈∆c∗

∞X
n=1

λnfn(EP|X).

The application of Simons’ lemma (cf. [20], Lemma 2) and the monotone convergence theorem leads then to

ρ(X) = sup
P∈∆c∗

(−EP[X]− αρ(P)) = sup
P∈∆c∗

lim sup
n

fn(EP|X) ≥ inf{ sup
Λ∈{βρ≤c∗}

f(Λ) | f ∈ co({fn | n ∈ N})},

where co({fn | n ∈ N}) denotes the convex hull of {fn | n ∈ N} in R{βρ≤c∗}. Thus for ε > 0 there is some convex

combination f =
rP

i=1

λifni with n1 < ... < nr and ρ(X) + ε > sup
Λ∈{βρ≤c∗}

f(Λ) = ρ(
rP

i=1

λifni). In particular the

inequalities ρ(X) + ε > ρ(Xn) ≥ ρ(X) hold for n ≥ nr, which implies lim
n→∞

ρ(Xn) = ρ(X).

proof of .4 ⇒ .3:

Let X+b gather all nonnegative X ∈ Xb. Drawing on Corollary 3.3 it suffices to prove that every linear form

Λ from the domain of βρ is representable by a probability measure. So let Λ belong to β−1
ρ (R). Then by part

of statement .4 as well as Proposition 6.6, the linear form Λ is representable by some probability content Q on

σ(X) in the sense as introduced just before Lemma 6.5. We want to apply Proposition A.1 (cf. appendix A) to

verify that Q is a probability measure. Since Ω \
∞T

n=1

X−1
n ([xn,∞[) =

∞S
n=1

∞S
m=1

`
xn − (Xn ∧ xn)

´−1
([ 1

m
,∞[) holds

for every pair (Xn)n, (xn)n of sequences in L ∩ X+b and ]0,∞[ respectively, it remains to show by assumption
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that lim
n→∞

Q(An) = 1 whenever (An)n is an isotone sequence in S with
∞S

n=1

An = Ω. Fortunately, this follows

immediately from the second part of statement .4 and

|Q(Ω)−Q(An)| ≤
βρ(Λ) + ρ(0) + inf

1An≥Z∈X
ρ(Z)− ρ(λ)

λ
for all λ > 0;

Note that βρ(Λ) ≥ EQ[−λ1An ]− inf
1An≥Z∈X

ρ(λZ) + (λQ(Ω) + ρ(λ)− ρ(0)).

9 Proofs of results from section 2

Proof of Lemma 2.1:

It remains to show the if part. For this purpose let (Xi)i∈I denote a uniformly bounded net in Xb with pointwise

limit X ∈ Xb. Setting c := lim inf
i

ρ(Xi) and fixing ε > 0, we may find a subnet (Xi(k))k∈K with ρ(Xi(k)) < c+ ε

for every k ∈ K. Hence (Xi(k) + c+ ε)k∈K is a net in some Ar which converges pointwise to X + c+ ε. So in view

of condition (2.1) X + c + ε is also the pointwise limit of some sequence (Yn)n from Ar. If ρ satisfies the Fatou

property we may conclude ρ(X + c+ ε) ≤ lim inf
n→∞

ρ(Yn) ≤ 0, and hence ρ(X) ≤ c+ ε. This completes the proof.

Proof of Theorem 2.2:

Let us retake assumptions and notations from Theorem 2.2

The implication .2 ⇒ .3 is always valid as indicated in Proposition 1.4.

Let us now introduce the space F̂ consisting of all real linear forms on Xb which are representable by some µ ∈ F.

The operator norm ‖ · ‖F̂ on F̂ w.r.t. the sup norm ‖ · ‖∞ satisfies ‖
R
· dµ‖F̂ = ‖µ‖F for every µ ∈ F. Since F is

supposed to be complete w.r.t ‖ · ‖F , (F̂ , ‖ · ‖F̂ ) is a Banach space. The topological dual F̂ ′ of F̂ will be endowed

with the respective operator norm ‖ · ‖, and BF̂ ′ denotes the unit ball in F̂ ′.

