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Abstract: Robust utility functionals arise as numerical representations of investor prefer-

ences, when the investor is uncertain about the underlying probabilistic model and averse

against both risk and model uncertainty. In this paper, we study the duality theory for the

problem of maximizing the robust utility of the terminal wealth in a general incomplete

market model. We also allow for very general sets of prior models. In particular, we do

not assume that all prior models are equivalent to each other, which allows us to handle

many economically meaningful robust utility functionals such as those defined by AVaRλ,

concave distortions, or convex capacities. We also show that dropping the equivalence of

prior models may lead to new effects such as the existence of arbitrage strategies under

the least favorable model.

1 Introduction

There is a vast literature on the construction of utility-maximizing investment strategies

in complete and incomplete market models. An implicit assumption made in most papers

on this subject is that the investor is in possession of a market model that accurately

describes the probabilities for the future stock price evolution. In reality, however, the

exact probabilities themselves are often unknown, i.e., the choice of an appropriate model

is subject to Knightian uncertainty.

In the late 1980’s, Gilboa and Schmeidler [8], [21], [9] and Yaari [22] formulated nat-

ural axioms which should be satisfied by a preference order on payoff profiles such as to

account for aversion against both risk and Knightian uncertainty. They showed that such
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matics for key technologies” (FZT 86) and the SFB 649 “Economic Risk”.
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a preference order can be numerically represented by a robust utility functional of the

form

X 7−→ inf
Q∈Q

EQ[ U(X) ] ,

where Q is a set of probability measures and U is a utility function; see also [6, Section

2.5].

In a financial market model, a natural question is thus to construct dynamic investment

strategies whose terminal wealth maximizes a given robust utility functional. Systematic

approaches to this question were independently1 given by M. Quenez [16] and the first

author [19]. Quenez [16] gives two types of result. The first is a duality result in the spirit

of Kramkov and Schachermayer [13, 14] under relatively strong assumptions on the prior

set Q; in particular it is assumed that

all measures in (the closure of) Q are equivalent to a given reference measure P. (1)

The second class of results in [16] deals with explicit examples that can be handled with

BSDE techniques. This technique basically requires that Q consists of the class of all

market models with a fixed volatility and a varying drift process that takes values in

(possibly random) closed sets Ct ⊂ Rd.

In [19], the focus is on determining explicit solutions for several classes of prior sets Q
in complete market models. More precisely, it is shown that in numerous situations the

set Q admits a measure Q̂ that is “least-favorable” in the sense that the robust problem

becomes equivalent to the standard problem for Q̂, regardless of the choice of the utility

function. For most examples in [19], the condition (1) is too restrictive. For instance, (1)

cannot not hold if the set Q arises from coherent risk measures such as Average Value at

Risk,

AVaRλ(X) = sup
{

EQ[−X ] |Q � P and
dQ

dP
≤ 1

λ

}
,

which typically coincides with the worst conditional expectation

WCEλ(X) = sup
{
E[−X |A ] |P[ A ] > λ

}
.

Condition (1) is also often violated if the prior set is the core of a concave distortion

or, more generally, of a submodular capacity. These examples also play an important

role in economics; see, e.g., Schmeidler [21] and Yaari [22]. The same is true for law-

invariant robust utility functionals as considered in [20] and by Jouini et al. [12]. Another

example for which (1) is not satisfied is provided by the case of “weak information”,

where Q consists of all measures Q � P under which a given random variable has a fixed

distribution; see Plachky and Rüschendorf [17] and Baudoin [2]. Nevertheless, in many

of these cases it is possible to construct solutions for the robust utility maximization

problem, at least if the market model is complete; see [19]. We also refer to Cont [4] for

a further discussion of (1) in the theory of model uncertainty.

1In fact, a first version of the present paper was completed by us without knowledge of [16], and we
are grateful to Martin Schweizer for informing us about this related work.
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In a more recent paper, Gundel [11] has extended the method of Goll and Rüschendorf

[10] to obtain results in an incomplete market. This method works if U is defined on all

of R but may fail, e.g., for HARA utility functions. Gundel [11] also requires condition

(1). For a recent extension of the BSDE approach, we refer to Müller [15].

In this note, we are interested in developing the duality theory for robust utility maxi-

mization in a very general framework. As for the conditions on the financial market model

and the utility function, the benchmark has already been set in the work of Kramkov and

Schachermayer [13, 14]. Here we will adopt their framework in assuming that the price

process S is a general d-dimensional semimartingale defined on a filtered probability space

(Ω,F , (Ft), P). As in [13, 14], we will assume that the model is ‘arbitrage free’ in the sense

that there exists an equivalent martingale measure for all admissible value processes.

With the market model being fixed, we need to formulate natural conditions on the

set Q from which our robust utility functional will be defined. First of all, it is necessary

that each measure Q ∈ Q respects P-nullsets, for otherwise a stochastic integral defined

with respect to P might make no sense under Q. Thus, we assume that

(a) Q � P for all Q ∈ Q.

Next, there is no loss of generality in assuming that

(b) Q is convex.

As mentioned above, a typical result in all previous papers on robust utility maximization

is the existence of a measure Q̂ which is “least favorable” in the sense that the robust

problem is equivalent to the standard problem for Q̂. If one wishes to get some control

over Q̂ then it is natural to require that Q̂ ∈ Q. This requirement will be guaranteed by

assuming that

(c) Q is closed in some reasonable topology such as total variation.

To obtain the existence of Q̂ in our general setup, one needs to assume that

(d) Q is relatively compact in a reasonable topology.

We finally add the assumption that our set Q is “sensitive” in the sense that

(e) Q[ A ] = 0 for all Q ∈ Q implies P[ A ] = 0.

At first glance, this condition may seem less natural than the preceding ones. But note

that, due to the Halmos-Savage theorem and the assumptions (a), (b), and (c), it is

equivalent to the rather weak requirement that there exists one Q ∈ Q that is equivalent

to P. This latter requirement should be compared to the assumption (1), which would

add to the set (a)–(e) the condition that “P � Q for all Q ∈ Q”.

