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Abstract

We study the problem of finding the minimal initial capital needed in order

to hedge without risk a barrier option when the vector of proportions of wealth

invested in each risky asset is constraint to lie in a closed convex domain. In

the context of a Brownian diffusion model, we provide a PDE characterization

of the super-hedging price. This extends the result of Broadie, Cvitanic and

Soner (1998) and Cvitanic, Pham and Touzi (1999) which was obtained for plain

vanilla options, and provides a natural numerical procedure for computing the

corresponding super-hedging price. As a by-product, we obtain a comparison

theorem for a class of parabolic PDE with relaxed Dirichet conditions involving

a constraint on the gradient.
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tions.
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1 Introduction

The problem of super-hedging under portfolio constraints has attracted a lot of attention

since the seminal work of Cvitanic̀ and Karatzas [5]. One of the original motivations

came from the hedging of plain vanilla options with discontinuous payoffs, such as digital

options. For such options the delta and gamma may take very large values when the

remaining maturity is small, which makes them difficult to delta-hedge.

Within diffusion models, the remarkable result of Broadie, Cvitanic̀ and Soner [3] shows

that the optimal hedge under constraints is obtained by considering the Black-Scholes

type hedging strategy of some modified payoff. Thus, hedging the original claim under

constraints corresponds to hedging a modified one without constraints. This is the so-

called ’face-lifting’ procedure. Within the Black-Scholes model, this allows to explicit

the optimal hedge. In more general Markov diffusion models, an explicit solution may

not be available but the super-hedging price can still be characterized as the solution

of some Hamilton-Jacobi-Bellman equation, see Cvitanic̀, Pham and Touzi [6] and the

review paper Soner and Touzi [12]. In the general semi-martingale case, no explicit so-

lution is available but a general dual formulation was obtained by Föllmer and Kramkov

[7].

Similar problems may appear for path-dependent options such as barrier options. For

instance, the delta of knock-out barrier options may explode when the maturity is

small and the underlying asset is close to the barrier. This more difficult issue was

recently considered by Shreve, Schmock and Wystup [11]. In this paper, the authors

solve the problem of hedging a knock-out call option in a one dimensional Black-Scholes

model under a constraint on the short position, i.e. the proportion of wealth invested

in the risky asset is bounded from below. This result is obtained by extending the

dual formulation of Cvitanic̀ and Karatzas [5] and by solving the associated stochastic

control problem.

The aim of the present paper is to provide a PDE characterisation of the super-hedging

price of barrier-type options. Our model is more general than the one studied in Shreve,

Schmock and Wystup [11] in two aspects. First, we consider general payoffs of the form

g(τ,Xτ ) where τ is the first exit time of a d-dimensional price process X from a given

domain O. Secondly, our constraints on the proportions of wealth invested in the risky
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assets is described by a rather general closed convex set.

Our derivation of the associated PDE relies on the dual formulation of Cvitanic̀ and

Karatzas [5] as in Cvitanic̀, Pham and Touzi [6]. Here, the main difficulty comes from

the boundary condition on ∂O before maturity, a problem which does not appear in the

above paper. As in the vanilla option case, we have to consider as boundary condition

a ’face-lifted’ pay-off, but in the case of barrier options this is not sufficient. Indeed,

the example considered in Shreve, Schmock and Wystup [11] shows that the boundary

condition on [0, T )× ∂O may not be assumed continuously by the value function, even

when the payoff is ’face-lifted’ (in their case g = 0 before T ). This implies that this

boundary condition has to be considered in a weak sense.

In this paper, we give an appropriate sense to the boundary condition and show that

the super-hedging price is a (discontinuous) viscosity solution of the corresponding

Hamilton-Jacobi-Bellman equation. We also show that it can actually be further char-

acterized as its smallest viscosity supersolution. Finally, under mild additional assump-

tions, we prove a comparison theorem for the associated PDE which ensures uniqueness

of the solution and opens the door to the implementation of a numerical scheme. Here,

the difficulty comes from the constraint on the gradient of the value function which also

appears in the relaxed boundary condition. To the best of our knowledge, this is the

first time that such an equation is considered.

The rest of the paper is organized as follows. The super-hedging problem and its dual

formulation are presented in Section 2. In Section 3, we describe the associated PDE

and state our main results. A numerical application is presented in Section 4. The

remaining sections contain the proofs.

Notations: All elements x = (xi)i≤d of Rd are identified with column vectors with

Euclydian norm | · | and transposed vector x′. The positive orthant of Rd is denoted

by Rd
+ and the set of d × d matrices by Md. We write diag [x] to denote the diagonal

matrix of Md whose i-th diagonal element is xi. If y ∈ Rd, we write xy for (xiyi)i≤d, xy

for
∏

i≤d(x
i)yi

and xey for (xieyi
)i≤d, whenever it is well defined. The trace of M ∈ Md

is denoted by Tr[M ] and |M | denotes its Euclydian norm when viewed as an element of

Rd2
. Given a family (aij)i,j≤d of real numbers, we denote by [aij]i,j the matrix A whose
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component (i, j) is given by aij. The closure of a set E ⊂ Rd is denoted by Ē, ∂E

stands for its boundary and int(E) for its interior. Given η > 0, B(x, η) denotes the

open ball of radius η centered on x.

Given a smooth function (t, x) ∈ [0, T ] × Rd 7→ ϕ(t, x) ∈ R, we denote by Dϕ its

(partial) Jacobian matrix with respect to x and by D2ϕ its (partial) Hessian matrix

with respect to x. All inequalities involving random variables have to be understood in

the P− a.s. sense.

2 The super-hedging price under contraints and its

dual formulation

In all this paper, T > 0 is a finite time horizon and W = (Wt)t≤T is a d-dimensional

Brownian motion defined on a complete probability space (Ω,F , P). We assume that

the P-augmented filtration generated by W , F = (Ft)t≤T , satisfies F0 = {Ω, ∅} and

FT = F .

2.1 The barrier option hedging problem

The financial market is composed by a non-risky asset B with price process normalized

to unity, i.e. Bt = 1 for all t ≤ T , and d risky assets X = (X1, . . . , Xd) whose dynamics

is given by the stochastic differential equation

X(t) = X0 +

∫ t

0

diag [X(s)] σ(s, X(s))dWs , t ≤ T (2.1)

for some X0 ∈ (0,∞)d. Here, σ : [0, T ]× Rd
+ 7→ Md is assumed to satisfy

(i) σ is continuous, bounded and invertible with bounded inverse.

(ii) The map (t, x) ∈ [0, T ]× Rd
+ 7→ diag [x] σ(t, x)

is Lipschitz continuous in x, uniformly in t.

(2.2)

Remark 2.1 As usual there is no loss of generality in assuming that X is a local

martingale since, under mild assumptions on the original dynamics, we can always

reduce to this case by passing to an equivalent probability measure. The normalization

B = 1 means that we consider discounted processes, i.e. we take B as a numéraire.
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A financial strategy is described by a d-dimensional predictable process π = (π1,...,πd)

satisfying the integrability condition∫ T

0

|πt|2dt < ∞ P− a.s. (2.3)

where πi
t is the proportion of wealth invested at time t in the risky asset X i. To an initial

dotation y ∈ R and a financial strategy π, we associate the induced wealth process Y π
y

defined as the solution on [0, T ] of

Y (t) = y +

∫ t

0

Y (s)π′sdiag [X(s)]−1 dX(s) = y +

∫ t

0

Y (s)π′sσ(s, X(s))dWs , (2.4)

where ′ stands for transposition.

Remark 2.2 Since in our model the financial strategies are described by the propor-

tions of total wealth invested in each risky asset, the no-bankruptcy condition always

holds provided that the initial dotation is non-negative. Indeed, it is clear from (2.4)

that for y ≥ 0, the induced wealth process satisfies Y π
y (t) ≥ 0, for all t ∈ [0, T ], a.s.

The constraints on the portfolio strategy is described by a closed convex set K ⊂ Rd.

We say that a financial strategy π is admissible if it satisfies, in addition to the condition

(2.3), the constraint

π ∈ K dt× dP− a.e. (2.5)

and we denote by K the set of admissible financial strategies. All over this paper, we

shall assume that

0 ∈ K 6= Rd . (2.6)

The left hand-side condition just means that 0 ∈ K while the inequality is natural since

otherwise there would be no constraint on the portfolio.

The barrier option is described by a map g defined on [0, T ]×Rd
+ and an open domain

O of Rd such that

g ≥ 0 on Ō ∩ Rd
+ and g = 0 on [0, T ]× Ōc , (2.7)
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where Ōc := (0,∞)d \ Ō. The buyer of the option receives the payment g(τ,X(τ)) at

the (stopping-) time τ defined as the first time when X exists O if this occurs before T

and T otherwise:

τ := inf{t ∈ [0, T ] : X(t) /∈ O} ∧ T ,

with the usual convention inf ∅ = ∞. The super-replication cost under constraint of

the claim g(τ,X(τ)) is thus defined as

v(0, X0) := inf
{
y ∈ R+ : Y π

y (τ) ≥ g(τ,X(τ)) for some π ∈ K
}

. (2.8)

Remark 2.3 The condition g = 0 on [0, T ]× Ōc can be seen as a convention. Indeed,

it is clear that v(0, X0) does not depend on the value of g on this set when X0 ∈ Ō,

while for X0 ∈ Ōc the problem has no interest.

Hereafter we present examples of barrier option which enter into our framework.

Example 2.1 Up-and-out call : Let d = 1. The pay-off of an up-and-out call on a

single asset X1, with strike price κ and knock-out barrier B is equal to(
X1(T )− κ

)+
1{max0≤t≤T X1(t)<B} .

In our framework this corresponds to : O = (−∞, B) and g(t, x) = (x− κ)+ 1{t=T,x<B}.

Example 2.2 Down-and-out basket put option : A basket option is an option whose

pay-off depends on a weighted average of a set of underlyings’ values. Let d = 2, we

consider the down-and-out barrier option whose payoff is given by(
κ− X1(T ) + X2(T )

2

)+

1{min0≤t≤T X1(t)+X2(t)>2B} .

In our framework this correponds to O = {x ∈ (0,∞)2 , x1 + x2 > 2B} and g(t, x) =(
κ− x1+x2

2

)+

1{t=T,x1+x2>2B} .
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2.2 The dual formulation

The dual formulation for hedging problems under general convex constraint was first

established by Cvitanic̀ and Karatzas [5] in the diffusion case and then extended to the

semi-martingale case by Föllmer and Kramkov [7], see also Karatzas and Shreve [9] and

the review paper Soner and Touzi [12].

