
Trenkler, Carsten; Saikkonen, Pentti; Lütkepohl, Helmut

Working Paper

Testing for the cointegrating rank of a VAR process
with level shift and trend break

SFB 649 Discussion Paper, No. 2006,067

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Trenkler, Carsten; Saikkonen, Pentti; Lütkepohl, Helmut (2006) : Testing for
the cointegrating rank of a VAR process with level shift and trend break, SFB 649 Discussion
Paper, No. 2006,067, Humboldt University of Berlin, Collaborative Research Center 649 -
Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25150

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25150
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 

 
 
 
 
 
 

SFB 649 Discussion Paper 2006-067 

Testing for the 
Cointegrating Rank of a 
VAR Process with Level 
Shift and Trend Break 

 
Carsten Trenkler* 

Pentti Saikkonen** 
Helmut Lütkepohl*** 

 

* Humboldt-Universität zu Berlin, Germany 
** University of Helsinki, Finland 

*** European University Institute, Florence, Italy 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



August 31, 2006

Testing for the Cointegrating Rank of a VAR Process

with Level Shift and Trend Break

by

Carsten Trenkler
Humboldt University Berlin

Pentti Saikkonen
University of Helsinki

and

Helmut Lütkepohl
European University Institute, Florence

Address for correspondence: Carsten Trenkler, Institute of Statistics and Econometrics,
Humboldt University Berlin, Spandauer Str. 1, D-10178 Berlin, Germany;
email: trenkler@wiwi.hu-berlin.de

Abstract

A test for the cointegrating rank of a vector autoregressive (VAR) process with a possible
shift and broken linear trend is proposed. The break point is assumed to be known. The
setup is a VAR process for cointegrated variables. The tests are not likelihood ratio tests
but the deterministic terms including the broken trends are removed first by a GLS proce-
dure and a likelihood ratio type test is applied to the adjusted series. The asymptotic null
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1 Motivation and Introduction

Structural breaks are common in economic data. Ignoring them can lead to seriously incor-
rect inference in particular in unit root and cointegration testing. Therefore a considerable
literature has developed on testing for unit roots and cointegration when breaks occur in
the deterministic term following the pioneering work of Perron (1989, 1990). He considered
unit root tests for univariate time series and treated three cases of particular importance,
namely the case of a shift in the level of the process, the case of a change in the trend
slope and the case where both types of breaks occur. These cases have also been dealt with
in the cointegration testing literature. Specifically Johansen, Mosconi and Nielsen (2000)
extended the tests proposed by Johansen (1995) and considered all these cases in a Gaussian
vector autoregressive (VAR) framework. They developed likelihood ratio (LR) tests for the
cointegrating rank for all three situations. It was noted by Saikkonen and Lütkepohl (1999,
2000a), however, that other tests may be advantageous in terms of local power if there is
just a level shift. In this paper we will extend the ideas used by the latter authors to the
case of a break in the trend slope in addition to the shift in the level of the data generation
process (DGP).

The general setup is a VAR process with a linear trend term which may have a level shift
and a break in the trend slope at a known point in time as in the Johansen et al. (2000)
paper. The deterministic term is specified in a slightly different way than in that paper. If
a break is believed to have occurred in the deterministic part of the process only and does
not affect the stochastic part, it seems natural to us to strictly separate the deterministics
from the stochastic part in setting up the model. Therefore the deterministic part is added
to a zero mean purely stochastic process in our setup.

Our test proceeds by first estimating the deterministic part of the DGP by a generalized
least squares (GLS) procedure and then removing this part from the series. Thereafter an LR
type test for the cointegrating rank is applied. Unlike in the case considered by Saikkonen
and Lütkepohl (2000a) where a break occurs only in the level of the process, in the present
setup with a possible break in the trend slope the asymptotic distribution of the test statistic
under the null hypothesis depends on the break date. In this respect our test is similar to the
Johansen et al. (2000) test (henceforth JMN test). The asymptotic distribution is different
from that of the latter test, however. Response surface techniques will be used to provide
easy to use approximations to the asymptotic distributions of the test which also allow to
provide p-values of the test for any possible break date. Thereby the test will be easy to
use in empirical applications without simulating new critical values for each specific case.
In a Monte Carlo comparison it is shown that the new test may have considerably better
small sample properties than the JMN test. In particular, the tendency of the JMN test
for substantial size distortions will be seen to be reduced for our test. Moreover, in many
situations the small sample power of our test will be seen to be better than that of the JMN
test.

As mentioned earlier, we assume a known break date like Johansen et al. (2000). This
assumption has been criticized in the related unit root and cointegration testing literature on
the grounds that the break date is often not known with certainty in practice and an incorrect
break point leads to a misspecified model with negative implications for the properties of
the tests. In response to this critique a number of proposals were made for endogenizing the
break point selection in particular in testing for unit roots. For cointegration testing when
the DGP has a level shift, proposals were made and investigated by Lütkepohl, Saikkonen
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and Trenkler (2004) and Saikkonen, Lütkepohl and Trenkler (2006). In the present paper we
restrict the discussion to the known break date case because an extension to the unknown
break date case would be a nontrivial extension for which we have not been able to work
out the details so far. Moreover, we believe that the known break date case is quite relevant
for applied work as well because in many situations the break point is in fact known. For
example, for many German macroeconomic time series there is a break at the time of the
German unification and the unification time is obviously known. An application of our tests
to German data will also be given in this paper. Another case where a break has occurred
at a known point in time is the European monetary union. Even though a break may have
occurred at an unknown time in many economic time series, it is debatable whether the
presently available models are actually suitable in such cases because the assumed breaks
are still very simple. In particular, they are confined to the deterministic terms and leave
the dynamic structure unchanged. If the break point is unknown it is unclear that the type
of the break is known sufficiently precisely to make the tests applicable.

The structure of this study is as follows. In the next section we discuss the model setup
and in Section 3 the new cointegrating rank tests are presented including asymptotic null
distributions. Response surface results for approximating the asymptotic test distributions
are given in Section 4 and a Monte Carlo study comparing the small sample properties of our
new tests with the JMN tests are presented in Section 5. In Section 6 the tests are used to
investigate the cointegration properties of a small German macroeconomic system in which
the series have breaks at a known point in time. Although we restrict the discussion largely
to the case of a single break point it should be noted that extensions to a multiple break
situation are straightforward. To the extent necessary for our purposes, these extensions
will be mentioned throughout. Some further extensions are briefly summarized in the final
section together with general conclusions from our study. Response surface coefficients and
mathematical derivations are provided in the Appendix.

Throughout the paper the following notation and terminology is used. The symbols ∆
and L denote the differencing and lag operators, respectively. An integrated process of order
d is called I(d), that is, the stochastic part of the process is stationary or asymptotically
stationary after differencing d times whereas it is still nonstationary after differencing d− 1

times only. Convergence in distribution is denoted by
d→ and i.i.d. abbreviates independently,

identically distributed. The symbols Op(·) and op(·) are used as usual for boundedness and
convergence in probability, respectively. Furthermore, ‖A‖, tr(A), det(A) and rk(A) denote
the Euclidean norm, the trace, determinant and rank of the matrix A, respectively. If A is
an (n ×m) matrix of full column rank (n > m), an orthogonal complement is denoted by
A⊥. The zero matrix is the orthogonal complement of a nonsingular square matrix and an
identity matrix of suitable dimension is the orthogonal complement of a zero matrix. The
symbol In signifies an (n×n) identity matrix and for matrices A1, . . . , As, diag[A1 : · · · : As]
is the block-diagonal matrix with A1, . . . , As on the diagonal. ML, LS, GLS, RR, LR, VAR
and VECM abbreviate maximum likelihood, least squares, generalized least squares, reduced
rank, likelihood ratio, vector autoregressive and vector error correction model, respectively.
A summation is defined to be zero if the lower bound of the summation index exceeds the
upper bound.
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2 The Model Setup

The framework of Saikkonen and Lütkepohl (2000a) (henceforth S&L) is extended by allow-
ing for a change in the trend slope. Suppose yt = (y1t, . . . , ynt)

′ (t = 1, . . . , T ) is generated
by a process with constant, linear trend, level shift and change in the trend slope at known
time τ ,

yt = µ0 + µ1t + δ0dt + δ1bt + xt, t = 1, 2, . . . , (2.1)

where µi and δi (i = 0, 1) are unknown (n× 1) parameter vectors, and dt and bt are dummy
variables defined by dt = bt = 0 for t < τ , and dt = 1 and bt = t− τ + 1 for t ≥ τ . The value
of the break date τ is assumed to depend on the sample size such that the break occurs at
a fixed fraction of the sample size. More precisely, it is assumed that

τ = [Tλ] with 0 < λ ≤ λ ≤ λ̄ < 1, (2.2)

where λ and λ̄ are specified real numbers and [·] denotes the integer part of the argument.
In other words, the break date may not be at the very beginning or at the very end of the
sample. Note that λ and λ̄ may be arbitrarily close to zero and one, respectively. Therefore
our assumption regarding the break date is not very restrictive.

Of course, δ0 or δ1 may be zero. If δ1 = 0 is known a priori we would be back in the
framework of S&L and there is nothing new. Hence, in the context of the present paper the
case δ1 6= 0 is of primary interest.