Our aim in this paper is to establish a duality theory for robust utility maximization

given the set of assumptions (a)–(e). On the one hand, our main results will be formulated

within the above-mentioned paradigm: For each level of initial wealth there exists a

measure Q̂ that is least favorable in the sense explained above. On the other hand, we
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will also challenge this paradigm at least partially: In our general setup, the measure Q̂

may no longer be equivalent to the reference measure P. In fact, we will see in Example

2.5 that one may have to face the situation that Q̂ admits arbitrage opportunities when

considered as a market model on its own. If this is the case, it will no longer be possible to

apply the standard theory of utility maximization to the model with subjective measure

Q̂. The failure of equivalence also creates some difficulties in our proofs and a number of

open questions such as regularity properties of the value functions or the uniqueness of

optimal strategies for the primal and dual problems.

2 Statement of main results

As in Kramkov and Schachermayer [13, 14], we assume that the utility function of the

investor is a strictly increasing and strictly concave function U : (0,∞) → R, which is

also continuously differentiable and satisfies the Inada conditions

U ′(0+) = +∞ and U ′(∞−) = 0.

Payoffs are modeled as random variables X on a given probability space (Ω,F , P). Their

utility shall be assessed in terms of a robust utility functional

X 7−→ inf
Q∈Q

EQ[ U(X) ],

where Q is a set of probability measures on (Ω,F). We assume the following conditions:

Assumption 2.1

(i) Q is convex.

(ii) P[ A ] = 0 if and only if Q[ A ] = 0 for all Q ∈ Q
(iii) The set Z := {dQ/dP |Q ∈ Q} is closed in L0(P)

Condition (ii) combines assumptions (a) and (e) as formulated in Section 1. Condition

(iii) takes care of closedness (c) and compactness (d); see Lemma 3.2. We emphasize once

more that (ii) is strictly weaker than the assumtion that all measures in Q are equivalent

to P, which is assumed in [16], [11] and rules out many examples, which are explicitly

solvable for complete models [19]. In fact, the Halmos-Savage theorem shows that, under

condition (iii), condition (ii) is equivalent to the assumption

Q � P for all Q ∈ Q and Qe 6= ∅,

where Qe denotes the set of measures in Q that are equivalent to P.

We use the same setup as in [13, 14] also for the financial market model. The dis-

counted price process of d assets is modeled by a stochastic process S = (St)0≤t≤T . We

assume that S is a d-dimensional semimartingale on (Ω,F , P) with respect to a filtration

(Ft)0≤t≤T . A self-financing trading strategy can be regarded as a pair (x, ξ), where x ∈ R
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is the initial investment and ξ = (ξt)0≤t≤T is a d-dimensional predictable and S-integrable

process. The value process X associated with (x, ξ) is given by X0 = x and

Xt = X0 +

∫ t

0

ξr dSr , 0 ≤ t ≤ T .

For x > 0 given, we denote by X (x) the set of all such processes X with X0 ≤ x that

are admissible in the sense that Xt ≥ 0 for 0 ≤ t ≤ T . We assume that our model is

arbitrage-free in the sense that M 6= ∅, where M denotes the set of measures equivalent

to P under which each X ∈ X (1) is a local martingale; see [13]. Thus, our main problem

can be stated as follows:

Maximize inf
Q∈Q

EQ[ U(XT ) ] among all X ∈ X (x). (2)

Consequently, the value function of the robust problem is defined as

u(x) := sup
X∈X (x)

inf
Q∈Q

EQ[ U(XT ) ]

One of our first results will be the minimax identity

u(x) = inf
Q∈Q

uQ(x), where uQ(x) := sup
X∈X (x)

EQ[ U(XT ) ] (3)

is the value function of the optimal investment problem for an investor with subjective

measure Q ∈ Q. Next, we define as usual the convex conjugate function V of U by

V (y) := sup
x>0

(
U(x)− xy

)
, y > 0.

With this notation, it follows from Theorem 3.1 of [13] that, for Q ∈ Qe with finite value

function uQ,

uQ(x) = inf
y>0

(
vQ(y) + xy

)
and vQ(y) = sup

x>0
(uQ(x)− xy), (4)

where the dual value function vQ is given by

vQ(y) = inf
Y ∈YQ(y)

EQ[ V (YT ) ],

and the space YQ(y) is defined as

YQ(y) =
{

Y ≥ 0 |Y0 = y and XY is a Q-supermartingale for all X ∈ X (1)
}
.

We thus define the dual value function of the robust problem by

v(y) := inf
Q∈Qe

vQ(y) = inf
Q∈Qe

inf
Y ∈YQ(y)

EQ[ V (YT ) ]. (5)

Remark: The reader may have noticed that the Q-expectation of U(XT ) might not be

well-defined in the sense that EQ[ U+(XT ) ] and EQ[ U−(XT ) ] are both infinite. There
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are several ways to deal with such pairs (Q, X). For instance, we can simply extend the

expectation operator EQ[ · ] to the entire set L0 by letting

EQ[ F ] := sup
n

EQ[ F ∧ n ] for arbitrary F ∈ L0. (6)

In doing so, we exclude X from the maximization problem (2). Moreover, we will see

in Lemma 3.1 below that uQ(x) = ∞ for all x > 0 as soon as EQ[ U+(XT ) ] = ∞ for

one strategy X. Hence, such measures Q will not contribute to the robust value function

u(x) = infQ′∈Q uQ′(x) unless our problem (2) is trivial. Finally, note that all expectations

occurring in (5) are defined in the ordinary sense, since V is a decreasing convex function

and 0 ≤ EQ[ YT ] ≤ y for all Y ∈ YQ(y). ♦

Theorem 2.2 In addition to the above assumptions, let us assume that

uQ0(x) < ∞ for some x > 0 and some Q0 ∈ Qe. (7)

Then the value function u is concave, takes only finite values, and satisfies

u(x) = sup
X∈X (x)

inf
Q∈Q

EQ[ U(XT ) ] = inf
Q∈Q

sup
X∈X (x)

EQ[ U(XT ) ]. (8)

Moreover, two value functions u and v are conjugate to another:

u(x) = inf
y>0

(
v(y) + xy

)
and v(y) = sup

x>0

(
u(x)− xy

)
. (9)

In particular, v is convex. The derivatives of u and v satisfy

u′(0+) = ∞ and v′(∞−) = 0. (10)

Remark 2.3 It will turn out in the proof of this theorem that the value function u and

its dual v can be defined via the smaller set

Qf
e :=

{
Q ∈ Qe |uQ(x) < ∞ for some x > 0

}
=

{
Q ∈ Qe |uQ(x) < ∞ for all x > 0

}
,

i.e.,

u(x) = inf
Q∈Qf

e

uQ(x) and v(y) = inf
Q∈Qf

e

vQ(y).