To state the dual formulation, we first need the characterization of the closed convex

set K in terms of its support function δ. For ρ ∈ Rd set

δ(ρ) = sup
γ∈K

γ′ρ ≥ 0 , (2.9)

where the last inequality follows from the left hand-side of (2.6), and define

K̃ := {ρ ∈ Rd : δ(ρ) < ∞} ,

the domain of δ. Observe that the right hand-side of (2.6) implies that K̃ 6= {0}.
Moreover, it is a standard result of convex analysis, see e.g. [10], that K can be

characterized in terms of

K̃1 := {ρ ∈ K̃ : |ρ| = 1}

by

γ ∈ K ⇔ H(1, γ) ≥ 0 and γ ∈ int(K) ⇔ H(1, γ) > 0 (2.10)

where

H(u, p) := inf{δ(ρ)u− ρ′p, ρ ∈ K̃1} for (u, p) ∈ R× Rd .

Remark 2.4 Assume for a while that 0 ∈ int(K). Then, there is cK > 0 such that

B(0, cK) ⊂ K. Thus, for all ρ ∈ K̃1, cKρ ∈ K and therefore

δ(ρ) ≥ cK > 0 .

The dual formulation is constructed as follows. Let us denote by K̃ the set of bounded

adapted processes ϑ taking values in K̃. To such a process, we associate the martingale

Mϑ defined on [0, T ] as the solution of

Mt := 1 +

∫ t

0

Ms

(
σ(s, X(s))−1ϑs

)′
dWs ,
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recall (2.2). We then define the P-equivalent probability measure Qϑ by

dQϑ

dP
= Mϑ

T .

It follows from Girsanov’s Theorem that the process W ϑ defined by

W ϑ
t = Wt −

∫ t

0

σ(s, X(s))−1ϑsds t ≤ T ,

is a Brownian motion under Qϑ. In the following, we shall denote by Eϑ the expectation

operator associated to Qϑ.

To ϑ ∈ K̃, we finally associate the process Eϑ defined by

Eϑ
t := e−

R t
0 δ(ϑs)ds t ≤ T .

Theorem 2.1 The following holds.

v(0, X0) = sup
ϑ∈K̃

Eϑ
[
Eϑ

τ g (τ,X(τ))
]

. (2.11)

Proof. The above result is a direct consequence of Theorem 6.2 and Remark 6.11 in

[9]. For the convenience of the reader, we provide here its short proof.

1. First observe that

v(0, X0) = inf
{
y ∈ R+ : Y π

y (T ) ≥ g(τ,X(τ)) for some π ∈ K
}

.

Indeed, it follows from (2.4) and condition (2.3) that, for all y ∈ R+ and π ∈ K,

the process Y π
y is a non-negative local P-martingale on [t, T ]. Hence it is a super-

martingale and, by taking conditional expectation, Y π
y (T ) ≥ g(τ,X(τ)) implies Y π

y (τ) ≥
g(τ,X(τ)). From this we deduce the first inequality :

v(0, X0) ≤ inf
{
y ∈ R+ : Y π

y (T ) ≥ g(τ,X(τ)) for some π ∈ K
}

.

For the converse inequality, notice that if Y π
y (τ) ≥ g(τ,X(τ)), then Y y,π̃

T ≥ g(τ,X(τ))

where π̃ = π1[s,τ ] belongs to K.

2. Since g ≥ 0, see (2.7), it follows from Theorem 6.2 and Remark 6.11 in [9] that

v(0, X0) = sup
ϑ∈K̃

Eϑ
[
Eϑ

T g (τ, X(τ))
]

.
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Observe that the process Eϑ is positive, non-increasing in time and recall that g ≥ 0,

then the last equality leads to (2.11). 2

In order to derive the PDE characterization of the super-hedging price, we shall use a

standard dynamic programming principle for the dual formulation of Theorem 2.1.

Before to state it, we need to extend the definition of v to general initial condi-

tions (t, x) ∈ [0, T ] × (0,∞)d. For (t, x) ∈ [0, T ] × (0,∞)d, y ∈ R+ and π ∈ K,

we define (Xt,x, Y
π
t,x,y) as the solution of (2.1)-(2.4) on [t, T ] with initial condition

(Xt,x(t), Y
π
t,x,y(t)) = (x, y).

The value function v is then defined on [0, T ]× (0,∞)d by

v(t, x) := inf
{
y ∈ R+ : Y π

t,x,y(τt,x) ≥ g(τt,x , Xt,x(τt,x)) for some π ∈ K
}

, (2.12)

where

τt,x := inf{s ∈ [t, T ] : Xt,x(s) /∈ O} ∧ T .

Remark 2.5 Observe that for (t, x) ∈ ([0, T ]×∂O)∪({T}×Ō), we have v(t, x) = g(t, x)

by construction.

In the sequel, we shall denote by Tt,T the set of all stopping times with values in [t, T ].

Given ϑ ∈ K̃ and t < T , we also set

E t,ϑ
s := Eϑ

s /Eϑ
t for s ≥ t .

The following result is a consequence of Proposition 6.5 in [9].

Proposition 2.1 For all (t, x) ∈ [0, T )×O and θ ∈ Tt,T ,

v(t, x) = sup
ϑ∈K̃

Eϑ
[
E t,ϑ

θ v (θ,Xt,x(θ))1θ<τt,x
+ E t,ϑ

τt,x
g
(
τt,x , Xt,x(τt,x)

)
1θ≥τt,x

]
. (2.13)

Proof. It follows from Proposition 6.5 in [9] that

v(t, x) = sup
ϑ∈K̃

Eϑ
[
E t,ϑ

θ∧τt,x
v
(
θ ∧ τt,x , Xt,x(θ ∧ τt,x)

)]
.

where by definition of v, see Remark 2.5, v
(
τt,x , Xt,x(τt,x)

)
= g(τt,x , Xt,x(τt,x)). This

provides the required result. 2
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3 The PDE characterization

Our main result consists in a PDE characterization of the value function v. Before to

state it, we describe the PDE associated to v and explain in which sense it has to be

considered.

3.1 The associated PDE

Set O∗ = O ∩ (0,∞)d. In view of [6] and [13], it is natural to expect that the value

function v is a viscosity solution on

D := [0, T )×O∗

of the partial differential equation

min {−Lv , Hv} = 0 , (3.1)

where for a smooth function ϕ on [0, T ]× Rd
+, we set

Hϕ(t, x) = inf
{

δ(ρ)ϕ(t, x)− ρ′diag [x] Dϕ(t, x), ρ ∈ K̃1

}
,

Lϕ(t, x) =
∂

∂t
ϕ(t, x) +

1

2
Tr
[
a(t, x)D2ϕ(t, x)

]
with a defined on [0, T ]× Rd

+ by

a(t, x) := diag [x] σ(t, x)σ(t, x)′diag [x] .

The first part of the equation corresponds to the usual Black-Scholes equation, while

the second part is due to the portfolio constraint. Indeed, assuming that v is smooth,

positive, and writing formally that the hedging portfolio satisfies Y π
y (t) = v(t,X(t)), we

deduce from Itô’s Lemma that πt must coincide with diag [X(t)] Dv(t,X(t))/v(t,X(t)).

Since it has to belong to K, the characterization of K given by (2.10) implies that H(1,

diag [X(t)] Dv(t,X(t))/ v(t,X(t))), or equivalently H(v(t,X(t)), diag [X(t)] Dv(t,X(t))),

must be non-negative.

In order to provide a full characterization of v, it remains to define the boundary

conditions on ∂xD
∗ := [0, T )× ∂O∗ and ∂T D∗ := {T} × Ō∗ where

∂O∗ := ∂O ∩ (0,∞)d and Ō∗ := Ō ∩ (0,∞)d .
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It is known from [6], see also [12] and [13], that the boundary condition on ∂T D∗ has

to be written

v = ĝ (3.2)

where, for x ∈ (0,∞)d,

ĝ(T, x) = sup
ρ∈K̃

e−δ(ρ)g(T, xeρ) .

This corresponds to the ‘face-lifting’ procedure which was already observed by [3]. This

‘face-lifting’ is due to the portfolio constraint, ĝ being the smallest function above g

which, in a sense, satisfies Dĝ/ĝ ∈ K.

Remark 3.1 Observe that (2.7) allows to define ĝ(T, ·) on (0,∞)d as

ĝ(T, x) = sup
ρ∈K̃(x,Ō)

e−δ(ρ)g(T, xeρ) , (3.3)

with the convention sup ∅ = 0 and

K̃(x, E) :=
{

ρ ∈ K̃ : xeρ ∈ E
}

for E ⊂ Ō . (3.4)

The fact that v satisfy (3.1)-(3.2) in the viscosity sense can be shown by following the

arguments of [6] and is not difficult.

The difficulty comes from the boundary condition on ∂xD
∗. In this paper, we shall show

that g has also to be modified on ∂xD
∗, i.e. replaced by ĝ defined on [0, T )× (0,∞)d by

ĝ(t, x) = sup
ρ∈K̃(x,∂O)

e−δ(ρ)g(t, xeρ) , (3.5)

with the convention sup ∅ = 0. This result is expected and will be obtained under a

smoothness condition on O, see HO below.

But this is only a first step in the derivation of the appropriate boundary condition.

Actually, [11] provides an example of super-hedging price for up-and-out call option

for which ĝ(t, x) = 0 for t < T and v(t′, x′) does not converge to 0 when (t′, x′) ∈ D

goes to (t, x) ∈ ∂xD
∗. This shows that the constraint on the portfolio may prevent the

value function to assume the boundary condition continuously and leads to the natural

formulation of a relaxed boundary condition on ∂xD
∗

min {v − ĝ , Hv} = 0 . (3.6)
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However, we shall see in Remark 6.1 below that the above equation has to be corrected

in order to admit a viscosity supersolution and therefore have a sense. Given a smooth

function ϕ, we therefore define

Hdϕ(t, x) = inf
{

δ(ρ)ϕ(t, x)− ρ′diag [x] Dϕ(t, x), ρ ∈ K̃1(x, Ō)
}

,

where, for x ∈ E ⊂ Ō,

K̃1(x, E) :=
{

ρ ∈ K̃1 : ∃ λ0 > 0 s.t. λρ ∈ K̃(x, E) for all λ ∈ [0, λ0]
}

. (3.7)

To sum up, we introduce the following operators

Bϕ :=


min {−Lϕ , Hϕ} on D

min {ϕ− ĝ , Hϕ} on ∂xD
∗

ϕ− ĝ on ∂T D∗

,

Bdϕ :=

{
Bϕ on D ∪ ∂T D∗

min {ϕ− ĝ , Hdϕ} on ∂xD
∗ ,

and we say that a locally bounded function w on D is a discontinuous viscosity solution

of

Bdϕ = 0 (3.8)

on D̄∗ := D̄ ∩ ([0, T ]× (0,∞)d) if w∗ and w∗ defined on D̄ as

w∗(t, x) := lim inf
(t̃,x̃)∈D, (t̃,x̃)→(t,x)

w(t̃, x̃) and w∗(t, x) := lim sup
(t̃,x̃)∈D, (t̃,x̃)→(t,x)

w(t̃, x̃)

are respectively viscosity super- and subsolution of Bdϕ = 0 and Bϕ = 0 on D̄∗.