It is important to note that the deterministic part is simply added to the stochastic part
xt of the process. Our formulation differs in this respect from the setup used by Johansen
et al. (2000) who introduce the deterministic terms directly in the VAR model. In our setup
the process xt is assumed to have a zero mean VAR(p) representation,

xt = A1xt−1 + · · ·+ Apxt−p + εt, t = 1, 2, . . . , (2.3)

without deterministic terms. Here the Aj are (n×n) coefficient matrices. For simplicity, it
is assumed that xt = 0 for t ≤ 0 and εt ∼ i.i.d.(0, Ω), that is, the εt are i.i.d. vectors with
zero mean and covariance matrix Ω. We also assume that all moments of εt of order c exist,
where c is a number greater than 4. The zero initial value assumption for xt, t ≤ 0, could be
replaced by the assumption that the initial values are from a fixed probability distribution
which does not depend on the sample size.

The VECM form of the process xt is

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . , (2.4)

where Π = −(In−A1− · · · −Ap) and Γj = −(Aj+1 + · · ·+ Ap) (j = 1, . . . , p− 1) are (n×n)
matrices. The process xt is assumed to be at most I(1) and cointegrated with cointegrating
rank r. Hence, the matrix Π can be written as Π = αβ′, where α and β are (n×r) matrices
of full column rank. As is well-known, β′xt and ∆xt are then zero mean I(0) processes.
Defining Ψ = In − Γ1 − · · · − Γp−1 = In +

∑p−1
j=1 jAj+1 and C = β⊥(α′⊥Ψβ⊥)−1α′⊥, we have

the representation xt = C
∑t

j=1 εj + wt, (t = 1, 2, . . .), where wt is a zero mean I(0) process.
Having this simple version of the Granger representation theorem makes our theoretical
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derivations different from those used by Johansen et al. (2000) who use a more complicated
extension of the Granger representation theorem.

In the following we use the lag polynomial

A(L) = In − A1L− · · · − ApL
p = In∆− ΠL− Γ1∆L− · · · − Γp−1∆Lp−1.

Notice that the relation between the two different parameterizations is given by A1 = In +
αβ′ + Γ1, Aj = Γj − Γj−1, (j = 2, . . . , p − 1) and Ap = −Γp−1. Multiplying (2.1) by A(L)
yields

∆yt = ν + α(β′yt−1 − φ(t− 1)− θ1bt−1)

+
p−1∑
j=1

Γj∆yt−j +
p−1∑
j=0

γj∆dt−j + η0∆bt + εt,

t = p + 1, p + 2, . . . ,

(2.5)

where ν = −Πµ0 + Ψµ1, φ = β′µ1, θ1 = β′δ1, η0 = Ψδ1 − Πδ0 and

γj =





δ0 + Πδ0 + Γ1δ1 + · · ·+ Γp−1δ1 for j = 0,
−Γjδ0 + Γj+1δ1 + · · ·+ Γp−1δ1 for j = 1, . . . , p− 2,
−Γp−1δ0 for j = p− 1.

Notice that ∆dt−j is an impulse dummy with value one in period t = τ +j and zero elsewhere
and ∆bt−j = dt−j is a shift dummy. There is no shift dummy in the long run relation in (2.5)
and all but one of the differences ∆bt−j are omitted from (2.5) due to perfect collinearity.
Note that (2.5) is a reparameterized form of equation (2.6) of Johansen et al. (2000) for the
case of one break only.

For given VAR order p, our formulation of the model allows to estimate the deter-
ministic part of the DGP as in S&L. In that procedure, first stage estimators for the
parameters of the error process xt, that is, for α, β, Γj (j = 1, . . . , p − 1) and Ω are
based on (2.5). A conventional RR regression of ∆yt on (yt−1, t − 1, bt−1) corrected for
(1, ∆yt−1, . . . , ∆yt−p+1, ∆dt, . . . , ∆dt−p+1, ∆bt) may be used although that procedure does
not provide exact Gaussian ML estimators because there are nonlinear relations between the
parameters in (2.5). In particular, the γj’s are functions of the other model parameters.

It may be viewed as a drawback of our model setup that the parameters µ0 and δ0 are not
fully identified. Although we cannot estimate them consistently, it will turn out that we can
estimate them sufficiently well to obtain cointegrating rank tests with desirable properties.
In the following it is assumed that all deterministic parameters including unidentified ones
are estimated in a first step. The observations may then be adjusted for deterministic terms
and cointegration tests are based on the adjusted series. These tests will be discussed in the
next section.

3 Cointegrating Rank Tests

We wish to test the null hypothesis

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) > r0. (3.1)

For a given break date, S&L propose to estimate the parameters of the deterministic part
first. We use their approach also here. Thus, define

a0t =

{
1 for t ≥ 1
0 for t < 0

and a1t =

{
t for t ≥ 1
0 for t < 0

.

4



Multiplying (2.1) from the left by A(L) gives

A(L)yt = H0tµ0 + H1tµ1 + H2tδ0 + H3tδ1 + εt, t = 1, 2, . . . , (3.2)

where yt = 0 for t ≤ 0, Hit = A(L)ait (i = 0, 1), H2t = A(L)dt, and H3t = A(L)bt. We also
introduce the matrix

Q =
[
Ω−1α(α′Ω−1α)−1/2 : α⊥(α′⊥Ωα⊥)−1/2

]

such that QQ′ = Ω−1.
As in S&L, we first estimate the parameters α, β, Γj (j = 1, ..., p − 1), and Ω by

applying RR regression to (2.5). The resulting estimators are denoted by α̃, β̃, Γ̃j, and
Ω̃, and substituting them for the corresponding theoretical parameters gives the estimators
Ã1 = In + α̃β̃′ + Γ̃1, Ãj = Γ̃j − Γ̃j−1, (j = 2, . . . , p − 1) and Ãp = −Γ̃p−1 used to define
Ã(L) = In − Ã1L− · · · − ÃpL

p and Ψ̃ = In − Γ̃1 − · · · − Γ̃p−1. These estimators are further
used to obtain H̃it = Ã(L)ait (i = 0, 1), H̃2t = Ã(L)dt and H̃3t = Ã(L)bt as well as Q̃ with
obvious notation. Using these estimators we transform the feasible version of equation (3.2)
to get the multivariate auxiliary regression model

Q̃′Ã(L)yt = Q̃′H̃0tµ0 + Q̃′H̃1tµ1 + Q̃′H̃2tδ0 + Q̃′H̃3tδ1 + ςt, t = 1, 2, . . . , T. (3.3)

Our estimators of µ0, µ1, δ0 and δ1, denoted by µ̂0, µ̂1, δ̂0 and δ̂1, respectively, are obtained
from this multivariate regression model by LS. Thereby we effectively obtain a feasible GLS
estimator of the parameters of the deterministic term in (2.1). Asymptotic properties of
these estimators are given in the following lemma which is an analog of Theorem 2.1 of S&L.
The proof is given in the Appendix.

Lemma 3.1. Under the null hypothesis H0(r0) and the assumptions spelled out in Section
2,

(i) β′(µ̂0 − µ0) = Op(T
−1/2);

(ii) β′⊥(µ̂0 − µ0) = Op(1);

(iii) β′(δ̂0 − δ0) = Op(T
−1/2);

(iv) β′⊥(δ̂0 − δ0) = Op(1);

(v) β′(µ̂1 − µ1) = Op(T
−3/2);

(vi) β′(δ̂1 − δ1) = Op(T
−3/2);

(vii) [T 1/2β′⊥(µ̂1 − µ1) : T 1/2β′⊥(δ̂1 − δ1)]
d→ β′⊥C [ζ1 : ζ2],

where

[ζ1 : ζ2] = [B(1) : B (1)−B (λ)]

[
1 1− λ

1− λ 1− λ

]−1

and B(s) is an n-dimensional Brownian motion with covariance matrix Ω and C = β⊥(α′⊥Ψβ⊥)−1α′⊥
as before. Moreover, all quantities converge jointly in distribution upon appropriate stan-
dardizations. ¤
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As in S&L, the parameters µ0 and δ0 are not estimated consistently in the direction of
β⊥. It suffices for our purposes, however, that the estimators are bounded in probability.
Since there is no trend break in the model used by S&L, the results for δ1 are new. The
joint asymptotic distribution of µ̂1 and δ̂1 in the direction of β⊥ depends on the fraction
or relative sample length λ where the break occurs. This fact will also be reflected in the
asymptotic distribution of the test statistic for our hypothesis of interest.

Our test of the null hypothesis H0(r0) is based on a sample analog of the series xt obtained
as

x̂t = yt − µ̂0 − µ̂1t− δ̂0dt − δ̂1bt.

The series x̂t can be used to compute LR type test statistics in the same way as the usual LR
test statistic based on the VECM (2.4). More precisely, the test statistic can be determined
from

∆x̂t = Πx̂t−1 +

p−1∑
j=1

Γj∆x̂t−j + et, t = p + 1, . . . , T, (3.4)

by solving the generalized eigenvalue problem det(Π̂K̂T Π̂′ − λΩ̂) = 0, where Π̂ is the LS
estimator of Π obtained from (3.4), Ω̂ is the corresponding residual covariance matrix and

K̂T =
T∑

t=p+1

x̂t−1x̂
′
t−1 −

T∑
t=p+1

x̂t−1∆X̂ ′
t−1

(
T∑

t=p+1

∆X̂t−1∆X̂ ′
t−1

)−1 T∑
t=p+1

∆X̂t−1x̂
′
t−1

with ∆X̂t−1 = [∆x̂′t−1 : · · · : ∆x̂′t−p+1]
′. Denoting the resulting ordered eigenvalues by

λ̂1 ≥ · · · ≥ λ̂n, the LR type statistic for the pair of hypotheses in (3.1) can be shown to be

LR(r0) =
n∑

j=r0+1

log(1 + λ̂j). (3.5)

To distinguish it from the JMN-LR test, we will refer to the test statistic in (3.5) and
the related test as GLS statistic and GLS test, respectively, in the following because the
deterministic term is estimated by a feasible GLS procedure rather than ML. The limiting
distribution of this test statistic under the null hypothesis is given in the following theorem,
where W (s) is an (n − r0)-dimensional standard Brownian motion and 1(·) denotes the
indicator function. The proof is also given in the Appendix.

