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Abstract. We consider a quasilinear parabolic equation with quadratic gradient terms. It arises
in the modelling of an optimal portfolio which maximizes the expected utility from terminal
wealth in incomplete markets consisting of risky assets and non-tradable state variables. The
existence of solutions is shown by extending the monotonicity method of Frehse. Furthermore,
we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the
covariance matrices with respect to the solution. The influence of the non-tradable state variables
on the optimal value function is illustrated by a numerical example.
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many useful discussions.

1 Introduction

One fundamental problem in mathematical finance is the problem of portfolio selection,
i.e., an agent invests in a market trying to maximize the expected utility of his or her
terminal wealth [21]. For a complete market this problem was solved in [27, 28], deriving
a nonlinear PDE (Bellman equation) for the value function of the optimization problem,
i.e. the utility of the optimal portfolio.

The maximization of expected utility from terminal wealth in incomplete markets has
been studied in [23, 25]. The author in [25] considers an arbitrage-free continuous time
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market model with unrestricted trading and a fixed time horizon, i.e. t ∈ [0, T ]. The
market consists of a riskless bond, d risky assets and d′ non-tradable state variables and
hence is incomplete. Examples for such state variables are credit risks of a bank or an
employee’s personal income, which usually cannot be traded. The optimization problem
is to find a portfolio strategy which maximizes the expected utility from terminal wealth
over the set of self-financing portfolios with initial capital x > 0 and non-negative wealth,
denoted by X (x) = {X(t) ≥ 0 : X(0) = x}, using isoelastic utility functions with constant
relative risk aversion,

U (p)(x) = sgn(1 − p)
xp

p
, U0(x) = ln x,

with x > 0 and exponent p 6∈ {0, 1}. The optimal value function of this problem is defined
by

v(x) = sup
X∈X (x)

E[U (p)(X(T ))].

Solving this optimization problem with p < 1 is an approach for finding portfolios of
optimal expected growth [20, 21, 23]. For p = 2 the problem is related to the mean
variance hedging problem [17, 24, 30].

Following a stochastic duality approach, the existence of an optimal (locally efficient)
portfolio is proved in [25]. The relationship between the optimal portfolio and the optimal
martingal measure for the dual problem is characterized by a backward stochastic differ-
ential equation. For a Markovian market with d price processes S

(i)
t and d′ state variable

processes S
′(j)
t satisfying the stochastic differential equations

dS
(i)
t = µ(i)(S

(i)
t ) dt+ σ(i)(S

(i)
t ) dW

(i)
t , i = 1, . . . , d,

dS
′(j)
t = µ′(j)(S

′(j)
t ) dt+ σ′(j)(S

′(j)
t ) dW

′(j)
t , j = 1, . . . , d′,

where W
(i)
t and W

′(j)
t are correlated Wiener processes, the following quasilinear parabolic

PDE for the logarithm of the optimal value function has been derived in [25]:

∂tu−
1

2

d∑

i,j=1

cij(u)∂i∂ju−
1

2

d′∑

i,j=1

c′ij(u)∂
′
i∂

′
ju

=µ · ∇u+ µ′ · ∇′u+ q(µ− rS) · ∇u−
q

2
β(u)2 + pr in Ω̂ × (0, T ), (1a)

+
1

2(p− 1)
(∇u)>C(u)∇u−

1

2
(∇′u)>C ′(u)∇′u,

u(S, S ′, t) =uD(S, S ′, t) on ∂Ω̂ × (0, T ), (1b)

u(S, S ′, 0) =u0(S, S
′) in Ω̂, (1c)

where u = u(S, S ′, t) is the logarithm of the optimal value function, either Ω̂ = Ω × Ω′ ⊂
R

d × R
d′ is a bounded domain or Ω̂ = R

d × R
d′ , and T > 0. We use the notations
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∂t = ∂/∂t and ∇ = (∂1, . . . , ∂d), ∇
′ = (∂′1, . . . , ∂

′
d′) with the partial derivatives ∂i = ∂/∂Si,

∂′i = ∂/∂S ′
i. Furthermore,

• C = (cij(S, t, u))i,j : Ω×(0, T )×R → R
d×d and C ′ = (c′ij(S

′, t, u))i,j : Ω′×(0, T )×R →

R
d′×d′ are the symmetric and positive definite covariance matrices of the risky assets

and the non-tradable state variables, respectively;

• µ(S, t) : Ω × (0, T ) → R
d and µ′(S ′, t) : Ω′ × (0, T ) → R

d′ are the expected returns;

• r(S, S ′, t) : Ω × Ω′ × (0, T ) → R is the riskless interest rate;

• β(S, S ′, t, u)2 = (µ− rS)>C−1(µ− rS) is the square of the risk premium;

• p 6∈ {0, 1} is the exponent of the utility function and q ∈ R is given by 1/p+1/q = 1.

In the case p = 0, which relates to the logarithmic utility function U 0(x) = ln x, the
optimization problem is also known as maximizing the Kelly criterion [16, 19, 21]. Note
that if p = 0, the quadratic terms in (1a) can be removed by an exponential transformation.

The solution u of (1a) allows to construct the optimal portfolio π∗. Indeed, the optimal
portfolio strategy is given by H(S, S ′, t) = (1−p)−1(λ−∇u) [25] (where λ = C−1(µ−rS)),
and the optimal portfolio equals π∗ = H · S. The components of the vector H(S, S ′, t) are
the shares of the underlyings in the portfolio. Recall that for Merton’s model it holds
H(S, S ′, t) = (1 − p)−1λ [29], and the portfolios coincide if u is constant with respect to
the asset prices. This is the case if, for instance, the expression pr − qβ2/2 and the initial
data u0 is constant in Ω̂ × (0, T ) since then, equation (1a) has the solution u(S, S ′, t) =
(pr − qβ2/2)t+ u0.

Up to now, the question of well-posedness of problem (1) has not been studied in
the literature. The main aim of this paper is to prove the existence and uniqueness of
generalized Sobolev solutions to the initial-boundary-value problem (1) and to the Cauchy
problem (1a), (1c) in Ω̂ = R

d × R
d′.

The main mathematical difficulty is the treatment of the terms with the quadratic
gradients. In order to show the existence of solutions usually an approximate problem
is solved (for instance, with linearly growing gradient terms) and appropriate a priori
estimates independent of the approximation parameter are derived. In the mathematical
literature there are two approaches to obtain uniform a priori estimates. The first idea
is to establish L∞ bounds (for instance, from a maximum principle) which lead to H1

bounds [7, 8, 9, 10, 13, 14, 18, 26]. The second idea is to derive H1 bounds directly
without L∞ bounds if a sign condition of the form f(u,∇u)u ≥ 0 (where f is a function
with quadratic growth) is fulfilled [2, 5, 6, 31]. Another interesting work [22] studies the
connections of backward stochastic differential equations and partial differential equations
with quadratic growth of the gradient similar to (1) (and their viscosity and Sobolev
solutions). However, the results presented here are not covered by those in [22], as we
consider nonlinear covariance matrices.

We adopt some of the methods of the literature mentioned above and generalize them
slightly to deal with our problem. Clearly, our results can be extended to more general
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equations fulfilling similar regularity and growth conditions, but the emphasis of this work
is placed on studying the particular problem (1).

