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Abstract

The utility maximisation problem is considered for investors with
anticipative additional information. We distinguish between models
with conditional measures and models with enlarged filtrations. The
dual functions of the maximal expected utility are determined with
the help of f -divergences. We assume that our measures are absolutely
continuous with respect to a local martingale measure (LMM), but not
necessarily equivalent. Thus we do not exclude arbitrage.

2000 AMS subject classifications: primary 21B28, 91B16; secondary
60H30, 94A17.
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1 Introduction

In this paper we consider the utility maximisation problem for investors
on financial markets who have some anticipative knowledge. These are in-
vestors who have some information which is relevant for the future price
development, but which is not official and can not be obtained by observing
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the price process or by reading the newspaper. Think, for example, of an
investor knowing that a big trader is trying to keep the price of a certain
asset below a fixed level during the next two weeks. More generally, suppose
an investor knows that an event A will occur. In this case, he perceives the
price process under a conditional measure P (·|A), where P is the original
measure.

A different situation is given if an investor thinks about consulting an
expert who has some knowlegde being of relevance for the financial market.
For simplicity, suppose that the expert knows whether the event A will hap-
pen or not, and assume that this information would cost p > 0. In order to
decide whether the investor should buy the information, we have to deter-
mine his additional expected utility before he gets the expert’s information.
This can be done by enlarging the set of his strategies: We allow him not
only to use (Ft) adapted strategies, but also strategies which are adapted to
the enlarged filtration (Ft ∨ {A,Ac}). Summarising, we can distinguish two
cases:

1. The investor knows that the event A will certainly happen. In this
case he perceives the price process from the conditional measure P (·|A).

2. The investor will know whether A will happen or not. His information
flow is represented by the enlarged filtration (Ft ∨ σ{A,Ac}).

The first case describes the situation after the investor got the extra
information, and the second case before he gets the additional information.
In the second case the measure will switch either to P (·|A) or P (·|Ac). Let
uA(x) and uAc(x) be the maximal expected utility under P conditioned
on A and Ac respectively. By taking the average we obtain the expected
utility in the second case, namely P (A)uA(x) + P (Ac)uAc(x). Thus initial
enlargements of filtrations can be reduced to maximising the utility relative
to conditional measures.

In order to solve the classical utility maximisation problem researchers
have applied convex duality methods. We choose as a starting point the
work by Kramkov and Schachermayer, [15] and [16], where the duality is
anlaysed in the framework of the semimartingale model. Moreover, they
represent the convex conjugate function of the maximal expected utility
with the help of the equivalent local martingale measures (ELMM) of the
underlying asset prices.

What about the utility maximisation problem under additional informa-
tion? There exist solutions for enlarged filtrations. The first are [8] and [18].
Since then, their work was generalised by many authors. Just to mention a
few, see [2], [1], [13] [12]. Most of these papers consider initial enlargements.
Non-initial enlargements have been considered recently in [7], [5] and [4].
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Baudoin introduced the concept of weak information (see [6]). In his
model, the investors know in advance the distribution µ of a random variable
G. The maximal expected utility has then to be maximised with respect to
the whole set of equivalent measures under which the conditional distribution
of G is given by µ. As a consequence, weak information leads to market
uncertainty. In our case, however, we have certainty about the measure.

So far, most approaches assume that under the new information the
market is still free of arbitrage, and hence, that there exist ELMMs. Thus,
the maximisation problem can be solved with the classical methods. In
this paper we will only assume that the conditional measures are absolutely
continuous relative to P , i.e. P (·|A) � P . As a consequence, ELMMs do
not exist. However, the conditional measures are absolutely continuous with
respect to a LMM. This is, as we will see, sufficient for deriving formulas of
the dual function similar to the classical representations.

2 The model: starting from complete markets

Let (Ω,F , (Ft), P ) be a filtered probability space, where (Ft) is a filtration
satisfying the usual conditions. Let S be a continuous price process starting
in zero and being a (Ft)-semimartingale with decomposition S = M + α ·
〈M,M〉. We assume the market to be complete. I.e. there exists a unique
measure Q such that S is a local martingale relative to (Ft) and Q.

We denote by A(F) the set of all (Ft)-predictable processes θ which
satisfy θ0 = 0 and which are integrable with respect to S and (Ft) in the
usual sense (see Protter [19]). The elements of A(F) will be called strategies.
Moreover, a strategy is called a-admissible if the stochastic integral process
satisfies (θ ·S)t ≥ −a, for all t ≥ 0. We fix a time horizon T > 0 and aim at
maximising the utility of the wealth at time T . Given a utility function U ,
the maximal expected utility is defined by

uF (x) = sup{EU(x+ (θ · S)T ) : θ ∈ A(F) is x− admissible}.

We restrict the class of utility functions in order to simplify our analysis:
let U be strictly increasing, strictly concave and continuously differentiable
on (0,∞). Furthermore we assume that U satisfies the Inada conditions

lim
x↓0

U ′(x) = ∞ and lim
x→∞

U ′(x) = 0. (1)

Moreover let
V (y) = sup

x>0
[U(x)− xy] , y ∈ R,
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be the convex conjugate function of −U(−x). Due to (1), V is the Legendre
conjugate, i.e. V (y) = U((U ′)−1(y)) + y (U ′)−1(y), y > 0. It can be shown
that V is a continuously differentiable, decreasing and strictly convex func-
tion satisfying limy↓0 V

′(y) = −∞ and limy→∞ V ′(y) = 0. Furthermore, U
is the Legendre conjugate of V , i.e. U(x) = V ((V ′)−1(−x)) +x (V ′)−1(−x),
x > 0. In the sequel, any pair of functions satisfying the mentioned proper-
ties of (U, V ) will be called Legendre pair.

Note that also the function uF (x) is concave on (0,∞). We can therefore
again define the conjugate

vF (y) = sup
x>0

[
uF (x)− xy

]
, y ∈ R.

A sufficient and necessary condition for (uF , vF ) to be a Legendre pair was
given by Kramkov, Schachermayer in [16].

Theorem 2.1. (Theorem 1 and 2 in [16])
(uF , vF ) is a Legendre pair if and only if vF (y) <∞ for all y > 0. Moreover,

vF (y) = EV

(
y
dQ

dP

)
.