More generally, we shall say that w is a (discontinuous) viscosity supersolution (resp.

subsolution) of Bϕ = 0 on D̄∗ if w∗ is a supersolution of Bdϕ = 0 (resp. subsolution of

Bϕ = 0) on D̄∗.

Remark 3.2 Assume that the conditions of Theorem 3.1 below hold. Let us write

Bϕ(t, x) as B(t, x, ϕ(t, x), ∂
∂t

ϕ(t, x), Dϕ(t, x), D2ϕ(t, x)) and Bdϕ(t, x) similarly. Then,

one easily checks that the upper-semicontinuous envelope of Bd as a map on D̄∗ ×R×
R× Rd ×Md is given by

(Bd)+(t, x, ϕ(t, x),
∂

∂t
ϕ(t, x), Dϕ(t, x), D2ϕ(t, x))) = max {Bdϕ(t, x) ,

min {−Lϕ(t, x),Hϕ(t, x)} } ,
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and that its lower-semicontinuous envelope is

(Bd)−(t, x, ϕ(t, x),
∂

∂t
ϕ(t, x), Dϕ(t, x), D2ϕ(t, x))) = min {Bϕ(t, x) ,−Lϕ(t, x) } .

From the arguments of the proof of Proposition 6.3 and Proposition 6.6 below, we

deduce that (Bd)+ϕ = 0 (resp. (Bd)−ϕ = 0) has the same supersolutions as Bdϕ = 0

(resp. subsolutions that Bϕ = 0) on D ∪ ∂xD
∗, for the terminal condition ϕ = ĝ

at T . In other words, Bd can be viewed as being upper-semicontinuous with lower-

semicontinuous envelope given by B. This justifies the above definition of a viscosity

solution of Bdϕ = 0, and shows that it is in accordance with Definition 7.4 in [4]. This

remark will be used in the example section to prove the convergence of the discretization

scheme we shall consider for a particular example.

3.2 Main results

In order to establish that v is a discontinuous viscosity solution of (3.8), we shall appeal

to the following additional assumptions.

Our first condition concerns the convex set K describing the portfolio constraints. It is

stated in terms of K̃(x,O), recall (3.4).

HK̃ : (i) For all x ∈ O, ρ ∈ K̃(x,O) implies λρ ∈ K̃(x,O) for all λ ∈ [0, 1).

(ii) For all x ∈ O, the closure of K̃(x,O) is equal to K̃(x, Ō).

(iii) If (xn)n is a sequence in O such that xn → x ∈ ∂O and ρ ∈ K̃(x, Ō)

then there exists a sequence ρn → ρ such that, up to a subsequence,

ρn ∈ K̃(xn, Ō) ∀ n ≥ 1.

Remark 3.3 The conditions (i) and (ii) of HK̃ are automatically satisfied whenever

the set ln(O) = {(ln(xi))i≤d, x ∈ O} is convex. Indeed, we easily check that in this case,

for all x ∈ O, K̃(x,O) is convex, and since 0 ∈ K̃(x,O), this provides (i). The convexity

of ln(O) also implies that if ρ ∈ K̃(x,O) and ρ̄ ∈ K̃(x, Ō), then λρ+(1−λ)ρ̄ ∈ K̃(x,O)

for all λ ∈ (0, 1). Since 0 ∈ K̃, this shows that for all x ∈ O the closure of K̃(x,O)

contains K̃(x, Ō), while the converse inclusion is obvious.
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We shall also impose some regularity assumptions on g:

Hg : (i) g is lower semi-continuous on [0, T ]× ∂O∗ and on {T} × Ō∗.

(ii) ∃ Cg > 0 and γ̄ ∈ K ∩ Rd
+ s.t. |g(·, x)| ≤ Cg (1 + xγ̄) ∀ x ∈ Ō∗,

(iii) ĝ is upper semi-continuous on [0, T ]× (0,∞)d and has linear growth.

Under HK̃ and (i)-(ii) of Hg, one can already derive the following qualitative properties

of v.

Proposition 3.1 Assume that HK̃ and (i)-(ii) of Hg hold. Then, for all (t, x) ∈ D,

we have

v(t, x) ≥ 0 , (3.9)

and there is a constant C > 0, independent of (t, x), such that

|v(t, x)| ≤ C (1 + xγ̄) . (3.10)

Moreover, for all (t, x) ∈ D̄,

v∗(t, x) = sup
ρ∈K̃(x,Ō)

e−δ(ρ)v∗(t, xeρ) . (3.11)

The proof will be provided in Section 5.

In order to derive the appropriate boundary condition on ∂xD
∗, we shall also need some

regularity on the domain O.

HO : There exists a map d : (0,∞)d 7→ R such that

(i) {x ∈ (0,∞)d : d(x) > 0} = O∗ .

(ii) {x ∈ (0,∞)d : d(x) = 0} = ∂O∗ .

(iii)∀ x ∈ ∂O∗, , ∃r > 0 s.t. d ∈ C2(B(x, r)) .

This essentially amongs to say that O is C2, see [8].

Using HK̃ , Hg and HO, we can already characterize v not only as a discontinuous

solution of (3.8) but also as its smallest supersolution.
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Theorem 3.1 Assume that HK̃, Hg and HO hold. Then,

(i) v is a discontinuous viscosity solution of (3.8),

(ii) v is lower-continuous on D,

(iii) v∗ is the smallest supersolution of (3.8) in the class of locally bounded functions

satisfying (3.10).

Finally, under the additional assumptions

H′ : (i) Either Ō is bounded or ∃ % > 1 s.t. %γ̄ ∈ K ∩ (0,∞)d,

(ii) int(K) 6= ∅ and either 0 ∈ int(K) or Ō ∩ ∂Rd
+ = ∅,

(iii) ∀ x ∈ ∂O∗ ∃ ρ ∈ K̃1 s.t. Dd(x)
′
diag [x] ρ > 0,

we will be able in Section 7 to provide a comparison theorem for (3.8). It will imply

our last result which characterizes v as the unique solution of (3.8) in a suitable class

of functions.

Theorem 3.2 Let the conditions of Theorem 3.1 hold and assume further that H′ is

satisfied. Then,

(i) v∗ = v∗ on D̄∗,

(ii) v is continuous on D,

(iii) v is the unique discontinuous viscosity solution of (3.8) in the class of locally

bounded function satisfying (3.10).

Remark 3.4 Recall the examples of barrier options of Section 2.

1. If we hedge the up-and-out call of the Example 2.1 with shortsales constaints, i.e.

K = [−α, +∞), with α > 0, then it is easy to verify that all of the conditions HK̃ , Hg,

HO and H′ hold true.

2. These conditions are also satisfied when we hedge the down-and-out basket put of

the Example 2.2 with bounded portfolio, i.e K =
2∏

i=1

[−αi, ᾱi], αi, ᾱi > 0 for i = 1, 2.

Remark 3.5 To conclude this section, let us comment the assumption H′. As already

mentioned, Theorem 3.2 is based on a comparison result for (3.8) stated in Theorem 7.1

below. A first difficulty in proving this theorem comes from the growth condition (3.10)

which is non-standard. In the case where Ō is not bounded, the second assumption

in (i) is used to construct a suitable penalty function which allows us to reduce to a
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bounded domain. The second difficulty comes from the term Hϕ appearing in Bϕ.

It is handled by using the first assertion of (ii) under which we can construct a strict

super-solution of Hϕ = 0. A third difficulty is due to the fact that the equation in

written only on Ō ∩ (0,∞)d. In the case where Ō ∩ ∂Rd
+ 6= ∅, we need to introduce an

other penalty function which permits to reduce the analysis to (0,∞)d. We then appeal

to the second assertion of (ii). Finally, a major difficulty comes from the boundary

condition on ∂xD
∗ which is written in a weak sense. It is treated by using the condition

(iii) which allows to “avoid” this boundary. We refer to step 4. of the proof of Theorem

7.1 below for a more detailed discussion of these assumptions (i) and (ii).

4 A numerical application

In this section, we study a numerical scheme for the resolution of Bdϕ = 0 in the

simple example considered in [11] : superhedging of a knock-out call with a short-sale

constraint. The general case will be discussed in the companion paper [2].

The model corresponds to our general framework with d = 1, σ(t, x) = σ > 0, a fixed

constant, O = (−∞, B), K = [−α,∞) and g(t, x) = [x − κ]+1{t=T, x<B}, with α > 0,

B > κ > 0. In this case K̃ = (−∞, 0], the function ĝ(t, x) is equal to

ĝ(t, x) = e−αθ(x)[xe−θ(x) −K]+1t=T with θ(x) = [− ln(B/x)]+ ,

and all the assumptions of Theorem 3.2 are satisfied.

In order to solve numerically the equation Bdϕ = 0, we propose the following dis-

cretization. We fix a regular grid πh = {ti := (irh) ∧ T, 0 ≤ i ≤ Ih} of [0, T ] and

Ξh := {xi := (ih) ∧ B, 0 ≤ i ≤ Nh} of [0, B]. Here, h > 0 is a fixed parameter,

Nh := inf{k ∈ N : k ≥ B/h} and Ih := inf{k ∈ N : k ≥ T/rh} with rh = h2. The

approximation vh of v is defined as follows.

1. For i = Ih, we use the boundary condition at t = T to set : vh(tIh
, xj) = ĝ(tIh

, xj),

j = 0, . . . , Nh.

2. For i = Ih − 1, . . . , 0, we use the following procedure :

2.a. We initialize : vh(ti, 0) = 0.

2.b. Then, we solve on j = 1, . . . , Nh the system

vh(ti, xj) =

{
max

{
Ah(vh, i, j) ; Bh(vh, i, j)

}
if j 6= Nh

max
{
0 ; Bh(vh, i, j)

}
otherwise
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with

Ah(vh, i, j) :=
(rh)

−1vh(ti+1, xj) + (2h2)−1σ2x2
j(v

h(ti, xj+1) + vh(ti, xj−1))

(rh)−1 + (h2)−1σ2x2
j

Bh(vh, i, j) :=
xj h−1vh(ti, xj−1)

α + xj h−1
,

The initialization of step 2.a. is justified by the continuity of v at 0 which is easily

checked in this simple model by using the dual formulation of Theorem 2.1. The system

given in 2.b. follows from the approximation of H = Hd and L by

Hh(ti, xj, v
h(ti, xj), v

h) = αvh(ti, xj) + xj
vh(ti, xj)− vh(ti, xj−1)

h
,

Lh(ti, xj, v
h(ti, xj), v

h) =
vh(ti+1, xj)− vh(ti, xj)

rh

+
1

2
σ2x2

j

vh(ti, xj+1) + vh(ti, xj−1)− 2vh(ti, xj)

h2
.