We prove the existence of generalized solutions by first proving uniform L∞ bounds for
an approximate problem. In fact, it is easy to see that smooth solutions of (1a) attain
their extremal values on the parabolic boundary of the domain if −qβ2/2 + pr = 0. Using
Stampacchia’s truncation technique, we show L∞ bounds for generalized solutions of (1a).
Then uniform H1 bounds are derived using nonlinear test functions of the type sinh(λu)
for sufficiently large λ > 0. The uniform H1 bounds only imply weak convergence in H1 of
the sequence of approximating solutions. However, the quasilinear structure of the problem
requires that the sequence converges strongly in H1. This is achieved by employing the
monotonicity method of Frehse [15], originally used for elliptic problems, which we extend
to parabolic equations (section 2). Moreover, we show the existence of solutions to the
whole-space problem (1a), (1c) which is the original formulation in [25] (section 3). Note
that, although the sign of one of the quadratic terms depends on whether p < 1 or p > 1,
the proofs of these results hold for arbitrary values of p and, in fact, do not rely on the
sign of (1 − p) at all.

Our second main result is a proof of the uniqueness of generalized solutions to (1).
The uniqueness proof has to overcome the difficulties arising from both the quadratic
gradient terms and the quasilinearity. In order to deal with the quadratic gradients, the
uniqueness of solutions of often shown in the space of functions whose gradient lies in a
smaller space than L2 (for instance in L∞) [11, 33]. Quasilinear terms can be handled using
duality methods [1]. However, there are much less uniqueness results (and techniques) for
problems with both difficulties. We are only aware of the paper of Barles and Murat
[3], where the uniqueness of weak solutions to general elliptic problems is proved under
a structure condition on the nonlinearities. We adapt their method in order to show the
uniqueness of generalized solutions to (1) either if the covariance matrices C and C ′ do
not depend on S and S ′, respectively, or if p < 1 and some (smallness) conditions on the
derivatives of C and C ′ with respect to u are satisfied (section 4). Notice that we do not
need regularity assumptions on the solution.

Finally, we present some numerical results by solving problem (1) with a finite element
method for two risky assets and one state variable (section 5). The experiments are showing
that the optimal value function varies only slowly with respect to the state variable.

2 Existence of solutions

In this section we prove the existence of (generalized) solutions to (1). Let QT = Ω̂×(0, T ).
We call u a (generalized) solution of (1) if u−uD ∈ L2(0, T ;H1

0(Ω̂)), u ∈ H1(0, T ;H−1(Ω̂)),
u fulfills the initial condition (1c) in the sense of L2(Ω̂) and

T∫

0

〈ut, φ〉 dt+
1

2

∫

QT

(∇φ)>C(u)∇u dx dt+
1

2

∫

QT

(∇′φ)>C ′(u)∇′u dx dt
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=

∫

QT

(µ · ∇u+ µ′ · ∇′u+ q(µ− rS) · ∇u−
q

2
β(u)2 + pr)φ dx dt (2)

+
1

2(p− 1)

∫

QT

(∇u)>C(u)∇uφ dx dt−
1

2

∫

QT

(∇′u)>C ′(u)∇′uφ dx dt

−
1

2

∫

QT

((divC)(u) · ∇u+ (div ′C ′)(u) · ∇′u)φ dx dt

holds for any φ ∈ L∞(QT )∩L2(0, T ;H1
0(Ω̂)). Here, ut = ∂tu, (divC)(u) denotes the vector

with components ((divC)(u))j =
∑d

i=1 ∂cij(u)/∂Si (analogously for div ′C ′(u)) and 〈·, ·〉 is

the dual product between H−1(Ω̂) and H1
0 (Ω̂). The notion of solution for the whole-space

problem is analogous.
The basic hypotheses for the initial-boundary-value problem are as follows:

(H1) Domain: Ω̂ = Ω × Ω′ ⊂ R
d × R

d′ is a bounded domain with boundary ∂Ω̂ ∈ C1,
d ≥ 1, d′ ≥ 0.

(H2) Coercivity: ∃α, α′ > 0 : ∀ξ ∈ R
n\{0} : ∀ S, S ′, t, u :

ξ>C(S, t, u)ξ ≥ α and ξ>C ′(S ′, t, u)ξ ≥ α′.

(H3) Symmetry: cij = cji for all i, j ∈ {1, . . . , d} and c′ij = c′ji for all i, j ∈ {1, . . . , d′}.

(H4) Data: C(·, ·, u), C(·, ·, u) ∈ L∞(0, T ;W 1,∞(Ω)) for all u ∈ R and C(S, t, ·), C ′(S ′, t, ·) ∈
C1(R) ∩W 1,∞(R) for all S, S ′, t,
p ∈ R\{0, 1}, µ ∈ L∞(0, T ;L∞(Ω)), µ′ ∈ L∞(0, T ;L∞(Ω′)), r ∈ L∞(0, T ;L∞(Ω̂)),
uD ∈ L2(0, T ;H2(Ω̂)) ∩ L∞(0, T ;L∞(Ω̂)) ∩H1(0, T ;L1(Ω̂)), u0 ∈ L∞(Ω̂) ∩H1(Ω̂).

First we prove that there exists a solution of a truncated approximate problem. Define
sK = max(−K2,min(s,K1)) for s ∈ R, where

K1 = K1(t) = (t+ 1)M, K2 = K2(t) = (t+ 1)M

and

M = max{sup
Ω̂

u0, sup
∂Ω̂×(0,T )

uD,M2(r, β, p)}, M = min{inf
Ω̂
u0, inf

∂Ω̂×(0,T )
uD,M1(r, β, p)},

with

M1(r, β, p) = − sup
S,S′,t,u

(q

2
β(S, S ′, t, u)2 − pr(S, S ′, t)

)

,

M2(r, β, p) = − inf
S,S′,t,u

(q

2
β(S, S ′, t, u)2 − pr(S, S ′, t)

)

.
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Consider the approximate problem

T∫

0

〈uε
t , φ〉 dt+

1

2

∫

QT

(∇φ)>C(uε)∇uε dx dt+
1

2

∫

QT

(∇′φ)>C ′(uε)∇′uε dx dt

=

∫

QT

(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε −
q

2
β(uε)2 + pr)φ dx dt

+
1

2(p− 1)

∫

QT

(∇uε)>C(uε)∇uε
K

1 + ε(∇uε)>C(uε)∇uε
φ dx dt (3)

−
1

2

∫

QT

(∇′uε)>C ′(uε)∇′uε
K

1 + ε(∇′uε)>C ′(uε)∇′uε
φ dx dt

−
1

2

∫

QT

((divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε)φ dx dt

for any φ ∈ L2(0, T ;H1
0(Ω̂)) and ε > 0 subject to boundary and initial conditions (1b),

(1c).

Lemma 1 There exists a solution uε of (3), (1b), (1c) such that uε−uD ∈ L2(0, T ;H1
0(Ω̂))

and uε ∈ L2(0, T ;H2(Ω̂)) ∩H1(0, T ;L2(Ω̂)).

