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Multiple disorder problems
for Wiener and compound Poisson
processes with exponential jumps∗

Pavel V. Gapeev

The multiple disorder problem consists of finding a sequence of stopping
times which are as close as possible to the (unknown) times of ’disorder’
when the distribution of an observed process changes its probability char-
acteristics. We present a formulation and solution of the multiple disorder
problem for a Wiener and a compound Poisson process with exponen-
tial jumps. The method of proof is based on reducing the initial optimal
switching problems to the corresponding coupled optimal stopping prob-
lems and solving the equivalent coupled free-boundary problems by means
of the smooth- and continuous-fit conditions.

1. Introduction

Assume that at time t = 0 we begin to observe a continuously updated process X = (Xt)t≥0

which probability characteristics change at some unknown times (ηn)n∈N when an unobservable
(two-stated) continuous time Markov chain θ = (θt)t≥0 , called the disorder process, changes its
state from one to another. Throughout the paper it is assumed that the process θ starts at
0 with probability 1 − π , starts at 1 with probability π , and changes its state with intensity
λ > 0. The multiple disorder problem (or the problem of quickest multiple disorder detection)
is to decide by observing the process X at which time instants one should give alarms in order
to indicate the occurrence of disorders (ηn)n∈N . In contrast to the problem of single disorder, in
the multiple disorder problem one looks for an infinite sequence of alarm times which should be
as close as possible to the times (ηn)n∈N in the sense that the sum of probabilities of false alarms
and the total average time between the occurrence of disorders and the alarms (when the latter
are given correctly) should be minimal. The idea of consideration of multiple disorder problems
in such formulation is due to A.N. Shiryaev. Note that the problem of quickest detection admits
different formulations and appears in a number of applied sciences (see, e.g., [20] or [5]).

The problem of detecting a change in drift of a Wiener process was formulated and solved
by Shiryaev [26]-[28] (see also [29] and [30; Chapter IV]). Some particular cases of the problem

∗This research was supported by Deutsche Forschungsgemeinschaft through the SFB 649 Economic Risk.
Mathematics Subject Classification 2000. Primary 60G40, 62M20, 34K10. Secondary 62C10, 60J60, 60J75.
Key words and phrases: Multiple disorder problem, Wiener process, compound Poisson process, optimal

switching, coupled optimal stopping problem, (integro-differential) coupled free-boundary problem, smooth and
continuous fit, Itô-Tanaka-Meyer formula.
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of detecting a change in the intensity of a Poisson process were considered in Gal’chuk and
Rozovskii [13] and in Davis [6]. Peskir and Shiryaev [23] presented a complete solution of the
disorder problem for a Poisson process in the Bayesian formulation. A complete solution to the
problem for a compound Poisson process with exponential jumps in the Bayesian and variational
formulations was derived in [14]. Recently, Dayanik and Sezer [7] obtained a solution to the
disorder problem for a general compound Poisson process. A finite horizon version of the Wiener
disorder problem was studied in [15]. In the present paper we formulate and solve the multiple
disorder problem for observed Wiener and compound Poisson processes having exponentially
distributed jumps. This problem can be reduced to an equivalent optimal switching problem.

Optimal switching problems are extensions of optimal stopping problems and optimal stop-
ping games where one is looking for an infinite sequence optimal stopping times. A general
approach for studying such problems was developed in Bensoussan and Friedman [2]-[3] and
Friedman [11] (see also Friedman [12; Chapter XVI]). This investigation was continued in Brekke
and Øksendal [4], Duckworth and Zervos [9], Hamadène and Jeanblanc [17] for the continuous-
time case, and in Yushkevich [31] and Yushkevich and Gordienko [32] for the discrete-time case.
A direct method for solving optimal switching problems for diffusion processes is described in
Dayanik and Egami [8].

The paper is organized as follows. In Section 2, we give a formulation of the multiple
disorder problem for a Wiener and a compound Poisson process with exponential jumps, and
reduce it to the corresponding optimal switching problem. Then, using the strong Markov
property of the a posteriori probability process, we construct an equivalent coupled optimal
stopping problem and formulate the corresponding coupled free-boundary problem. In Section
3, we derive solutions to the coupled free-boundary problems for the both cases of Wiener and
compound Poisson processes with exponential jumps, separately. In Section 4, we formulate and
prove the main assertion of the paper showing that the specified solutions of the coupled free-
boundary problems turn out to be solutions of the initial coupled optimal stopping problems.
The main results of the paper are formulated in Theorem 4.1. The optimal switching procedure
is displayed more explicitly in Remark 4.3.