Also note that (7) can be restated as Qf
e 6= ∅. ♦
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The situation becomes much simpler if we assume that all measures inQ are equivalent

to P. In this case, we also get some additional results, which generalize those in Quenez

[16], where additional assumptions on Q are required.

Corollary 2.4 In addition to the assumptions of Theorem 2.2 suppose that all measures

in Q are equivalent to P. Then for each y > 0 such that v(y) < ∞ there exist Q̂ ∈ Q and

Ŷ ∈ Y bQ(y) such that v(y) = E bQ[ V (ŶT ) ]. Moreover, Ŷ is unique: any other optimal pair

(Q′, Y ′) ∈ {(Q, Y ) |Q ∈ Q, Y ∈ YQ(y) } satisfies Y ′ = Ŷ P-a.s.

We now come to the existence of optimal strategies. The following simple example

illustrates some of the difficulties one might meet if Q contains measures that are not

equivalent to P.

Example 2.5 Consider a one-period model in discrete time (t = 0, 1) with two risky

assets S1, S2 satisfying S1
0 = S2

0 = 1. Under the measure Q1, the first asset has, at time

1, the distribution

Q1[ S
1
1 = 2 ] =: q = 1−Q1[ S

1
1 = 0 ],

where 1/2 < q < 1. The second asset S2
1 is independent of S1

1 under Q1, has support

{0, 1, . . . }, and finite expected value EQ1 [ S
2
1 ] > S2

0 = 1. We take P := Q1 as our reference

measure. We introduce another measure Q0 � P by requiring that

Q0[ S
1
1 = 2 ] = Q0[ S

1
1 = 0 ] = 1/2 and Q0[ S

2
1 = 0 ] = 1.

For Q we take the set of all convex combinations Qα := αQ1 + (1− α)Q0, 0 ≤ α ≤ 1.

Note first that a trading strategy can only be admissible for P if it does not contain

short positions in the second asset, because S2
1 is unbounded. Let us now look at the

optimal strategy under Qα. First, one easily checks that there is some α0 ∈ (0, 1) such

that EQα [ S2
1 |S1

1 ] ≤ 1 P-a.s. for α ≤ α0. Thus, for these values of α, the optimal

portfolio will contain no long positions in the second asset; see, e.g., [6, Proposition 2.41].

But this means that for α ≤ α0 there will be no investment, long or short, into the

second asset, because our admissibility assumption excludes short positions. Second, we

have EQα [ S1
1 |S2

1 ] > 1 P-a.s. for all α > 0. Hence, it will be optimal to allocate some

investment into the first asset, resulting in uQα(x) > U(x) for α > 0. Third, under Q0 it

is not optimal to allocate any admissible investment, long or short, to either of the risky

assets, and it follows that uQ0(x) = U(x).

Thus, Q̂ := Q0 is the unique measure in Q such that u bQ(x) = u(x) = infQ∈Q uQ(x),

and in order to determine the optimal strategy for the robust problem, we must look for

the optimal strategy for the model Q̂. This task is straightforward in this simple example:

just put everything into the bond. However, it would create difficulties if we would try

to apply the general theory of utility maximization, because Q̂ = Q0 is not equivalent

to the martingale measures in our market model. To make things worse, Q0 considered

as a market model on its own has not the same admissible strategies than P, since short

selling the second asset is admissible in the model Q0. In fact, such short sales even create

arbitrage opportunities under Q0. ♦
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Our next aim is to get existence results for optimal strategies despite the difficulties

displayed by the preceding example. Even for the classical case Q = {Q} additional

assumptions are needed to guarantee the existence of optimal strategies for each initial

capital: It was shown in [14] that a necessary and sufficient condition is the finiteness of

the dual value function vQ. This condition translates as follows to our robust setting:

vQ(y) < ∞ for all y > 0 and each Q ∈ Qe. (11)

Recall from [14, Note 2] that (11) holds as soon as uQ is finite for all Q ∈ Qe and the

asymptotic elasticity of the utility function U is strictly less than one:

AE(U) = lim sup
x↑∞

xU ′(x)

U(x)
< 1. (12)

While it is sufficient to assume (11) when all measures in Q are equivalent to P, we need

to assume (12) to get some regularity results in the general case.

Theorem 2.6 In addition to Assumption 2.1 let us assume (11). Then both value func-

tions u and v take only finite values and satisfy

u′(∞−) = 0 and v′(0+) = −∞. (13)

For any x > 0 there exist an optimal strategy X̂ ∈ X (x) and a measure Q̂ ∈ Q such that

u(x) = inf
Q∈Q

EQ[ U(X̂T ) ] = E bQ[ U(X̂T ) ] = u bQ(x).