Proof. We use a fixed point argument. For given w ∈ L2(0, T ;H1(Ω̂)) we consider the
linear equation

T∫

0

〈uε
t , φ〉 dt+

1

2

∫

QT

(∇φ)>C(w)∇uε dx dt+
1

2

∫

QT

(∇′φ)>C ′(w)∇′uε dx dt

=

∫

QT

(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε −
q

2
β(w)2 + pr)φ dx dt

+
1

2(p− 1)

∫

QT

(∇w)>C(w)∇wK

1 + ε(∇w)>C(w)∇w
φ dx dt

−
1

2

∫

QT

(∇′w)>C ′(w)∇′wK

1 + ε(∇′w)>C ′(w)∇′w
φ dx dt

−
1

2

∫

QT

((divC)(w) · ∇uε + (div ′C ′)(w) · ∇′uε)φ dx dt (4)

for any φ ∈ L2(0, T ;H1
0(Ω̂)) subject to the boundary and initial conditions (1b), (1c).
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Since

0 ≤
(∇w)>C(w)∇wK

1 + ε(∇w)>C(w)∇w
≤

1

ε
, 0 ≤

(∇′w)>C ′(w)∇′wK

1 + ε(∇′w)>C ′(w)∇′w
≤

1

ε
, (5)

(4) is a linear parabolic equation with bounded coefficients and bounded inhomogeneity. By
standard results [12], (4) admits a unique solution uε such that uε −uD ∈ L2(0, T ;H1

0(Ω̂)),
uε ∈ L2(0, T ;H2(Ω̂)) ∩H1(0, T ;L2(Ω̂)). Thus the fixed point operator

S : L2(0, T ;H1(Ω̂)) → L2(0, T ;H1(Ω̂)), w 7→ uε,

is well defined and S(L2(0, T ;H1(Ω̂))) ⊂ L2(0, T ;H2(Ω̂))∩H1(0, T ;L2(Ω̂)). The following
estimate holds [12]

‖uε‖L2(0,T ;H2(Ω̂)) + ‖uε‖L∞(0,T ;H1(Ω̂)) + ‖uε
t‖L2(0,T ;L2(Ω̂)) ≤ c,

where in general c > 0 is a generic constant depending on ε, the data and on the in-
homogeneity. Here, in fact, the inhomogeneity is bounded independently of w. Thus
c only depends on ε and the data, but not on w. In view of the compact embedding
L2(0, T ;H2(Ω̂))∩H1(0, T ;L2(Ω̂))) ⊂ L2(0, T ;H1(Ω̂)) [32], S is compact in L2(0, T ;H1(Ω̂)).
Standard arguments show that S is continuous. The hypotheses for Schauder’s fixed point
theorem are fulfilled and (3), (1b), (1c) admits at least one solution uε.

The existence proof for the original problem is based on the following uniform a priori
estimates.

Lemma 2 Let uε be a generalized solution to (3), (1b), (1c) in (0, T ). Then there exist
constants K,K > 0 (independent of ε) such that

K ≤ uε ≤ K,

where K = min0≤t≤T K2(t), K = max0≤t≤T K1(t).

Remark 3 The sign of one of the quadratic terms depends on whether p < 1 or p > 1.
Without truncation in the quadratic terms it is easy to obtain upper or lower L∞ estimates
for p < 1 and p > 1, respectively, using standard test functions, but it is not possible to
obtain the missing lower (upper) estimate in this way. Our proof does not rely on the sign
of (1 − p), since by truncating the solution and choosing appropriate test functions, these
terms vanish completely.

Proof. Let ϕ(uε) := uε−K1(t). Using ϕ(uε)+ := max(0, ϕ(uε)) ∈ L2(0, T ;H1
0(Ω̂)) as a test
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function in (3) yields, in view of ∇uε
Kϕ(uε)+ ≡ 0,

1

2

∫

Ω̂

(ϕ(uε)+(t)2 − ϕ(uε
0)

+

︸ ︷︷ ︸

=0

2
) dx+

1

2

∫

QT

(∇ϕ(uε)+)>C(uε)∇uε dx dt

+
1

2

∫

QT

(∇′ϕ(uε)+)>C ′(uε)∇′uε dx dt

=

∫

QT

(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε − (
q

2
β(uε)2 − pr +M)

︸ ︷︷ ︸

≥0

) ϕ(uε)+ dx dt

−
1

2

∫

QT

((divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε) ϕ(uε)+ dx dt

≤

∫

Qt

(µ · ∇ϕ(uε)+ + µ′ · ∇′ϕ(uε)+ + q(µ− rS) · ∇ϕ(uε)+) ϕ(uε)+ dx dt

−
1

2

∫

QT

((divC)(uε) · ∇ϕ(uε)+ + (div ′C ′)(uε) · ∇′ϕ(uε)+) ϕ(uε)+ dx dt

=:I. (6)

We use Young’s inequality and (H4) to estimate the right hand side:

I ≤

∫

QT

(δ|∇ϕ(uε)+|2 + δ|∇′ϕ(uε)+|2 +
c

δ
(ϕ(uε)+)2) dx dt,

where δ > 0, and c > 0 is a constant independent of ε and varying in the following from
occurrence to occurrence.

We use the coercivity (H2) of C and C ′ to estimate the left hand side of (6) from
below. Then the gradient terms on the right hand side can be controlled, for sufficiently
small δ > 0, by the left hand side. More precisely, we obtain

1

2

∫

Ω̂

(ϕ(uε)+(t))2 dx+
1

2

∫

QT

(α− 2δ)
︸ ︷︷ ︸

≥0

|∇ϕ(uε)+|2 dx dt

+
1

2

∫

QT

(α′ − 2δ)
︸ ︷︷ ︸

≥0

)|∇′ϕ(uε)+|2 dx dt

≤
2c

δ

∫

QT

(ϕ(uε)+)2 dx,

which implies

1

2

∫

Ω̂

(ϕ(uε)+(t))2 dx ≤
2c

δ

∫

QT

(ϕ(uε)+)2 dx,
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and applying Gronwall’s lemma yields uε ≤ K1 ≤ K a.e. in Ω̂ × (0, T ).
In order to derive the lower bound set ϕ(uε) := uε−K2. Using ϕ(uε)− := min(0, ϕ(uε))

∈ L2(0, T ;H1
0(Ω̂)) as a test function in (3) yields

1

2

∫

Ω̂

((ϕ(uε)−(t))2 − ϕ(uε
0)

−

︸ ︷︷ ︸

=0

2
) dx+

1

2

∫

QT

(∇ϕ(uε)−)>C(uε)∇uε dx dt

+
1

2

∫

QT

(∇′ϕ(uε)−)>C ′(uε)∇′uε dx dt

=

∫

QT

(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε − (
q

2
β(uε)2 − pr +M)

︸ ︷︷ ︸

≤0

) ϕ(uε)− dx dt

−
1

2

∫

QT

((divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε) ϕ(uε)− dx dt

≤

∫

QT

(µ · ∇ϕ(uε)− + µ′ · ∇′ϕ(uε)− + q(µ− rS) · ∇ϕ(uε)−) ϕ(uε)− dx dt

−
1

2

∫

QT

((divC)(uε) · ∇ϕ(uε)− + (div ′C ′)(uε) · ∇′ϕ(uε)−) ϕ(uε)− dx dt.

We can estimate similarly as above and applying Gronwall’s lemma yields uε ≥ K2 ≥ K
a.e. in Ω̂ × (0, T ).

Lemma 4 Let uε be a weak solution to (3), (1b), (1c). Then there exists a constant k > 0
(independent of ε) such that

‖uε‖L2(0,T ;H1(Ω̂)) ≤ k.

Proof. Inspired by [15], we use sinh(λuε) − sinh(λuD), λ > 0, as a test function in (3) to
obtain

T∫

0

〈uε
t , sinh(λuε) − sinh(λuD)〉 dt+

1

2

∫

QT

λ cosh(λuε)(∇uε)>C(uε)∇uε dx dt

+
1

2

∫

QT

λ cosh(λuε)(∇′uε)>C ′(uε)∇′uε dx dt

=

∫

QT

(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε −
q

2
β(uε)2 + pr)(sinh(λuε) − sinh(λuD)) dx dt

+
1

2(p− 1)

∫

QT

(∇uε)>C(uε)∇uε

1 + ε(∇uε)>C(uε)∇uε
(sinh(λuε) − sinh(λuD)) dx dt
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−
1

2

∫

QT

(∇′uε)>C ′(uε)∇′uε

1 + ε(∇′uε)>C ′(uε)∇′uε
(sinh(λuε) − sinh(λuD)) dx dt

−
1

2

∫

QT

((divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε)(sinh(λuε) − sinh(λuD)) dx dt

+
1

2

∫

QT

λ cosh(λuD)
[
(∇uD)>C(uε)∇uε + (∇′uD)>C ′(uε)∇′uε

]
dx dt.