2. Formulation of the problem

In order to simplify the further exposition, in this section we formulate the multiple disorder
problem for the observed sum of a Wiener and a compound Poisson process having exponentially
distributed jumps (see [30; Chapter IV, Sections 3-4] and [23] for the single disorder case).

2.1. For a precise formulation of the problem, it is convenient to assume that all our
considerations take place on a probability space (Ω,F , Pπ) for π ∈ [0, 1]. Let θ = (θt)t≥0 be a
continuous time Markov chain with two states 0 and 1, initial distribution [1−π, π] , transition-
probability matrix [e−λt, 1− e−λt; 1− e−λt, e−λt] for t ≥ 0, and intensity-matrix [−λ, λ; λ,−λ]
with λ > 0. The process θ defined above is called a ’telegraphic signal’ (see [21; Chapter IX,
Section 4]). It is assumed that the process θ is unobservable, so that, the switching times
ηn = inf{t ≥ ηn−1 | θt 6= θηn−1} , when the process θ switches from 0 to 1 and from 1 to 0, are
unknown (i.e., they cannot be observed directly).
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It is further assumed that we observe a process X = (Xt)t≥0 defined by:

Xt =

∫ t

0

θs− dX1
s +

∫ t

0

(1− θs−) dX0
s (2.1)

where X i
t = iµt + σWt +

∑N i
t

j=1 Y i
j for all t ≥ 0. Here W = (Wt)t≥0 is a standard Wiener

process, N i = (N i
t )t≥0 are Poisson processes with intensities 1/λi , and (Y i

j )j∈N are sequences
of independent random variables exponentially distributed with parameters λi > 0 for i = 0, 1,
respectively. It is supposed that W , N i , (Y i

j )j∈N and θ are independent for i = 0, 1.
Based upon the continuous observation of X , our task is to find a (nondecreasing) sequence

of stopping times with respect to the natural filtration FX
t = σ{Xs | 0 ≤ s ≤ t} generated by

X for t ≥ 0 being ’as close as possible’ to the unknown switching times of the process θ . More
precisely, the problem consists of computing the risk function:

R∗(π) = min{V∗(π), W∗(π)} (2.2)

for π ∈ [0, 1], where

V∗(π) = inf
(τn)

∞∑
n=1

(
bPπ[θτ2n−1 = 0] + aPπ[θτ2n = 1] +

1∑
i=0

Eπ

[∫ τ2n−1+i

τ2n−2+i

I(θt = 1− i) dt

])
(2.3)

W∗(π) = inf
(σn)

∞∑
n=1

(
aPπ[θσ2n−1 = 1] + bPπ[θσ2n = 0] +

1∑
i=0

Eπ

[∫ σ2n−1+i

σ2n−2+i

I(θt = i) dt

])
(2.4)

and finding the corresponding (nondecreasing) sequences of optimal stopping times (τ ∗n)n∈N
and (σ∗n)n∈N at which the infimums in (2.3) and (2.4) are attained. In order to avoid difficulties
with notations, we set τ0 = σ0 = 0. Note that in (2.3) it is assumed that the process θ initially
switches from 0 to 1 first, while in (2.4) it is assumed that θ initially switches from 1 to 0
first. Here Pπ[θτn = i] is the probability of a ’false alarm’ and Eπ

[ ∫ τn

τn−1
I(θt = 1 − i)dt

]
is

the ’average delay’ in detecting the ’disorder’ correctly after giving the alarm τn−1 when the
process θ switches from the state i to the state 1 − i for i = 0, 1 and n ∈ N , and a > 0 and
b > 0 are given constants (costs of false alarms). It follows that if V∗(π) < W∗(π) then (τ ∗n)n∈N
is the optimal strategy in (2.2), while if V∗(π) > W∗(π) then (σ∗n)n∈N is optimal in (2.2), and
either solution is good if V∗(π) = W∗(π).