Theorem 3.1. Under the null hypothesis H0(r0) and the assumptions spelled out in Section
2,

LR(r0)
d→ tr

{(∫ 1

0

W∗(s)dW∗(s)′
)′ (∫ 1

0

W∗(s)W∗(s)′ds

)−1 (∫ 1

0

W∗(s)dW∗(s)′
)}

,

where

W∗(s) = W (s)− [ξ1 : ξ2]

[
s

(s− λ)1(s > λ)

]
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with

[ξ1 : ξ2] = [W (1) : W (1)−W (λ)]

[
1 1− λ

1− λ 1− λ

]−1

and dW∗(s) = dW (s)−dsξ1−1(s > λ)dsξ2 so that
∫ 1

0
W∗(s)dW∗(s)′ abbreviates

∫ 1

0
W∗(s)dW (s)′−∫ 1

0
W∗(s)dsξ′1 −

∫ 1

0
1(s > λ)W∗(s)dsξ′2. ¤

Obviously, the asymptotic distribution of the test statistic depends on the sample fraction
λ of the break point. In contrast, the asymptotic distribution of the test statistic was found
to be independent of the break date in S&L’s setup where only a level shift is present. Thus,
the dependence on the break date is introduced here exclusively due to the break in the trend
slope. If that is excluded from the model, we will be back in the case considered by S&L
and the asymptotic distribution of the test statistic will be independent of λ. In contrast, in
the setup of Johansen et al. (2000) the asymptotic distribution of their LR statistic for the
cointegrating rank will also depend on λ if only a level shift and no change in the trend slope
is present. In any case, the asymptotic distribution in our Theorem 3.1 is different from the
asymptotic distribution of the corresponding JMN test.

For notational convenience we have stated the asymptotic distribution for the case of one
break point only. In practice one may want to allow for more than one break. Therefore
it is worth noting that the result can be extended to that situation as well. To generalize
the result in Theorem 3.1 it is helpful to rewrite the limiting distribution such that we
can consider independent Brownian bridges confined to each of the sub-regimes. Using the
indicator functions 1(s ≤ λ) and 1(s > λ) we have for W∗(s) of Theorem 3.1,

W∗(s) =
{
W (s)− λ−1W (λ)s

}
1(s ≤ λ)

+

{
W (s)− W (1)−W (λ)

1− λ
s +

λW (1)−W (λ)

1− λ

}
1(s > λ).

(3.6)

The terms multiplied with s represent the stochastic trend slopes in the respective regimes
and the term [λW (1)−W (λ)]/(1−λ) ensures that the correction of W (s) has the appropriate
level in the second regime. To be precise, the latter term corrects for the differences between
the stochastic trend slopes W (1) and [W (1) − W (λ)]/(1 − λ). If we plug in the regime
boundaries for s, it is seen that the terms in (3.6) represent independent Brownian bridges
confined to (the length of) each of the two regimes.

Using this setup, the asymptotic analysis can be generalized easily to the case of q − 1
breaks inducing q sub-samples. In this case, W∗ can be written as the sum of q independent
sub-sample Brownian Bridges. Thus, we can rewrite the limiting distribution of Theorem
3.1 similar to Theorem 3.2 of Johansen et al. (2000) and obtain for the general situation of
q − 1 breaks

tr





(
q∑

j=1

Djlj

)′ ( q∑
j=1

Pjl
2
j

)−1 (
q∑

j=1

Djlj

)

 , (3.7)

where lj (j = 1, . . . , q) are the relative sample lengths,

Dj =

∫ 1

0

W (j)
∗ (s)dW (j)

∗ (s)′, Pj =

∫ 1

0

W (j)
∗ (s)W (j)

∗ (s)′ds, and W (j)
∗ (s) = W (j)(s)− sW (j)(1)
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are independent (n− r0)-dimensional standard Brownian bridges. Hence, it follows that the
limiting distribution only depends on the relative lengths of the sub-sample periods and not
on their ordering. Thus, in the one-break case the relative break points λ and 1−λ produce
the same critical values because of the symmetry.

In contrast to Johansen et al. (2000) we do not need to add additional χ2 distributed
terms to the expression (3.7). In the framework of Johansen et al. (2000) these terms result
from preserving the dimension of the error correction term in (2.5) while one of the sample
lengths lj tends to zero. Our test is based on the VECM (3.4) which contains the broken
deterministic terms only indirectly through x̂t and not directly. Hence, the dimension of the
error correction term in (3.4) does not depend on the number of breaks. Accordingly, we can
work with the representation (3.7). In the next section the computation of critical values
and p-values for our test is discussed based on this distribution.

4 Response Surface

Because the limiting distribution in Theorem 3.1 depends on the relative break point it is
convenient to follow the response surface approach of Johansen et al. (2000) in order to de-
rive percentage points of the distribution or p-values for the tests. The idea underlying the
response surface analysis is to approximate the distribution given in (3.7) by a Gamma dis-
tribution with two parameters. It has been demonstrated by Doornik (1998) that the shape
of the Johansen rank test distributions can be approximated well by Gamma distributions.
This result carries over to the distributions of cointegration tests with prior adjustment of
deterministic terms, as shown by Trenkler (2004). The parameters of the Gamma distri-
bution can be related to the mean and variance of the distribution of interest. Therefore,
the aim of the response surface is to provide accurate estimations of the asymptotic means
and variances of the distributions of the LR(r0) statistics as a function of the number of
stochastic trends under the null hypothesis, k = n−r0, and the relative sample lengths. The
estimated moments are used to fit approximating Gamma distributions, from which p-values
or any desired quantiles can be computed.

The simulation design follows Johansen et al. (2000). We allow for up to two breaks,
i.e. three sub-sample periods. For q = 3 sub-sample periods we have three ordered relative
sample lengths l1 ≤ l2 ≤ l3 = 1 − l1 − l2. Hence, l3 follows from l1 and l2 and, therefore, l3
need not be explicitly considered. For the case q = 2 we have two relative sample lengths
l2 ≤ l3 = 1 − l2 and set l1 = 0. Finally, if there is no break and, hence, q = 1 we are left
with l3 = 1 and set l1 = l2 = 0. We have simulated the limiting distribution of LR(r0) for
different values of k, l1, l2, and sample sizes T . In line with (3.7) we generated three random
walks with T steps, computed Dj and Pj and scaled the latter according to the relative
sample lengths lj (j = 1, 2, 3). For the simulations we used the parameter values given in
Table 1. This results in 1600 different cases which were simulated N = 100 000 times. Based
on the N repetitions we computed the means and variances of the asymptotic distributions
for the 1600 cases. The computations for the simulation study were performed by using code
written in GAUSS V6 for Windows. The Monster-KISS random number generator with a
fixed seed has been used to generate standard normally distributed random numbers.

As described by Johansen et al. (2000), the logarithm of the moments can be very accu-
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Table 1: Simulation Details for Response Surfaces

Replications N : 100 000

Dimensions k: 1,2,. . . ,8

Relative sample lengths (l1, l2): (0, 0), (0, 0.05), (0, 0.1), (0, 0.15), (0, 0.2), (0, 0.25)
(20 pairs) (0, 0.3), (0, 0.35), (0, 0.4), (0, 0.45), (0, 0.5), (0.1, 0.1)

(0.1, 0.2), (0.1, 0.3), (0.1, 0.4), (0.2, 0.2), (0.2, 0.3)
(0.2, 0.4), (0.3, 0.3), (0.33, 0.33)

Sample Size T : 500/t for t = 1, . . . , 10

rately approximated by a third-order polynomial in k, l1, l2, and T−1 given by

log(moment) ≈ fmoment(k, l1, l2, T )

=
2∑

h=0

(
ιh +

4∑
i=1

κihvi +
4∑

i=1

∑
j≥i

ρijhvivj +
4∑

i=1

∑
j≥i

∑

k≥j

ϕijkhvivjvk

)
sh,

(4.1)

where v1 = k, v2 = l1, v3 = l2, v4 = T−1, sh = k−h. Moreover, ιh, κih, ρijh and ϕijkh are
parameters to be determined. Note that we have v1s1 = s0 = 1 and v1s2 = s1 such that
some of the parameters of (4.1) are not identified. Therefore, they were set to zero and we
are left with 75 parameters which were estimated by ordinary least squares. Using these
parameter estimates the log asymptotic moments are then approximated by letting T →∞.
Applying the exponential function we obtained the estimators

m̂ean = m = exp{fmean(k, l1, l2,∞)}
̂variance = v = exp{fvariance(k, l1, l2,∞)}.

(4.2)

As mentioned earlier, the asymptotic distributions were approximated by the Gamma dis-
tribution

Γ(y; a, b) =

∫ y

0

ba

Γ(a)
xa−1e−bxdx, y > 0, a > 0, b > 0,

where the parameters a and b are related to the mean (µΓ) and variance (σ2
Γ) of the Gamma

distribution by a = µ2
Γ/σ2

Γ and b = µΓ/σΓ. To fit the Gamma distribution we just replaced
µΓ and σ2

Γ by the estimated asymptotic moments m and v of our limiting distributions.
One can also use a χ2 distribution with non-integer degrees of freedom for the practical
implementation of the approximation. The relationship between both distributions is given
by 2bY ∼ χ2(2a), where Y has a Gamma distribution.