Observing that vh is non-negative and uniformly bounded from above by B, the con-

vergence of the scheme easily follows from Remark 3.2, Theorem 3.2, Remark 7.1 below

and [1].

Figure 1:
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In Figure 1, we plot the estimation of v obtained with this scheme for σ = 0.3, κ = 10,

B = 20, T = 1 and for α ∈ {0.1, 1, 10}. The relative error is computed by using
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the closed form solution obtained in [11]. We took Nh = 200. We observe that the

estimation is very sharp with a relative error less than 1% in absolute value, except for

small values of X0 for which v is almost equal to 0.

5 Growth and monotonicity properties

In this section, we provide the proof of Proposition 3.1.

Proof of (3.9)-(3.10). The lower bound of (3.9) is an immediate consequence of the

assumption g ≥ 0 and the dual formulation (2.11). We now prove (3.10). Let π ∈ K be

defined by πt = γ̄ for all t ≤ T . Since σ is bounded, see (2.2), one easily checks from

the dynamics of the processes Xt,x and Y π
t,x,1 that

1 +
d∏

i=1

(X i
t,x(u))γ̄i ≤ C

(
1 +

d∏
i=1

(xi)γ̄i

)
Y π

t,x,1(u) for all u ∈ [0, T ], P− a.s. ,

where C > 0 depends only on |γ̄| and the bound on |σ|. Then, after possibly changing

the value of the constant C, Hg-(ii) implies

g(u, Xt,x(u)) ≤ C (1 + xγ̄) Y π
t,x,1(u) for all u ∈ [0, T ], P− a.s. ,

and since yY π
t,x,1 = Y π

t,x,y for y > 0, we deduce from the last inequality that v(t, x) ≤
C (1 + xγ̄). 2

Proof of (3.11). Since 0 ∈ K̃(x, Ō), we only have to show that

v∗(t, x) ≥ sup
ρ∈K̃(x,Ō)

e−δ(ρ)v∗(t, xeρ) .

1. We first consider the case where (t, x) ∈ D. Since by lower-semicontinuity of v∗ and

(ii) of HK̃

sup
ρ∈K̃(x,O)

e−δ(ρ)v∗(t, xeρ) = sup
ρ∈K̃(x,Ō)

e−δ(ρ)v∗(t, xeρ) ,

it suffices to show that

v∗(t, x) ≥ sup
ρ∈K̃(x,O)

e−δ(ρ)v∗(t, xeρ) . (5.1)
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Fix ρ ∈ K̃(x,O) and consider the sequence of processes ϑn in K̃ defined on [t, T ] by

ϑn := nρ1[t,tn] with tn := t + n−1 for n large enough so that tn < T . By Proposition 2.1

v(t, x) ≥ Eϑn
[
e−nδ(ρ)(n−1∧(τt,x−t))

(
v (tn, Xt,x(tn))1tn<τt,x

+ g
(
τt,x , Xt,x(τt,x)

)
1tn≥τt,x

)]
.

(5.2)

Let Xn be the solution on [t, T ] of

Xn(s) = x +

∫ s

t

diag [Xn(r)] ϑn
r dr +

∫ s

t

diag [Xn(r)] σ(r, Xn(r))dWr

so that Xn(s) = βn
s Hn

s with

(Hn
s )i := E

(
d∑

j=1

∫ s

t

σij(r, Xn(r))dW j
r

)
and βn

s := xe
R s

t ϑn
r dr ,

where E denotes the Doleans-Dade exponential. By Girsanov’s theorem, (5.2) can be

rewritten as

v(t, x) ≥ E
[
e−nδ(ρ)(n−1∧(τn−t)) (v (tn, X

n(tn))1tn<τn + g (τn, X
n(τn))1tn≥τn)

]
(5.3)

where

τn := inf {s ∈ [t, T ] : Xn(s) /∈ O} ∧ T .

Since σ is bounded, see (2.2), Hn
τn∧tn → (1, . . . , 1) P − a.s., after possibly passing to a

subsequence. Also observe that

βn
τn∧tn = xeρ[(n(τn−t))∧1] .

By HK̃ and the assumption ρ ∈ K̃(x,O), it follows that, P − a.s., Xn
τn∧tn ∈ O and

therefore tn < τn for large values of n. In particular,

(Xn(tn),1tn<τn) −→ (xeρ, 1) P− a.s.

Thus, passing to the limit in (5.3) and applying Fatou’s Lemma shows the required

result, recall (3.9).

2. We now consider the case where (t, x) ∈ ∂D. Let (tn, xn)n be a sequence in D that

converges to (t, x) such that v(tn, xn) → v∗(t, x). Fix ρ ∈ K̃(x, Ō). By HK̃ , there is

a sequence (ρn)n with values in K̃(xn, Ō) such that ρn → ρ. Using 1., we deduce that

v(tn, xn) ≥ e−δ(ρn)v∗(tn, xne
ρn). Passing to the limit shows that v∗(t, x) ≥ e−δ(ρ)v∗(t, xeρ)

by lower-semicontinuity of v∗. 2
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Remark 5.1 Fix (t, x) ∈ D̄∗ and assume that (λ0, ρ0) ∈ R+×K̃ are such that xeλ0ρ0 ∈
Ō. By (i) HK̃ , the map λ ∈ [0, λ0] 7→ e−λδ(ρ0)v∗(t, xeλρ0) is well defined and it follows

from (3.11) that it is non-increasing.

6 The viscosity solution property

In this section, we provide the proof of Theorem 3.1. We start with the supersolution

and subsolution properties. Then, we use an approximation argument combined with

a comparison theorem to prove that v∗ is the smallest supersolution of (3.8).

6.1 Supersolution property

In this section, we show that v∗ is a supersolution of (3.8) on D̄∗. This is a consequence

of Proposition 6.1, 6.2, 6.3 and 6.4 below.

Proposition 6.1 Assume that HK̃-Hg hold. Let (t0, x0) ∈ D̄∗ and ϕ ∈ C2(D̄∗) be such

that (t0, x0) is a local minimum on D̄∗ of v∗ − ϕ satisfying (v∗ − ϕ)(t0, x0) = 0. Then,

Hdϕ(t0, x0) ≥ 0 .

Proof. By (3.11), for all ρ ∈ K̃1(x, Ō) and λ > 0 small enough, we must have

ϕ(t0, x0) = v∗(t0, x0) ≥ e−λδ(ρ)v∗(t0, x0e
λρ) ≥ e−λδ(ρ)ϕ(t0, x0e

λρ) .

Thus, dividing by λ and sending λ to 0 leads to the required result. 2

Remark 6.1 Assume that HO holds and that for all (t0, x0) ∈ D̄∗ and ϕ as in Propo-

sition 6.1, we have

Hϕ(t0, x0) ≥ 0 .

Let (t0, x0) and ϕ be as in Proposition 6.1 with x0 ∈ ∂O∗. Recall from HO the definition

of the function d and observe that (t0, x0) is also a local minimum of (v∗ − ϕ)(t, x) +

ε−1d(x) on D̄∗ for all ε > 0. Thus, if the above assertion is true, ϕ− ε−1d must satisfy

δ(ρ)v∗(t0, x0)− ρ′diag [x0]
(
Dϕ(t0, x0)− ε−1Dd(x0)

)
≥ 0 for all ρ ∈ K̃1 .
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Now observe that for ρ ∈ K̃1 \ K̃1(x0, Ō), there is a sequence of positive parameters

λn → 0 such that d(x0e
λnρ) < 0 = d(x0) for all n, recall (3.7). This implies that

ρ′diag [x0] Dd(x0) < 0. Hence, sending ε → 0 in the above inequality leads to a contra-

diction if K̃1 \ K̃1(x0, Ō) 6= ∅.

Proposition 6.2 Let (t0, x0) ∈ D and ϕ ∈ C2(D̄∗) be such that (t0, x0) is a local

minimum on D̄∗ of v∗ − ϕ satisfying (v∗ − ϕ)(t0, x0) = 0. Then,

−Lϕ(t0, x0) ≥ 0 . (6.1)

Proof. The proof is standard. Let V be a bounded open neighborhood of (t0, x0)

such that (t0, x0) is a minimum on V̄ ∩ D̄∗ of v∗ − ϕ and let (tn, xn)n be a sequence in

V ∩D such that (tn, xn) → (t0, x0) and v(tn, xn) → v∗(t0, x0). For ease of notations we

write (τn, X
n) = (τtn,xn , Xtn,xn). Given a sequence (ηn)n of positive numbers such that

tn + ηn < T for all n, we set

θn := inf {s ∈ [tn, T ] : (s, Xn(s)) /∈ V ∩D} ∧ (tn + ηn) .

Since 0 ∈ K̃, (2.13), the assumption g ≥ 0, see (2.7), and the inequality v∗ ≥ ϕ on V

imply that

v(tn, xn) ≥ E
[
ϕ
(
θn, X

n
θn

)
1θn<τn

]
.

Set εn := v(tn, xn)− ϕ(tn, xn) and observe that εn converges to 0 as n goes to infinity.

Moreover, it follows from Itô’s Lemma that

εn ≥ E
[∫ θn

tn

Lϕ(s, Xn(s))ds 1θn<τn

]
. (6.2)

Using standard estimates, we then observe that

lim inf
n→∞

E
[
η−1

n

∫ θn

tn

Lϕ(s, Xn(s))ds 1θn<τn

]
≥ Lϕ(t0, x0) ,

whenever ηn → 0. Thus, choosing (ηn)n such that εn/ηn → 0 and using (6.2) leads to

the required result. 2

Proposition 6.3 Assume that HK̃-Hg holds. Then, v∗ ≥ ĝ on ∂xD
∗.
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Proof. 1. We first prove that for all (t0, x0) ∈ ∂xD
∗ and ϕ ∈ C2(D̄∗) such that

0 = (v∗ − ϕ)(t0, x0) = min
D̄∗

(strict)(v∗ − ϕ) ,

we have

max {v∗(t0, x0)− g(t0, x0) ; − Lϕ(t0, x0)} ≥ 0 . (6.3)

Assume to the contrary that

max {ϕ(t0, x0)− g(t0, x0) ; − Lϕ(t0, x0)} ≤ −2ε (6.4)

for some ε > 0. Let (tn, xn)n be a sequence in D converging to (t0, x0) such that

v(tn, xn) → v∗(t0, x0) .