Since F contains all Dirac measures, Xb may be embedded isometrically into F̂ ′ w.r.t. ‖ · ‖∞ and ‖ · ‖ by

the evaluation mapping ê : Xb → F̂ ′. Next let us fix an arbitrary J ∈ F̂ ′ outside the closure cl(ê(Xb) ∩ BF̂ ′) of

ê(Xb)∩BF̂ ′ w.r.t. the weak * topology σ(F̂ ′, F̂ ). By Hahn-Banach theorem we may find some σ(F̂ ′, F̂ )−continuous

real linear form Λ on F̂ ′ with

sup{Λ(J̃) | J̃ ∈ cl(ê(Xb) ∩BF̂ ′)} < Λ(J).

In addition there is some µ ∈ F with Λ(J̃) = J̃(
R
· dµ) for any J̃ ∈ F̂ ′. Without loss of generality we may assume

‖µ‖F = 1. Since ê is isometric, we obtain then

‖J‖ > sup{
Z
X dµ | X ∈ Xb, sup

ω∈Ω
|X(ω)| ≤ 1} = ‖µ‖F = 1.

Hence ê(Xb) ∩BF̂ ′ is σ(F̂ ′, F̂ )−dense in BF̂ ′ .
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Now let condition (2.2) be valid, and let us assume that ρ satisfies the nonsequential Fatou property. Using Dirac

measures δω (ω ∈ Ω), we may define for any J ∈ F̂ ′ a mapping XJ ∈ RΩ via XJ(ω) := J(
R
· δω). Each XJ is

bounded because |XJ(ω)| ≤ ‖J‖ holds for every ω ∈ Ω. Furthermore for any J ∈ F̂ ′ there exists a uniformly

bounded net (Xi)i∈I in Xb such that (ê(Xi))i∈I converges to J w.r.t. σ(F̂ ′, F̂ ). In particular XJ is the pointwise

limit of (Xi)i∈I , which means that it belongs to Xb due to (2.2). Hence the mapping ρ̂ : F̂ ′ → R, J 7→ ρ(XJ) is

well defined with ρ̂(ê(X)) = ρ(X) for X ∈ Xb.

For every r > 0 and any net (Ji)i∈I in ρ̂−1(]−∞, 0]) ∩ rBF̂ ′ we may select by Banach-Alaoglu theorem a subnet

(Ji(k))k∈K and some J ∈ rBF ′ such that (Ji(k))k∈K converges to J w.r.t. σ(F̂ ′, F̂ ). Then (XJi(k))k∈K is a uniformly

bounded net in Xb which converges pointwise to XJ . Since ρ fulfills the nonsequential Fatou property, we obtain

ρ̂(J) = ρ(XJ) ≤ lim inf
k

ρ(XJi(k)) = lim inf
k

ρ̂(Ji(k)) ≤ 0.

Thus the sets ρ̂−1(]−∞, 0])∩ rBF̂ ′ (r > 0) are σ(F̂ ′, F̂ )−compact, which means that ρ̂−1(]−∞, 0]) is closed w.r.t.

σ(F̂ ′, F̂ ) by Krein-Smulian theorem. Now it is easy to check that ρ−1(] −∞, 0]) ∩ Xb is closed w.r.t. σ(Xb, F ),

which implies that all level sets ρ−1(]−∞, c]) ∩Xb (c ∈ R) are σ(Xb, F )−closed due to the translation invariance

of ρ. This shows statement .2, drawing on Propositions 1.2, 6.6 and Lemma 6.5. As a further consequence we have

equivalence of the statements .1 - .3 under (2.1), (2.2) in view of Lemma 2.1.

If we strengthen condition (2.2) by the assumption that the sets Ar from (2.1) are compact w.r.t. σ(X, F ), it

remains to show the implication .2 ⇒ .1. Indeed statement .2 implies that ρ is lower semicontinuous w.r.t. the weak

topology σ(X, F ) by Propositions 1.2. Furthermore for any uniformly bounded net (Xi)i∈I in Xb with pointwise

limit X ∈ Xb we may suppose without loss of generality that (Xi)i∈I is a net in some Ar due to translation

invariance of ρ. Then, drawing on relative σ(X, F )−compactness of Ar, the mapping X is the σ(X, F )−limit of

(Xi)i∈I . This implies lim inf
i

ρ(Xi) ≥ ρ(X), and completes the proof.

Proof of Remark 2.4:

Let ê denote the evaluation mapping from Xb into the topological dual F ′ of F w.r.t. the norm of total variation.