As can be seen in Table 2, the fit of (4.1) for our test distribution is comparable to the
approximations for the JMN test. Under the heading Restricted Model we present results
obtained by sequentially deleting the insignificant parameters in (4.1) on the basis of t-tests.
We started from the least significant parameter and applied a 5% significance level. Note
that we could only eliminate a smaller number of parameters from (4.1) than in Johansen
et al. (2000). In any case, the estimated standard errors are very small and can be neglected
when computing critical or p-values as illustrated in Johansen et al. (2000). The response
surface coefficients of the restricted models for the mean and variance are collected in Table
10 in the Appendix.
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Table 2: Goodness of Fit Measures for Response Surfaces

Unrestricted Model Restricted Model
Test # Par. R2 103σ̂ # Par. R2 103σ̂
GLS, log mean 75 0.999993 2.84 54 0.999993 2.86
GLS, log variance 75 0.999924 8.93 63 0.999923 8.97

JMN, log mean 75 0.999998 1.15 31 0.999996 1.77
JMN, log variance 75 0.999940 6.76 24 0.999894 8.86

5 Monte Carlo Simulations

A Monte Carlo experiment was performed to analyse the finite sample properties of our new
test proposal. Moreover, we compare our test with the JMN test. In order to assess the
small sample effects of introducing breaks in the deterministic terms we also consider the
respective standard procedures which only make allowance for a linear trend and a level
term. The simulations are based on the following xt process from Toda (1994) which was
also used by a number of other authors for investigating the properties of cointegrating rank
tests (see, e.g., Hubrich, Lütkepohl and Saikkonen (2001)):

xt = A1xt−1 + εt =

[
ψ 0
0 In−r

]
xt−1 + εt, εt ∼ i.i.d. N

([
0
0

]
,

[
Ir Θ
Θ′ In−r

])
, (5.1)

where ψ = diag(ψ1, . . . , ψr) and Θ are (r × r) and (r × (n − r)) matrices, respectively. As
shown by Toda, this type of process is useful for investigating the properties of LR tests
for the cointegrating rank because other cointegrated VAR(1) processes of interest can be
obtained from (5.1) by linear transformations which leave such tests invariant. Obviously,
if |ψi| < 1 (i = 1, . . . , r) we have r stationary series and, thus, the cointegrating rank
is equal to r. Hence, Θ describes the contemporaneous error term correlation between
the stationary and nonstationary components. We have used two- and four-dimensional
processes for simulations and report some of the results in more detail here. For given
VAR order p and break date τ , the test results are invariant to the parameter values of the
deterministic terms. Therefore, we use µi = 0 and δi = 0 (i = 0, 1) as parameter values
throughout without loss of generality. In other words, the deterministic terms including
the breaks are actually zero and, hence, yt = xt, although we take deterministic terms into
account in computing the test statistics. Thereby we pretend that the analyst does not know
that the deterministic terms are zero. An advantage of this specification is that we can easily
compare our results with those for the standard cointegration tests within the simulation
experiment. The application of the standard procedures to our process can be interpreted as
taking into account a priori knowledge that there is no structural break. Thus, a comparison
of the respective small sample properties should enable us to quantify the effects associated
with modelling breaks in the deterministic components.

Samples are simulated by starting with initial values of zero. We have considered sample
sizes of T = 50, 100 and 200. Furthermore, three different relative break points given by
λ = 0.25, λ = 0.50, and λ = 0.75 are studied. The number of replications is 5000. Thus, the
standard error of an estimator of a true rejection probability P is sP =

√
P (1− P )/5000,

e.g., s0.05 = 0.0031. Again, GAUSS V6 for Windows has been used for the simulations.
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In Tables 3 and 5 (Panel C), we present rejection frequencies for a correct null hypothesis
H0(r0) : r = r0. Hence, the rejection frequencies should give an indication of the tests’ sizes
in small samples. Therefore we use the term size in the following when we refer to this
case. We always apply a significance level of 5% and the tests are not applied sequentially.
Thus, the results for testing H0(1) : r = 1 are not conditioned on the outcome of the test
of H0(0) : r = 0 etc.. Finally, we do not report size adjusted rejection frequencies related to
the power of the tests because such an adjustment is not possible in applied work.

Table 3 contains the empirical sizes of the different tests for various bivariate versions of
the process (5.1) with zero error term correlation (Θ = 0). In general, the GLS tests have
preferable size properties, especially for DGPs with one cointegration relationship and in
samples of lengths T = 50 and T = 100. The consideration of breaks increases the sizes if
r = 0 (compare Panel A). As a result, the JMN test displays some overrejection for T = 50
and 100. By contrast, the rejection frequencies fall for DGPs with r = 1 such that the
problem of underrejection is worsened for smaller sample sizes (compare Panels B and C).
Again, the JMN test is affected more strongly than the GLS test. Although the rejection
frequencies of the latter tests are still a bit away from the nominal 5% level, they are in most
cases quite substantially closer to that value than those of the JMN tests. The problem is
also apparent in the original test versions proposed by Johansen (1995) and Saikkonen and
Lütkepohl (2000b) for DGPs with linear trends but without a break. These test versions are
denoted by JOH and GLS in Table 3. The relative break point has some impact but does
not substantially alter the assessment of the tests’ performances. Note that the rejection
frequencies for λ = 0.25 and λ = 0.75 are not identical although they will be asymptotically.
The change of the autoregressive parameter ψ1 from 0.9 to 0.7 for processes with r = 1
increases the sizes. The latter reduces the size distortions. As expected, increasing the
sample size clearly improves the tests’ size properties.

Without showing the detailed results, we mention that the introduction of error term
correlation (Θ 6= 0) to bivariate processes with r = 1 usually produces higher empirical size
values for the Johansen tests but smaller sizes for the GLS tests. Accordingly, the JMN tests
may reject too often in some situations whereas the GLS tests often fall below the nominal
level.

Table 4 presents the empirical powers of the cointegration tests for two-dimensional
versions of the Toda process. In addition, we show power curves for T = 100 and a break
point τ = 50 in Figure 1. The parameter ψ1 varies from 0.5 to 1 in 0.05-steps in the figure.
Accordingly, the true cointegrating rank of the process is zero if ψ1 = 1, otherwise, it is one.
Note, that all these results are for the case where the null hypothesis H0(0) : r = 0 is tested.
Hence, the parameter ψ1 can be regarded as a measure of the distance of the DGP from the
null hypothesis: the smaller ψ1, the more we deviate from the null hypothesis. The steepness
of the power curves in Figure 1 allows to evaluate the power of the tests in small samples in
case of varying empirical sizes. As mentioned earlier, the latter is obtained for ψ1 = 1.

Clearly, considering a trend break and a level shift reduces the finite sample power of the
tests. The power loss can amount to up to one-third of the original power of the standard
tests for the DGPs considered here. The GLS and the JMN tests are affected in a similar
fashion.

As seen in Table 4, the GLS test outperforms the JMN test for small sample sizes if
there is no error term correlation (Θ = 0). This result is at least to some extent due to
the better size properties of the GLS test. Moreover, if Θ = 0.4, the GLS test is also more
powerful in many cases. Figure 1 demonstrates that the power curves of the GLS tests are
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Table 4: Empirical Powers of Cointegrating Rank Tests for DGP (5.1), n = 2, p = 1, r = 1,
H0(0) : r = 0

Panel A: ψ1 = 0.9, Θ = 0 Panel B: ψ1 = 0.9, Θ = 0.4

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

GLS 0.0690 0.1286 0.4030 0.0790 0.1618 0.5168
GLSTR25 0.0660 0.0998 0.2776 0.0692 0.1170 0.3452
GLSTR50 0.0644 0.0970 0.2744 0.0656 0.1134 0.3378
GLSTR75 0.0666 0.1146 0.3018 0.0730 0.1300 0.3876
JOH 0.0670 0.1041 0.2848 0.0710 0.1324 0.3894
JMNTR25 0.0698 0.0888 0.1892 0.0682 0.1030 0.2490
JMNTR50 0.0692 0.0828 0.1760 0.0750 0.0092 0.2354
JMNTR75 0.0760 0.0924 0.1966 0.0756 0.1044 0.2590

Panel C: ψ1 = 0.7, Θ = 0 Panel D: ψ1 = 0.7, Θ = 0.4

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

GLS 0.2356 0.6844 0.9754 0.2944 0.7760 0.9862
GLSTR25 0.1726 0.5220 0.9374 0.2062 0.6242 0.9586
GLSTR50 0.1692 0.5170 0.9374 0.2018 0.6126 0.9620
GLSTR75 0.1810 0.5474 0.9520 0.2236 0.6372 0.9716
JOH 0.1892 0.6316 0.9988 0.2498 0.7724 1.0000
JMNTR25 0.1490 0.4392 0.9724 0.1796 0.5630 0.9960
JMNTR50 0.1306 0.3964 0.9690 0.1632 0.5300 0.9928
JMNTR75 0.1550 0.4426 0.9756 0.1894 0.5710 0.9942

Note: JOH and GLS refer to the standard Johansen and GLS test procedures, respectively, with
an unrestricted linear trend and no break as proposed by Johansen (1995) and Saikkonen and
Lütkepohl (2000b). GLSTRxx and JMNTRxx denote the GLS tests proposed in Section 3 and
the corresponding JMN tests, respectively, with level shift and trend break at sample fraction
λ = 0.xx.

somewhat steeper than those of the JMN procedures for values of ψ1 close to one, i.e. for
alternatives close to the null hypothesis. However, the power curves of the Johansen tests
become steeper if ψ1 is small. As a result, the JMN test has higher small sample power
for ψ1 < 0.55 for no error term correlation (Figure 1, Panel A) and ψ1 < 0.60 if Θ = 0.4
(Figure 1, Panel B). Of course, having good power close to the null hypothesis is of particular
importance because it is the region of the parameter space where it is typically most difficult
to discriminate between the null and alternative hypotheses. Hence, applying the GLS test
is a good strategy at least for the processes considered in our Monte Carlo simulations.