2.2. Straightforward calculations based on the fact that (τn)n∈N is a nondecreasing sequence
of stopping times with respect to the filtration (FX

t )t≥0 show that in (2.3)-(2.4) we have:

Eπ

[∫ τn

τn−1

I(θt = i) dt

]
= Eπ

[∫ ∞

0

I(τn−1 ≤ t)I(θt = i)I(t ≤ τn) dt

]
(2.5)

= Eπ

[∫ ∞

0

Eπ

[
I(τn−1 ≤ t)I(θt = i)I(t ≤ τn)

∣∣FX
t

]
dt

]
= Eπ

[∫ τn

τn−1

Pπ[θt = i | FX
t ] dt

]
for i = 0, 1. Then, by means of similar arguments to those presented in [30; pages 195-197],
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one can reduce the functions (2.3)-(2.4) to the form:

V∗(π) = inf
(τn)

Eπ

[
∞∑

n=1

(
b(1− πτ2n−1) + aπτ2n +

∫ τ2n−1

τ2n−2

πt dt +

∫ τ2n

τ2n−1

(1− πt) dt

)]
(2.6)

W∗(π) = inf
(σn)

Eπ

[
∞∑

n=1

(
aπσ2n−1 + b(1− πσ2n) +

∫ σ2n−1

σ2n−2

(1− πt) dt +

∫ σ2n

σ2n−1

πt dt

)]
(2.7)

where πt = Pπ[θt = 1 | FX
t ] for t ≥ 0 is the a posteriori probability process with Pπ[π0 = π] = 1,

and we set τ0 = σ0 = 0. Moreover, it is easily seen that the infimums in (2.6) and (2.7) are
taken over all sequences of stopping times (τn)n∈N and (σn)n∈N such that Eπ[τn ∨ σn] < ∞ for
all n ∈ N .

2.3. It can be shown (see [21; Chapters IX, XVIII and XIX]) that the a posteriori probability
process (πt)t≥0 solves the stochastic differential equation:

dπt = λ(1− 2πt) dt +
µ

σ
πt(1− πt) dW t (2.8)

+

∫ ∞

0

πt−(1− πt−)(e−λ1x − e−λ0x)

πt−e−λ1x + (1− πt−)e−λ0x

(
µX(dt, dx)− (πt−e−λ1x + (1− πt−)e−λ0x) dtdx

)
(π0 = π)

where the innovation process W = (W t)t≥0 defined by:

W t =
1

σ

(
Xc

t − µ

∫ t

0

πs ds
)

(2.9)

is a standard Wiener process (see also [21; Chapter IX]). Here Xc = (Xc
t )t≥0 denotes the

continuous part and µX(dt, dx) is the measure of jumps of the process X (see [19; Chapters I
and II]). It can be verified that (πt)t≥0 is a time-homogeneous (strong) Markov process under
Pπ with respect to its natural filtration. As the latter clearly coincides with (FX

t )t≥0 , it is also
clear that the infimums in (2.6) and (2.7) can equivalently be taken over all stopping times
of (πt)t≥0 . This shows that the process (πt)t≥0 plays the role of a sufficient statistic in the
problems (2.6) and (2.7).

2.4. Using the strong Markov property of the process (πt)t≥0 , we can reduce the system
(2.6)-(2.7) to the following coupled optimal stopping problem:

V∗(π) = inf
τ

Eπ

[
b(1− πτ ) +

∫ τ

0

πt dt + W∗(πτ )

]
(2.10)

W∗(π) = inf
σ

Eπ

[
aπσ +

∫ σ

0

(1− πt) dt + V∗(πσ)

]
(2.11)

where the infimums in (2.10) and (2.11) are taken over all stopping times τ and σ such that
Eπ[τ ∨ σ] < ∞ , respectively. By using the arguments in [30; pages 197-198] and [23] it can
be verified that the function V∗(π) from (2.10) is concave and decreasing, while the function
W∗(π) from (2.11) is concave and increasing on [0, 1]. Then it follows that the optimal stopping
times in (2.10) and in (2.11) have the form:

τ∗ = inf{t ≥ 0 | πt ≥ B∗} (2.12)

σ∗ = inf{t ≥ 0 | πt ≤ A∗} (2.13)
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where B∗ is the smallest number π from [0, 1] such that V∗(π) = b(1−π), and A∗ is the largest
number π from [0, 1] such that W∗(π) = aπ . Hence, we may conclude that the sequence of
stopping times (τ ∗n)n∈N given by:

τ ∗2n−1 = inf{t ≥ τ ∗2n−2 | πt ≥ B∗} (2.14)

τ ∗2n = inf{t ≥ τ ∗2n−1 | πt ≤ A∗} (2.15)

is optimal in (2.6) and thus in (2.3), while the sequence of stopping times (σ∗n)n∈N given by:

σ∗2n−1 = inf{t ≥ σ∗2n−2 | πt ≤ A∗} (2.16)

σ∗2n = inf{t ≥ σ∗2n−1 | πt ≥ B∗} (2.17)

is optimal in (2.7) and thus in (2.4). In order to avoid difficulties in notations, here we set
τ ∗0 = σ∗0 = 0.

It is also seen that there exist a unique point 0 < π∗ < 1 such that V∗(π∗) = W∗(π∗).
Therefore, for a given number π from the interval [0, 1] it follows that if π∗ < π ≤ 1 then the
sequence (2.14)-(2.15) is optimal in the problem (2.2), while if 0 ≤ π < π∗ then the sequence
(2.16)-(2.17) is optimal in (2.2), and either solution is good if π = π∗ .

2.5. Standard arguments imply that the infinitesimal operator L of the process (πt)t≥0 acts
on a function F ∈ C2([0, 1]) according to the rule:

(LF )(π) =

(
λ(1− 2π)− λ0 − λ1

λ0λ1

π(1− π)

)
F ′(π) +

µ2

2σ2
π2(1− π)2F ′′(π) (2.18)

+

∫ ∞

0

[
F

(
πe−λ1x

πe−λ1x + (1− π)e−λ0x

)
− F (π)

]
(πe−λ1x + (1− π)e−λ0x) dx

for all π ∈ [0, 1]. In order to find the unknown value functions V∗(π) and W∗(π) from (2.10)
and (2.11) as well as the unknown boundaries A∗ and B∗ from (2.12) and (2.13), using the
general theory of optimal stopping problems for continuous time Markov processes (see, e.g.,
[16] and [30; Chapter III, Section 8]), we can formulate the following coupled free-boundary
problem:

(LW )(π) = −(1− π) for A < π < 1, (LV )(π) = −π for 0 < π < B (2.19)

W (A+) = aA + V (A+), V (B−) = b(1−B) + W (B−) (2.20)

W (π) = aπ + V (π) for 0 ≤ π < A, V (π) = b(1− π) + W (π) for B < π ≤ 1 (2.21)

W (π) < aπ + V (π) for A < π < 1, V (π) < b(1− π) + W (π) for 0 < π < B (2.22)

with 0 < A∗ < B∗ < 1, where the conditions (2.20), which are satisfied by virtue of the
concavity arguments above, play the role of instantaneous-stopping conditions. Note that by
the superharmonic characterization of the value function (see [10] or [30]) it follows that V∗(π)
from (2.10) and W∗(π) from (2.11) are the largest functions satisfying (2.19)-(2.22). Moreover,
we assume that the smooth-fit conditions:

(if µ 6= 0 or λ0 > λ1) W ′(A+) = a + V ′(A+), V ′(B−) = −b + W ′(B−) (if µ 6= 0 or λ0 < λ1)
(2.23)
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are satisfied. The latter can be explained by the fact that in these cases the process (πt)t≥0 can
pass through the corresponding boundaries A∗ and B∗ continuously. Such property was earlier
observed in [22]-[23] by solving some other optimal stopping problems for jump processes (see
also [1] for necessary and sufficient conditions for the occurrence of smooth fit and references
to the related literature, and [24] for an extensive overview).

In order to find the optimal boundaries A∗ and B∗ , let us introduce the reference (difference)
function U(π) = V (π)−W (π) for all π ∈ [0, 1]. Then from (2.19)-(2.22) and (2.23) it follows
that U(π) solves the system:

(LU)(π) = 1− 2π for A < π < B (2.24)

U(A+) = −aA, U(B−) = b(1−B) (2.25)

U(π) = −aπ for 0 ≤ π < A, U(π) = b(1− π) for B < π ≤ 1 (2.26)

U(π) > −aπ for A < π ≤ 1, U(π) < b(1− π) for 0 ≤ π < B (2.27)

and the following conditions hold:

(if µ 6= 0 or λ0 > λ1) U ′(A+) = −a, U ′(B−) = −b (if µ 6= 0 or λ0 < λ1). (2.28)

3. Solutions of the coupled free-boundary problem

In this section we solve the systems (2.24)-(2.27)+(2.28) and (2.19)-(2.22)+(2.23) for the
both cases µ 6= 0 with λ0 = λ1 and µ = 0 with λ0 6= λ1 , separately.