This theorem implies that the maximal expected utility depends on how
close the real measure P is to the risk neutral measure Q. Indeed, the value
EV

(
y dQ

dP

)
is a well-known distance between the two probability measures Q

and P , namely a so-called divergence. We now collect some basic definitions
we will need in the following.

Definition 2.2. Let µ and ν be probability measures on the measurable
space (Ω,F). Moreover, let f : (0,∞) → R be a convex function, f(0) =
limx↓0 f(x), and A a sub-σ-algebra of F . The f -divergence of µ relative to
ν on A is defined as

fA(µ‖ν) =

{ ∫
f
(

dµ
dν

∣∣∣
A

)
dν, if µ� ν on A and the integral exists,

∞, else.

If f(x) = x log x, then f(µ‖ν) coincides with the entropy of µ relative to
ν. Crucial for us will be the next definition.

Definition 2.3. The reverse function of the convex function f is defined by

f̂(x) = xf

(
1
x

)
, x ∈ (0,∞).

Again we set f̂(0) = limx↓∞ f̂(x).

4



Lemma 2.4. If f is strictly convex and differentiable on (0,∞), then also
the reverse function f̂ is strictly convex and differentiable on (0,∞). More-
over, if P ∼ Q, then

fA(P‖Q) = f̂A(Q‖P ).

Proof. For a proof of these properties see Lemma 1 in [10], or Theorem
1.13 in [17]. �

The conjugate function vF (y) in Thereom 2.1 is given as divergence with
respect to the convex function x 7→ V (yx). For simplicity we will use the
notation Vy(x) = V (yx), x ≥ 0. Thus

vF (y) = (Vy)FT
(Q‖P ) = (Vy )̂ FT

(P‖Q) . (2)

Finally, observe that the function Vy(x) is also convex in y, i.e. for all λ ∈
(0, 1), and x, y, z > 0 we have

Vλy+(1−λ)z(x) ≤ λVy(x) + (1− λ)Vz(x).

Conditional measures

Now let us consider the utility maximisation problem under conditional
measures. For this let A ∈ F and PA = P (·|A) = 1

P (A)P (· ∩ A). If the
conditional measure PA is equivalent to P , then we obtain the dual function
by replacing P with PA in equation (2). We will prove that if they are
not equivalent, then the dual function still can be written as the reverse
Vy-divergence of PA relative to Q.

Theorem 2.5. Let vA(y) = (Vy )̂ FT
(PA‖Q), y > 0. If vA(y) < ∞ for all

y > 0, then (uA, vA) is a Legendre pair.

Enlargement of filtrations

We will derive a similar result for an investor with information given by the
filtration

Gt =
⋂
s>t

Fs ∨ σ(G), t ≥ 0,

where G is an arbitrary random variable with values in a polish space Γ.
For this let π be a regular conditional probability of P with respect to σ(G).
Hence π(·, ω) is a probability measure and ω 7→ π(A,ω) is σ(G)-measurable
for all A ∈ F .

If (Vy )̂ (π(·, ω)‖Q) < ∞, y > 0, then this function is the conjugate of
the maximal expected utility uπ(ω) relative to π(·, ω). We will show that
there exists a σ(G)-measurable process Z such that Z(x) = uπ(ω)(x), a.s.
This allows us to derive a stochastic dual representation.
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Theorem 2.6. Let Y (y) = (Vy )̂ FT
(π(·, ω)‖Q), y > 0. If Y (y) < ∞, a.s,

then (Z, Y ) is a Legendre pair, a.s.

Note that Y (y) < ∞, a.s, implies that π(·, ω) � P , for almost all ω.
This is similar to a condition introduced by Jacod in [14]. It guarantees
that S remains a semimartingale with respect to (Gt).

3 Restricting complete markets

Let A ∈ F and denote by PA = P (·|A) = 1
P (A)P (· ∩ A) the conditional

measure on A. We suppose throughout this section that PA is absolutely
continuous with respect to P on FT , i.e. PA|FT

� P |FT
. Observe that we

do not assume that A belongs to F1.
Let Zt = 1

P (A)P (A|Ft), t ∈ [0, 1]. The Girsanov-Lenglart Theorem im-
plies that

Nt = Mt −
∫ t

0

1
Zu
d〈M,Z〉u

is a local martingale relative to PA. Note that 〈M,M〉 = 〈N,N〉, PA-a.s.
Moreover, there exists an (Ft)-predictable process β such that β · 〈M,M〉 =
1
Z · 〈M,Z〉. Therefore, the dynamcis of the price S under the measure PA is
given by

St = S0 +Nt +
∫ t

0
(αs + βs)d〈N,N〉s.

Surprisingly, if A ∈ FT and P (A) < 1, then there exists no LMM of S
which is equivalent to PA. Suppose that there exists a LMM R which is
equivalent to PA. Then the convex combination Rµ = µR + (1 − µ)Q is a
LMM equivalent to P . Moreover, since P (A) < 1, we have Rµ 6= Q. This,
however, is a contradiction to the completeness under P . One can even show
that there exists arbitrage under PA:

Theorem 3.1. If A is FT -measurable and P (A) < 1, then the market
admits arbitrage under PA.

Proof. Let c > 0, and f = 1A − c1Ac such that EP [f ] = 0. Due to
completeness, there exists a strategy θ such that (θ · S)T = f . Moreover,
(θ ·S)t = EQ[f |Ft] ≥ −c, which shows that θ is admissible. Note that under
PA, (θ · S)T = 1. Therefore θ is an arbitrage strategy relative to PA. �

We now aim at determining the maximal expected utility under the mea-
sure PA. For this let (FA

t ) the smallest filtration containing (Ft ∨σ{A,Ac})
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and all PA-null sets, and put

uA(x) = sup{EPA [(U(x+ (θ · S)T )] : θ (FA
t )-predictable,

x-adm. and S-integrable relative to PA}.

We start with the following observation.

Lemma 3.2. uA(x) is equal to the maximal expected utility where the supre-
mum is taken only over all (Ft)-predictable processes which are x-admissible
and integrable with respect to P . As a consequence, uA(x) < ∞ for all
x > 0.

Proof. We have to show that uA(x) is equal to

ũ(x) = sup{EPA [(U(x+ (θ · S)T )] : θ (Ft)-predictable,

x-adm. and S-integrable relative to P}.