The general power level of the tests increases with the sample size, the magnitude of the
error term correlation, and with falling values of ψ1. The latter should be no surprise, since
ψ1 measures the distance of the DGP from the null hypothesis. However, this also means
that the power of the tests can be very low for values of ψ1 close to one, especially in case
of very small samples and zero or weak error term correlation. As in case of the tests’ sizes,
the location of the break has some effect on the small sample power of the tests. The power
tends to be higher for breaks towards the end of the sample than for those closer to the
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Panel B: ΘΘΘΘ=0.4
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Figure 1: Relative rejection frequencies of null hypothesis H0(0) : r = 0 for bivariate DGPs
with r = 0 (ψ1 = 1) or r = 1 (ψ1 < 1), sample size T = 100, true break point τ = 50, and
nominal significance level 0.05.

beginning of the sample (compare the TR75 and TR25 results).
We have also studied four-dimensional DGPs with two cointegrating vectors for different

autoregressive parameters ψ1 and ψ2 and covariance matrices Θ. Some results are shown
in Table 5. They are generally in line with those for the bivariate processes. In particular,
none of the tests is uniformly superior for all situations considered. For comparison purposes
we also present results for the case considered by S&L where just a level shift is accounted
for. These tests are denoted by GLSSHxx in Table 5. They have clearly substantially better
power than the corresponding GLS and JMN tests which account for a break in the trend
slope. This result shows that it is not a good idea to include trend breaks in the test when
just a level shift has occurred.

Finally, we have analyzed the finite sample performance of the tests in large-dimensional
systems with many parameters to be estimated. To this end, we have again simulated four-
dimensional VAR(1) processes but we have fitted higher lag orders when performing the tests.

15



0.00

0.10

0.20

0.30

0.40

0.50

1.000.900.800.700.600.50 ψψψψ1

                   JMNTR50

                   GLSTR50

                   JOH
                   GLS

Figure 2: Relative rejection frequencies of null hypothesis H0(0) : r = 0 for four-dimensional
DGPs with r = 0 (ψ1 = 1) or r = 1 (ψ1 < 1), sample size T = 100, true break point τ = 50,
Θ = [(0.4 0.4)′ : (0.4 0.4)′], and nominal significance level 0.05. The fitted lag order is five.

Thereby, we are able to check the reaction of the tests to increased estimation uncertainty
due to higher lag orders. As an example, Figure 2 displays the tests’ rejection frequencies
for a specific four-dimensional DGP with one autoregressive lag and r = 0 (ψ1 = 1) or r = 1
(ψ1 < 1). The fitted lag order for all tests is five. Obviously, the Johansen tests, especially
the JMN version with a trend break, display excessive size distortions. This kind of size
distortion in large systems has already been pointed out by Gonzalo and Pitarakis (1999)
even for the case of no breaks and only one fitted autoregressive lag. Our simulation results
indicate that this dimensionality effect gets much worse for the Johansen procedure if a break
in the linear trend and if higher lag orders are considered. In contrast, the GLS test without
break has roughly a correct empirical size of about 5%, whereas the test version with a break
is somewhat conservative. Nevertheless, the slopes of the power curves are approximately
equal for the tests with a break and without breaks, respectively. The power curves are very
flat, however, which makes it difficult to draw proper conclusions regarding the cointegrating
rank in the present situation. Although this is a slightly negative prospect for empirical work,
it should perhaps be taken as encouragement to use both tests simultaneously in the difficult
situation where breaks have occurred. Accounting for size distortions neither the GLS nor
the JMN test has small sample power advantages for the current situation. An application
of the tests is discussed in the next section.

6 Empirical Application: The Great Ratios

Using the GLS and JMN procedures we test in the following whether the so-called “great
ratios” of consumption and investment to output are stationary for the German economy.
This kind of research work was pioneered by King, Plosser, Stock and Watson (1991). They
refer to a standard RBC model which suggests that the economy converges to a balanced
growth path. The convergence behaviour implies that the logarithms of per capita output,
consumption and investment are driven by a common stochastic trend such that consump-
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Figure 3: Logarithms of German real per capita private output, consumption, and investment
between 1960:1-2005:4. Data are seasonally adjusted.

tion and investment form one-to-one cointegration relationships with output resulting in
stationary ratios.

While King et al. (1991) found clear evidence for stationary great ratios in the U.S.
between 1949 and 1988 the results for other periods and countries are mixed (for references
to other studies see Attfield and Temple (2003)). It has been argued, for instance, by
Attfield and Temple (2003) and Clemente, Montañés and Ponz (1999) that the great rations
may have been affected by structural breaks. Then the distortions emerging from ignoring
these breaks may have been the reasons for the rather weak evidence for stationary great
ratios. In fact, allowing for a level shift Attfield and Temple (2003) found two cointegrating
relationships with JMN tests for the UK and U.S. during the period from 1955 to 2002.
However, they rejected the unit coefficient restriction at the 5% level. Clemente et al. (1999)
obtained stationarity of the great ratios for a larger number of OECD countries between 1959
and 1995 once they allowed for level shifts within the ADF unit root testing framework.
Unfortunately, there were also countries for which stationarity of the ratios could not be
concluded. Specifically, the consumption-output ratio for Germany may not be stationary.
Clearly, the German reunification, that is, the aggregation of the East and West German data
has led to a structural break. In the following we will analyze the possibility of stationary
great ratios for Germany taking into account the reunification break.

We use quarterly data for the logarithms of German real per capita private output,
consumption and investment spanning the period 1960:1 to 2005:4. That is, we have 180
observations. The series are computed as follows. Nominal private output is obtained by
subtracting government consumption expenditures from GDP as in King et al. (1991). Nom-
inal consumption is defined as household consumption expenditures and nominal investment
as the sum of gross fixed capital formation and changes in inventories. Then, the implicit
GDP deflator was used to get real series since no long-term series of the real aggregate se-
ries were directly available. In contrast to Attfield and Temple (2003) we applied the GDP
deflator instead of the consumption-based price deflator because the former is a plausible
measure for the overall price level of the three series. In order to obtain per capita quantities
we divided the deflated series by quarterly population figures which were obtained by a log-
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linear interpolation of the yearly population series. Finally, the logarithmic transformation
was applied. The data are seasonally adjusted and refer to West Germany until 1990:4 and
afterwards to reunified Germany. Graphs are presented in Figure 3. All data series are from
the International Financial Statistics and were provided by the Financial and Economic Data
Center of the Collaborative Research Center “Economic Risk” at the Humboldt-Universität
zu Berlin. The computations were done with the software program JMulTi (Lütkepohl and
Krätzig (2004)) and own programs written in GAUSS.

There are obviously strong reasons why the German reunification may have caused a
structural break in the analyzed time series (see also Figure 3). Hence, when testing for
cointegration we allow for a break in the level and the linear trend component of the series
in the first quarter of 1991. Compared to Attfield and Temple (2003) and Clemente et al.
(1999) we are more general by modelling a trend break in addition to simple level shifts. The
reason for doing so is that the reunification has resulted in changes in the growth rates after
the reunification in the per capita series because of the grossly different economic conditions
in East and West Germany.

We started our empirical analysis by determining the integration order of the logarithms
of German real per capita private output, consumption and investment. The generalized
ADF test suggested by Perron (1989), which allows for a level shift and a trend break in
1991:1, indicated that all three series can be regarded as I(1). We do not show the detailed
results but work under the assumption of I(1) series in the following.

Table 6: ADF Unit Root Test Results for Consumption-Output and Investment-Output
Ratios 1960:1-2005:4

Consumption-Output Ratio Investment-Output Ratio
Lags C C, T Breaks, C, T Lags C C, T Breaks, C, T

−2.033 −2.664 −1.510 −3.033 −4.074∗

2 [0.273] [0.253] 0 — [0.126]
HQ HQ HQ HQ HQ

−3.098 −2.107 −1.779
4 — [0.110] 2 [0.390] — —

AIC AIC AIC, HQ
−1.772 −3.462∗∗ −4.690∗∗

5 [0.393] — — 5 — [0.047]
AIC AIC AIC

Note: C and T stand for constant and trend, respectively. Breaks refers to break in 1991:1 in
level and trend, i.e., Perron (1989) test is conducted. The critical values for relative break point
λ = 0.7 are -4.75 (1%), -4.18 (5%), and -3.86 (10%) Perron (1989, Table VI.B). ∗∗ and ∗ indicate
significance at the 5% and 10% level, respectively. For the ADF tests, p-values are given in brackets.
Lag lengths suggested by AIC and HQ information criteria for respective deterministic terms.

We first checked the stationarity properties of the univariate consumption-output and
investment-output ratios (log consumption - log output and log investment - log output,
respectively). The results of unit root tests are presented in Table 6. Augmented Dickey-
Fuller (ADF) tests with and without trend break are given in the table. The lag orders
were determined by the Hannan-Quinn (HQ) and Akaike (AIC) model selection criteria.
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Table 7: Results of Cointegration Tests (p-values) for Consumption-Output Ratio 1960:1-
2005:4

H0(r0) VAR(3) VAR(5) VAR(3) VAR(5)

JOH GLS JOH GLS JMN1991:1 GLS1991:1 JMN1991:1 GLS1991:1

r0 = 0 0.176 0.462 0.188 0.227 0.789 0.493 0.259 0.188
r0 = 1 0.277 0.919 0.148 0.964 0.783 0.972 0.907 0.986

Note: JOH and GLS refer to the standard Johansen and GLS tests, respectively, with an unre-
stricted linear trend. No breaks in the deterministic terms are allowed for. The p-values for the
Johansen and GLS tests are computed according to the response surfaces of Doornik (1998) and
Trenkler (2004), respectively.
JMN1991:1 and GLS1991:1 refer to the JMN and GLS tests, respectively, with an unrestricted linear
trend and a level shift and trend break in 1991:1. The p-values for the JMN and GLS tests are
computed according to the response surfaces of Johansen et al. (2000) and Section 4, respectively.
The break date 1991:1 translates to relative sample lengths of 0.679 and 0.321. The latter is chosen
for the p-value determination since it is the shorter one.