Since uε is uniformly bounded in L∞(QT ) and | sinh(x)| ≤ cosh(x), x ∈ R, we obtain

1

2

∫

QT

λ cosh(λuε)
[

(∇uε)>C(uε)∇uε + (∇′uε)>C ′(uε)∇′uε
]

dx dt

≤

∫

QT

|(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε)(sinh(λuε) − sinh(λuD))| dx dt

+

∫

QT

|
q

2
β(uε)2 − pr|(cosh(λuε) + cosh(λuD)) dx dt

︸ ︷︷ ︸

≤L1

+
1

2|p− 1|

∫

QT

(∇uε)>C(uε)∇uε (cosh(λuε) + cosh(λuD)) dx dt

+
1

2

∫

QT

(∇′uε)>C ′(uε)∇′uε (cosh(λuε) + cosh(λuD)) dx dt

+
1

2

∫

QT

|(divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε|| sinh(λuε) − sinh(λuD)| dx dt

+
1

2

∫

QT

λ cosh(λuD)
[

|(∇uD)>C(uε)∇uε| + |(∇′uD)>C ′(uε)∇′uε|
]

dx dt

+
1

λ

∫

Ω̂

| cosh(λuε)(t) − cosh(λu0)| dx

︸ ︷︷ ︸

≤L2

+

∫

QT

|uε cosh(λuD)uD,t| dx dt

︸ ︷︷ ︸

≤L3

.

Here we use the assumption that uD ∈ H1(0, T ;L1(Ω̂)). Choosing λ sufficiently large and
using Young’s inequality for some δ > 0, we can further estimate

1

2

∫

QT

(λ cosh(λuε) −
1

|p− 1|
(cosh(λuε) + cosh(λuD)))

︸ ︷︷ ︸

=:κ>0

(∇uε)>C(uε)∇uε dx dt
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+
1

2

∫

QT

(λ cosh(λuε) − (cosh(λuε) + cosh(λuD)))
︸ ︷︷ ︸

=:κ′>0

(∇′uε)>C ′(uε)∇′uε dx dt

≤L1+L2+L3+

∫

QT

|µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε|| sinh(λuε) − sinh(λuD)| dx dt

+
1

2

∫

QT

|(divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε|(cosh(λuε) + cosh(uD)) dx dt

+
1

2

∫

QT

λ cosh(λuD)
[

|(∇uD)>C(uε)∇uε|
︸ ︷︷ ︸

≤||C||2|∇uD||∇uε|

+ |(∇′uD)>C ′(uε)∇′uε|
︸ ︷︷ ︸

≤||C′||2|∇′uD||∇′uε|

]

dx dt

≤L1+L2+L3+

∫

QT

(
δ|∇uε|2 +

c

δ
(cosh(λuε) + cosh(λuD))2

)
dx dt

+

∫

QT

(
δ|∇′uε|2 +

c

δ
(cosh(λuε) + cosh(λuD))2

)
dx dt

+

∫

QT

(
δ(|∇uε|2+|∇′uε|2) +

1

δ
(|divC(uε)|2+|div ′C ′(uε)|2)

)
(cosh(λuε) + cosh(λuD)) dx dt

+
1

2

∫

QT

λ cosh(λuD)
[

||C||2(
1

δ
|∇uD|

2 + δ|∇uε|2) + ||C ′||2(
1

δ
|∇′uD|

2 + δ|∇′uε|2)
]

dx dt,

where ‖·‖2 denotes the matrix norm defined by ||C||2 = sup|x|=1 |Cx| and |·| is the euclidian
norm. For sufficiently small δ > 0 the gradient terms on the right hand side can now be
estimated by the left hand side using the coercivity (H2) of C and C ′:

1

2

∫

QT

{

ακ− δ
[
2c+ 2 cosh(λuε) + 2 cosh(λuD) + λ||C||2 cosh(λuD)

]}

|∇uε|2 dx dt

+
1

2

∫

QT

{

α′κ′ − δ
[
2c+ 2 cosh(λuε) + 2 cosh(λuD) + λ||C ′||2 cosh(λuD)

]}

|∇′uε|2 dx dt

≤L1 + L2 + L3 +

∫

QT

2

δ
(cosh(λuε) + cosh(λuD))2 dx dt

+

∫

QT

1

δ
(|(divC)(uε)|2 + |(div ′C ′)(uε)|2)(cosh(λuε) + cosh(λuD)) dx dt,

+
1

2

∫

QT

λ cosh(λuD)
[

||C||2
1

δ
|∇uD|

2 + ||C ′||2
1

δ
|∇′uD|

2
]

dx dt



12 B. Düring, A. Jüngel

By Lemma 2, the right hand side is bounded and we conclude
∫

QT

(|∇uε|2 + |∇′uε|2) dx dt ≤ k.

Due to Poincaré’s inequality we obtain the desired H1-bound.

The main result of this section is the following theorem.

Theorem 5 Let (H1)–(H4) hold. Then there exists a solution u of (1) such that u−uD ∈
L∞(0, T ;L∞(Ω̂)) ∩ L2(0, T ;H1

0(Ω̂)) and u ∈ H1(0, T ;H−1(Ω̂)).

Proof. Let uε be a solution of (3), (1b), (1c). In view of Lemma 4, ‖uε‖L2(0,T ;H1(Ω̂)) is
uniformly bounded and we can extract a subsequence uε (not relabeled) such that, as
ε→ 0,

uε ⇀ u in L2(0, T ;H1(Ω̂)), (7)

using, e.g., [34, Theorem 21.D]. Since also ‖uε
t‖L2(0,T ;H−1(Ω̂)) is uniformly bounded, again

for a subsequence which is not relabeled,

uε
t ⇀ ut in L2(0, T ;H−1(Ω̂)). (8)

By Aubin’s lemma [32] we obtain

uε → u in L2(0, T ;L2(Ω̂)), (9)

In order to pass to the limit as ε → 0 in the quadratic gradient terms of the truncated
approximate equation (3) we need the strong convergence of uε → u in L2(0, T ;H1(Ω̂)).
The proof of this result is the main step of the proof.

To establish the strong convergence of uε → u we use the so-called monotonicity method
of Frehse [15], extended here to parabolic problems. Let ūε = uε −u and choose sinh(λūε),
λ > 0, as a test function in the approximate problem (3):

T∫

0

〈uε
t , sinh(λūε)〉 dt+

1

2

∫

QT

λ cosh(λūε)(∇ūε)>C(uε)∇uε dx dt

+
1

2

∫

QT

λ cosh(λūε)(∇′ūε)>C ′(uε)∇′uε dx dt

=

∫

QT

(µ · ∇uε + µ′ · ∇′uε + q(µ− rS) · ∇uε −
q

2
β(uε)2 + pr) sinh(λūε) dx dt

+
1

2(p− 1)

∫

QT

(∇uε)>C(uε)∇uε

1 + ε(∇uε)>C(uε)∇uε
sinh(λūε) dx dt (10)
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−
1

2

∫

QT

(∇′uε)>C ′(uε)∇′uε

1 + ε(∇′uε)>C ′(uε)∇′uε
sinh(λūε) dx dt

−
1

2

∫

QT

((divC)(uε) · ∇uε + (div ′C ′)(uε) · ∇′uε) sinh(λūε) dx dt.

The left hand side of this equation can be written as follows:

T∫

0

〈ūε
t , sinh(λūε)〉 dt+

T∫

0

〈ut, sinh(λūε)〉 dt+
1

2

∫

QT

λ cosh(λūε)(∇ūε)>C(uε)∇ūε dx dt

+
1

2

∫

QT

λ cosh(λūε)(∇′ūε)>C ′(uε)∇′ūε dx dt (11)

+
1

2

∫

QT

λ cosh(λūε)
[

(∇ūε)>C(uε)∇u+ (∇′ūε)>C ′(uε)∇′u
]

dx dt.