3.1. By means of straightforward calculations it can be checked that in case µ 6= 0 and
λ0 = λ1 the solution of the system (2.24)-(2.26)+(2.28) takes the form:

U(π; A, B) =
b− a

F0(A)− F0(B)

∫ π

A

F0(x) dx +
π − A

λ
− aA (3.1)

for all A∗ < π < B∗ and the boundaries A∗ and B∗ such that 0 < A∗ < B∗ < 1 are uniquely
determined by the following coupled system of equations:

bF0(A)− aF0(B) =
1

λ

(
F0(B)− F0(A)

)
(3.2)

(b− a)

∫ B

A

F0(x) dx =

(
aA + b(1−B)− 1

λ
(B − A)

)(
F0(A)− F0(B)

)
(3.3)

with the function F0(x) defined by:

F0(x) = exp
( 2λσ2

µ2x(1− x)

)
(3.4)

for all 0 < x < 1 (see Figure 1 below).
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U∗(π)

−a

b

A∗ B∗

V

π1

Figure 1. A computer drawing of the reference
(difference) function π 7→ U∗(π) on [0, 1].

Therefore, solving equations (2.19) and using conditions (2.20) for A and B fixed (as well
as taking into account the fact that the value functions should be bounded), we obtain the
expressions:

V (π; B) = b(1−B) +
2σ2

µ2

∫ B

π

∫ x

0

F0(x)

F0(y)

dy

y(1− y)2
dx (3.5)

W (π; A) = aA +
2σ2

µ2

∫ π

A

∫ 1

x

F0(x)

F0(y)

dy

y2(1− y)
dx (3.6)

where the function F0(x) is defined in (3.4).

3.2. Let us now assume that µ = 0 and λ0 6= λ1 . In this case, by making straightforward
calculations it is shown that when λ0 > λ1 the solution of the system (2.24)-(2.26)+(2.28)
takes the form:

U(π; A, B) = b(1−B)−
∫ B

π

γλ1H1(x, B)(1− x)xγ

[λ1 + (λ0 − λ1)x](1− x)γ
dx (3.7)

7



with

H1(x, B) =
1

D(x)

(
C1(x, B)−

∫ B

x

C1(y, B)G1(y, B)

D(y)G1(x, B)
dy

)
(3.8)

C1(x, B) =
bB(1−B)γ

γ(γ − 1)Bγ
− λ0(1− 2x)(1− x)γ

γ(1− x)xγ
(3.9)

D(x) =
x[λ′γ(γ − 1)(1− 2x)− x(1− x)]

(1− x)(x + γ − 1)
(3.10)

G1(x, B) = exp

(
−
∫ B

x

dz

D(z)

)
(3.11)

and γ = λ0/(λ0 − λ1) > 1, λ′ = λ0(λ0 − λ1) > 0 as well as the boundaries A∗ and B∗ such
that 0 < A∗ < B∗ < 1 are uniquely determined by the following coupled system of equations:

γλ1H1(A, B)(1− A)Aγ

[λ1 + (λ0 − λ1)A](1− A)γ
= −a (3.12)∫ B

A

γλ1H1(x, B)(1− x)xγ

[λ1 + (λ0 − λ1)x](1− x)γ
dx = aA + b(1−B) (3.13)

and when λ0 < λ1 the function U(π; A, B) is given by:

U(π; A, B) = −aA +

∫ π

A

γλ1H2(x, A)(1− x)xγ

[λ1 + (λ0 − λ1)x](1− x)γ
dx (3.14)

with

H2(x, A) =
1

D(x)

(
C2(x, A) +

∫ x

A

C2(y, A)G2(y, A)

D(y)G2(x, A)
dy

)
(3.15)

C2(x, A) = −aA(1− A)γ

γ(γ − 1)Aγ
− λ0(1− 2x)(1− x)γ

γ(1− x)xγ
(3.16)