In particular, the suprema and infima in (8) are attained. There also exist some ŷ in the

superdifferential of u(x) and some Y ∈ YP(ŷ) such that,

v(ŷ) = E
[
ẐV

(YT

Ẑ

) ]
, and X̂T = I

(YT

Ẑ

)
Q̂-a.s., (14)

where Ẑ = dQ̂/dP and I = −V ′. Furthermore, X̂Y is a martingale under P, and the dual

value function satisfies

v(y) = inf
P ∗∈M

inf
Q∈Qe

EQ

[
V

(
y
dP ∗

dQ

) ]
. (15)

If in addition AE(U) < 1 holds, then u is strictly concave and v is continuously differen-

tiable. Moreover, X̂T YT is supported by {Ẑ > 0}, i.e.,

{X̂T YT > 0} = {Ẑ > 0} P-a.s. (16)

Remark: The identity (16) shows that the duality relation (14) cannot be extended

beyond the support of Q̂. This fact challenges the paradigm of solving the robust problem

via determining a least favorable measure. On the other hand, if S is continuous and

X̂ = x +

∫ ·

0

ξ̂t dSt

is known under Q̂, then this strategy can be extended to all of Ω by replacing ξ̂ by ξ̂tI{ζ>t} ,

where ζ := inf{t ≥ 0 |E[ Ẑ | Ft ] = 0}. ♦



9

We get some additional results if all measures in Q are equivalent to P:

Corollary 2.7 In addition to the assumptions of Theorem 2.2 let us assume (11) and

that all measures in Q are equivalent to P. Then both value functions u and v take only

finite values, u is strictly concave, and v is continuously differentiable. For any x > 0,

the optimal solution X̂ ∈ X (x) is unique and it is given by

X̂T = I(ŶT ),

where I is the inverse function of U ′ and Ŷ is as in Corollary 2.4 for ŷ as in Theorem

2.6. If Q̂ is as in Corollary 2.4, then it satisfies all the properties of the measure Q̂ in

Theorem 2.6.

3 The duality of the value functions

As in [13, 14], we obtain “abstract versions” of our theorems if we replace the spaces X (x)

and YQ(y) by the respective spaces

C(x) =
{

g ∈ L0
+(Ω,FT , P) | 0 ≤ g ≤ XT for some X ∈ X (x)

}
.

and, for Q ∈ Qe,

DQ(y) =
{

h ∈ L0
+(Ω,FT , P) | 0 ≤ h ≤ YT for some Y ∈ YQ(y)

}
.

It is easy to see that this substitution does not affect the values of our value functions.

That is, we have uQ(x) = supg∈C(x) EQ[ U(g) ] and vQ(y) = infh∈DQ(y) EQ[ V (h) ], where

we use the convention (6). Moreover, if there is an optimal g or h, then it must clearly

be the terminal value of some process X ∈ X (x) or Y ∈ YQ(y). We note next that the

spaces YQ(y) and DQ(y) can easily be related to Y(y) := YP(y) and D(y) := DP(y): if

(ZQ
t )0≤t≤T is the density process of Q ∈ Qe with respect to P, then

YQ(y) = {Y/ZQ |Y ∈ Y(y) } and DQ(y) = {h/ZQ
T |h ∈ D(y) },

as can be seen easily by the Bayes formula for conditional expectations. Hence, the dual

value function satisfies

v(y) = inf
Q∈Qe

vQ(y) = inf
Z∈Ze

inf
h∈D(y)

E
[
ZV

( h

Z

) ]
, (17)

where

Ze :=
{ dQ

dP
∣∣ Q ∈ Qe

}
; we also define Z =

{ dQ

dP
∣∣ Q ∈ Q

}
.

The formula (17) is convenient, since the infimum is now taken over two sets that are no

longer dependent on another. Also, recall from [13] that for Q ∈ Qe

g ∈ C(x) ⇐⇒ g ≥ 0 and sup
h∈DQ(y)

EQ[ hg ] ≤ xy

h ∈ DQ(y) ⇐⇒ h ≥ 0 and sup
g∈C(x)

EQ[ hg ] ≤ xy.
(18)
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Lemma 3.1 With our convention (6), we have:

(a) For any Q � P and x > 0, g 7→ EQ[ U(g) ] is a concave functional on C(x).

(b) uQ(x) = supg∈C(x) EQ[ U(g) ] and u(x) = infQ∈Q uQ(x) are concave functions of x.

(c) If there exist x > 0 and g ∈ C(x) such that EQ[ U+(g) ] = ∞, then uQ ≡ +∞.

Proof: (a) Since U is concave and x 7→ x∧ n is increasing and concave, we have U(αg +

(1−α)g′)∧n ≥ α(U(g)∧n)+(1−α)(U(g′)∧n) for any convex combination of g, g′ ∈ C(x).

This implies the assertion.

(b) This follows from part (a) and the fact that

{αg + (1− α)g′ | g ∈ C(x), g′ ∈ C(x′) } ⊂ C(αx + (1− α)x′).

(c) We have 1 + g ∈ C(x + 1) and EQ[ U(1 + g) ] = +∞. Hence, uQ(x + 1) = +∞,

which in view of part (b) implies uQ ≡ +∞.

Note that the concavity of u and (7) imply that u takes only finite values and is

continuous on (0,∞). The following lemma is certainly well known; we include a short

proof for the convenience of the reader.

Lemma 3.2 Suppose parts (i) and (ii) of Assumption 2.1 hold. Then part (iii) of As-

sumption 2.1 holds if and only if Z is weakly compact in L1(P).

Proof: Assume (iii), take F ∈ L∞+ (P), and let (Zn) be a sequence in Z such that E[ ZnF ]

tends to infZ∈Z E[ ZF ]. By the standard Komlos-type argument [5, Lemma A1.1], there

exists a sequence of convex combinations Z̃n ∈ conv{Zn, Zn+1, . . . } ⊂ Z converging P-a.s.

to some random variable Z0 ∈ Z. Thus, for every F ∈ L∞+ (P) there exists Z0 ∈ Z such

that E[ Z0F ] ≤ E[ ZF ] for all Z ∈ Z. Since all members of Z are probability densities,

the same result is true for arbitrary F ∈ L∞, and weak compactness follows from James’

theorem (see, e.g., [7]).

Conversely, suppose (Zn) is a sequence in Z converging P-a.s. to some Z0. Weak

compactness of Q gives E[ Zn ] → E[ Z0 ], and it follows that Zn → Z0 in L1(P). Since Z
is closed in L1(P) due to part (i) we get Z0 ∈ Z.

Recall that Qf denotes the set of Q ∈ Q such that uQ(x) < ∞ for some and hence all

x > 0.