Every strategy integrable relative to P is also integrable relative to PA (see
f.e. Theorem 25, Chapter IV in [19]), and therefore ũ(x) ≤ uA(x). For the
reverse inequality let Gt = Ft ∨ σ{A,Ac}. Denote by P(F) and P(G) the
predictable σ-fields with respect to (Ft) and (Gt) respectively. We show at
first

P(G) = {(∆ ∩ (A× R+)) ∪ (Γ ∩ (Ac × R+)) : ∆, Γ ∈ P(F)} . (3)

Note that the RHS is a σ-algebra which is contained in P(G). Moreover,
each set of the form (B ∩ A)×]s, t] or (B ∩ Ac)×]s, t], B ∈ Fs, belongs to
the RHS. Therefore, P(G) is a subset of the RHS, and hence equation (3)
holds.

A monotone class argument implies that every (Gt)-predictable process
may be written as a sum of the form 1Aζ + 1Acη, where ζ and η are (Ft)-
predictable. Now assume that θ is an x-admissible and bounded strategy. It
is straightforward to show, via stopping for example, that ζ and η may be
chosen to be bounded, x-admissible and hence S-integrable relative to P .

As a consequence, the maximal expected utility obtained by using (Gt)-
predictable strategies is equal to ũ(x) (here we also use the fact that ũ(x)
can be attained with bounded strategies). Since (FA

t ) is the filtration (Gt)
completed by the PA-null sets, the proof is complete. �

We define now
vA(y) = (Vy )̂ (PA‖Q) ,

and for the rest of the section we assume that vA(y) <∞ for all y > 0. We
have to show that (uA, vA) is a Legendre pair. We will deduce this from

7



Thereom 2.1. For this we approximate the measure PA with the measures
Pε = (1−ε)PA+εP , ε ∈ (0, 1). Observe that Pε is equivalent to P . Moreover,
the measure Q is the unique ELMM of S relative to Pε. Therefore, we may
apply the Thereom 2.1 to the maximal expected utility under Pε. By taking
limits we will obtain the result.

At first we define

uε(x) = sup{EPε [(U(x+ (θ · S)T )] : θ (Ft)-predictable,

x-adm. and S-integrable relative to P}

and show that uε(x) converges to uA(x).

Lemma 3.3. Let x > 0. Then

lim
ε↓0

uε(x) = uA(x).

Proof. Let θ be (Ft)-predictable, S-integrable and x-admissible relative
to P . Put XT = x + (θ · S)T and assume that U(XT ) is P -integrable.
Then on the one hand, limε↓0E

Pε [U(XT )] = EPA [U(XT )], and therefore
lim infε↓0 uε(x) ≥ uA(x) (see Lemma 3.2).

On the other hand, EPε [U(XT )] = εEP [U(XT )] + (1 − ε)EPA [U(XT )],
which implies

uε(x) ≤ ε u(x) + (1− ε)uA(x).

Consequently, lim supε↓0 uε(x) ≤ uA(x), and thus the result. �

Now let vε(y) be the conjugate function of uε(x). By Theorem 2.1 we
have

vε(y) = EPV

(
y
dPε

dQ

)
= (Vy )̂ FT

(Pε‖Q)

We will show that vε converges to vA as ε ↓ 0. But before, we need the
following.

Lemma 3.4. The function vA is decreasing, differentiable and strictly con-
vex on (0,∞). Moreover,

lim
y↓0

v′A(y) = −∞, lim
y→∞

v′A(y) = 0.

Proof. Our assumptions on U imply that V , and thus y 7→ (Vy )̂ (z) (with
z > 0), is strictly convex, decreasing and differentiable on (0,∞). Therefore,
also vA(y) is strictly convex and decreasing on (0,∞).

It is known that for any convex function the left and right derivatives ex-
ist on the interior of the domain. Thus vA(y) has a right derivative d

dy+vA(y)
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and a left derivative d
dy−vA(y) on (0,∞). Note that 1

h [(Vy )̂ − (Vy+h)̂ ] is in-

creasing to − d
dy (Vy )̂ as h ↓ 0. As a consequence, d

dy (Vy )̂
(

dPA
dQ

)
is in L1(Q).

Moreover

d

dy+
vA(y) =

∫
d

dy+
(Vy )̂

(
dPA

dQ

)
dQ =

∫
d

dy−
(Vy )̂

(
dPA

dQ

)
dQ

=
d

dy−
vA(y),

showing that vA is differentiable on (0,∞). Since limy↓0 V
′(y) = −∞, mono-

tone convergence implies limy↓0 v
′
A(y) = limy↓0

∫
d
dy (Vy )̂

(
dPA
dQ

)
dQ = −∞.

Finally, since limy→∞ V ′(y) = 0, we obtain with dominated convergence,

limy→∞ v′A(y) = limy→∞
∫

d
dy (Vy )̂

(
dPA
dQ

)
dQ = 0. �

We now prove the remaining properties needed for (uA, vA) to be a Leg-
endre pair.

Lemma 3.5. The function vA is the dual function of uA, i.e.

vA(y) = sup
x>0

[uA(x)− xy] , y > 0,

uA(x) = inf
y>0

[vA(v) + xy] , x > 0.

Moreover, uA is strictly concave and differentiable on (0,∞), and

lim
x↓0

u′A(x) = ∞, lim
x→∞

u′A(x) = 0.

As a consequence, (uA, vA) is a Legendre pair; and Theorem 2.5 is shown.

Proof. By Lemma A.2 there exists a non-negative and convex function
g such that all g-divergences coincide with the (Vy )̂ -divergences up to some
constant. To simplify notation, we assume that (Vy )̂ is already non-negative.
Therefore, since z 7→ (Vy )̂ (z) is convex (y > 0),

(Vy )̂
(
dPε

dQ

)
≤ (1− ε)(Vy )̂

(
dPA

dQ

)
+ ε(Vy )̂

(
dP

dQ

)
≤ (Vy )̂

(
dPA

dQ

)
+ (Vy )̂

(
dP

dQ

)
.

Now dominated convergence implies for all y > 0,

lim
ε↓0

vε(y) = lim
ε↓0

∫
(Vy )̂A

(
dPε

dQ

)
dQ = (Vy )̂A (PA‖Q) = vA(y).