We claim that the first term is non-negative. Indeed, let uδ ∈ C1([0, T ];H1(Ω̂)) be a
sequence such that uδ → u in L2(0, T ;H1(Ω̂))∩H1(0, T ;H−1(Ω̂)) as δ → 0 and uδ(0) = u0.
Then

T∫

0

∫

Ω̂

(uε − uδ)t sinh(λ(uε − uδ)) dt

=
1

λ

∫

Ω̂

cosh(λ(uε − uδ)(T )) dx−
1

λ

∫

Ω̂

cosh(λ(uε − uδ)(0)) dx

=
1

λ

∫

Ω̂

(cosh(λ(uε − uδ)(T )) − 1) dx ≥ 0,

and letting δ → 0 shows that
T∫

0

〈ūε
t , sinh(λūε)〉 ≥ 0.

The quadratic gradient terms on the right hand side of (10) can be estimated as

(∇uε)>C(uε)∇uε

1 + ε(∇uε)>C(uε)∇uε

≤(∇ūε)>C(uε)∇ūε + (∇u)>C(uε)∇u+ (∇ūε)>C(uε)∇u+ (∇u)>C(uε)∇ūε
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and likewise for the ∇′ terms. Taking the modulus and choosing λ sufficiently large, (10)
and (11) become

1

2

∫

QT

(λ−
1

|p− 1|
) cosh(λūε)(∇ūε)>C(uε)∇ūε dx dt

+
1

2

∫

QT

(λ− 1) cosh(λūε)(∇′ūε)>C ′(uε)∇′ūε dx dt

≤

∫

QT

|(µ · ∇ūε + µ′ · ∇′ūε + q(µ− rS) · ∇ūε) sinh(λūε)| dx dt

+

∫

QT

|(µ · ∇u+ µ′ · ∇′u+ q(µ− rS) · ∇u−
q

2
β(uε)2 + pr) sinh(λūε)| dx dt

+
1

2|p− 1|

∫

QT

|[(∇u)>C(uε)∇uε + (∇uε)>C(uε)∇u] sinh(λūε)| dx dt

+
1

2

∫

QT

|[(∇′u)>C ′(uε)∇′uε + (∇′uε)>C ′(uε)∇′u] sinh(λūε)| dx dt

+
1

2|p− 1|

∫

QT

|(∇u)>C(uε)∇u sinh(λūε)| dx dt

+
1

2

∫

QT

|(∇′u)>C ′(uε)∇′u sinh(λūε)| dx dt

+
1

2

∫

QT

|[(divC)(uε) · ∇ūε + (div ′C ′)(uε) · ∇′ūε] sinh(λūε)| dx dt

+
1

2

∫

QT

|[(divC)(uε) · ∇u+ (div ′C ′)(uε) · ∇′u] sinh(λūε)| dx dt

+
1

2

∫

QT

λ cosh(λūε)
[

|(∇ūε)>C(uε)∇u| + |(∇′ūε)>C ′(uε)∇′u|
]

dx dt

+

T∫

0

|〈ut, sinh(λūε)〉| dt

=:I1 + · · ·+ I10, (12)

where we have used again | sinh(x)| ≤ cosh(x), x ∈ R.
We need to show that the right hand side of (12) converges to zero. In view of (9) and

since ūε is uniformly bounded in L∞(QT ), it holds

sinh(λūε) → 0 in L2(0, T ;L2(Ω̂)), (13)
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sinh(λūε) ⇀ 0 in L2(0, T ;H1(Ω̂)),

which implies that I2, I5, I6, I8, I10 → 0 as ε → 0. In view of (7) and (13), we obtain
I1 → 0.

The treatment of the integrals I3, I4, I7 and I9 is more delicate. In view of (9) and
since ūε ∈ L∞(QT ) uniformly, cosh(λūε) → 1 in L2(0, T ;L2(Ω̂)) and a.e. in QT . Since ∇ūε

is uniformly bounded in L2(0, T ;L2(Ω̂)), it holds for a subsequence (not relabeled),

∇ cosh(λūε) ⇀ ∇z in L2(0, T ;L2(Ω̂))

for some z. From identifying z = 1 it follows

∇ cosh(λūε) ⇀ 0 in L2(0, T ;L2(Ω̂)).

Thus
∫

QT

(∇u)>C(uε)∇uε sinh(λūε) dx dt

=
1

λ

∫

QT

(∇u)>C(uε)∇ cosh(λūε) dx dt+

∫

QT

(∇u)>C(uε)∇u sinh(λūε) dx dt

→ 0 as ε→ 0.

All terms in I3, I4, I7 and I9 can be treated similarly showing that the right hand side of
(12) converges to zero as ε→ 0.

Employing the coercivity (H2) of C,C ′ and choosing λ > 0 sufficiently large, we obtain

lim
ε→0

∫

QT

(
|∇ūε|2 + |∇′ūε|2

)
dx dt ≤ 0.

Thus we obtain

∇ūε → 0, ∇′ūε → 0 in L2(0, T ;L2(Ω̂)) as ε→ 0,

which implies
uε → u in L2(0, T ;H1(Ω̂)) as ε→ 0.

We can pass to the limit as ε→ 0 in (3) and obtain the existence of a solution u of problem
(2).

Remark 6 As the solution of (1) lies a posteriori in the space L∞(QT ), the regularity
assumptions on the covariance matrices with respect to u can be relaxed. Indeed, by
using a truncation argument by Stampacchia, it is not difficult to see that the hypothesis
C(S, t, ·), C ′(S ′, t, ·) ∈ C1(R) for all S, S ′, t is sufficient.
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3 The Cauchy problem

We consider the Cauchy problem (1a), (1c) in RT = R
d+d′ × (0, T ). The L∞ bound for the

solutions of problem (1) of section 2 depends on µ− rS which is not bounded if S ∈ R
d.

Therefore, we need the following assumption.

(H5) ∃M > 0 : sup(S,S′,t)∈RT
|µ(S, t) − r(S, S ′, t)S| ≤ M .

This assumption can be interpreted as follows: the relative return µ/S tends to the riskless
interest rate r for large asset prices. This is known to be the case if the economic model
consists of a representative investor with decreasing relative risk aversion or of multiple
heterogeneous investors all of whom have constant relative risk aversion [4].

In the proof of Lemma 4 we made use of Poincaré’s inequality to obtain the H1 esti-
mates. Since Poincaré’s inequality is of no use now, we still lack an L2 estimate for an H1

estimate independent of Ω̂. It is provided by the following lemma.

Lemma 7 Let (H1)–(H5) hold and let u be a weak solution to (1) such that uD = 0. Then
there exists a constant L > 0 (not depending on u) such that

‖u‖L∞(0,T ;Lp(Ω̂)) ≤ L ∀ p <∞.

Proof. As u ∈ L∞(QT ) and the L∞ bound is independent of Ω̂ (because of (H5)) it suffices
to prove that

‖u‖L∞(0,T ;L1(Ω̂)) ≤ c, (14)

for some c > 0, since then the result follows from interpolation. The idea of the proof of
(14) is to use a smooth and monotone approximation of the sign function sign(u) as a test
function in the weak formulation of (1).

Let η be convex and smooth such that

η(0) = 0, η′(0) = 0, η(x) = |x| − 0.5 for |x| ≥ 1

and define for δ > 0

ηδ(x) = δη
(x

δ

)

, x ∈ R.

By construction of ηδ,

ηδ(u) ≤ |u| and ηδ(u) → |u| a.e. in QT .