Lemma 3.3 For Q0, Q1 ∈ Qf and 0 ≤ t ≤ 1 let Qt := tQ1 + (1 − t)Q0 ∈ Q. Then

t 7→ uQt(x) is a continuous function for each x > 0.
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Proof: On the one hand, f(t) := uQt(x) takes only finite values and is convex as the

supremum, taken over g ∈ C(x), of the affine functions t 7→ EQt [ U(g) ]. Hence f is

continuous on (0, 1) and upper semicontinuous on [0, 1]. On the other hand, U(· + ε) is

bounded from below for any ε ∈ (0, x), and so

t 7→ EQt [ U(ε + g) ] = sup
n

EQt [ U(ε + g) ∧ n ]

is lower semicontinuous for each g ∈ C(x). Moreover, g + ε ∈ C(x) for each g ∈ C(x− ε)

and hence

lim inf
t↓0

uQt(x) ≥ lim inf
t↓0

sup
g∈C(x−ε)

EQt [ U(g + ε) ] ≥ sup
g∈C(x−ε)

EQ0 [ U(g + ε) ] ≥ uQ0(x− ε).

Sending ε ↓ 0 and using the continuity of uQ0 as a concave function, we get that f is also

lower semicontinuous at t = 0. The proof for t = 1 is identical.

Lemma 3.4 We have

u(x) = sup
g∈C(x)

inf
Q∈Q

EQ[ U(g) ] = inf
Q∈Q

sup
g∈C(x)

EQ[ U(g) ] (19)

= sup
g∈C(x)

inf
Q∈Qe

EQ[ U(g) ] = inf
Q∈Qe

sup
g∈C(x)

EQ[ U(g) ] (20)

Proof: To prove that in (19) supremum and infimum may be interchanged, take ε > 0

and note that

u(x + ε) ≥ sup
g∈C(x)

inf
Q∈Q

EQ[ U(ε + g) ] = sup
g∈C(x)

inf
Z∈Z

E[ ZU(ε + g) ].

As in the proof of Lemma 3.3, we see that Z 7→ E[ ZU(ε + g) ] is, for each g ∈ C(x), a

weakly lower semicontinuous affine functional defined on the weakly compact convex set

Z. Moreover, for each Z ∈ Z, g 7→ E[ ZU(ε + g) ] is a concave functional defined on the

convex set C(x). Thus, the conditions of the lop sided minimax theorem [1, Chapter 6, p.

295] are satisfied, and so

sup
g∈C(x)

min
Z∈Z

E[ ZU(ε + g) ] = min
Z∈Z

sup
g∈C(x)

E[ ZU(ε + g) ].

Hence, we arrive at

u(x + ε) ≥ min
Q∈Q

sup
g∈C(x)

EQ[ U(ε + g) ] ≥ inf
Q∈Q

sup
g∈C(x)

EQ[ U(g) ] ≥ sup
g∈C(x)

inf
Q∈Q

EQ[ U(g) ] = u(x).

Sending ε ↓ 0 and using the continuity of u yields the first part of the lemma.

We still have to show that Q may be replaced by Qe. We obtain from (7) and Lemma

3.3 that u(x) = infQ∈Qe uQ(x). Hence

u(x) = inf
Q∈Qe

uQ(x) = inf
Q∈Qe

sup
g∈C(x)

EQ[ U(g) ] ≥ sup
g∈C(x)

inf
Q∈Qe

EQ[ U(g) ]

≥ sup
g∈C(x)

inf
Q∈Q

EQ[ U(g) ] = u(x).
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A key observation for our future analysis is the convexity of the function (z, y) 7→
zV (y/z). A proof of this observation goes as follows. For z0, z1, y0, y1 ∈ (0,∞) let α :=

z1/(z0 + z1) ∈ (0, 1). Then

α
y1

z1

+ (1− α)
y0

z0

=
y0 + y1

z0 + z1

=
y 1

2

z 1
2

,

where z 1
2

:= (z0 + z1)/2 and y 1
2

:= (y0 + y1)/2. It follows that

z 1
2
V

(y 1
2

z 1
2

)
≤ z 1

2

[
(1− α)V

(y0

z0

)
+ αV

(y1

z1

)]
=

1

2
z0V

(y0

z0

)
+

1

2
z1V

(y1

z1

)
. (21)

Note that the inequality is strict if y0/z0 6= y1/z1.

We will show next that in (17) the set Ze can be replaced by the larger set Z or by

the smaller set Zf
e , where Zf and Zf

e correspond to the densities of measures in Qf and

Qf
e . If Z = dQ/dP, we will also write uZ and vZ for uQ und vQ, respectively.

Lemma 3.5 We have vQ(y) = ∞ for Q ∈ Qe\Qf
e , and for v(y) < ∞ the dual value

function of the robust problem satisfies

v(y) = inf
Q∈Qf

e

vQ(y) = inf
Z∈Z

inf
h∈D(y)

E
[
ZV

( h

Z

) ]
.

Proof: First we show that

v(y) = inf
Z∈Ze

inf
h∈D(y)

E
[
ZV

( h

Z

) ]
= inf

Z∈Z
inf

h∈D(y)
E

[
ZV

( h

Z

) ]
. (22)

Suppose Z1 ∈ Z\Ze and h1 ∈ D(y) are such that E[ Z1V (h1/Z1) ] < ∞. Due to our

assumption v(y) < ∞, we may choose Z0 ∈ Ze and h0 ∈ D(y) such that E[ Z0V (h0/Z0) ] <

∞. Now let Zt := tZ1+(1−t)Z0 and ht := th1+(1−t)h0 for 0 ≤ t < 1. Since the function

t 7→ E[ ZtV (ht/Zt) ] is convex and takes only finite values, it is upper semicontinuous and

we get E[ Z1V (h1/Z1) ] ≥ lim supt↑1 E[ ZtV (ht/Zt) ]. Since Zt ∈ Ze for t < 1, this yields

our claim (22).

Now we will follow the proof of Lemma 3.4 in [13] to show that vQ(y) = ∞ for

Q ∈ Qe\Qf
e . This fact will complete the proof. With Bn := {g | 0 ≤ g ≤ n}, we get as in

[13, Lemma 3.4] that, for V n(y) := sup0<x≤n(U(x)− xy),

vn
Q(y) := inf

h∈D(y)
EQ[ V n(h) ] = sup

g∈Bn

inf
h∈D(y)

EQ[ U(g)− gh ] = inf
h∈D(y)

sup
g∈Bn

EQ[ U(g)− gh ].