It remains to show that the limit vA is indeed the conjugate function of uA.
By Theorem 2.1, the functions vε are differentiable and strictly convex on

9



(0,∞). Let wε and w denote the inverse function of the derivative of vε

and vA respectively. Convexity implies that on (0,∞) the derivatives of vε

converge pointwise to the derivative of vA (see Theorem 25.7 in [20]), and
hence

lim
ε↓0

wε(z) = w(z).

Since (uε, vε) is a Legendre pair,

uε(x) = vε(wε(−x)) + xwε(−x).

Moreover, vε converges uniformly on each closed bounded set of (0,∞) (see
Theorem 10.8 in [20]). By letting ε ↓ 0, we obtain with Lemma 3.3

uA(x) = vA(w(−x)) + xw(−x), x > 0.

This shows that uA is the dual function of vA, and hence, that vA is dual to
uA.

Since vA is strictly convex, we have limx↓0 u
′
A(x) = ∞ (see Theorem 26.3

in [20]). Finally, limx→∞ u′A(x) = 0. If this were not the case, then vA(y) =
supx>0[uA(x)− xy] were not finite for all y > 0, which is a contradiction to
our assumption. Thus the proof is complete. �

We close this section by considering special utility functions.

Proposition 3.6. (Logarithmic utility)
Let U(x) = log x for all x > 0. Then w(−x) = 1

x and the maximal expected
utility is equal to the relative entropy of PA with respect to Q, i.e.

uA(x) = log(x) +H(PA‖Q).

Proof. Observe that the dual of the logarithm is given by V (y) = − log(y)−
1, hence

(Vy )̂ (x) = x(− log(
y

x
)− 1).

The conjugate is given by

vA(y) = − log(y)
∫
dPA

dQ
dQ+

∫
dPA

dQ

(
−1 + log

dPA

dQ

)
dQ

= − log(y)− 1 +
∫

log
dPA

dQ
dQ

and therefore w(z) = −1
z . Moreover, Theorem 2.5 implies

uA(x) = xw(−x)− 1− log(w(−x)) +
∫
dPA

dQ
log
(
dPA

dQ

)
dQ

= log(x) +H(PA‖Q).

�
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Proposition 3.7. (Power utility)
Let 0 < p < 1 and U(x) = 1

px
p for all x ≥ 0. Then

uA(x) = U(x)

(∫ (
dPA

dQ

) 1
1−p

dQ

)1−p

.

Proof. Observe that f(z) = (U ′)−1(z) = (z)
1

p−1 and

V (y) = U(f(y))− y f(y) =
1− p

p
y
− p

1−p ,

and consequently

(Vy )̂ (x) =
1− p

p
x
(y
x

)− p
1−p =

1− p

p
y
− p

1−p x
1

1−p .

Hence, the conjugate vA satisfies

vA(y) =
1− p

p
y
− p

1−p

∫ (
dPA

dQ

) 1
1−p

dQ.

Moreover, w(z) = (v′A)−1(z) = (−z)−(1−p)

(∫ (
dPA
dQ

) 1
1−p

dR

)(1−p)

, z < 0.

Therefore, by Theorem 2.5,

uA(x) = E [xw(−x) + vA(w(−x))]

= xp

(∫ (
dPA

dQ

) 1
1−p

dQ

)1−p

+
1− p

p
xp

(∫ (
dPA

dQ

) 1
1−p

dQ

)1−p

= U(x)

(∫ (
dPA

dQ

) 1
1−p

dQ

)1−p

.

�

Example 3.8. Let (Ω,F , P ) be the 1-dimensional canonical Wiener space
equipped with the Wiener process (Wt)0≤t≤1. More precisely, Ω = C([0, 1],R)
is the set of continuous functions on [0, 1] starting in 0, F the σ-algebra of
Borel sets with respect to uniform convergence, P the Wiener measure and
W the coordinate process. Let (Ft)0≤t≤1 be the completed natural filtration
generated by W .

11



We consider a financial asset with price process described by the stochas-
tic exponential of W , i.e.

St = E(W )t, 0 ≤ t ≤ 1.

Note that S satisfies (PRP) relative to (Ft). Moreover, let A ∈ F1 such that
P (A) > 0. Then H(PA‖P ) =

∫
1A log

(
1

P (A)

)
dPA = − logP (A), and thus

the maximal expected logarithmic utility relative to PA is given by

uA(x) = log(x)− logP (A).

In order to determine the power utility, let p ∈ (0, 1), and observe that(∫ (
dPA
dP

) 1
1−p

dP

)1−p

=
(∫

1A

(
1

P (A)

) 1
1−p

dP

)1−p

= 1
P (A)p . Therefore,

the maximal expected power utility relative to p is given by

uA(x) =
1
p

(
x

P (A)

)p

.

4 Enlarging filtrations with finite partitions

Throughout this section let P = {A1, . . . , An} be a finite partition of Ω
into F-measurable sets. We will study the utility maximisation problem
under the enlarged filtration

Gt =
⋂
s>t

Fs ∨ σ(P), t ≥ 0.

Recall that the maximal expected utility is given by uG(x) = sup{EU(x +
(θ · S)T ) : θ ∈ A(G) is x− admissible}.

Definition 4.1. The conditional maximal expected utility relative to the
partition P is defined by

Z(x) =
n∑

i=1

1AiuAi(x), x > 0.

Lemma 4.2.
EZ(x) = uG(x).

Proof. Let θ ∈ A(G). Observe that θi = 1Aiθ ∈ A(G), and 1Ai(θ · S)t =
(θi · S)t. Therefore,

EU(x+ (θ · S)T ) =
n∑

i=1

P (Ai)E[U(x+ (θi · S)T )|Ai]

≤
n∑

i=1

P (Ai)uAi(x),

12



and thus uG(x) is smaller than the LHS. For the reverse inequality, observe
that Lemma 3.2 implies that the maximal expected utility uAi(x) can be
attained by using strategies in A(F). Consequently, for every ε > 0 and i,
we may choose θi ∈ A(F) such that E[U(x+(θi·S)T )|Ai] ≥ uAi(x)−ε. Then,
θ =

∑n
i=1 1Aiθ

i ∈ A(G), and EU(x + (θ · S)T ) ≥ −ε +
∑

i P (Ai)uAi(x).
Hence the proof is complete. �

The results of the preceding section imply that the stochastic convex con-
jugate of −Z(−x), defined by Y (y) = supx>0[Z(x) − xy] (y > 0), is given
by

Y (y) =
n∑

i=1

1AivAi(y) =
n∑

i=1

1Ai(Vy )̂ (PAi‖Q).