Using dominated convergence this implies

ηδ(u) → |u| in L2(0, T ;L1(Ω̂)) as δ → 0.
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Use η′δ(u) as a test function in (2) to obtain

T∫

0

〈ut, η
′
δ(u)〉 dτ +

1

2

∫

QT

η′′δ (u)(∇u)
>C(u)∇u

︸ ︷︷ ︸

≥0

dx dt+
1

2

∫

QT

η′′δ (u)(∇
′u)>C ′(u)∇′u

︸ ︷︷ ︸

≥0

dx dt

=

∫

QT

(µ · ∇u+ µ′ · ∇′u+ q(µ− rS) · ∇u) η′δ(u) dx dt−

∫

QT

(
q

2
β(u)2 − pr) η′δ(u) dx dt (15)

+
1

2(p− 1)

∫

QT

(∇u)>C(u)∇u
︸ ︷︷ ︸

≤||C(u)||2|∇u|2

η′δ(u) dx dt−
1

2

∫

QT

(∇′u)>C ′(u)∇′u
︸ ︷︷ ︸

≤||C′(u)||2|∇′u|2

η′δ(u) dx dt

−
1

2

∫

QT

((divC(u)) · ∇u+ (div ′C ′(u)) · ∇′u) η′δ(u) dx dt.

Since u ∈ L2(0, T ;H1(Ω̂)) ∩ L∞(QT ), ut ∈ L2(0, T ;H−1(Ω̂)) and η′δ is smooth it holds [34,
Prop. 23.20]

T∫

0

〈ut, η
′
δ(u)〉 dτ =

∫

Ω̂

ηδ(u(T )) dx−

∫

Ω̂

ηδ(u0) dx.

Since |η′δ(u)| ≤ 1, the right hand side of (15) is bounded independently of δ (and Ω̂) and
we obtain, after letting δ → 0,

∫

Ω̂

|u(T )| dx−

∫

Ω̂

|u0| dx ≤ c.

This yields (14) for some constant c = c(T ).

We are now able to prove the following theorem.

Theorem 8 Let (H1)–(H5) hold. Then there exists a solution u of the Cauchy problem
(1a), (1c) such that u ∈ L2(0, T ;H1(Rd+d′))) ∩ L∞(RT ) and u ∈ H1(0, T ;H−1(Rd+d′)).

Proof. Let (Ω̂n)n be a sequence of domains with smooth boundaries ∂Ω̂n satisfying Ω̂n ⊂
Ω̂n+1 and tending to R

d+d′ in the set-theoretical sense as n → ∞. By theorem 5, in each
of the cylinders Qn

T := Ω̂n × (0, T ) there exists a solution un ∈ L2(0, T ;H1
0(Ω̂

n))∩L∞(Qn
T )

satisfying un(0) = u0|Ω̂n. Under the additional assumption (H5) the constants c in the

proof of Lemma 2 are independent of Ω̂n, implying that these solutions are uniformly
bounded in L∞, i.e., it holds

‖un‖L∞(Qn
T

) ≤ K,

where K > 0 is independent of n ∈ N. Furthermore, the estimates in the proof of Lemma
4 are independent of Ω̂n if (H5) holds. In view of Lemma 7 we have for n ≥ m

‖un‖L2(0,T ;H1

0
(Ω̂m)) ≤ c (16)
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with c independent of n,m.

We can extract a subsequence (un,m) of (un) that converges weakly to some u(m) ∈
L2(0, T ;H1

0(Ω̂
m)) ∩L∞(Qm

T ) as n → ∞. Following the lines of the proof of Theorem 5 we
can see that in fact un,m → u(m) strongly in L2(0, T ;H1

0(Ω̂
m)) and therefore also a.e. in

Qm
T . We have the following diagonal scheme

u1,1, u2,1, u3,1, . . . → u(1) = u|Q1

T

u2,2, u3,2, . . . → u(2) = u|Q2

T

u3,3, . . . → u(3) = u|Q3

T

. . .
...

More precisely, there exists a subsequence un,1 of un that converges strongly to some u(1)

in L2(0, T ;H1
0(Ω̂

1)) (and a.e. in Q1
T ). Furthermore, from this subsequence, we can select

a subsequence un,2 that converges strongly to some u(2) in L2(0, T ;H1
0(Ω̂

2)) with u(2)|Q1

T
=

u(1), etc. The diagonal sequence un,n tends to some u ∈ L2(0, T ;H1
0(R

d+d′)) ∩ L∞(RT )
which is a solution to the Cauchy problem.

4 Uniqueness of solutions

In this section let either Ω̂ ⊂ R
d+d′ be a bounded domain or Ω̂ = R

d+d′ .

Lemma 9 Assume (H1)–(H4) and one of the following additional assumptions:

(H6) the matrices C = C(S, t), C ′ = C ′(S ′, t) do not depend on u,

or

(H7) p < 1, the matrices ∂C/∂u, ∂C ′/∂u are positive semi-definite, the derivatives
∂(divC)/∂u, ∂(div ′C ′)/∂u are uniformly bounded with respect to S, t and S ′, t, re-
spectively, and ‖∂C/∂u‖2, ‖∂C ′/∂u‖2 are sufficiently small (more precisely, we as-
sume that (23) holds; see below).

If Ω̂ = R
d+d′ we also assume (H5). Then the problem (1) has a unique solution in the

space of generalized solutions.

Proof. Let u be a solution of (1). We introduce the transformation u = ϕ(v) = − ln(e−KAv+
1/K)/A for some constants A,K > 0, which are chosen later. Using the test function
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φ = ψ/ϕ′(v) for arbitrary ψ ∈ L2(0, T ;H1
0(Ω̂)) ∩ L∞(0, T ;L∞(Ω̂)) in (2) yields

0 =

t∫

0

〈vt, ψ〉 dt+
1

2

∫

QT

[

(∇ψ)>C(ϕ(v))∇v + (∇′ψ)>C ′(ϕ(v))∇′v
]

dx dt

−
1

2

∫

QT

[ϕ′′(v)

ϕ′(v)
(∇v)>C(ϕ(v))∇v +

ϕ′′(v)

ϕ′(v)
(∇′v)>C ′(ϕ(v))∇′v

]

ψ dx dt

−

∫

QT

1

ϕ′(v)

[

µ · ∇ϕ(v) + µ′ · ∇′ϕ(v) + q(µ− rS) · ∇ϕ(v) −
q

2
β(ϕ(v))2 + pr

]

ψ dx dt

−
1

2(p− 1)

∫

QT

1

ϕ′(v)
(∇ϕ(v))>C(ϕ(v))∇ϕ(v) ψ dx dt

+
1

2

∫

QT

1

ϕ′(v)
(∇′ϕ(v))>C ′(ϕ(v))∇′ϕ(v) ψ dx dt

+
1

2

∫

QT

1

ϕ′(v)
((divC)(ϕ(v)) · ∇ϕ(v) + (div ′C ′)(ϕ(v)) · ∇′ϕ(v)) ψ dx dt.

The transformed problem is of the form

vt − div ξ̂(a((S, S
′), t, v, (∇v,∇′v))) + b((S, S ′), t, v, (∇v,∇′v)) = 0, (17)

with

a(Ŝ, t, v, ξ̂) =

(
C(ϕ(v))ξ
C ′(ϕ(v))ξ′

)

,

b(Ŝ, t, v, ξ̂) =
[

−
ϕ′′(v)

2ϕ′(v)
ξ>C(ϕ(v))−µ−q(µ−rS)−

ϕ′(v)

2(p− 1)
ξ>C(ϕ(v))+

1

2
divC(ϕ(v))

]

ξ

+
[

−
ϕ′′(v)

2ϕ′(v)
ξ′>C ′(ϕ(v)) − µ′ +

ϕ′(v)

2
ξ′>C ′(ϕ(v)) +

1

2
div ′C ′(ϕ(v))

]

ξ′

+
1

ϕ′(v)

(q

2
β(ϕ(v))2 − pr

)

,

where Ŝ = (S, S ′)>, ξ̂ = (ξ, ξ′)> and div ξ̂ = (div ξ, div ξ′) is the vectorized divergence
operator.