We also get that vQ(y) ≥ vn
Q(y) and that

vn
Q(y) ↗ sup

x>0

(
uQ(x)− xy

)
= ∞.

This proves the assertion.



13

Lemma 3.6 With V − denoting the negative part of V , the set of random variables{
ZV −

( h

Z

) ∣∣∣ Z ∈ Z, h ∈ D(y)
}

is uniformly integrable with respect to P.

Proof: The set Z is uniformly integrable according to Lemma 3.2 and the Dunford-Pettis

theorem. Hence, there is nothing to show if V is bounded from below. If V is unbounded

from below, let φ denote the inverse function of −V and y0 := φ(0) (we may assume

without loss of generality that V (0) > 0). We have

E
[
Zφ

(
V −

( h

Z

)) ]
≤ E

[
Zφ

(
−V

( h

Z

)) ]
+ y0 ≤ E[ h ] + y0 ≤ y + y0 =: M (23)

for all Z ∈ Z and h ∈ D(y). It was shown in Lemma 3.2 of [13] that φ(t)/t → ∞ as

t ↑ ∞. Hence, for every a > 0 there exists c(a) > 0 such that φ(t) ≥ at for all t ≥ c(a).

Let us write F h
Z for V −(h/Z). Then (23) implies that

E
[
ZF h

ZI
{F h

Z≥c(a)}

]
≤ 1

a
E

[
Zφ(F h

Z)
]
≤ M

a
, (24)

uniformly in Z ∈ Z and h ∈ D(y). Now suppose ε > 0 is given. Take c := c(2M/ε) and

let η := ε/(2c). Hence, if A ∈ F is such that E[ Z I
A

] ≤ η, then

E
[
ZF h

Z · IA
]

= E
[
ZF h

Z · IA∩{F h
Z≥c}

]
+ E

[
ZF h

Z · IA∩{F h
Z<c}

]
≤ ε

2
+ c · E[ Z I

A
] ≤ ε.

Finally, the uniform integrability of Z yields the existence of some δ > 0 such that

E[ Z I
A

] ≤ η as soon as P[ A ] ≤ δ, and the proof is complete.

Lemma 3.7 If v(y) < ∞, then there exist Ẑ ∈ Z and ĥ ∈ D(y) such that

v(y) = E[ ẐV (ĥ/Ẑ) ].

Moreover, the function v is convex and lower semicontinuous on [0,∞) if we define v(0) :=

V (0) := limy↓0 V (y).

Proof: In a first step, we show that the function

Z ×D(y) 3 (Z, h) 7−→ E
[
ZV

(
h/Z

) ]
is lower semicontinuous with respect to P-a.s. convergence. Without loss of generality,

we may assume V (∞) < 0. Suppose that almost surely Zn → Z and hn → h.

We claim that P-a.s. lim infn ZnV
+(hn/Zn) ≥ ZV +(h/Z) and limn ZnV

−(hn/Zn) =

ZV −(h/Z), where we use the convention 0 · ∞ = 0. The first inequality clearly becomes

an identity on {Z > 0}. On {h > 0}∩ {Z = 0}, we have ZnV
+(hn/Zn) = 0 = ZV +(h/Z)

for large enough n, due to our assumption V (∞) < 0. On {h = 0} ∩ {Z = 0}, we

have lim infn ZnV
+(hn/Zn) ≥ 0, but this inequality may be strict. As for the negative
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part of V , the asserted convergence is clear on {Z > 0}. On {Z = 0}, we clearly have

lim infn ZnV
−(hn/Zn) ≥ 0 = ZV −(h/Z). Moreover, there is some c = c(ω) > 0 such

that hn(ω) ≤ c(ω) for all n. Hence lim supn ZnV
−(hn/Zn) ≤ limn ZnV

−(c/Zn) = 0 on

{Z = 0}, due to the fact that V ′(∞) = 0

Now Fatou’s lemma yields E[ ZV +(h/Z) ] ≤ lim infn↑∞ E[ ZnV
+(hn/Zn) ], while Lemma

3.6 implies that E[ ZnV
−(hn/Zn) ] → E[ ZV −(h/Z) ]. Combining these two facts gives

lower semicontinuity.

Now let (Zn, hn) ∈ Z × D(y) be a sequence such that E[ ZnV (hn/Zn) ] → v(y). Ap-

plying twice the standard Komlos-type argument of Lemma A1.1 in [5], we obtain a

sequence

(Z̃n, h̃n) ∈ conv{(Zn, hn), (Zn+1, hn+1), . . . } ⊂ Z ×D(y)

that converges P-a.s. to some (Ẑ, ĥ). We have Ẑ ∈ Z by Lemma 3.2. Moreover, D(y) is

closed in L0 by (18), and we get ĥ ∈ D(y).

By the convexity of (x, z) 7→ zV (x/z) and step one of this proof we get

E[ ẐV (ĥ/Ẑ) ] ≤ lim inf
n↑∞

E[ Z̃nV (h̃n/Z̃n) ] ≤ lim inf
n↑∞

E[ ZnV (hn/Zn) ] = v(y).

Lemma 3.5 then shows that the pair (ĥ, Ẑ) is as desired.

Convexity of v now follows easily from the convexity of (Z, h) 7→ E[ ZV (h/Z) ]. To

show lower semicontinuity, take a sequence yn > 0 converging to y ≥ 0. There is nothing

to show if lim infn v(yn) = ∞, so we may assume that supn v(yn) < ∞. Then there are

ĥn ∈ D(yn) and Ẑn ∈ Z such that v(yn) = E[ ẐnV (ĥn/Ẑn) ]. Hence, we can pass to a

sequence of convex combinations, which converges P-a.s. to some (ĥ, Ẑ). Using (18) and

our assumptions on Z yields (ĥ, Ẑ) ∈ D(y)×Z, while Lemma 3.5, convexity, and step 1

of this proof give v(y) ≤ E[ ẐV (ĥ/Ẑ) ] ≤ lim infn v(yn).