For later use we rewrite Y as a divergence of two measures on the product
space Ω̄ = Ω×Ω. The first measure is the image of P under the embedding
ψ : Ω → Ω̄, ω 7→ (ω, ω). We put P̄ = P ◦ ψ−1. The other measure is the
product Q̄ = Q⊗ P .

Lemma 4.3. Let A = FT ⊗ σ(P). Then

Y (y) =
∫

(Vy )̂
(
dP̄

dQ̄

∣∣
A

)
dQ, y > 0.

Proof. Note that dP̄
dQ̄

∣∣
A(ω, ω′) =

∑n
i=1

dPAi
dQ (ω) 1Ai(ω

′), and hence∫
(Vy )̂

(
dP̄

dQ̄

)
(ω, ω′) dQ(ω) =

∫
(Vy )̂

(
n∑

i=1

dPAi

dQ
(ω) 1Ai(ω

′)

)
dQ(ω)

=
n∑

i=1

1Ai(ω
′)
∫

(Vy )̂
(
dPAi

dQ

)
dQ(ω)

=
n∑

i=1

1Ai(ω
′)vAi(y)

= Y (y)(ω′).

�

Remark 4.4. Suppose that we have an enlargement Gt =
⋂

s>tFs ∨ σ(G),
t ≥ 0, where G is an arbitrary random variable with values in a polish space
Γ. An analogue of Lemma 4.2 is true for the expected utility conditioned
on G. One could try to prove this directly with the same idea, however, one
would have to show tedious details. Among other things, we would have
to check measurability and S-integrability of processes (ω, t) 7→ θ

G(ω)
t (ω),

where θg ∈ A(F) for all g ∈ Γ. Instead of doing so, we derive the generalisa-
tion with the help of a monotone convergence property which is interesting
for its own.
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5 Monotone utility convergence

Let (Hn
t ) be an increasing sequence of filtrations with usual conditions and

such that Hn
t ⊃ Ft. Moreover, let

Ht =
⋂
s>t

σ (Hn
s : n ≥ 1) .

Throughout we assume that the price process S is a continous semimartin-
gale with respect to all filtrations (Ft), (Hn

t ) and (Ht). Moreover, we suppose
that the maximal expected utility uH(x) relative to (Ht) is finite, and that
there exists a (Ht)-predictable process such that the Doob-Meyer decompo-
sition is given by

St = S0 +Mt +
∫ t

0
αsd〈M,M〉s, t ≥ 0,

If limx→∞ U(x) = ∞, then the existence of such a decomposition follows
already from the finiteness of uH(x) (see [3]). Since (Hn

t ) is increasing, the
sequence of the related maximal expected utility is also increasing. Indeed,
as will be shown below, it satisfies a monotone convergence property. We
will apply this result later in order to prove Theorem 2.6. Note that we do
not assume here that (Hn

t ) is an initial enlargement of (Ft).
To simplify notation, let un(x) denote the maximal expected utility with

respect to (Hn
t ). We start with the observation that the utility maxi-

mum can be attained by L2-integrable strategies. Given a filtration (Gt),
we denote by L2

G(M) the set of all (Gt)-predictable processes θ such that
E
∫ T
0 θ2

sd〈M,M〉s <∞.

Lemma 5.1. Let x > 0. Then

uG(x) = sup{EU(x+ (θ · S)T ) : θ ∈ L2
G(M) ∩ A(G), (4)

(x− ε)− adm. for some ε > 0}.

Proof. We prove at first for all x > 0

uG(x) = sup
ε>0

sup{EU(x+ (θ · S)T ) : θ ∈ A(G), (x− ε)− adm.} (5)

We have only to show that the LHS does not exceed the RHS. For this let
θ ∈ A(G) such that EU(x + (θ · S)T ) > −∞. Put θn = (1 − 1

n)θ for all
n ≥ 1. Clearly, θn is (x− x

n)-admissible. Monotone convergence applied to
the negative and positive part of U(x+ (θn · S)T )− U(x) implies

lim
n
EU(x+ (θn · S)T ) = EU(x+ (θ · S)T ),
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and hence uG(x) is smaller than RHS of equation (5).
In equation (4) the RHS is obviously not greater than the LHS. For

the reverse inequality choose ε > 0 and an (x − ε)-admissible strategy θ

satisfying EU(x + (θ · S)T ) > −∞. Due to (5) it is sufficient to show that
EU(x+ (θ · S)T ) is not bigger than the RHS of (4). Since θ is S-integrable,
the stopping times

Tn = T ∧ inf{t ≥ 0 :
∫ t

0
θ2
r d〈M,M〉r ≤ n}

converge almost surely to T for n → ∞. Note that the strategies θn =
1[0,Tn]θ are (x−ε)-admissible and belong to L2

G(M). Fatou’s Lemma implies

lim inf
n

EU(x+ (θn · S)T ) ≥ EU(x+ (θ · S)T ),

and thus the result. �

Here is the main theorem of this section.

Theorem 5.2. Let x > 0. Then

lim
n
uH

n
(x) = uH(x).

Proof. Let θ ∈ L2
H(M) be (x− ε)-admissible. The stopping times

τk = T ∧ inf{t ≥ 0 :
∫ t

0
α2

s d〈M,M〉s ≥ k}

converge to T , a.s, and hence

lim inf
k

EU(x+ (θ · S)τk
) ≥ EU(x+ (θ · S)T ).

By Lemma 5.1 it suffices to show that for all k ≥ 1, EU(x+ (θ ·S)τk
) is not

greater than supn u
Hn

(x). To simplify notation we assume that τk = T for
some k.

Now let θn be the projection of θ onto L2
Hn . By Doob’s inequality there

is a constant C > 0, such that

E((θn − θ) · S)∗T ≤ E((θn − θ) ·M)∗T + E((θn − θ)α · 〈M,M〉)∗T
≤ ‖((θn − θ) ·M)∗T ‖2 + E((θn − θ)α · 〈M,M〉)∗T
≤ C ‖((θn − θ) ·M)T ‖2 + E(|θn − θ||α| · 〈M,M〉)T .