In addition to tests with constant and trend and a break in the trend we also present
results of tests with just a constant as deterministic term because tests with over specified
deterministic terms may lack power. In our case the results are quite clear. A unit root
in the consumption-output ratio cannot be rejected by any of the tests. In contrast, a unit
root is rejected for the investment-output ratio at least if a trend break is allowed for and
even in one case when just a constant (C) and a trend (T) are included without allowing for
a break. Our analysis could stop here and we could conclude that we did not find evidence
for a stable consumption-output ratio in Germany during the sample period. It is possible,
however, that consumption and output are still driven by a common stochastic trend and,
hence, that there is a cointegration relation between the two series although the difference
between the two series is not I(0).

To investigate this possibility we have performed the systems cointegration tests which
were discussed in the previous sections. Some results for the bivariate consumption-output
system are presented in Table 7. Again results for tests with and without allowance for trend
breaks are given. The lag orders are those suggested by AIC and HQ as in the univariate
tests. Also the multivariate tests provide no evidence of a possible cointegration relation.
More precisely, a cointegrating rank of zero cannot be rejected by any of the cointegration
tests at a 10% level of significance. Of course, this finding could be a consequence of the low
power of the tests especially when the lag order is not very small.

To get a better feeling for the properties of the multivariate tests and to illustrate their
performance in practice we also applied them to the bivariate investment-output system.
Some p-values are shown in Table 8. In this case we hope, of course, to reject H0(0) : r = 0
because a cointegration relation was already found by the previous unit root tests. For this
system the rank zero null hypothesis can indeed be rejected at the 5% level by both the
JMN and the GLS tests if a trend break in 1991:1 is allowed for at least if the HQ lag order
one is considered. On the other hand, the tests which do not allow for the trend break
cannot confirm the cointegration relation. These results illustrate the importance of taking
into account a break in the deterministic term if such a break exists and they are also well
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Table 8: Results of Cointegration Tests (p-values) for Investment-Output Ratio 1960:1-2005:4

H0(r0) VAR(1) VAR(6) VAR(1) VAR(5)

JOH GLS JOH GLS JMN1991:1 GLS1991:1 JMN1991:1 GLS1991:1

r0 = 0 0.297 0.352 0.118 0.200 0.007 0.022 0.141 0.584
r0 = 1 0.459 0.817 0.642 0.948 0.250 0.402 0.696 0.517

Note: see note to Table 7.

Table 9: Results of Cointegration Tests (p-values) for German Macro Data 1960:1-2005:4

H0(r0) VAR(4) VAR(5) VAR(4) VAR(5)

JOH GLS JOH GLS JMN1991:1 GLS1991:1 JMN1991:1 GLS1991:1

r0 = 0 0.341 0.450 0.102 0.109 0.307 0.047 0.091 0.065
r0 = 1 0.338 0.947 0.281 0.965 0.391 0.834 0.123 0.705
r0 = 2 0.281 1.000 0.212 0.958 0.255 0.947 0.269 0.961

Note: see note to Table 7.

in line with our simulation results which indicated that increasing the lag order may reduce
the power of the cointegration tests dramatically. For the lag order 5 which was suggested
by AIC for the models with break, our tests cannot reject the rank zero hypothesis at the
10% level.

As a further check we have applied our cointegrating rank tests to the three-dimensional
system consisting of all three variables. Some results are given in Table 9. Again tests with
and without allowance for a trend break are presented and again the tests which do not
account for the break cannot reject the rank zero hypothesis at the 10% level. In contrast
the JMN and our GLS tests with trend breaks can reject cointegrating rank zero at the 10%
level at least for one of the two lag orders shown in Table 9. In fact, our new GLS test is the
only one which can reject rank zero for both lag orders 4 and 5. This finding is in line with
the simulation result that the tests can have quite different power for particular DGPs and
underscores the previous conclusion that applying both tests may be beneficial in practice.

In Table 9 it is also apparent that the tests do not find more than one cointegration rela-
tion between the three series. A cointegrating rank of r = 1 is of course fully consistent with
the previous unit root and bivariate cointegration testing results which indicated a cointe-
gration relation between investment and output and no such relation between consumption
and output. Had we found a second cointegration relation between the three series there
would necessarily also be a cointegration relation between all pairs of two series because in
that case all three series are driven by a common stochastic trend. Although such a result
was not expected on the basis of the previous tests, it is not totally impossible that taking
the information in all three series into account enables the tests to reject cointegrating rank
one even if univariate and bivariate analyses do not suggest such an outcome. Unfortunately,
in our example we do not find a second cointegration relation at least at common signifi-
cance levels and, hence, there is not much evidence that the great ratios were both stable
for Germany during the sampling period from 1960 to 2005.

Our cointegration test results are in line with findings of Clemente et al. (1999) regarding
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the failure of a stationary consumption-output ratio and of D’Adda and Scorcu (2003) with
respect to a nonstable capital-output ratio for Germany. Thus, serious doubts have to be
raised regarding the validity of the real business cycle theory for Germany.

7 Conclusions and Extensions

In this paper we have considered cointegrating rank tests for VAR processes with a break
in the deterministic trend component at a known time point. In contrast to other tests
which accommodate trend breaks in the present framework, we propose to estimate the
deterministic terms first and adjust the series for deterministic terms including the break. A
Johansen type cointegrating rank test is then applied to the adjusted series. We have derived
the asymptotic distribution of the test statistic under the null hypothesis. Because the null
distribution depends on the relative fraction of the sample where the break occurs, we have
provided response surfaces to obtain critical values for the test and to approximate p-values.
It is shown by a Monte Carlo study that our test has better small sample properties than
existing other tests in many situations. In particular, the size distortion is often smaller
than for the corresponding JMN test and the power is comparable or even higher especially
close to the null hypothesis. Because there are also situations where the JMN test has better
power and in some situations of practical relevance none of the tests has very attractive
power properties, we propose to use both tests simultaneously and base a decision on the
number of cointegration relations in a system of interest on both of them. An investigation
of the stability of the “great ratios” for Germany illustrates the appeal of the new test for
applied work.

There are a number of possible extensions which may be desirable for applied work.
First of all, there may be more than one break in the deterministic trend function during the
sample period. Although we have focussed the theoretical derivations on the case of a single
break point to avoid more complicated expressions, we have also presented the necessary
modifications if there is more than one break and our response surface results refer to the
more general case. In principle, the theory for this case can be handled in an analogous way
as the case of one break. The notation will become more complicated, however. Also, in
addition to the deterministic terms considered in the present paper, further dummy variables
may be included. More precisely, impulse dummies and seasonal dummies can be included
in the model without affecting the asymptotic results. The necessary modifications for these
extensions are straightforward.

There is at least one potentially interesting extension of our results which is nontrivial,
namely the case of an unknown break point. Although we have argued that the case of a
known break point is at least equally relevant and although we have provided an example
where the break point is in fact known, there may be situations where estimating the break
point by some statistical procedure may be desirable. We leave this case for future research.

Appendix

A.1 Response Surface Coefficients

The response surface coefficients for computing critical values and p-values for our tests are
given in Table 10.
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Table 10: Estimated Response Surface Coefficients for Mean and Variance

mean variance
constant 2.4402237 2.2377192

k 0.56642166 0.67248661
l1 1.6881464 -1.8645617
l2 -0.16741988 1.5842396
k2 -0.036711384 -0.043986793

k · l1 -0.12654483 -
k · l2 0.028632527 -0.24851423
l21 -7.2612954 12.095382

l1 · l2 -1.9837337 5.0821793
l22 -1.6794244 -1.5583336
k3 0.0011810636 0.0012910484

k2 · l1 0.0043692769 0.010518609
k2 · l2 -0.0013398893 0.013510933
k · l21 0.18296009 -0.47646731

k · l1 · l2 0.029314412 -0.24048797
k · l22 0.030349768 0.089839081
l31 11.803034 -22.104882

l21 · l2 -2.4870918 7.7658803
l1 · l22 4.0200467 -8.7651217

l32 2.1430130 -0.33556879
1/k -3.0135200 -1.6752679
l1/k 1.1124296 11.709656
l2/k 5.1272149 -1.8671894
l21/k 4.3452158 -60.229949

(l1 · l2)/k 3.5022236 -10.142186
l22/k -8.6822664 4.5029279
l31/k -16.767237 129.75575

l21 · l2/k 5.9727547 -58.276995
l1 · l22/k -7.0978257 32.313807

l32/k 5.7110493 -
1/k2 1.0331268 0.29558742
l1/k

2 -0.64788931 -4.9775552
l2/k

2 -2.9655130 4.3265064
l21/k

2 - 30.965573
l22/k

2 7.6083137 -14.418641
l31/k

2 5.7695930 -82.599414
(l21 · l2)/k2 -6.5947593 48.316674
(l1 · l22)/k2 - -15.333499

l32/k
2 -6.9391802 10.881697
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A.2 Proofs

Proof of Lemma 3.1

The proof of Lemma 3.1 is similar to the proof of Theorem 2.1 of S&L. So several details will
be skipped. First note that the results given in Lemma 2.1 of S&L also hold in the present
context. In other words, upon appropriate normalization, the RR estimator β̃ is consistent
of order Op(T

−1) whereas α̃, Γ̃j (j = 1, ..., p − 1), and Ω̃ are consistent of order Op(T
−1/2).