Let u1, u2 be two solutions of (2) satisfying the same initial condition (1c) and set
u := u1 − u2 and u = ϕ(v). Using (v+)n = (max(0, v))n, n ∈ N, as a test function in the
equations satisfied by u1 and u2, respectively, and subtracting these two equations we get

0 =

t∫

0

〈vt, (v
+)n〉 dt
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+

∫

QT

n(v+)n−1(∇v+,∇′v+) · [a(Ŝ, t, u1, (∇u1,∇
′u1)) − a(Ŝ, t, u2, (∇u2,∇

′u2))] dx dt

+

∫

QT

[b(Ŝ, t, u1, (∇u1,∇
′u1)) − b(Ŝ, t, u2, (∇u2,∇

′u2))](v
+)n dx dt. (18)

The difference in a can be expressed as

a(Ŝ, t, u1, (∇u1,∇
′u1)) − a(Ŝ, t, u2, (∇u2,∇

′u2))

=

1∫

0

∂

∂τ
a(Ŝ, t, τu1 + (1 − τ)u2, (∇(τu1 + (1 − τ)u2),∇

′(τu1 + (1 − τ)u2))) dτ

=

1∫

0

[

∂a

∂v
(Ŝ, t, uτ , (∇uτ ,∇

′uτ))v +
∂a

∂ξ̂
(Ŝ, t, uτ , (∇uτ ,∇

′uτ ))(∇v,∇
′v)>

]

dτ,

where uτ = τu1 + (1 − τ)u2 and similarly for the difference in b. Using these expressions
in (18) we obtain

t∫

0

〈vt, (v
+)n〉 dt+

∫

QT

1∫

0

n(v+)n−1(∇v+,∇′v+) ·
[∂a

∂v
v +

∂a

∂ξ̂
· (∇v,∇′v)>

]

dτ dx dt

+

∫

QT

1∫

0

[∂b

∂v
v +

∂b

∂ξ̂
· (∇v,∇′v)>

]

(v+)n dτ dx dt = 0,

omitting the arguments, where ∂b/∂ξ̂ is the vector containing the partial derivatives of b
with respect to ξ and ξ ′. Using (H2) this leads to

1

n+ 1

∫

Ω̂

(v+)n+1(t) dx

+

∫

QT

1∫

0

n(v+)n−1
(

α|∇v+|2 + α′|∇′v+|2 + (∇v+,∇′v+) ·
∂a

∂v
v
)

dτ dx dt

+

∫

QT

1∫

0

[∂b

∂v
v +

∂b

∂ξ̂
· (∇v+,∇′v+)

]

(v+)n dτ dx dt ≤ 0.
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Employing Young’s inequality with ε = min(α, α′)/2 we get

1

n+ 1

∫

Ω̂

(v+)n+1(t) dx+

∫

QT

1∫

0

n(v+)n−1
[

(α− ε)|∇v+|2 + (α′ − ε)|∇′v+|2
]

︸ ︷︷ ︸

≥0

≤

∫

QT

(v+)n+1

1∫

0

[

−
∂b

∂v
+

n

2ε

∣
∣
∣
∂a

∂v

∣
∣
∣

2

+
1

2εn

∣
∣
∣
∂b

∂ξ

∣
∣
∣

2

+
1

2εn

∣
∣
∣
∂b

∂ξ′

∣
∣
∣

2
]

︸ ︷︷ ︸

=:F (S,S′,t,ξ,ξ′,τ)

dτ dx dt (19)

The idea now is to show that F (S, S ′, t, ξ, ξ′, τ) is bounded. This idea has been first
used by Barles and Murat [3]. In the case (H7) with covariance matrices depending on
u, we will make explicit use of the sign of (1 − p) to obtain the necessary estimates. A
computation leads to

∂b

∂v
(Ŝ, t, v, (∇v,∇′v))

= −
1

2

(ϕ′′

ϕ′

)′

(v)
((∇ϕ(v))>C(ϕ(v))∇ϕ(v)

ϕ′(v)2
+

(∇′ϕ(v))>C ′(ϕ(v))∇′ϕ(v)

ϕ′(v)2

)

−
1

2

ϕ′′

ϕ′
(v)

((∇ϕ(v))> ∂C
∂v

(ϕ(v))∇ϕ(v)

ϕ′(v)2
+

(∇′ϕ(v))> ∂C′

∂v
(ϕ(v))∇′ϕ(v)

ϕ′(v)2

)

+
ϕ′′

2ϕ′(v)2

( 1

p− 1
(∇ϕ(v))>C(ϕ(v))∇ϕ(v) + (∇′ϕ(v))>C ′(ϕ(v))∇′ϕ(v)

)

(20)

−
1

2

( 1

p− 1
(∇ϕ(v))>

∂C

∂u
(ϕ(v))∇ϕ(v) − (∇′ϕ(v))>

∂C ′

∂u
(ϕ(v))∇′ϕ(v)

)

+
1

2

(∂(divC)

∂u
(ϕ(v))∇ϕ(v) +

∂(div ′C ′)

∂u
(ϕ(v))∇′ϕ(v)

)

+
q

2
(µ− rS)>

∂C−1

∂u
(ϕ(v))(µ− rS) −

ϕ′′

ϕ′(v)2

(q

2
β(ϕ(v))2 − pr

)

,

recalling the definition β2(ϕ(v)) = (µ− rS)>C−1(ϕ(v))(µ− rS), and

∂b

∂ξ
(Ŝ, t, v,∇v) = −

ϕ′′

ϕ′
(v)C(ϕ(v))∇v − µ− q(µ− rS) −

1

p− 1
C(ϕ(v))∇ϕ(v)

+
1

2
divC(ϕ(v)), (21)

∂b

∂ξ′
(Ŝ, t, v,∇′v) = −

ϕ′′

ϕ′
(v)C ′(ϕ(v))∇′v − µ′ + C ′(ϕ(v))∇′ϕ(v) +

1

2
div ′C ′(ϕ(v))

We want to obtain expressions in terms of the original variable u. Using

ϕ′(v) = K − eAu,
ϕ′′

ϕ′
(v) = −AeAu,

(ϕ′′

ϕ′

)′

(v)
1

ϕ′(v)
= −A2eAu,
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we obtain from (20)

∂b

∂v
(Ŝ, t, v, (∇v,∇′v))

=
eAu

2(K − eAu)

[

A2
(

(∇u)>C(u)∇u+ (∇′u)>C ′(u)∇′u
)

+ A
(

(∇u)>
∂C

∂u
(u)∇u

+ (∇′u)>
∂C ′

∂u
(u)∇′u−

1

p− 1
(∇u)>C(u)∇u− (∇′u)>C ′(u)∇′u

)]

+
1

2

( 1

1 − p
(∇u)>

∂C

∂u
(u)∇u+ (∇′u)>

∂C ′

∂u
(u)∇′u+

∂(divC)

∂u
(u)∇u+

∂(div ′C ′)

∂u
(u)∇′u

)

+
q

2
(µ− rS)>

∂C−1

∂u
(u)(µ− rS) +

AeAu

K − eAu

(qβ2

2
(ϕ(v)) − pr

)

≥
eAu

2(K − eAu)