The first summand in the preceding line goes to 0, because (θn) converges to
θ in L2

H(M). The second vanishes due to Kunita-Watanabe and due to our
assumption that

∫ T
0 α2

s d〈M,M〉s is bounded. Consequently, by choosing a
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subsequence if necessary, almost everywhere the sequence (θn ·S) converges
uniformly to (θ · S) on [0, T ]. Now put

Tn = T ∧ inf{t ≥ 0 : (θn · S)t ≤ −x+
ε

2
}

and
πn = 1[0,Tn]θ

n.

The strategies πn are (x− ε
2)-admissible and satisfy almost surely

lim
n

(πn · S)T = (θ · S)T .

With Fatou’s Lemma we obtain

lim inf
n

EU(x+ (πn · S)T ) ≥ EU(x+ (θ · S)T ),

and hence the result. �

We close this section with an example showing that Theorem 5.2 is not
valid without the assumption that S is continuous.

Example 5.3. Let T > 1 and φ a standard normal random variable. Sup-
pose the price process is given by

St =

{
1, if 0 ≤ t < 1,
1 + φ+ 1

2 , if 1 ≤ t ≤ T,

and let (FS
t ) be the completed filtration generated by S. Moreover let (εn)

be a sequence of independent normal random variables with mean zero and
Var(εn) = 1

n . We define

Hn
t = Ft ∨ σ(1{|φ|≥1} + εn), 0 ≤ t ≤ T,

and claim that
uH

n
(x) = U(x)

for all x > 0. For this let θ be (Hn
t )-predictable and S-integrable. If θ1 6= 0

a.s., then the integral (θ · S)1 is unbounded from below and hence θ is not
admissible. Since the process S is constant on the remaining part of the
trading interval, we have uH

n

a (x) = U(x). A trader having access to

Ht =
∨
n≥1

Hn
t

knows whether the absolute value of φ is bigger or smaller than 1. Therefore
he has access to non-trivial admissible trading strategies. As a consequence
uF (x) > U(x), and hence

lim
n
uH

n
(x) 6= uH(x).

By the way, the price process S satisfies the (NFLVR) property with respect
to (Ht).
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6 General initial enlargements

Let us now consider investors with additional information represented by an
enlarged filtration

Gt =
⋂
s>t

Fs ∨ σ(G), t ≥ 0,

where G is an arbitrary random variable with values in a polish space Γ.
In Section 4 we considered filtrations enlarged by a finite partition. An
approximation through discretisation will allow us to generalise the results.

We will write the dual of the conditional expectation as a reverse Vy-
divergence of the two measures P̄ and Q̄ on the product space Ω̄ = Ω× Ω.
Recall that P̄ is the image of P under the embedding ψ : ω 7→ (ω, ω), and
Q̄ = Q⊗ P .

Note that the embedded price process S̄(ω, ω′) = S(ω) is a Q̄-local mar-
tingale with respect to the filtration F̄t =

⋂
s>tFs ⊗ σ(G). The product

measure Q̄ plays the role Q had in the old setting.
We abbreviateA = FT⊗σ(G). Throughout we assume that (Vy )̂A

(
P̄‖Q̄

)
is finite for all y > 0. In particular, P̄ � Q̄ on A.

Let (Pn) be a sequence of finite partitions of σ(G) such that σ(G) =∨
n σ(Pn), and Pn ⊂ Pn+1. We denote by un(x) the maximal expected

utility under the filtration enlarged by σ(Pn). Then monotone utility con-
vergence implies that limn u

n(x) = uG(x). As before, for all A ∈ Pn, we
denote by uA(x) the maximal expected utility under PA and the filtration
enlarged by σ(Pn). Again, let Zn(x) =

∑
A∈Pn 1A uA(x) be the conditional

expected utility with respect to Pn.

Lemma 6.1. Let x > 0. Then (Zn(x)) is a submartingale with respect to
the filtration Hn = σ(Pn), n ≥ 1. Moreover, (Zn(x)) is uniformly integrable
and convergent in L1.

Proof. Let n ≥ 1, and A ∈ Pn. Since Pn ⊂ Pn+1, there are sets
B1, . . . , Bk in Pn+1 such that A = B1 ∪ . . . ∪Bk. Obviously

E[1AZn(x)] = P (A)uA(x)

≤ P (B1)uB1(x) + . . .+ P (Bk)uBk
(x)

= E[1AZn+1(x)].

Therefore E[Zn+1(x)|Hn] ≥ Zn(x), for all n ≥ 1, which means that (Zn(x))
is a submartingale.

Note that uA(x) ≥ U(x), and hence Zn(x) ≥ U(x), a.s. Assume for sim-
plicity that U(x) ≥ 0 (else consider Zn(x)−U(x)). Then

∑
C∈C P (A)uA(x) ≤
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uG(x) <∞, for every subset C ⊂ Pn. In particular

E [Zn(x);Zn(x) ≥M ] ≤ uG(x),

showing that the submartingale (Zn(x)) is uniformly integrable. As a con-
sequence, it converges in L1 (see f.e. Chapter 4 in [9]). �

Definition 6.2. The L1-limit Z(x) = limn Zn(x) will be called conditional
expected utility relative to G. Note that Z(x) is σ(G)-measurable, and for
all B ∈ σ(G) with P (B) > 0, we have uB(x) =

∫
B Z(x) dP .

We apply now the results of Section 4 to our approximations Zn(x):
Lemma 4.3 implies that the stochastic conjugate of Zn(x) is given by

Yn(y) =
∫

(Vy )̂
(
dP̄

dQ̄

∣∣
FT⊗σ(Pn)

)
(ω, ω′) dQ(ω), y > 0,

P -almost surely. We claim that Yn(y) converges to

Y (y) =
∫

(Vy )̂
(
dP̄

dQ̄

∣∣
FT⊗σ(G)

)
(ω, ω′) dQ(ω).

More precisely:

Lemma 6.3. The processes Y (y) and Yn(y) are strictly convex, decreasing
and differentiable on (0,∞), almost surely. The derivatives satisfy

lim
y↓0

Y ′(y) = −∞, and lim
y→∞

Y ′(y) = 0.

Moreover, for almost all ω the functions y 7→ Yn(y) converge pointwise to
y 7→ Y (y) on (0,∞), and the derivatives Y ′n(y) converge to the derivative
Y ′(y).