By (2.2) and Hg, there is an open ball B centered on (t0, x0) such that

−Lϕ ≤ 0 on B ∩ D̄∗ and ϕ− g ≤ −ε on B ∩ ∂xD
∗ . (6.5)

Obviously, we can assume that (tn, xn) ∈ B. Set (τn, X
n) = (τtn,xnXtn,xn) and let θn be

the first exit time of (Xn(s))s≥tn from B. Observing that ξ := min∂B∩D̄(v∗ − ϕ) > 0,

using Itô’s Lemma and (6.5) one obtains

ϕ(tn, xn) ≤ E [ϕ (τn ∧ θn, X
n(τn ∧ θn))]

≤ −(ε ∧ ξ) + E [g (τn, X
n(τn)))1τn≤θn + v (θn, X

n(θn))1τn>θn ] .

Since (ϕ(tn, xn)− v(tn, xn)) → 0 and 0 ∈ K̃, this leads to a contradiction to (2.13) for

n large enough.

2. We now prove that v∗(t0, x0) ≥ g(t0, x0) for all (t0, x0) ∈ ∂xD
∗. To see this, we

assume to the contrary that

v∗(t0, x0) < g(t0, x0) (6.6)

for some (t0, x0) ∈ ∂xD
∗ and work toward a contradiction to (6.3). Let ϕ ∈ C2(D̄∗) be

such that

0 = (v∗ − ϕ)(t0, x0) = min
D̄∗

(strict)(v∗ − ϕ) .
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For ε > 0, define φε on D̄∗ by

φε(t, x) = ϕ(t, x)−
(

d(x)− d(x)2

ε

)
,

where d is defined in HO. Since d(x) − d(x)2

ε
> 0 when 0 < d(x) < ε, it follows that

(t0, x0) is a strict local minimum of (v∗ − φε) for each ε > 0. By (6.3) and (6.6), we

must therefore have

−Lϕ(t0, x0) + Tr
[
a(t0, x0)D

2d(x0)
]
− 1

ε
Tr [a(t0, x0)Dd(x0)Dd(x0)

′] ≥ 0 ,

which leads to a contradiction to (2.2) when ε tends to 0.

3. In view of 2. and the definition of ĝ in (3.5), (3.11) concludes the proof. 2

Proposition 6.4 Assume that HK̃-Hg holds. Then, v∗(T, ·) ≥ ĝ(T, ·) on Ō∗.

Proof. Fix x0 ∈ Ō∗ and let (tn, xn)n be a sequence in D converging to (T, x0) such

that v(tn, xn) → v∗(T, x0). Set (τn, X
n) = (τtn,xn , Xtn,xn). Since σ is bounded, see (i) of

(2.2), one easily checks that (τn, X
n(τn)) → (T, x0) P− a.s., after possibly passing to a

subsequence. In view of Hg, it follows that

lim inf
n→∞

(g(τn, X
n(τn))1τn<T + g(T, Xn(T ))1τn=T ) ≥ g(T, x0) .

Since g ≥ 0 by assumption and 0 ∈ K̃, it follows from Fatou’s Lemma and (2.11) that

v∗(T, x0) ≥ g(T, x0). The proof is concluded by using (3.11) and recalling the definition

of ĝ(T, ·) in (3.3). 2

6.2 Subsolution property

In view of Proposition 6.1, 6.2, 6.3 and 6.4, we already know that v∗ is a supersolution

of Bdϕ = 0 on D̄∗. To conclude the proof of (i) of Theorem 3.1, it remains to show that

v∗ is a subsolution of Bϕ = 0 on D̄∗. This is a consequence of Proposition 6.5, 6.6 and

6.7 below.

Proposition 6.5 Let (t0, x0) ∈ D and ϕ ∈ C2(D̄∗) be such that (t0, x0) is a local

maximum on D̄∗ of v∗ − ϕ satisfying (v∗ − ϕ)(t0, x0) = 0. Then,

min {−Lϕ(t0, x0) ; Hϕ(t0, x0)} ≤ 0 . (6.7)
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Proof. The proof is standard. We assume that

G(t0, x0) := inf
ρ∈K̃

{−Lϕ(t0, x0) + δ(ρ)ϕ(t0, x0)− ρ′diag [x0] Dϕ(t0, x0)} > 0 , (6.8)

and work towards a contradiction. If (6.8) holds, then it follows from (i) of (2.2) that

there exists some α > 0 such that

G(t, x) > 0 for all (t, x) ∈ B0 := B(t0, α)×B(x0, α) ⊂ D . (6.9)

Let (tn, xn)n≥0 be a sequence in B0 such that (tn, xn) → (t0, x0) and v(tn, xn) →
v∗(t0, x0). Observe that βn := ϕ(tn, xn) − v(tn, xn) → 0. Set Xn = Xtn,xn and define

the stopping times

θn := T ∧ inf {s ∈ [tn, T ] : (s, Xn(s)) 6∈ B0} .

Let ∂pB0 = [t0, t0 +α]× ∂B(x0, α)∪{t0 +α}× B̄(x0, α) denote the parabolic boundary

of B0 and observe that

0 > −ζ := sup
(t,x)∈∂pB0

(v∗ − ϕ)(t, x) .

Then, we deduce from Itô’s Lemma applied on ϕ, (6.9), Girsanov’s Theorem, see the

discussion in Section 2.2, and the above assertion that

v(tn, xn) + βn ≥ ζ + sup
ϑ∈K̃

Eϑ
[
Eϑ

θn
v(θn, X

n(θn))
]

.

Since by construction θn < τtn,xn and βn → 0, we obtain a contradiction to (2.13). 2

Proposition 6.6 Assume that HO-Hg holds. Let (t0, x0) ∈ ∂xD
∗ and ϕ ∈ C2(D̄∗) be

such that (t0, x0) is a local maximum on D̄∗ of v∗ − ϕ satisfying (v∗ − ϕ)(t0, x0) = 0.

Then,

min {v∗(t0, x0)− ĝ(t0, x0) ; Hϕ(t0, x0)} ≤ 0 .

Proof. 1. By using similar arguments as in the proof of Proposition 6.5, we first obtain

that

min {v∗(t0, x0)− g(t0, x0) ; − Lϕ(t0, x0) ; Hϕ(t0, x0)} ≤ 0 . (6.10)
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2. We now proceed by contradiction as in 2. of the proof of Proposition 6.3 to show

that

min {v∗(t0, x0)− g(t0, x0) ; Hϕ(t0, x0)} ≤ 0 .

As usual, we can assume that (t0, x0) is a strict local maximum of v∗−ϕ on D̄∗. Assume

that for some η > 0,

min

{
v∗(t0, x0)− g(t0, x0) ; inf

ρ∈K̃1

δ(ρ)v∗(t0, x0)− ρ′diag [x0] Dϕ(t0, x0)

}
> η .

Let λ > 0 be a fixed parameter to be chosen later and for ε > 0 set on D̄∗

φε(t, x) = ϕ(t, x) + λd(x)− d2(x)

ε

where d is defined in HO. For x ∈ Ō∗ such that d(x) < ελ we have λd(x) − d2(x)
ε

≥ 0.

It follows that (t0, x0) is a local maximum of v∗ − φε. Moreover,

min

{
v∗(t0, x0)− g(t0, x0) ; inf

ρ∈K̃1

δ(ρ)v∗(t0, x0)− ρ′diag [x0] Dφε(t0, x0)

}
> 0 ,

for λ > 0 small enough since d(x0) = 0 and therefore Dφε(t0, x0) = Dϕ(t0, x0) +

λDd(x0) − 2Dd(x0)d(x0)/ε = Dϕ(t0, x0) + λDd(x0). Thus, it follows from 1. that we

must have

−L(ϕ(t0, x0) + λd(x0)) +
1

ε
Tr [a(t0, x0)Dd(x0)Dd(x0)

′] ≤ 0 .

Sending ε → 0 leads to a contradiction to (i) of (2.2). 2

Proposition 6.7 Assume that Hg holds. Then, v∗(T, ·) ≤ ĝ(T, ·) on Ō∗.

Proof. 1. Let (tn, xn)n be a sequence in D which converges to (T, x0) and such that

v(tn, xn) → v∗(T, x0). Set (τn, X
n) = (τtn,xn , Xtn,xn). By the dual formulation (2.11),

there is some ϑn ∈ K̃ such that

v(tn, xn) ≤ Eϑn
[
e−

R τn
tn

δ(ϑn
s )dsg(τn, X

n(τn))
]

+ n−1 .

Since K̃ is a convex cone, δ is sublinear and g ≥ 0, it follows that

e−
R τn

tn
δ(ϑn

s )dsg(τn, X
n(τn)) ≤ e−δ(

R τn
tn

ϑn
s ds)g(τn, X

n(τn)) ≤ sup
tn≤t≤T

ĝ
(
t,Xn(t)e−

R t
tn

ϑn
s ds
)
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by definition of ĝ in (3.3)-(3.5). In view of the above inequalities and the definition of

(tn, xn), it remains to show that

lim sup
n→∞

Eϑn

[
sup

tn≤t≤T
ĝ (t, Zn(t))

]
≤ ĝ(T, x0) , (6.11)

where Zn := Xne−
R ·

tn
ϑn

s ds solves on [tn, T ]

dZn(t) = diag [Zn(t)] σ(t,Xn(t))dW n
t , Zn(tn) = xn ,

and W n is a standard Brownian motion under Qϑn
, recall the discussion of Section 2.2.

Using the boundedness assumption on σ, see (2.2), we deduce from standard arguments

that there is a constant C > 0 independent of n such that

Eϑn

[
sup

tn≤t≤T
|Zn(t)− x0|

]
≤ C

(
|xn − x0|+ (T − tn)1/2

)
.

We shall prove in 2. that, for each ε > 0, there is a Lipschitz function Ψε such that

|ĝ(T, x0) − Ψε(T, x0)| ≤ ε and Ψε ≥ ĝ. It follows that, for each ε, we can find some

finite Kε > 0 such that

lim sup
n→∞

Eϑn

[
sup

tn≤t≤T
ĝ (t, Zn(t))

]
≤ lim sup

n→∞
Eϑn

[
sup

tn≤t≤T
Ψε (t, Zn(t))

]
≤ Ψε(T, x0) + lim sup

n→∞
Kε

(
|xn − x0|+ (T − tn)1/2

)
= Ψε(T, x0) .

By definition of Ψε this implies that

lim sup
n→∞

Eϑn

[
sup

tn≤t≤T
ĝ (t, Zn(t))

]
≤ ĝ(T, x0) + ε ,

and the proof of (6.11) is concluded by sending ε to 0.

2. We conclude this proof by constructing the sequence of functions (Ψε)ε>0. For

(t, x) ∈ [0, T ]× (0,∞)d, we define

Gk(t, x) = sup
(s,z)∈[0,T ]×(0,∞)d

[ĝ(s, z)− k (|s− t|+ |z − x|)] , k ≥ 1 .