Proof of Theorem 2.2: By Lemma 3.4, (4), and Lemma 3.5,

u(x) = inf
Q∈Qe

uQ(x) = inf
Q∈Qf

e

uQ(x) = inf
Q∈Qf

e

inf
y>0

(
vQ(y) + xy

)
= inf

y>0

(
v(y) + xy

)
,

which is the first identity in (9). The second one follows from the first and the convexity

and lower semicontinuity of v as established in Lemma 3.7; see, e.g., [6, Proposition A.6

(b)]. The identities in (10) can be proved as in [13, Lemma 3.5].

Proof of Corollary 2.4: The uniqueness of Ŷ follows from the strict convexity of V and

the fact that the inequality (21) is strict if y0/z0 6= y1/z1.

4 The existence of optimal strategies

Throughout this section, we assume that the conditions of Theorem 2.6 are satisfied. In

view of Lemma 3.5, we extend the definition of vZ beyond the case Z ∈ Ze by setting

vZ(y) := inf
h∈D(y)

E
[

ZV
(h

z

) ]
for any Z ∈ Z.
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Lemma 4.1 For any x0 > 0, there exist some Ẑ ∈ Z, ŷ > 0, and ĥ ∈ D(ŷ) such that

(a) u(x0) = u bZ(x0),

(b) v(ŷ) = v bZ(ŷ) = E[ ẐV (ĥ/Ẑ) ],

(c) u(x0) = v(ŷ) + x0ŷ.

Moreover, u is a strictly increasing function.

Proof: Let (Zn) be any sequence in Ze such that uZn(x0) → u(x0). Such sequences exist

due to Lemma 3.4. In the first step, we show that

u′+(x0) ≤ lim inf
n↑∞

u′Zn
(x0) ≤ lim sup

n↑∞
u′Zn

(x0) ≤ u′−(x0),

where u′±(x0) are the left- and right-hand derivatives of u in x0. Indeed, the concavity of

uZn implies that for x1 ∈ (0, x0)

u′Zn
(x0) ≤

uZn(x0)− uZn(x1)

x0 − x1

≤ uZn(x0)− u(x1)

x0 − x1

.

Sending first n ↑ ∞ and then x1 ↑ x0 yields lim supn u′Zn
(x0) ≤ u′−(x0). To get the lower

bound, use a similar argument with x2 > x0.

In the next step, we use the standard Komlos-type argument to obtain a sequence

(Zn) in Ze such that both uZn(x0) → u(x0) and Zn → Ẑ P-a.s., which is possible due to

the convexity of the functional Z 7→ uZ(x0). Moreover, we have for any ε > 0

u bZ(x0) ≤ sup
g∈C(x0)

E[ ẐU(g + ε) ] ≤ lim inf
n↑∞

sup
g∈C(x0)

E[ ZnU(g + ε) ]

≤ lim inf
n↑∞

uZn(x0 + ε) ≤ lim inf
n↑∞

(
uZn(x0) + εu′Zn

(x0)
)

≤ u(x0) + εu′−(x0).

Taking ε ↓ 0 gives u(x0) = u bZ(x0).

Next observe that u(x0) − u(x0 − ε) ≥ u bZ(x0) − u bZ(x0 − ε) > 0 for each ε ∈ (0, x0).

That is, the function u is strictly increasing.

Let yn := u′Zn
(x0). By passing to a subsequence if necessary, we may assume that

(yn) converges to some ŷ ∈ [u′+(x0), u
′
−(x0)]. Since u is strictly increasing, we have ŷ > 0.

Applying the results of [13, 14] for each n, we get

vZn(yn) = uZn(x0)− x0yn −→ u(x0)− x0ŷ = v(ŷ),

where we have used the duality relation (9) and the fact that ŷ belongs to the su-

perdifferential of u. Due to the results in [13, 14], there exist hn ∈ D(yn) such that

vZn(yn) = E[ ZnV (hn/Zn) ]. As in the proof of Lemma 3.7, we obtain a sequence

(Z ′
n, h

′
n) ∈ conv{(Zn, hn), (Zn+1, hn+1), . . . }

that converges P-a.s. to (Ẑ, ĥ), where ĥ ∈ D(ŷ). As in Lemma 3.7, we obtain E[ ẐV (ĥ/Ẑ) ] =

v(ŷ).
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Lemma 4.2 If AE(U) < 1 then {Ẑ > 0} ⊆ {ĥ > 0}.

Proof: Suppose by way of contradiction that B := {Ẑ > 0}∩{ĥ = 0} satisfies P[ B ] > 0.

If V (0) = ∞, then P[ B ] > 0 would contradict the fact that v(ŷ) < ∞. Now we consider

the case V (0) < ∞. Take h ∈ D(ŷ) such that P[ h > 0 ] = 1 (e.g., we can take ydP ∗/dP
where P ∗ ∈ M), and let ht := (1 − t)ĥ + thI

B
∈ D(ŷ) for 0 ≤ t ≤ 1. Then ẐV (ht/Ẑ) ∈

L1(P), due to Lemma 3.6.

Next, as t ↓ 0, 1
t
Ẑ(V (ht/Ẑ)− V (ĥ/Ẑ)) decreases to

V ′(0+)h · I
B
− V ′

( ĥ

Ẑ

)
ĥ · I

Bc∩{ bZ>0}
.

Due to our assumtion AE(U) < 1 and [13, Lemma 6.3 (iv)], there exist constants c, y0 > 0

such that −V ′(y) ≤ cV (y)/y for 0 < y ≤ y0. This implies that

−E
[
V ′

( ĥ

Ẑ

)
ĥ · I

Bc∩{ bZ>0}

]
< ∞.

On the other hand, V ′(0+) = −∞, and so monotone convergence guarantees that

1

t
E

[
ẐV

(ht

Ẑ

)
− ẐV

( ĥ

Ẑ

) ]
−→ −∞ as t ↓ 0,

in contradiction to the optimality of ĥ.

Proof of Theorem 2.6: Due to our assumption (11) and Lemma 3.5, we have Qf
e = Qe.