Proof. With similar arguments as in Lemma 3.4 one can show the first
and second statement. For the third, let y > 0. Note that (Vy )̂ FT⊗σ(Pn)

(
P̄‖Q̄

)
converges to (Vy )̂A

(
P̄‖Q̄

)
(see Lemma A.1). Assume that (Vy )̂ is strictly

positive, else choose a modification as in Lemma A.2. As a consequence, the
sequence (Vy )̂

(
dP̄
dQ̄

∣∣
FT⊗σ(Pn)

)
converges to (Vy )̂

(
dP̄
dQ̄

∣∣
A

)
in L1(Q̄). More-

over, (Vy )̂
(

dP̄
dQ̄

∣∣
FT⊗σ(Pn)

)
is a uniformly integrable submartingale relative

to Q̄, and therefore it converges Q̄-almost surely. By Fubini’s theorem,
(Yn(y)) converges to Y (y) for almost all ω.

We now apply the following well-known fact from convex analysis: If
(fn) is sequence of convex functions converging on a dense subset to a finite
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function f , then (fn) converges to f everywhere and f is convex. Moreover
(fn) converges uniformly on every bounded set (see Theorem 10.8 in [20]).

In order to apply this result to our processes (Yn), let D be a countable
dense subset of (0,∞). For any q ∈ D we have limn Yn(q) = Y (q) almost
surely, and therefore, for almost all ω, the functions y 7→ Yn(y) converge
pointwise to y 7→ Y (y) on (0,∞).

Finally, another result from convex analysis implies that the derivatives
converge almost surely, i.e. limn Y

′
n(y) = Y ′(y) (see Theorem 25.7 in [20]).

�

Due to the previous lemma we may define

Wn(z) =
(
d

dy
Yn

)−1

(z), and W (z) =
(
d

dy
Y

)−1

(z), z < 0.

Note that Lemma 6.3 implies limnWn(z) = W (z), a.s.

Theorem 6.4. For almost all ω, the two processes (Z, Y ) are a Legendre
pair. Moreover, uG(x) = E[xW (−x) + Y (W (−x))], for x > 0.

Proof. We have to show that Z(x, ω) = xW (−x, ω) + Y (W (−x, ω), ω)
for almost all ω. According to Theorem 2.6

Zn(x, ω) = xWn(−x, ω) + Yn(Wn(−x, ω), ω),

almost surely. Moreover, by Lemma 6.3, for almost all ω the functions
y 7→ Yn(y) converge pointwise to y 7→ Y (y) on (0,∞). Since these functions
converge uniformly on every closed bounded subset of (0,∞), we have

lim
n
Yn(Wn(x, ω), ω) = Y (W (x, ω), ω),

and hence Z(x) = xW (x) + Y (W (x)), almost surely. This shows that Z
and Y are dual. The properties of Y imply that limx↓0 Z(x) = ∞, and
limx→∞ Z(x) = 0, almost surely. Finally, the last statement follows from
uG(x) = E[Z(x)]. �

Proof to Theorem 2.6. Let π be a regular conditional probability of P
with respect to σ(G). Then, on A, we have

π(dω, ω′)
dQ(ω)

=
dP̄

dQ̄
(ω, ω′).

Therefore, Theorem 2.6 is just a reformulation of Theorem 6.4. �
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Q̄ as a martingale measure

Under the product measure Q̄ the new information σ(G) is independent
of the old information FT . Therefore, Q̄ can be referred to as a decoupling
measure. This measure was used in [3] in order to derive, with the Girsanov-
Lenglart Theorem, semimartingale decompositions relative to (Gt). If the
conditional probabilities π(·, ω) are equivalent to P , then there exist mea-
sures on the original space which decouple the new from the old information.
The utility maxisation problem in this case has been considered in [1].

The measure Q̄ is not the only local martingale measure of the embedded
process S̄(ω, ω′) = S(ω) with respect to the filtration (F̄t): if P ′ ∼ P on
σ(G), then R⊗P ′ is a martingale measure equivalent to Q̄. However, among
all these measures R⊗ P ′, the measure Q̄ minimises the entropy relative to
P̄ .

In order to sketch the proof, let P denote the set of probability measures
P ′ equivalent to P and defined on σ(G). Then R ⊗ P ′ ∼ Q̄ and, since
P̄ � R⊗ P , we also have P̄ � R⊗ P ′ for all P ′ ∈ P. Note that

inf
P ′∈P

H(P̄‖R⊗ P ′) = inf
P ′∈P

∫
log
(

dP̄

dR⊗ P

)
+ log

(
dR⊗ P

dR⊗ P ′

)
dP̄ ,

= H(P̄‖R⊗ P ) + inf
P ′∈P

∫
log
(
dP

dP ′

)
dP.

It is straightforward to show that the right hand side attains its infimum if
P ′ = P , and hence Q̄ is the entropy minimising martingale measure for S̄
with respect to the enlarged filtration (F̄t).

We close again the section by considering special utility functions.

Proposition 6.5. (Logarithmic utility)
Let U(x) = log x for all x > 0. Then W (−x) = 1

x and the maximal expected
utility is equal to the relative entropy of P̄ with respect to Q̄, i.e. uG(x) =
log(x) +H(P̄‖Q̄).

Proof. It is straightforward to show that the conjugate is given by Y (y) =
− log(y)−1+

∫
log dP̄

dQ̄
dQ, andW (z) = −1

z . The claim follows from Theorem
6.4. �

Proposition 6.6. (Power utility)
Let 0 < p < 1 and U(x) = 1

px
p for all x ≥ 0. Then

uG(x) = U(x)
∫ (∫ (

dP̄

dQ̄

) 1
1−p

dQ

)1−p

dP.
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Proof. Recall that (Vy )̂ (x) =
(

1−p
p y

− p
1−p

)
x

1
1−p . The stochastic conju-

gate Y of the conditional expected utility Z satisfies

Y (y) =
1− p

p
y
− p

1−p

∫ (
dP̄

dQ̄

) 1
1−p

dQ.

Moreover, W (z) = (−z)−(1−p)

(∫ (
dP̄
dQ̄

) 1
1−p

dQ

)1−p

, z < 0, and with Theo-

rem 6.4, the result. �

Remark 6.7. For the logarithm we need not to consider the conditional
expected utility, in order to generate the conjugate function of uG(x). Recall
Z(x) = infy>0[xy + Y (y)]. By taking expectations we obtain

EZ(x) = H(P̄‖Q̄)− 1 + inf
y>0

[xy − log(y)],

and hence the conjugate of uG(x) is given by

vG(y) = − log(y) +H(P̄‖Q̄)− 1.