Clearly, Gk ≥ ĝ and Gk is k-Lipschitz. Moreover, taking k large enough, it follows

from the linear growth and upper-semicontinuity assumptions on ĝ, see Hg, that, for
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all (t, x) ∈ [0, T ] × (0,∞)d, the maximum is attained in the above definition by some

(tk(t, x), xk(t, x)). In particular,

Gk(t, x) = ĝ(tk(t, x), xk(t, x))− k (|tk(t, x)− t|+ |xk(t, x)− x|) ≥ ĝ(t, x) .

Using the linear growth of ĝ again, we deduce that (tk(t, x), xk(t, x)) → (t, x) as k →∞
after possibly passing to a subsequence. Since ĝ is upper-semicontinuous, this also

implies that

ĝ(T, x0) ≥ lim sup
k→∞

ĝ(tk(T, x0), xk(T, x0)) ≥ lim sup
k→∞

Gk(T, x0) ≥ ĝ(T, x0) .

We can then choose kε such that |Gkε(T, x0)− ĝ(T, x0)| ≤ ε and set Ψε := Gkε . 2

6.3 Characterization of v∗ as the smallest supersolution

In this section, we prove that v = v∗ on D and that v∗ is the smallest supersolution of

(3.8).

To this end, we introduce a sequence of approximating control problems as follows. For

all η ≥ 1, we define K̃η as the set of elements ρ ∈ K̃ such that |ρ| ≤ η and K̃η as the

set of elements ϑ ∈ K̃ that take values in K̃η. We then define on D̄∗

wη(t, x) = sup
ϑ∈K̃η

Eϑ
[
Eϑ

τ g
(
τt,x , Xt,x(τt,x)

)]
. (6.12)

It is clear that wη is a non-decreasing sequence and it follows directly from Theorem

2.1 and the definition of K̃ that

lim
η→∞

↑ wη(t, x) = v(t, x) for all (t, x) ∈ D̄∗ . (6.13)

For η ≥ 1, let us introduce the operator Gη defined for smooth functions by

Gηϕ(t, x) := min
ρ∈K̃η

{−Lϕ(t, x) + δ(ρ)ϕ(t, x)− ρ′diag [x] Dϕ(t, x)} .

Proposition 6.8 Let the conditions Hg-HO hold. Then, for all η ≥ 1, w∗
η is a viscosity

subsolution on D of

Gηϕ(t0, x0) = 0 . (6.14)

Moreover, w∗
η ≤ ĝ on ∂xD

∗ ∪ ∂T D∗.
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Proof. The proof is standard. Set ϕ ∈ C2(D) and let (t0, x0) be a strict global

maximizer of w∗
η − ϕ on D̄∗ such that (w∗

η − ϕ)(t0, x0) = 0.

1. If (t0, x0) ∈ D then the result follows from the same arguments as in the proof of

Proposition 6.5.

2. Arguing as in Proposition 6.5 again, we deduce that

min
{
w∗

η(t0, x0)− ĝ(t0, x0) , Gηϕ(t0, x0)
}

≤ 0 ,

if (t0, x0) ∈ ∂xD
∗. The required result is then obtained by arguing as in 2. of the proof

of Proposition 6.6.

3. Since w∗
η ≤ v∗, the inequality w∗

η(T, ·) ≤ ĝ(T, ·) follows from Proposition 6.7. 2

Proposition 6.9 Assume that Hg hold. Let u (resp. w) be a viscosity subsolution

(resp. supersolution) of (6.14) on D satisfying the growth condition (3.10). If u ≤ w

on ∂xD
∗ ∪ ∂T D∗, then u ≤ w on D̄∗.

Proof. 1. Given κ > 0, we set ũ(t, x) = eκtu(t, x) and w̃(t, x) = eκtw(t, x) so that ũ

and ṽ are respectively sub- and supersolutions of

G̃ηϕ(t, x) := min
ρ∈K̃η

{(κ + δ(ρ))ϕ(t, x)− Lρϕ(t, x)} = 0 ,

where for ρ ∈ K̃

Lρϕ(t, x) := Lϕ(t, x) + ρ′diag [x] Dϕ(t, x) .

Recall the definition of γ̄ in Hg and set

γ = 2γ̄ ∈ Rd
+ , γ̃ = (2, . . . , 2) ∈ (0,∞)d . (6.15)

Define on D̄∗

β(t, x) := eτ(T−t)
(
1 + xγ + xγ̃

)
Observing that

∂

∂t
β(t, x) = −τβ(t, x) , diag [x] Dβ(t, x) = eτ(T−t)

(
xγγ + xγ̃ γ̃

)
Tr
[
a(t, x)D2β(t, x)

]
= eτ(T−t)

(
xγTr [σσ′(t, x)M ] + xγ̃Tr

[
σσ′(t, x)M̃

])
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with M := [γi(γi − 1)1i=j + γiγj1i6=j]ij and M̃ defined similarly, it follows from (i) of

(2.2) and the compactness of K̃η that we can find τ > 0 such that

G̃ηβ(t, x) ≥ 0 on D̄∗ . (6.16)

2. We now argue by contradiction and assume that

sup
D̄∗

(ũ− w̃) > 0 .

2.1. In view of the growth condition on ũ, w̃ and (6.15), we then have

0 < 2m := sup
D̄∗

(ũ− w̃ − 2αβ) < ∞ (6.17)

for α > 0 small enough. For x ∈ D̄∗, set

f(x) =
d∑

i=1

(xi)−2 . (6.18)

Combining the growth condition on ũ, w̃ with (6.15) and the definition of f implies

that, for each ε > 0, the upper-semicontinuous function

Φε := ũ− w̃ − 2(αβ + εf)

admits a maximum (tε, xε) on D̄∗. By (6.17), we can choose ε small enough so that

Φε(tε, xε) ≥ m > 0 . (6.19)

Let (tε0, x
ε
0) be a sequence in D such that Φε(tε0, x

ε
0) → 2m. By (6.17) and definition of

(tε, xε), we have

lim inf
ε→0

(2m− 2εf(xε)) ≥ lim inf
ε→0

(ũ− w̃ − 2(αβ + εf))(tε, xε)

≥ lim
ε→0

(ũ− w̃ − 2(αβ + εf))(tε0, x
ε
0)

= 2m .

This shows that

lim sup
ε→0

εf(xε) = lim sup
ε→0

ε

d∑
i=1

(xi
ε)
−2 = 0 ,
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which, by (i) of (2.2) and the compactness of K̃η, implies

lim sup
ε→0

sup
ρ∈K̃η

ε (|f(xε)|+ |Lρf(xε)|) = 0 . (6.20)

2.2. For (t, x) ∈ [0, T ]× Rd, set Gε(t, x) = |t− tε|4 + |x− xε|4. Given n > 0, it follows

from similar arguments as above that the map

Φε
n(t, x, y) := ũ(t, x)− w̃(t, y)− n

2
|x− y|2 − α (β(t, x) + β(t, y))

− ε (f(x) + f(y) + Gε(t, x)) ,

also admits a maximum point (tεn, x
ε
n, y

ε
n) ∈ D̄∗ which necessarily satisfies

Φε
n(tεn, x

ε
n, y

ε
n) ≥ Φε

n(tε, xε, xε) = Φε(tε, xε) ≥ m > 0 . (6.21)

Using the growth assumption on u and w, (6.15) and the definition of f again, one

easily checks that this implies that the sequence (tεn, x
ε
n, y

ε
n)n is bounded and therefore

converges, after possibly passing to a subsequence. Moreover, (6.21) implies that n|xε
n−

yε
n|2 +εf(xε

n) is bounded. Thus, there is (t̄ε, x̄ε) ∈ D̄∗ such that (tεn, x
ε
n, y

ε
n) → (t̄ε, x̄ε, x̄ε)

and, by definition of (tε, xε) and (6.21), we must have

Φε(tε, xε) ≥ Φε(t̄ε, x̄ε)

≥ lim sup
n→∞

(
Φε(t̄ε, x̄ε)−

n

2
|xε

n − yε
n|2 − εGε(tεn, x

ε
n)
)

≥ Φε(tε, xε) .

This shows that, up to a subsequence,

(tεn, x
ε
n) → (tε, xε) ∈ D̄∗ , Φε

n(tεn, x
ε
n, y

ε
n) → Φε(tε, xε) and n|xε

n − yε
n|2 → 0 (6.22)

as n →∞.

3. Since the upper-semicontinuous function u − w is non-positive on ∂xD
∗ ∪ ∂T D∗,

it follows from (6.19) that (tε, xε) ∈ D and that we may assume that (tεn, x
ε
n, y

ε
n) ∈

[0, T )×O2 for each n > 0. Using Ishii’s Lemma and following standard arguments, see

Theorem 8.3 and the discussion after Theorem 3.2 in [4], we deduce from the viscosity

property of ũ and w̃ that for some ρ̂ε
n in the compact set K̃η

0 ≤ (κ + δ(ρ̂ε
n))(w̃(tεn, y

ε
n)− ũ(tεn, x

ε
n)) +

1

2
Tr [a(tεn, x

ε
n)Aε

n − a(tεn, y
ε
n)Bε

n]

+ (ρ̂ε
n)′diag [xε

n − yε
n] qε

n +
{
Lρ̂ε

n(αβ + ε[f + Gε])(tεn, x
ε
n) + Lρ̂ε

n(αβ + εf)(tεn, y
ε
n)
}
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where

qε
n := n(xε

n − yε
n) (6.23)

and Aε
n, Bε

n are two symmetric matrices satisfying

−3n

(
Id 0

0 Id

)
≤

(
Aε

n 0

0 −Bε
n

)
≤ 3n

(
Id −Id

−Id Id

)
. (6.24)

Using (6.16), (6.21), (6.22), (6.23), (6.24) and (i) of (2.2), we then deduce that

0 ≤ −m(κ + δ(ρ̂ε
n)) + C n|xε

n − yε
n|2 − ε(κ + δ(ρ̂ε

n)) {(f + Gε)(tεn, x
ε
n) + f(yε

n)}

+ ε
{
Lρ̂ε

n(f + Gε)(tεn, x
ε
n) + Lρ̂ε

nf(yε
n)
}

for some C > 0 independent of n. Sending n to ∞, it follows from the compactness of

K̃η and (6.22) that

0 ≤ −m(κ + δ(ρ̂ε)) + 2ε
{
Lρ̂ε

f(xε)− (κ + δ(ρ̂ε))f(xε)
}

for some ρ̂ε ∈ K̃η. Sending ε to 0 and using (6.20) finally leads to a contradiction since

κ,m > 0 and δ ≥ 0 by (2.9). 2

We now conclude the proof of Theorem 3.1.