It is isometric w.r.t. the sup norm ‖ · ‖∞ and the operator norm ‖ · ‖. Then the if part is obvious in view of

Banach-Alaoglu theorem. Conversely, translation invariance and relative σ(X, F )−compactness of the sets Ar

imply the σ(F ′, F )−compactness of the sets ê(Xb) ∩ rBF ′ (r > 0), where BF ′ denotes the unit ball w.r.t. ‖ · ‖.

This means that ê(Xb) is closed w.r.t. σ(F ′, F ) due to the Krein-Smulian theorem, and then ê(X) = F ′ because

Xb separates points in F, and thus ê(Xb) is dense w.r.t. σ(F ′, F ). The proof is finished.
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A Appendix

Proposition A.1 Let (eΩ, eF) be a measurable space, and let {∅, eΩ} ⊆ S ⊆ eF be stable under finite union and

countable intersection, generating eF . Furthermore, for every A ∈ S there exists a sequence (An)n in S such thateΩ \ A =
∞S

n=1

An. Then every probability content Q on eF is a probability measure if and only if lim
n→∞

Q(An) = 1

holds for any isotone sequence (An)n in S with
∞S

n=1

An = eΩ.
Proof:

Let Q be a probability content on eF , and let us denote ϕ := Q |S. The only if part of the statement is obvious.

For the if part we want to show

(*) lim
n→∞

ϕ(An) = ϕ(A) for every isotone sequence (An)n in S with
∞S

n=1

An = A ∈ S

Since for A,B ∈ S with A ⊆ B there is by assumption an isotone sequence (An)n in S with
∞S

n=1

An = B \ A,

we may apply a version of the general extension theorem by König (cf. [13], Theorem 7.12 with Proposition 4.5).

Hence condition (∗) together with the assumptions on S guarantee a probability measure P on the σ−algebraeF with P |S = ϕ, and P(A) = sup
A⊇B∈S

P(B) for every A ∈ eF . In particular P ≤ Q which implies P = Q due to

additivity of Q and P . Therefore it remains to prove the condition (∗).

proof of (*):

Let (An)n be an isotone sequence in S with
∞S

n=1

An = A ∈ S. By assumption there exists some isotone sequence

(Bn)n in S with
∞S

n=1

Bn = eΩ \A. Then (Bn ∪A)n and (Bn ∪An)n are isotone sequences in S with
∞S

n=1

(Bn ∪An) =

eΩ =
∞S

n=1

(Bn ∪ A), and therefore lim
n→∞

(ϕ(Bn) + ϕ(An)) = 1 = lim
n→∞

ϕ(Bn) + ϕ(A). Hence lim
n→∞

ϕ(An) = ϕ(A),

which shows (*), and completes the proof.

B Appendix

Proof of Proposition 1.1:

Let X ∈ X, and let ρ
′
+(X, ·) : X → R denote the respective rightsided derivative of ρ at X defined by ρ

′
+(X,Y ) :=

lim
h→0+

ρ(X+hY )−ρ(X)
h

. It it well known from convex analysis that ρ
′
+(X, ·) is well defined and sublinear satisfying

ρ
′
+(X,Y −X) ≤ ρ(Y ) − ρ(X) for all Y ∈ X. Then we may choose by Hahn-Banach theorem some linear form Λ̃

on X with Λ̃ ≤ ρ
′
+(X, ·). Moreover, we obtain for Z ≥ 0

Λ̃(Z) ≤ ρ
′
+(X, (X + Z)−X) ≤ ρ(X + Z)− ρ(X) ≤ 0.
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Therefore Λ := −Λ̃ is a positive linear form fulfilling Λ(X − Y ) ≤ ρ
′
+(X,Y − X) ≤ ρ(Y ) − ρ(X) for Y ∈ X,

and Λ(Y ) ≤ π(Y ) for Y ∈ C. This implies Λ|C = π due to linearity of Λ|C and π. Furthermore we have shown

βρ(Λ) = −Λ(X)− ρ(X).

For the proof of the equivalence stated in Proposition 1.1 note that the only if part is obvious, the if part follows

immediately from the Fenchel-Moreau theorem (cf. [2], Theorem 4.2.2), observing that βρ(Λ) < ∞ only if Λ is

positive linear and extends π (see also Proposition 3.9 in [9]). This completes the proof.
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