G2(x, A) = exp

(∫ x

A

dz

D(z)

)
(3.17)

and γ = λ0/(λ0 − λ1) < 0, λ′ = λ0(λ0 − λ1) < 0 as well as the boundaries A∗ and B∗ such
that 0 < A∗ < B∗ < 1 are uniquely determined by the following coupled system of equations:

γλ1H2(B, A)(1−B)Bγ

[λ1 + (λ0 − λ1)B](1−B)γ
= −b (3.18)∫ B

A

γλ1H2(x, A)(1− x)xγ

[λ1 + (λ0 − λ1)x](1− x)γ
dx = aA + b(1−B). (3.19)

Therefore, solving equations (2.19) and using conditions (2.20) for A and B fixed (as well
as taking into account the fact that the value functions should be bounded), we obtain the
expressions:

V (π; B) = b(1−B)−
∫ B

π

γλ1F1(x, B)(1− x)xγ

[λ1 + (λ0 − λ1)x](1− x)γ
dx (3.20)

W (π; A) = aA +

∫ π

A

γλ1F2(x, A)(1− x)xγ

[λ1 + (λ0 − λ1)x](1− x)γ
dx (3.21)
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where when λ0 > λ1 we have:

F1(x, B) =
1

D(x)

(
C3(x, B)−

∫ B

x

C3(y, B)G1(y, B)

D(y)G1(x, B)
dy

)
(3.22)

F2(x, A) =
1

D(x)

(
C4(x, A) +

∫ x

A

C4(y, A)G2(y, A)

D(y)G2(x, A)
dy

)
(3.23)

C3(x, B) =
bB(1−B)γ

γ(γ − 1)Bγ
− λ0x(1− x)γ

γ(1− x)xγ
(3.24)

C4(x, A) = −aA(1− A)γ

γ(γ − 1)Aγ
− λ0x(1− x)γ

γ(1− x)xγ
(3.25)

while when λ0 < λ1 we have:

F1(x, B) =
1

D(x)

(
C5(x, B)−

∫ B

x

C5(y, B)G1(y, B)

D(y)G1(x, B)
dy

)
(3.26)

F2(x, A) =
1

D(x)

(
C6(x, A) +

∫ x

A

C6(y, A)G2(y, A)

D(y)G2(x, A)
dy

)
(3.27)

C5(x, B) =
bB(1−B)γ

γ(γ − 1)Bγ
− λ0(1− x)(1− x)γ

γ(1− x)xγ
(3.28)

C6(x, A) = −aA(1− A)γ

γ(γ − 1)Aγ
− λ0(1− x)(1− x)γ

γ(1− x)xγ
. (3.29)

-

6

0

V∗(π)
W∗(π)

a

b

A∗ B∗π∗

V

π1

Figure 2. A computer drawing of the value functions
π 7→ V∗(π) and π 7→ W∗(π) for π ∈ [0, 1].

4. Main result and proof

Taking into account the facts proved above, we are now ready to formulate and prove the
main assertion of the paper.
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Theorem 4.1. Let the process X = (Xt)t≥0 be given by (2.1) with µ 6= 0 or λ0 6= λ1 .
Then the value functions (2.3) and (2.4) take the expressions:

V∗(π) =

{
V (π; B∗), if 0 ≤ π < B∗

b(1− π), if B∗ ≤ π ≤ 1
(4.1)

and

W∗(π) =

{
W (π; A∗), if A∗ < π ≤ 1

aπ, if 0 ≤ π ≤ A∗
(4.2)

and the optimal stopping times (τ ∗n)n∈N and (σ∗n)n∈N have the structure (2.14)-(2.15) and (2.16)-
(2.17), where the functions V (π; B) and W (π; A) and the boundaries A∗ and B∗ are specified
as follows [see Figure 2 above]:

(i) if µ 6= 0 and λ0 = λ1 , then V (π; B) and W (π; A) are given by (3.5) and (3.6), as well
as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ < 1 and are uniquely
determined by the coupled system of equations (3.2)-(3.3);

(ii) if µ = 0 and λ0 > λ1 , then V (π; B) and W (π; A) are given by (3.20) and (3.21), as
well as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ < 1 and are
uniquely determined by the coupled system of equations (3.12)-(3.13);

(iii) if µ = 0 and λ0 < λ1 , then V (π; B) and W (π; A) are given by (3.20) and (3.21), as
well as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ < 1 and are
uniquely determined by the coupled system of equations (3.18)-(3.19).