In particular, we have EQ[ U+(g) ] < ∞ for all Q ∈ Qe and g ∈ C(x) by Lemma 3.1.

Moreover,
uQ(x)

x
−→ 0 as x ↑ ∞ (25)

for each Q ∈ Qe; see [14, Note 1]. Hence it follows from the proof of [14, Eq. (25)] that

the mapping C(x) 3 g 7→ EQ[ U(g) ] is upper semicontinuous with respect to almost-sure

convergence (note that the proof of Eq. (25) in [14] does not use the assumption that (gn)

is a maximizing sequence). Hence, C(x) 3 g 7→ infQ∈Qe EQ[ U(g) ] is also upper semicon-

tinuous with respect to almost-sure convergence. Now let (g̃n) be a maximizing sequence

in C(x). By the usual Komlos-type argument there is a sequence gn ∈ conv{g̃n, g̃n+1, . . . }
converging P-a.s. to some ĝ ≥ 0. We have ĝ ∈ C(x) due to (18). Moreover, the

concavity of the functional g 7→ infQ∈Qe EQ[ U(g) ] implies that (gn) is again a maxi-

mizing sequence, while its upper semicontinuity yields that infQ∈Qe EQ[ U(ĝ) ] ≥ u(x).

In fact, we even have infQ∈Q EQ[ U(ĝ) ] ≥ u(x). To see this, note first that the set

{Q ∈ Q |EQ[ U(ĝ) ] = −∞} must be empty, for otherwise it would have a non-void inter-

section with Qe. Hence, for Q ∈ Q\Qe and Q0 ∈ Qe, EQ[ U(ĝ) ] is the limit as t ↑ 1 of

EQt [ U(ĝ) ] with Qt := tQ + (1− t)Q0 ∈ Qe.

Next, for Ẑ as in Lemma 4.1, we get

u(x) = u bZ(x) ≥ E[ ẐU(ĝ) ] ≥ inf
Q∈Q

EQ[ U(ĝ) ] ≥ u(x),
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so all inequalities are in fact identities, and ĝ is optimal.

Next, we show that the optimal ĝ coincides dQ̂ := Ẑ dP-a.s. with I(ĥ/Ẑ), where ŷ

and ĥ are as in Lemma 4.1 for x0 := x. We have 0 ≤ V (ĥ/Ẑ) + ĝĥ/Ẑ − U(ĝ) and

E bQ[ V (ĥ/Ẑ) + ĝĥ/Ẑ − U(ĝ) ] = v(ŷ) + E
[
ĝĥ I

{ bZ>0}

]
− u(x)

≤ v(ŷ) + xŷ − u(x) = 0.

Thus, 0 = V (ĥ/Ẑ)+ĝĥ/Ẑ−U(ĝ) and in turn ĝ = I(ĥ/Ẑ) Q̂-a.s. We also get E
[
ĝĥ I

{ bZ>0}
] =

xŷ, which in view of the a priori bound E[ ĝĥ ] ≤ xŷ implies that

{ĝĥ > 0} ⊂ {Ẑ > 0}. (26)

Clearly, ĝ = X̂T and ĥ = YT for some X̂ ∈ X (x) and Y ∈ Y(ŷ). Their product forms

a martingale under P since E[ X̂T YT ] = xŷ. The identity (15) follows from the definition

of the dual value function and the corresponding identity in [13, 14]. The assertion that

u′(∞−) = 0 follows from the fact that u(x)/x → 0 as x ↑ ∞, which is itself a consequence

of [14, Note 1]. The second identity in (13) follows from the first and the duality relations

between u and v.

Next, suppose that AE(U) < 1. The identity (16) follows from (26) and Lemma

4.2. We now prove the strict concavity of u, which will in turn imply the differentiability

of v, due to the duality relations and general principles. Taking Z1 ∈ Ze and letting

Zt := tZ1 + (1− t)Ẑ ∈ Ze, one easily shows that t 7→ vZt(y) is a convex function. By our

assumption (11), this function is finite for t > 0 and thus upper semicontinuous. Using

Lemma 3.3 and (4), we get

u bZ(x) = lim
t↓0

uZt(x) = lim
t↓0

inf
y>0

(
vZt(y) + xy

)
≤ inf

y>0

(
v bZ(y) + xy

)
. (27)

Since v bZ(ŷ) < ∞, it follows as in [14, Note 2] that v bZ(y) < ∞ for all y > 0 provided that

AE(U) < 1 holds. Hence (27) implies that (25) holds for Q := Q̂. It follows from the proof

of [14, Lemma 1] that for each ξ > 0 there is some g ∈ C(ξ) such that u bZ(ξ) = E[ ẐU(g) ].

This g must be Q̂-a.s. unique, and we obtain the strict concavity of the function u bZ .

From here we get the strict concavity of the robust value function u: Take x1, x2 > 0,

x := (x1 + x2)/2, and let Ẑ be as above, then

1

2

(
u(x1) + u(x2)

)
− u(x) ≤ 1

2

(
u bZ(x1) + u bZ(x2)

)
− u bZ(x) < 0.

Proof of Corollary 2.7: Let us suppose that ĝi ∈ C(xi), i = 1, 2, are such that u(xi) =

infQ∈Q EQ[ U(ĝi) ]. Due to Lemma 3.2 and the weak lower semicontinuity of Z 7→ E[ ZF ]

for F ≥ 0, there exists some Q̃ ∈ Q such that

u
(x1 + x2

2

)
− u(x1) + u(x2)

2
≥ inf

Q∈Q
EQ

[
U

( ĝ1 + ĝ2

2

)
− U(ĝ1) + U(ĝ2)

2

]
= E eQ

[
U

( ĝ1 + ĝ2

2

)
− U(ĝ1) + U(ĝ2)

2

]
,
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and the last term is strictly positive as soon as P[ ĝ1 6= ĝ2 ] > 0. With x1 = x2, this gives

the uniqueness of the optimal ĝ, for x1 6= x2 we then obtain the strict concavity of u. The

asserted properties of v now follow by general principles (e.g., [18, Theorem V.26.3]) from

the duality relation (9). The remaining assertions follow from the preceding results.
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