This can be proved in the same way as the aforementioned previous result or Lemma A.3 of
Johansen et al. (2000). In subsequent derivations all relevant quantities will be invariant to
normalizations of α̃ and β̃ so that we can assume that some kind of normalization has been
imposed.

As in the proof of Theorem 2.1 of S&L it follows from definitions that

H̃0t =





In, t = 1,

In −
∑t−1

j=1 Ãj, t = 2, . . . , p,

−α̃β̃′, t = p + 1, . . . , T,

H̃1t =





In, t = 1,

tIn −
∑t−1

j=1 (t− j) Ãj, t = 2, . . . , p,

Ψ̃− (t− 1) α̃β̃′, t = p + 1, . . . , T,

H̃2t =





0, t < τ,
In, t = τ,

In −
∑t−τ

j=1 Ãj, t = τ + 1, . . . , τ + p− 1,

−α̃β̃′, t = τ + p, . . . , T,

and

H̃3t =





0, t < τ,
In, t = τ,

In −
∑t−τ

j=1 (t− τ + 1− j) Ãj, t = τ + 1, . . . , τ + p− 1,

Ψ̃− (t− τ) α̃β̃′, t = τ + p, . . . , T.

Define

γ
1

=

[
γ

11

γ
12

]
=

[
β̃′⊥µ0

β̃′⊥δ0

]
,

γ
2

=




γ
21

γ
22

γ
23

γ
24


 =




β̃′µ0

β̃′δ0

β̃′µ1

β̃′δ1


 ,

and

γ
3

=

[
γ

31

γ
32

]
=

[
β̃′⊥µ1

β̃′⊥δ1

]
.

As in S&L, the idea is to first obtain asymptotic properties of LS estimators of these three
“parameter vectors”. To express (3.3) in terms of γ

1
, γ

2
and γ

3
we transform the matrices

H̃it (i = 0, 1, 2, 3) accordingly. Thus, define

G̃1t = Q̃′
[
H̃0tβ̃⊥ : H̃2tβ̃⊥

]
,
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G̃2t = Q̃′
[
H̃0tβ̃ : H̃2tβ̃ : H̃1tβ̃ : H̃3tβ̃

]

and

G̃3t = Q̃′
[
H̃1tβ̃⊥ : H̃3tβ̃⊥

]
,

where β̃ = β̃(β̃′β̃)−1 and similarly for β̃⊥ as well as the corresponding parameters to be used
below. With this notation (3.3) can be written as

Q̃′Ã(L)yt = G̃1tγ1
+ G̃2tγ2

+ G̃3tγ3
+ ςt, t = 1, 2, . . . , T. (A.1)

The LS estimators of γ
1
, γ

2
and γ

3
obtained from this equation are denoted by γ̂

1
, γ̂

2
and

γ̂
3
, respectively. Arguments needed to obtain their asymptotic properties are very similar

to those used in the case of equation (A.12) of S&L. To see this, note that the deterministic
part in the present model (2.1) differs from its counterpart, equation (1.1) of S&L, only in
two respects. First, the impulse dummy used in S&L has been dropped and, second, the
variable bt has been included. Dropping the impulse dummy is clearly immaterial and, as
far as rates of convergence are concerned, the variable bt behaves in the same way as the
trend term t (assuming condition (2.2)). Thus, observing that G̃1t takes nonzero values
only for a fixed number of time indices t we can proceed in the same way as in the proof of
Theorem 2.1 of S&L and conclude that the appropriately standardized moment matrix in the
aforementioned LS estimation is asymptotically block diagonal between G̃1t and [G̃2t : G̃3t]
and that

γ̂
1

= γ
1
+ Op(1), ΥT (γ̂

2
− γ

2
) = Op(1) and T 1/2(γ̂

3
− γ

3
) = Op (1) , (A.2)

where ΥT = diag[T 1/2I2r : T 3/2I2r]. As in the case of Theorem 2.1 of S&L we can conclude
from the first two results in (A.2) that (i) - (vi) of Lemma 3.1 hold. Thus, we are left with
(vii).

The aforementioned asymptotic block diagonality of the appropriately standardized mo-
ment matrix in the LS estimation of (A.1) implies that we can drop the first term on the
right hand side of (A.1) when studying asymptotic properties of the LS estimators of γ

2
and

γ
3
. Further, deriving an explicit expression for the error term ςt (cf. (A.13) of S&L) it can

be shown that the asymptotic distributions of the LS estimators γ̂
2

and γ̂
3

can be obtained

by ignoring errors due to using the estimators α̃, β̃, Γ̃j and Ω̃ instead of their true values.
This means that we can proceed by replacing ςt by Q′εt and obtain

[
ΥT (γ̂

2
− γ

2
)

T 1/2(γ̂
3
− γ

3
)

]

=




Υ−1
T

T∑
t=1

G̃′
2tG̃2tΥ

−1
T T−1/2Υ−1

T

T∑
t=1

G̃′
2tG̃3t

T−1/2

T∑
t=1

G̃′
3tG̃2tΥ

−1
T T−1

T∑
t=1

G̃′
3tG̃3t




−1 


Υ−1
T

T∑
t=1

G̃′
2tQ

′εt

T−1/2

T∑
t=1

G̃′
3tQ

′εt




+ op(1)

def
= M̃−1

T m̃T + op(1). (A.3)
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We partition M̃T = [M̃ijT ]i,j=1,2, M̃−1
T = [M̃ ij

T ]i,j=1,2 and m̃T = [m̃′
1T , m̃′

2T ]′ conformably with
the other partitions in (A.3). Using the inversion formula for partitioned matrices one then
obtains

T 1/2(γ̂
3
− γ

3
) = M̃22

T (m̃2T − M̃21T M̃−1
11T m̃1T ) (A.4)

and
M̃22

T = (M̃22T − M̃21T M̃−1
11T M̃12T )−1.

From the definitions of G̃2t and G̃3t and the consistency of the involved estimators it
is seen that, as far as subsequent asymptotic derivations are concerned, we can use the
approximations

G̃2t ≈ −Q̃′[α̃ : dtα̃ : tα̃ : btα̃] ≈ −k′t ⊗Q′α

and

G̃3t ≈ −Q̃′
[
Ψ̃β̃⊥ : dtΨ̃β̃⊥

]
≈ −k′1t ⊗Q′Ψβ⊥,

where kt = [k′1t, k
′
2t]
′ = [1, dt, t, bt]

′ and k1t = [1, dt]
′. It is straightforward to establish the

existence and nonsingularity of the limit

lim
T→∞

Υ−1
T

T∑
t=1

ktk
′
tΥ

−1
T =

[
Λ11 Λ12

Λ21 Λ22

]
= Λ,

where

Λ11 =

[
1 1− λ

1− λ 1− λ

]

and explicit expressions of Λ12 = Λ′21 and Λ22 will not be needed.
Using the preceding approximations of G̃2t and G̃3t we get

M̃22T = T−1

T∑
t=1

k1tk
′
1t ⊗ β

′
⊥Ψ′Ω−1Ψβ⊥ + op(1)

= Λ11 ⊗ β
′
⊥Ψ′Ω−1Ψβ⊥ + op(1),

M̃21T = M̃ ′
12T = T−1/2

T∑
t=1

k1tk
′
tΥ

−1
T ⊗ β

′
⊥Ψ′Ω−1α + op(1)

= [Λ11 : Λ12]⊗ β
′
⊥Ψ′Ω−1α + op(1),

and

M̃11T = Υ−1
T

T∑
t=1

ktk
′
tΥ

−1
T ⊗ α′Ω−1α + op(1)

= Λ⊗ α′Ω−1α + op(1).
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Thus, by straightforward calculation,

M̃21T M̃−1
11T M̃12T = [Λ11 : Λ12] Λ

−1

[
Λ11

Λ21

]
⊗ β

′
⊥Ψ′Ω−1α(α′Ω−1α)−1α′Ω−1Ψβ⊥ + op(1)

= Λ11 ⊗ β
′
⊥Ψ′Ω−1α(α′Ω−1α)−1α′Ω−1Ψβ⊥ + op(1)

and, furthermore,

M̃22
T =

(
Λ11 ⊗ β

′
⊥Ψ′Ω−1Ψβ⊥ − Λ11 ⊗ β

′
⊥Ψ′Ω−1α(α′Ω−1α)−1α′Ω−1Ψβ⊥

)−1

+ op(1)

=
(
Λ11 ⊗ β

′
⊥Ψ′[Ω−1 − Ω−1α(α′Ω−1α)−1α′Ω−1]Ψβ⊥

)−1

+ op(1)

= Λ−1
11 ⊗

(
β
′
⊥Ψ′α⊥(α′⊥Ω−1α⊥)−1α′⊥Ψβ⊥

)−1

+ op(1)

= Λ−1
11 ⊗

(
α′⊥Ψβ⊥

)−1
α′⊥Ω−1α⊥

(
β
′
⊥Ψ′α⊥

)−1

+ op(1).

(A.5)
Here the third equality makes use of Lemma 10.1, Eq. (10.6), of Johansen (1995).

We also have

m̃1T = −ΥT

T∑
t=1

kt ⊗ α′Ω−1εt + op(1)

and

m̃2T = −T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′Ω−1εt + op(1).