Proof. In order to verify the related assertions, it remains to show that the functions (4.1)
and (4.2) coincide with the value functions (2.10) and (2.11), respectively, and the stopping
times τ∗ and σ∗ from (2.12) and (2.13) with the boundaries A∗ and B∗ specified above are
optimal. For this, let us denote by V (π) and W (π) the right-hand sides of the expressions
(4.1) and (4.2), respectively. In these cases, by means of straightforward calculations and the
assumptions above it follows that the functions V (π) and W (π) solve the system (2.19)-(2.22),
and conditions (2.23) are satisfied under the corresponding relationships on the parameters
of the model. Note that from the formulas of the previous section it is seen that the both
functions V (π) and W (π) are concave on [0, 1]. The latter can be shown directly by analyzing
the expressions (3.5)-(3.6) and (3.20)-(3.21). Then, applying Itô-Tanaka-Meyer formula (see,
e.g., [18; Chapter V, Theorem 5.52] or [25; Chapter IV, Theorem 51]) to V (πt) and W (πt), we
obtain:

V (πt) = V (π) +

∫ t

0

(LV )(πs) I(πs 6= B∗) ds + Mt (4.3)

W (πt) = W (π) +

∫ t

0

(LW )(πs) I(πs 6= A∗) ds + Nt (4.4)

where the processes (Mt)t≥0 and (Nt)t≥0 defined by:

Mt =

∫ t

0

V ′(πs)
µ

σ
πs(1− πs) dW s (4.5)

+

∫ t

0

∫ ∞

0

[
V

(
πs−e−λ1x

πs−e−λ1x + (1− πs−)e−λ0x

)
− V (πs−)

](
µX(ds, dx)− ν(ds, dx)

)
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Nt =

∫ t

0

W ′(πs)
µ

σ
πs(1− πs) dW s (4.6)

+

∫ t

0

∫ ∞

0

[
W

(
πs−e−λ1x

πs−e−λ1x + (1− πs−)e−λ0x

)
−W (πs−)

](
µX(ds, dx)− ν(ds, dx)

)
are local martingales under the measure Pπ with respect to (FX

t )t≥0 and we set ν(dt, dx) =
(πt−e−λ1x + (1− πt−)e−λ0x)dtdx .

By the construction of V (π) and W (π) from the previous sections and by using the
straightforward calculations it can be checked that (LV )(π) ≥ −π for all B < π < 1 and
(LW )(π) ≥ −(1 − π) for all 0 < π < A . Moreover, by means of standard arguments it
can be shown that the function V (π; B∗) is decreasing, while the function W (π; A∗) is in-
creasing on the intervals (0, B∗) and (A∗, 1), respectively, since for their derivatives we have
−b < V ′(π; B∗) < 0 and 0 < W ′(π; A∗) < a . Then the properties (2.22) also hold, that
together with (2.20)-(2.21) yields V (π) ≤ b(1 − π) + W (π) and W (π) ≤ aπ + V (π) for all
π ∈ [0, 1]. Observe that by using (2.8) it is shown that the time spent by the process (πt)t≥0 at
the points A∗ and B∗ is of Lebesgue measure zero. Hence, from the expressions (4.3)-(4.4) and
the structure of stopping times in (2.12)-(2.13), by using the fact that A∗ ≤ (aλ+1)/(2aλ+1),
B∗ ≥ bλ/(2bλ + 1) and 0 < A∗ < B∗ < 1 it follows that the inequalities:

b(1− πτ ) +

∫ τ

0

πs ds + W (πτ ) ≥ V (πτ ) +

∫ τ

0

πs ds ≥ V (π) + Mτ (4.7)

aπσ +

∫ σ

0

(1− πs) ds + V (πσ) ≥ W (πσ) +

∫ σ

0

(1− πs) ds ≥ W (π) + Nσ (4.8)

hold for any stopping times τ and σ of the process (πt)t≥0 .
Let (τn)n∈N and (σn)n∈N be arbitrary localizing sequences of stopping times for the pro-

cesses (Mt)t≥0 and (Nt)t≥0 , respectively. Then, using (4.7)-(4.8) and taking the expectations
with respect to Pπ , by means of the optional sampling theorem (see, e.g., [19; Chapter I,
Theorem 1.39]), we get:

Eπ

[
b(1− πτ∧τn) +

∫ τ∧τn

0

πs ds + W (πτ∧τn)

]
(4.9)

≥ Eπ

[
V (πτ∧τn) +

∫ τ∧τn

0

πs ds

]
≥ V (π) + Eπ

[
Mτ∧τn

]
= V (π)

Eπ

[
aπσ∧σn +

∫ σ∧σn

0

(1− πs) ds + V (πσ∧σn)

]
(4.10)

≥ Eπ

[
W (πσ∧σn) +

∫ σ∧σn

0

(1− πs) ds

]
≥ W (π) + Eπ

[
Nσ∧σn

]
= W (π)

for all π ∈ [0, 1]. Hence, letting n go to infinity and using Fatou’s lemma, for any stopping
times τ and σ such that Eπ[τ ∨ σ] < ∞ we obtain that the inequalities:

Eπ

[
b(1− πτ ) +

∫ τ

0

πs ds + W (πτ )

]
≥ V (π) (4.11)

Eπ

[
aπσ +

∫ σ

0

(1− πs) ds + V (πσ)

]
≥ W (π) (4.12)
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are satisfied for all π ∈ [0, 1].
By virtue of the fact that the functions V (π) and W (π) satisfy the system (2.19)-(2.22)

with the boundaries A∗ and B∗ , by the structure of the stopping times τ∗ in (2.12) and σ∗ in
(2.13) as well as by the expressions (4.3) and (4.4) it follows that the equalities:

V (πτ∗∧τn) +

∫ τ∗∧τn

0

πs ds = V (π) + Mτ∗∧τn (4.13)

W (πσ∗∧σn) +

∫ σ∗∧σn

0

(1− πs) ds = W (π) + Nσ∗∧σn (4.14)

hold for all π ∈ [0, 1]. Note that, by means of standard arguments and using the structure of
the process (2.8) and of the stopping times (2.12) and (2.13), we have Eπ[τ∗ ∨ σ∗] < ∞ for all
π ∈ [0, 1]. Hence, letting n go to infinity in (4.13)-(4.14) and using conditions (2.21)-(2.22), by
means of the Lebesgue bounded convergence theorem, we obtain the equalities:

Eπ

[
b(1− πτ∗) +

∫ τ∗

0

πs ds + W (πτ∗)

]
= V (π) (4.15)

Eπ

[
aπσ∗ +

∫ σ∗

0

(1− πs) ds + V (πσ∗)

]
= W (π) (4.16)

for all π ∈ [0, 1], that together with (4.11)-(4.12) directly imply the desired assertion. �

Remark 4.2. By means of straightforward calculations from the previous section it can
be verified that in case µ = 0 with λ0 > λ1 we have V ′(B∗−; B∗) > −b + W ′(B∗−; A∗), while
in case µ = 0 with λ0 < λ1 we have W ′(A∗+; A∗) < a + V ′(A∗+; B∗). According to the
arguments in [22]-[23] such effects can be explained by the fact that in those cases the process
(πt)t≥0 can pass through the corresponding boundaries B∗ or A∗ only by jumping. According
to the results in [1] we may conclude that this property appears because of finite intensity of
jumps and exponential distribution of jump sizes of the compound Poisson process J .

Remark 4.3. The results formulated above show that the following sequential procedure
is optimal. Being based on the observations X = (Xt)t≥0 we construct the sufficient statistic
process (πt)t≥0 and stop the observations as soon as the latter process comes into the region
[0, A∗] or [B∗, 1] and then conclude that the continuous Markov chain θ = (θt)t≥0 has switched
from 1 to 0 or from 0 to 1, respectively. Starting from one of those regions [0, A∗] or [B∗, 1],
we stop the observations as soon as the process (πt)t≥0 comes to the opposite region and then
conclude that θ has switsched from 0 to 1 or from 1 to 0, respectively. Then we continue the
procedure from the beginning.

Acknowledgments. The results of the paper were presented at INFORMS Applied Prob-
ability Conference in Ottawa, July 2005. The author is grateful to Savas Dayanik for invitation.
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