7 Additional logarithmic utility

The properties of the logarithm lead to simple formulas for the additional
logarithmic utility of an investor with information Gt =

⋂
s>tFs ∨ σ(G)

compared to an investor having only access to (Ft).

Theorem 7.1. If U = log, then the utility difference ∆u = uG(x) − uF (x)
does not depend on x, and it is equal to the mutual information between FT

and G, i.e.

∆u = HFT⊗σ(G)(P̄ ‖P ⊗ P ) = I(FT , G).

In particular, if G is discrete and FT -measurable, the additional utility is
equal to the absolute entropy of G relative to P ,

∆u = −
∑

g

P (G = g) logP (G = g).

Proof. Let f(ω, ω′) = dP̄
dQ̄

∣∣
FT⊗σ(G)

and g(ω) = dQ
dP

∣∣
FT

. We show at first
that

f(ω, ω′)g(ω) =
dP̄

d(P ⊗ P )

∣∣
FT⊗σ(G)

. (6)
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For this let A ∈ FT and B ∈ σ(G). Note that∫
1A×B(ω, ω′)f(ω, ω′)g(ω) d(P ⊗ P ) =

∫
1A×B(ω, ω′)f(ω, ω′) d(Q⊗ P )

=
∫

1A×B(ω, ω′)f(ω, ω′) dQ̄

= P̄ (A×B),

which implies (6). Now recall that uG(x) = log(x) +H(P̄‖Q̄) and uF (x) =
log(x) +H(P‖Q). Thus

uG(x)− uF (x) = H(P̄‖Q̄)−H(P‖Q)

=
∫ (

log f(ω, ω′)− log g−1(ω)
)
dP̄

=
∫

log
(
f(ω, ω′)g(ω)

)
dP̄

=
∫

log
(

dP̄

d(P ⊗ P )

∣∣∣
FT⊗σ(G)

)
dP̄

= HFT⊗σ(G)(P̄ ‖P ⊗ P ).

Finally, if G is discrete and FT -measurable, then ∆u is equal to the absolute
entropy of G. �

Remark 7.2. Let Ht =
⋂

s>tFs ∨σ(H) be another initially enlarged filtra-
tion such that σ(H) is a sub-σ-field of σ(G). Then the logarithmic utility
difference uG − uH is equal to the mutual information of FT and G condi-
tioned on H, which is defined by I(FT , G|H) = I(FT , G) − I(FT , G) (see
[11]).

Maximal expected utility for non-initial enlargements

So far we considered initial enlargements of a given filtration and we deter-
mined the conjugate function of the maximal expected utility conditioned on
the enlarging random variable. What can we do, if the filtration is not only
enlarged in the beginning, but at any moment during the trading period?
Can we still determine a conjugate of the maximal expected utility?

Due to monotone utility convergence we can approximate general en-
largements by piecewise initial enlargements of the filtration: the trading
interval is devided into small subintervals, and in the beginning of each
subinterval the filtration is enlarged initially. Naturally, the idea arises to
apply our results to each subinterval, and thus derive again a dual repre-
sentations of the maximal expected utility via f -divergences. Unfortunately
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there is the following problem: Let t be a point in the trading interval (0, T ).
The maximal utility up to time T is in general not the sum of the maximal
utility up to time t and the maximal utility between t and T . It is shown
in [5] that the logarithm is essentially the only utility function to have this
property. So let for the remaining section U = log.

Let (Ht) be a filtration. We will maximise logarithmic utility with re-
spect to the enlarged filtration

Gt =
⋂
s>t

(Fs ∨Hs).

We approximate (Gt) with piecewise initially enlarged filtrations. For this
let for any partition ∆ : 0 = t0 ≤ . . . ≤ tn = T ,

G∆
t =

⋂
s>t

(Fs ∨Hti) if t ∈ [ti, ti+1[.

According to Remark 7.2, the additional logarithmic utility relative to (G∆
t )

is given by u∆(x) = I(FT ,Ht0) +
∑n−1

i=0 I(FT ,Hti+1 |Hti ,Fti+1). Now let
(∆n) be a sequence of partitions such that ∆n ⊂ ∆n+1 and limn |∆n| = 0.
Monotone utility convergence implies uG(x) = limn→∞ u∆n(x). As a con-
sequence, the sums

(
I(FT ,Ht0) +

∑n−1
i=0 I(FT ,Hti+1 |Hti ,Fti+1)

)
converge,

and we denote the limit as the mutual information between the filtrations
(Ft) and (Ht). We have thus shown the following result.

Theorem 7.3. Let U = log. Then the logarithmic utility difference uG−uF

is equal to the mutual information between (Ft) and (Ht), i.e.

uG − uF = lim
n

(
I(FT ,Ht0) +

n−1∑
i=0

I(FT ,Hti+1 |Hti ,Fti+1)

)
.

A similar result has already been derived in [4], however, in a completely
different way.

A Appendix: f-Divergences

Lemma A.1. (see Theorem 1.30 in [17])
Let (An) be a sequence of increasing sub-σ-fields and A =

∨
nAn. Then

(fAn(P‖Q)) is an increasing sequence and

lim
n
fAn(P‖Q) = fA(P‖Q).

Lemma A.2. Let f be a finite convex function on (0,∞). Then there exists
a non-negative and convex function g and a constant C ∈ R such that for
all P � Q we have g(P‖Q) = f(P‖Q) + C.
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Proof. If f is bounded from below, then put g(x) = f(x) − C, where C
is the minimal value of f .

Now suppose that limx→∞ f(x) = −∞. Then f(x) ≥ f(1)+f ′(1)(x−1),
for all x > 0. Therefore, g(x) = f(x)− f(1)− f ′(1)(x− 1) is a non-negative
convex function. Moreover, for all P � Q, we have

g(P‖Q) =
∫
g

(
dP

dQ

)
dQ = −f(1) +

∫
f

(
dP

dQ

)
dQ− f ′(1)

∫ (
dP

dQ
− 1
)
dQ

= −f(1) + f(P‖Q),

and thus the result. �
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