[

(A2 −
1

p− 1
)(∇u)>C(u)∇u+ (A2 − 1)(∇′u)>C ′(u)∇′u

+ A(∇u)>
∂C

∂u
(u)∇u+ A(∇′u)>

∂C ′

∂u
(u)∇′u− c

]

+
1

2

∂(divC)

∂u
(u)∇u+

1

2

∂(div ′C ′)

∂u
(u)∇′u,

for some c > 0 and using (H7) (in particular, we use here p < 1 since then 1/(1− p) > 0).
For the last two terms we use Young’s inequality, for some δ > 0:

1

2

∂(divC)

∂u
(u)∇u+

1

2

∂(div ′C ′)

∂u
(u)∇′u ≥ −

δ

4
(|∇u|2 + |∇′u|2) − c(δ), (22)

where c(δ) > 0 is a constant which depends on δ and the L∞ norm of ∂(divC)/∂u and
∂(div ′C ′)/∂u. Now choose A2 > max{1, 1/(p − 1)}. In view of (H2) and (H6) or (H7),
respectively, we can estimate for sufficiently large K > 0 and sufficiently small δ > 0,

∂b

∂v
(Ŝ, t, v, (∇v,∇′v)) ≥ η|∇u|2 + η′|∇′u|2 − c

for some η = η(α,K,A, δ), η′ = η′(α′, K,A, δ) > 0 and c > 0. Notice that u ∈ L∞(QT ).

The derivatives (21) in the original variable

∂b

∂ξ
(Ŝ, t, v,∇v) =

AeAu

K − eAu
C(u)∇u− µ− q(µ− rS) −

1

p− 1
C(u)∇u+

1

2
(divC)(u),

∂b

∂ξ′
(Ŝ, t, v,∇′v) =

AeAu

K − eAu
C ′(u)∇′u− µ′ + C ′(u)∇′u+

1

2
(div ′C ′)(u)
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can be estimated as follows:

∣
∣
∣
∂b

∂ξ
(Ŝ, t, v, ξ̂)

∣
∣
∣

2

+
∣
∣
∣
∂b

∂ξ′
(Ŝ, t, v, ξ̂)

∣
∣
∣

2

≤
( e2Au

(K − eAu)2
+

1

(p− 1)2

)

||C(u)||22|∇u|
2 +

( e2Au

(K − eAu)2
+ 1

)

||C ′(u)||22|∇
′u|2

+ (|µ|2 + q2|µ− rS|2 +
1

4
|divC(u)|2) + (|µ′|2 +

1

4
|div ′C ′(u)|2)

≤L1(|∇u|
2 + |∇′u|2) + L2,

for some positive constants L1 = L1(A,K, p, ||C||2, ||C
′||2) and L2 = L2(A,K, q). Further

we can estimate

∣
∣
∣
∂a

∂v

∣
∣
∣

2

=

∣
∣
∣
∣
∣

(
∂C
∂u
∇u

∂C′

∂u
∇′u

)
∣
∣
∣
∣
∣

2

≤
∥
∥
∥
∂C

∂u

∥
∥
∥

2

2
|∇u|2 +

∥
∥
∥
∂C ′

∂u

∥
∥
∥

2

2
|∇′u|2.

This implies

F (S, S ′, t, ξ, ξ′, τ) ≤− η|∇u|2 − η′|∇′u|2 + c+
n

2ε

(∥
∥
∥
∂C

∂u

∥
∥
∥

2

2
|∇u|2 +

∥
∥
∥
∂C ′

∂u

∥
∥
∥

2

2
|∇′u|2

)

+
1

2εn

(

L1(|∇u|
2 + |∇′u|2) + L2

)

.

Choosing n > L1/(2εmin(η, η′)) and assuming that

∥
∥
∥
∂C

∂u

∥
∥
∥

2

2
≤

2εη

n
−
L1

n2
and

∥
∥
∥
∂C ′

∂u

∥
∥
∥

2

2
≤

2εη′

n
−
L1

n2
, (23)

we conclude that F (S, S ′, t, ξ, ξ′, τ) ≤ L2/(2εn)+ c and applying Gronwall’s lemma in (19)
yields v ≤ 0 in QT . This implies that u1 − u2 = u ≤ ϕ−1(0) = − ln(1 − 1/K)/KA for all
sufficiently large K > 0. Thus, after letting K → ∞, u1 − u2 ≤ 0 in QT . In a similar way,
we can use the test function (min(0, v))n for odd n ∈ N to prove that u1 − u2 ≥ 0 in QT .
Hence u1 = u2 in QT which completes the proof.

Combining Lemma 9 and Theorem 5 yields the following theorem.

Theorem 10 Let (H1)–(H4) and either (H6) or (H7) hold. If Ω̂ = R
d+d′ we assume addi-

tionally (H5). Then there exists a unique solution to (1) such that u−uD ∈ L2(0, T ;H1
0(Ω̂))

∩L∞(0, T ;L∞(Ω̂)), u ∈ H1(0, T ;H−1(Ω̂)).

5 Numerical illustration

In this section we present a numerical example showing the influence of the non-tradable
state variables on the value function. We consider the case d = 2 and d′ = 1, i.e. two
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risky assets S1, S2 and one non-tradable state variable S ′ = S3. Thus we have to solve a
three-dimensional parabolic problem. We consider the following covariance matrices

C(S1, S2) =

(
0.04S2

1 −0.01S1S2

−0.01S1S2 0.005S2
2

)

, C ′(S3) =
(
0.05S2

3

)
.

The returns are defined as the Ornstein-Uhlenbeck-type drifts




µ1(S1)
µ2(S2)
µ3(S3)



 =





((6 − S1) + 0.2)S1

((4 − S2) + 0.1)S2

((4 − S3) + 0.3)S3



 ,

and the interest rate is set to zero. As an initial condition we choose u0(S1, S2, S3) = 0
which corresponds to the initial capital x = 1. The risk aversion parameter is taken to be
p = 0.5. We use quadratic finite elements and a standard Runge-Kutta time discretization
as provided by the FEMLAB package for MATLAB to compute the numerical solution.
We choose our computational domain as [2, 10] × [2, 6] × [2, 12] and the time horizon as
[0, 0.8]. We used approximately 23,000 3D elements to solve the problem (1).

Figure 1 shows the contour plots of the solution at times t = 0.1, 0.4, 0.8 for various
values of the state variable S3. The solution (S1, S2) 7→ u(S1, S2, S3) has a local minimum
at S∗ = (S∗

1 , S
∗
2) = (6.2, 4.1), since the expected return of investments in the two assets is

zero at this point and the interest rate vanishes. The qualitative behavior of the solution
in the variable S1, S2 is similar for different values of S3. The variation with respect to
S3 is of the order of several percent. More precisely, for the values shown in Figure 1, the
maximal relative difference to the minimum S∗

3 = 4.3 at time t = 0.8 equals

sup
(S1,S2)∈(2,10)×(2,6)

|u(S1, S2, S3, 0.8) − u(S1, S2, S
∗
3 , 0.8)|

|u(S1, S2, S∗
3 , 0.8)|

≈

{
9.5% : S3 = 2
18% : S3 = 12.

For asset prices larger than S∗ the returns are increasing and hence the solution u, which
relates to the utility of the optimal portfolio, too. In that region the partial derivatives of u
with respect to S1 and S2 are positive. Thus the optimal portfolio strategy H(S1, S2, S3) =
(1 − p)−1(λ−∇u) (the shares of the underlyings S1 and S2) has negative components for
sufficiently large asset prices. This indicates short selling for the optimal portfolio, which
is permitted in the model.

For asset prices smaller than S∗ the partial derivatives with respect to S1 and S2 are
negative and thus, the optimal portfolio strategy H has increasing components. This gives
informations on how to change the shares of the portfolio consisting of the two assets and
the bond.
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