Proof of (ii) and (iii) of Theorem 3.1. Observe that a supersolution u of Bdϕ = 0

on D̄∗ is also a supersolution of (6.14) on D, and, by Proposition 6.8, satisfies u ≥ wη

on ∂xD
∗ ∪ ∂T D∗ for all η ≥ 1. In view of Proposition 6.9 and (6.13), it follows that

u ≥ limη→∞ ↑ wη = v on D whenever u satisfies (3.10). In particular, since v∗ is a

supersolution of (3.8) satisfying (3.10), see Proposition 3.1, we have v∗ ≥ v so that

v∗ = v ≤ u on D and v∗ ≤ u∗ on D̄∗. 2

7 A uniqueness result

We now proceed with the proof of Theorem 3.2. It is an immediate consequence of

Proposition 3.1, Theorem 3.1 and the following comparison result.

Theorem 7.1 Assume that the conditions of Theorem 3.2 hold. Let u be an upper-

semicontinuous viscosity subsolution of Bϕ = 0 on D̄∗. Assume furthermore that u

satisfies the growth condition (3.10). Then, u ≤ v∗ on D̄∗.
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Remark 7.1 1. It will be clear from the proof that the above Theorem can be stated

as follows. Let u and w be respectively sub- and supersolution of Bϕ = 0 and Bdϕ = 0

on D ∪ ∂xD
∗ satisfying the growth condition (3.10). Assume further that w satisfies

C: ∀ (t, x) ∈ D ∪ ∂xD
∗ and ρ ∈ K̃1(x, Ō), ∃ λ0 > 0 s.t. λ ∈ [0, λ0] 7→ w(t, xeλρ)e−λδ(ρ)

is non-increasing.

Then, u ≤ w on ∂T D∗ implies u ≤ w on D̄∗.

2. One can actually show that any supersolution of Hdϕ = 0 satisfies the condition C.

Since it is not useful for our main result, we do not provide the proof which is rather

long.

3. Combining the above assertions provides a general comparison result for super- and

subsolutions of, respectively, Bdϕ = 0 and Bϕ = 0 on D ∪ ∂xD
∗.

In order to prove Theorem 7.1, we need the following intermediate Lemma.

Lemma 7.1 Assume that HO holds. Fix x0 ∈ ∂O∗. If ρ ∈ K̃1 satisfies

Dd(x0)
′
diag [x0] ρ > 0 ,

then there exists some positive parameters r0 and λ0 such that xeλ ρ ∈ O for all x ∈
B(x0, r0) ∩ Ō and λ ∈ (0, λ0).

Proof. Recall from HO that the function d is C2 on a neighbourhood of x0. Thus,

Dd(x0)
′
diag [x0] ρ > 0 implies that for some δ0, r0 > 0

Dd(x̄)
′
diag [x] ρ ≥ δ0 for all x̄, x ∈ B(x0, r0) . (7.1)

Given that xeλρ − x = λdiag [x] ρ + o(λ), we can fix some λ0 > 0 such that, for all

x ∈ B(x0, r0/2) and λ ∈ (0, λ0)

[x, xeλρ] ⊂ B(x0, r0) and |xeλρ − x− λdiag [x] ρ| < λδ0/2

1 + max
x∈B̄(x0,r0)

|Dd(x)|
. (7.2)

Let x be in B(x0, r0/2) ∩ Ō, so that d(x) ≥ 0. Since d is C1, for each λ ∈ (0, λ0) there

exists x̄ ∈ [x, xeλ ρ] ⊂ B(x0, r0) such that

d(xeλ ρ) = d(x) + Dd(x̄)′
(
xeλ ρ − x

)
= d(x) + λDd(x̄)′diag [x] ρ + Dd(x̄)′

[
xeλ ρ − x− λdiag [x] ρ

]
≥ d(x) + λ

δ0

2
> 0 ,
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where the last inequality follows from (7.1) and (7.2). This shows that xeλ ρ ∈ O. 2

Proof of Theorem 7.1: In order to avoid too many complications, we make the proof

under the assumption

H′′ : (i) ∃ % > 1 s.t. %γ̄ ∈ K ∩ (0,∞)d,

(ii) 0 ∈ int(K),

(iii) ∀ x ∈ ∂O∗ ∃ ρ ∈ K̃1 s.t. Dd(x)
′
diag [x] ρ > 0 ,

in place of H′. We shall explain in the last step how to adapt this proof when Ō is

bounded but (i) of H′′ does not hold, or 0 /∈ int(K) but Ō ∩ ∂Rd
+ = ∅ and int(K) 6= ∅.

1. Given some positive parameter κ, we introduce the functions ũ(t, x) := eκtu(t, x),

ṽ(t, x) := eκtv∗(t, x) and g̃(t, x) := eκtĝ(t, x). One easily checks that the function ũ

(resp. ṽ) is a viscosity subsolution (resp. supersolution) of B̃ϕ = 0 (resp. B̃dϕ = 0),

where for a smooth function ϕ

B̃ϕ =


min

{
L̃ϕ , Hϕ

}
on D

min {ϕ− g̃ , Hϕ} on ∂xD
∗

ϕ− g̃ on ∂T D∗

B̃dϕ =

{
B̃ϕ on D ∪ ∂T D∗

min {ϕ− g̃ , Hdϕ} on ∂xD
∗

and

L̃ϕ := κϕ− Lϕ .

Let % ∈ R be as in H′′, i.e.

γ := %γ̄ ∈ K ∩ (0,∞)d and % > 1 . (7.3)

Since 0 ∈ int(K) by H′′, it follows from (2.9) and Remark 2.4 that the map defined by

β(t, x) = eτ(T−t) (1 + xγ) on D̄∗ satisfies

H (β(t, x), diag [x] Dβ(t, x)) ≥ cK > 0 for all (t, x) ∈ D̄∗ . (7.4)

Moreover, by the same computations as in the proof of Proposition 6.9, one easily checks

that we can choose τ large enough so that

L̃β ≥ 0 on D̄∗ . (7.5)
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2. We argue by contradiction. We assume that

sup
D̄∗

(u− v∗) > 0

and work towards a contradiction.

2.1. In this step, we follow the same construction as in the proof of Proposition 6.9.

By the growth condition on ũ, ṽ and (7.3), we deduce that

0 < 2m := sup
D̄∗

(ũ− ṽ − 2αβ) < ∞ (7.6)

for α > 0 small enough. Fix ε > 0 and let f be defined as in (6.18). Arguing as in the

proof of Proposition 6.9, we obtain that

Φε := ũ− ṽ − 2(αβ + εf)

admits a maximum (tε, xε) on D̄∗, which, for ε > 0 small enough, satisfies

Φε(tε, xε) ≥ m > 0 . (7.7)

Moreover, using the same arguments as in 2.1 of the proof of Proposition 6.9, we obtain

that

lim sup
ε→0

sup
ρ∈K̃1

ε (|f(xε)|+ |diag [xε] Df(xε)|+ |Lf(xε)|) = 0 . (7.8)

Finally, since β, f ≥ 0 and v∗(T, ·) ≥ u(T, ·), (7.7) implies that tε < T , i.e.

(tε, xε) ∈ [0, T )× Ō∗ . (7.9)

2.2. In the following, we fix ρε ∈ K̃1 such that

ρε := 0 if xε ∈ O
Dd(xε)

′
diag [xε] ρε > 0 if xε ∈ ∂O∗ ,

(7.10)

see (iii) of H′′. By Lemma 7.1 and (3.11), we can fix rε, λε > 0, such that

xeλ ρε ∈ O and e−λδ(ρε)ṽ(t, xeλρε) ≤ ṽ(t, x) (7.11)

for all t ∈ (tε − rε, tε + rε) ∩ [0, T ), x ∈ Bε := B(xε, rε) ∩ Ō and λ ∈ (0, λε) .
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For n ≥ 1 and ζ ∈ (0, 1), we then define the function Ψε
n,ζ on [0, T ]× (Ō∗)2 by

Ψε
n,ζ(t, x, y) := Θ(t, x, y)− ε(f(x) + f(y))− ζ(|x− xε|2 + |t− tε|2)− n2|xe

ζ
n

ρε − y|2 ,

where

Θ(t, x, y) := ũ(t, x)− ṽ(t, y)− α (β(t, x) + β(t, y)) .

It follows from (7.3) and the growth condition (3.10) satisfied by ṽ and ũ that Ψε
n,ζ

attains its maximum at some (tεn, xε
n, yε

n) ∈ [0, T ]×(Ō∗)2. The inequality Ψε
n,ζ(t

ε
n, x

ε
n, y

ε
n)

≥ Ψε
n,ζ(tε, xε, xεe

ζ
n

ρε) implies that

Θ(tεn, x
ε
n, y

ε
n) ≥ Θ(tε, xε, xεe

ζ
n

ρε)− ε
(
f(xε) + f(xεe

ζ
n

ρε)
)

+ n2|xε
ne

ζ
n

ρε − yε
n|2 + ζ

(
|xε

n − xε|2 + |tεn − tε|2
)

+ ε (f(xε
n) + f(yε

n)) ,

which combined with the growth condition (3.10) and (7.3) shows that n2|xε
ne

ζ
n

ρε −
yε

n|2 + f(xε
n) is bounded in n so that, up to a subsequence,

(i) xε
ne

ζ
n

ρε , xε
n, y

ε
n −−−→

n→∞
x̄ε ∈ Ō∗ and tεn −−−→

n→∞
t̄ε ∈ [0, T ] .

Let n be large enough so that ζ
n

< λε. Recall from (7.11) that this implies that

ṽ(tε, xεe
ζ
n

ρε) ≤ ṽ(tε, xε)e
ζ
n

δ(ρε), which combined with the previous inequality yields

Θ(tεn, x
ε
n, y

ε
n) ≥ ũ(tε, xε)− ṽ(tε, xε)e

ζ
n

δ(ρε) − α
(
β(tε, xε) + β(tε, xεe

ζ
n

ρε)
)

− ε
(
f(xε) + f(xεe

ζ
n

ρε)
)

+ n2|xε
ne

ζ
n

ρε − yε
n|2 + ζ

(
|xε

n − xε|2 + |tεn − tε|2
)

+ ε (f(xε
n) + f(yε

n)) .

Sending n →∞ and using the maximum property of (tε, xε), we get

0 ≥ Φε(t̄ε, x̄ε)− Φε(tε, xε)

≥ lim sup
n→∞

(
n2|xε

ne
ζ
n

ρε − yε
n|2 + ζ

(
|xε

n − xε|2 + |tεn − tε|2
))

.