Now,

m̃2T − M̃21T M̃−1
11T m̃1T = −T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′Ω−1εt

+
(
[Λ11 : Λ12]⊗ β

′
⊥Ψ′Ω−1α

) (
Λ−1 ⊗ (α′Ω−1α)−1

)

×ΥT

T∑
t=1

kt ⊗ α′Ω−1εt + op(1),

where(
[Λ11 : Λ12]⊗ β

′
⊥Ψ′Ω−1α

) (
Λ−1 ⊗ (α′Ω−1α)−1

)
= [I2 : 0]⊗ β

′
⊥Ψ′Ω−1α

(
α′Ω−1α

)−1
.

Thus, it follows that

m̃2T − M̃21T M̃−1
11T m̃1T = −T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′Ω−1εt

+T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′Ω−1α

(
α′Ω−1α

)−1
α′Ω−1εt + op(1)

= −T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′

(
Ω−1 − Ω−1α

(
α′Ω−1α

)−1
α′Ω−1

)
εt + op(1)

= −T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′α⊥

(
α′⊥Ω−1α⊥

)−1
α′⊥εt + op(1),

(A.6)
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where we have again used Lemma 10.1, Eq. (10.6), of Johansen (1995).
Combining (A.4), (A.5) and (A.6) shows that

T 1/2(γ̂
3
− γ

3
) = −

(
Λ−1

11 ⊗
(
α′⊥Ψβ⊥

)−1
α′⊥Ω−1α⊥(β

′
⊥Ψ′α⊥)−1

)

×T−1/2

T∑
t=1

k1t ⊗ β
′
⊥Ψ′α⊥

(
α′⊥Ω−1α⊥

)−1
α′⊥εt + op(1)

= −T−1/2

T∑
t=1

Λ−1
11 k1t ⊗ β′⊥Cεt + op(1)

or that

[T 1/2(γ̂
31
− γ

31
) : T 1/2(γ̂

32
− γ

32
)] = −T−1/2

T∑
t=1

β′⊥Cεtk
′
1tΛ

−1
11 + op(1).

The definition of k1t and a standard application of the functional central limit theorem imply
that

T−1/2

T∑
t=1

εtk
′
1t

d→ [B (1) : (B (1)−B (λ))] .

As in S&L the proof can now be completed by using this weak convergence and the preceding
equality.

Proof of Theorem 3.1

First note that

x̂t = xt − (µ̂0 − µ0)− (µ̂1 − µ1)t− (δ̂0 − δ0)dt − (δ̂1 − δ1)bt (A.7)

which in conjunction with Lemma 3.1 and a standard functional central limit theorem gives

T−1/2β′⊥x̂[Ts] = T−1/2β′⊥x[Ts] − T 1/2β′⊥(µ̂1 − µ1)([Ts] /T )

−T 1/2β′⊥(δ̂1 − δ1)(b[Ts]/T ) + op(1)

d→ β′⊥C

(
B(s)− [ζ1 : ζ2]

[
s

(s− λ)1(s > λ)

])

def
= β′⊥CB∗(s).

(A.8)

The error term et in (3.4) has the structure

et = εt − αβ′(x̂t−1 − xt−1) + ∆x̂t −∆xt −
p−1∑
j=1

Γj(∆x̂t−j −∆xt−j). (A.9)

As in previous similar proofs in Johansen (1995, Theorem 11.1) and S&L (Theorem 3.1) it
can be shown that the limiting distribution of LR(r0) depends on the weak limits of

T−2

T∑
t=1

β′⊥x̂t−1x̂
′
t−1β⊥ and T−1

T∑
t=1

β′⊥x̂t−1e
′
tα⊥.
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From (A.8) and a standard application of the continuous mapping theorem we first find that

T−2

T∑
t=1

β′⊥x̂t−1x̂
′
t−1β⊥

d→ β′⊥C

∫ 1

0

B∗(s)B∗(s)′dsC ′β⊥. (A.10)

Next, using (A.7), (A.9), Lemma 3.1, and arguments similar to those in (A.21) of S&L it
can be shown that1

T−1

T∑
t=1

β′⊥x̂t−1e
′
tα⊥ = T−1

T∑
t=1

[β′⊥xt−1 − β′⊥(µ̂1 − µ1)(t− 1)− β′⊥(δ̂1 − δ1)bt−1]

×[ε′tC
′β⊥ − (µ̂1 − µ1)

′β⊥ − (δ̂1 − δ1)
′β⊥∆bt]β

′
⊥Ψ′α⊥ + op(1),

where use has also been made of the fact that ∆bt = dt implying that the term ∆bt −∑p−1
j=1 Γj∆bt can be approximated by Ψ∆bt. For later purposes we also notice the identity

C ′β⊥β
′
⊥Ψ′α⊥ = α⊥ obtained from the definitions. To simplify notation, set %T = [%1T :

%2T ] = T 1/2[β′⊥(µ̂1 − µ1) : β′⊥(δ̂1 − δ1)] and k2t = [t, bt]
′ as before. Then the preceding

equation can be written as

T−1

T∑
t=1

β′⊥x̂t−1e
′
tα⊥

= T−1

T∑
t=1

(β′⊥xt−1 − T−1/2%T k2,t−1)(ε
′
tC

′β⊥ − T−1/2∆k′2,t%
′
T )β

′
⊥Ψ′α⊥ + op(1)

= T−1

T∑
t=1

β′⊥xt−1ε
′
tα⊥ − %T T−3/2

T∑
t=1

k2,t−1ε
′
tα⊥

−T−3/2

T∑
t=1

β′⊥xt−1∆k′2,t%
′
T β

′
⊥Ψ′α⊥

+%T T−2

T∑
t=1

k2,t−1∆k′2,t%
′
T β

′
⊥Ψ′α⊥ + op(1)

def
= A1T + A2T + A3T + A4T .

From a well-known weak convergence result to a stochastic integral one obtains

A1T
d→ β′⊥C

∫ 1

0

B(s)dB(s)′α⊥

whereas a central limit theorem and Lemma 3.1(vii) give

A2T
d→ −β′⊥C [ζ1 : ζ2]

∫ 1

0

[
s

(s− λ)1(s > λ)

]
dB(s)′α⊥

and

%′T β
′
⊥Ψ′α⊥

d→
[

ζ ′1
ζ ′2

]
C ′β⊥β

′
⊥Ψ′α⊥ =

[
ζ ′1
ζ ′2

]
α⊥.

1Note that there is a typo in (A.21) of S&L. α⊥ after ε′t should be deleted.
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From the last result, the definition of k2t, and standard weak convergence arguments we find
that

A3T
d→ −β′⊥C

∫ 1

0

B(s)[1,1(s > λ)]ds

[
ζ ′1
ζ ′2

]
α⊥

and

A4T
d→ β′⊥C [ζ1 : ζ2]

∫ 1

0

[
s s1(s > λ)

(s− λ)1(s > λ) (s− λ)1(s > λ)

]
ds

[
ζ ′1
ζ ′2

]
α⊥.

Combining the above results gives

A1T + A2T
d→ β′⊥C

∫ 1

0

(
B(s)− [ζ1 : ζ2]

[
s

(s− λ)1(s > λ)

])
dB(s)′α⊥

= β′⊥C

∫ 1

0

B∗(s)dB(s)′α⊥

and

A3T + A4T
d→ −β′⊥C

∫ 1

0

(
B(s)− [ζ1 : ζ2]

[
s

(s− λ)1(s > λ)

])
[dsζ ′1 + 1(s > λ)dsζ ′2]α⊥

= −β′⊥C

∫ 1

0

B∗(s)[dsζ ′1 + 1(s > λ)dsζ ′2]α⊥,

where the latter result can be checked by straightforward calculation. Thus,

T−1
∑T

t=1 β′⊥x̂t−1e
′
tα⊥

d→ β′⊥C

∫ 1

0

B∗(s)dB(s)′α⊥ − β′⊥C

∫ 1

0

B∗(s)[dsζ ′1 + 1(s > λ)dsζ ′2]α⊥

= β′⊥C

∫ 1

0

B∗(s)dB∗(s)′α⊥,

(A.11)
where we have used the notation dB∗(s) = dB(s) − dsζ1 − 1(s > λ)dsζ2 with a similar
interpretation as in Theorem 3.1.

As in the proofs in Johansen (1995, Theorem 11.1) and S&L (Theorem 3.1) we can now
use (A.10) and (A.11) to obtain

LR (r0)
d→ tr

{
(α′⊥Ω−1α⊥)−1α′⊥

(
β′⊥C

∫ 1

0

B∗(s)dB∗(s)′α⊥

)′

×
(

β′⊥C

∫ 1

0

B∗(s)B∗(s)′dsC ′β⊥

)−1 (
β′⊥C

∫ 1

0

B∗(s)dB∗(s)′α⊥

)}

= tr

{
(α′⊥Ω−1α⊥)−1α′⊥

(
α′⊥

∫ 1

0

B∗(s)dB∗(s)′α⊥

)′

×
(

α′⊥

∫ 1

0

B∗(s)B∗(s)′dsα⊥

)−1 (
α′⊥

∫ 1

0

B∗(s)dB∗(s)′α⊥

)}
,

where the latter equality follows from the definition of the matrix C. Define now the (n−r0)-
dimensional standard Brownian motion W (s) = (α′⊥Ω−1α⊥)−1/2α′⊥B(s) and note that, by
the definitions of B∗(s), [ζ1 : ζ2], and [ξ1 : ξ2] we can write (α′⊥Ω−1α⊥)−1/2α′⊥B∗(s) = W∗(s).
Thus, it follows that the last trace above becomes as stated in the theorem. This completes
the proof.
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