Recalling (7.7) and (7.9), this shows that

(ii) n2|xε
ne

ζ
n

ρε − yε
n|2 + ζ

(
|xε

n − xε|2 + |tεn − tε|2
)
−−−→
n→∞

0 ,

(iii) ũ(tεn, x
ε
n)− ṽ(tεn, y

ε
n) −−−→

n→∞
(ũ− ṽ) (tε, xε) ≥ m + 2αβ(tε, xε) + 2εf(xε) ,

(iv) (tεn, x
ε
n) ∈ [0, T )× Ō∗ for n large enough.
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3. From Theorem 8.3 in [4], we deduce that, for each η > 0, there are real coefficients

bε
1,n, bε

2,n and symmetric matrices X ε,η
n and Yε,η

n such that(
bε
1,n, p

ε
n,X ε,η

n

)
∈ P̄+

Ō ũ(tεn, x
ε
n) and

(
−bε

2,n, q
ε
n,Yε,η

n

)
∈ P̄−Ō ṽ(tεn, y

ε
n) ,

see [4] for the standard notations P̄+
Ō and P̄−Ō , where

pε
n := 2n2(xε

ne
ζ
n

ρε − yε
n)e

ζ
n

ρε + 2ζ(xε
n − xε) + αDβ(tεn, x

ε
n) + εDf(xε

n)

qε
n := 2n2(xε

ne
ζ
n

ρε − yε
n)− αDβ(tεn, y

ε
n)− εDf(yε

n) ,

and bε
1,n, bε

2,n, X ε,η
n and Yε,η

n satisfy
bε
1,n + bε

2,n = 2ζ(tεn − tε)− ατ (β(tεn, x
ε
n) + β(tεn, y

ε
n))(

X ε,η
n 0

0 −Yε,η
n

)
≤ (Aε

n + Bε
n) + η(Aε

n + Bε
n)2

(7.12)

with

Aε
n :=

(
2n2 diag[e2 ζ

n
ρε ] + 2ζId −2n2 diag[e

ζ
n

ρε ]

−2n2 diag[e
ζ
n

ρε ] 2n2Id

)

Bε
n :=

(
αD2β(tεn, x

ε
n) + εD2f(xε

n) 0

0 αD2β(tεn, y
ε
n) + εD2f(yε

n)

)
.

3.1. We now show that, up to a subsequence,

yε
n ∈ O . (7.13)

In view of (ii), this is clearly true when xε ∈ O. In the case xε ∈ ∂O, we deduce from

(ii) that

yε
n = xε

ne
ζ
n

ρε + o(n−1) = xε
n +

ζ

n
diag [xε

n] ρε + o(n−1) .

This implies that, for some εn → 0,

d(yε
n) = d(xε

n) +
ζ

n
(Dd(xε

n)′diag [xε
n] ρε + εn) ,

so that (7.13) is a consequence of (7.10), the continuity of Dd and (ii).

3.2. In this step, we show that there is a subsequence of (tεn, x
ε
n, y

ε
n) such that

xε
n ∈ O and κũ(tεn, x

ε
n)− bε

1,n − 1
2
Tr [a(tεn, x

ε
n)X ε,η

n ] ≤ 0 . (7.14)
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First observe that we can not have xε
n ∈ ∂O∗ and ũ(tεn, x

ε
n) ≤ g̃(tεn, x

ε
n) for all n. In view

of (ii), this is obvious if xε ∈ O. If xε ∈ ∂O∗, it follows from (7.9) and the viscosity

property of ṽ that ṽ(tε, xε) ≥ g̃(tε, xε). Since g̃ is upper-semicontinuous, see Hg, this

would imply that ũ(tεn, x
ε
n) ≤ ṽ(tεn, y

ε
n) + m/2 for n large enough, see (ii), thus leading

to a contradiction to (iii) since β, f ≥ 0. By (iv) and the viscosity subsolution property

of ũ, we then deduce that either (7.14) holds or

H (ũ(tεn, x
ε
n), diag [xε

n] pε
n) ≤ 0 . (7.15)

Thus, it remains to prove that the above inequality leads to a contradiction. Using the

supersolution property of ṽ, (7.13), (ii)-(iii) and (2.9), we observe that (7.15) implies

0 ≥ H (ũ(tεn, x
ε
n), diag [xε

n] pε
n)−H (ṽ(tεn, y

ε
n), diag [yε

n] qε
n)

≥ α {H (β(tεn, x
ε
n), diag [xε

n] Dβ(tεn, x
ε
n)) + H (β(tεn, y

ε
n), diag [yε

n] Dβ(tεn, y
ε
n))}

+ ε {H (f(xε
n), diag [xε

n] Df(xε
n)) + H (f(yε

n), diag [yε
n] Df(yε

n))}

+ inf
ρ∈K̃1

δ(ρ) [Θ(tεn, x
ε
n, y

ε
n)− ε (f(xε

n) + f(yε
n))]

− sup
ρ∈K̃1

[
2n2ρ′diag

[
xε

ne
ζ
n

ρε − yε
n

] (
xε

ne
ζ
n

ρε − yε
n

)
+ 2ζρ′diag [xε

n] (xε
n − xε)

]
≥ inf

ρ∈K̃1

δ(ρ)(m/2) + 2αH(β(tε, xε), diag [xε] Dβ(tε, xε))

+ εn + ε {H (f(xε), diag [xε] Df(xε)) + H (f(yε), diag [yε] Df(yε))}

where εn → 0 when n → ∞, but depend on ε. Recalling (7.4) and (7.8), we get a

contradiction for ε small and n large enough. This concludes the proof of (7.14).

3.3. We can now provide the required contradiction and conclude the proof. Let σ̃ be

defined on D̄ by σ̃(t, x) = diag [x] σ(t, x). By the viscosity supersolution property of ṽ,

(7.13), (7.14) and (7.12), (tεn, x
ε
n, y

ε
n) must satisfy

κ (ũ(tεn, x
ε
n)− ṽ(tεn, y

ε
n)) ≤ bε

1,n + bε
2,n +

1

2
Tr [a(tεn, x

ε
n)X ε,η

n − a(tεn, y
ε
n)Yε,η

n ]

≤ 2ζ(tεn − tε)− ατ (β(tεn, x
ε
n) + β(tεn, y

ε
n))

+
1

2
Tr
[
Ξ(tεn, x

ε
n, y

ε
n)
(
Aε

n + Bε
n + η(Aε

n + Bε
n)2
)]

where

Ξ(tεn, x
ε
n, y

ε
n) :=

(
σ̃(tεn, x

ε
n)σ̃′(tεn, x

ε
n) σ̃(tεn, y

ε
n)σ̃′(tεn, x

ε
n)

σ̃(tεn, x
ε
n)σ̃′(tεn, y

ε
n) σ̃(tεn, y

ε
n)σ̃′(tεn, y

ε
n)

)
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is a non-negative symmetric matrix. Using (ii)-(iii), (7.5) and (7.8), it follows that for

ε small and n large enough

κ m/2 ≤ κ (ũ(tεn, x
ε
n)− ṽ(tεn, y

ε
n)− (αβ + εf)(tεn, x

ε
n)− (αβ + εf)(tεn, y

ε
n))

≤ 2ζ(tεn − tε) +
1

2
Tr
[
Ξ(tεn, x

ε
n, y

ε
n)
(
Aε

n + η(Aε
n + Bε

n)2
)]

+ θ(ε, n)

where θ(ε, n) is independent of (η, ζ) and satisfies

lim sup
ε→0

lim sup
n→∞

|θ(ε, n)| = 0 . (7.16)

Sending η → 0 in the previous inequality provides

κ m/2 ≤ 2ζ(tεn − tε) +
1

2
Tr [Ξ(tεn, x

ε
n, y

ε
n)Aε

n] + θ(ε, n) ,

so that

κ m/2 ≤ 2ζ(tεn − tε) + ζTr [σ̃(tεn, x
ε
n)σ̃′(tεn, x

ε
n)]

+ n2
∣∣∣diag

[
xε

ne
ζ
n

ρε

]
σ(tεn, x

ε
n)− diag [yε

n] σ(tεn, y
ε
n)
∣∣∣2 + θ(ε, n) .

Using (2.2), we now observe that∣∣∣diag
[
xε

ne
ζ
n

ρε

] (
σ(tεn, x

ε
ne

ζ
n

ρε)− σ(tεn, x
ε
n)
)∣∣∣

≤
∣∣∣diag

[
xε

ne
ζ
n

ρε

]
σ(tεn, x

ε
ne

ζ
n

ρε)− diag [xε
n] σ(tεn, x

ε
n)
∣∣∣+ ∣∣∣diag

[
xε

ne
ζ
n

ρε − xε
n

]
σ(tεn, x

ε
n)
∣∣∣

≤ Cε

∣∣∣xε
ne

ζ
n

ρε − xε
n

∣∣∣
≤ ζCε n−1 ,

and ∣∣∣diag
[
xε

ne
ζ
n

ρε

]
σ(tεn, x

ε
ne

ζ
n

ρε)− diag [yε
n] σ(tεn, y

ε
n)
∣∣∣2 ≤ Cε

∣∣∣xε
ne

ζ
n

ρε − yε
n

∣∣∣2
where Cε > 0 denotes a generic constant independent of n and ζ. Plugging this in the

previous inequality implies that there is some Cε > 0 independent of n and ζ for which

κ m/2 ≤ 2ζ(tεn − tε) + ζTr [σ̃′(tεn, x
ε
n)σ̃(tεn, x

ε
n)] + Cε

(
ζ + n2|xε

ne
ζ
n

ρε − yε
n|2
)

+ θ(ε, n) .

Finally, using (ii) and sending n to ∞ and then ζ to 0 in the last inequality implies

κ m/2 ≤ lim sup
n→∞

θ(ε, n) ,
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which by (7.16) provides the required contradiction and concludes the proof.

4. We now explain how to adapt this proof to the alternative assumptions of H′.

4.1. Observe that the penalty function β is introduced in order to obtain a finite

supremum for ũ−ṽ−2αβ and existence of an optimum for Φε and Ψε
n,ζ . If Ō is bounded,

the introduction of such a penalty function is not required and we can reproduce the

same proof with β ≡ 0 whenever 0 ∈ int(K). Indeed, by Remark 2.4, infρ∈K̃1
δ(ρ) > 0

so that we still obtain a contradiction at the end of 3.2. The arguments of 3.3 also work

with β ≡ 0. The case where 0 /∈ int(K) is discussed below.

4.2. Similarly, the map f is introduced only to prevent the different maxima to take

values outside Ō∗. If Ō ∩ ∂Rd
+ = ∅, this penalty function is useless and can be fixed

to f ≡ 0. In this case, one can also fix some γ ∈ int(K), if non-empty, and add

the term eτ(T−t)xγ in the definition of β. Thus, β becomes eτ(T−t) (1 + xγ + xγ) or

eτ(T−t) (1 + xγ) depending whether Ō is bounded or not, see 4.1. For fixed ε > 0, we

deduce from Remark 2.4 and the fact that γ ∈ int(K) that H(β(t, x), diag [x] Dβ(t, x))

> 0. Since f = 0, there is no ε to send to 0 at the end of 3.2 and 3.3, and we obtain

the same contradictions by simply sending n to ∞ and ζ to 0.

2
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