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Optimal Fiscal Policy over the Business Cycle

Filippo Occhino∗

May 2005

Abstract

How should taxes, government expenditures, the primary and fiscal surpluses and
government liabilities be set over the business cycle? We assume that the government
chooses expenditures and taxes to maximize the utility of a representative household,
utility is increasing in government expenditures, only distortionary labor income taxes
are available, and the cycle is driven by exogenous technology shocks. We first consider
the commitment case, and characterize the Ramsey equilibrium. In the case that the
utility function is constant elasticity of substitution between private and public con-
sumption and separable between the composite consumption good and leisure, taxes,
government expenditures and the primary surplus should all be constant positive frac-
tions of production, and both government liabilities and the fiscal surplus should be
positively correlated with production. Then, we relax the commitment assumption,
and we show how to determine numerically whether the Ramsey equilibrium can be
sustained by the threat to revert to a Markov perfect equilibrium. We find that, for
realistic values of the preferences discount factor, the Ramsey equilibrium is sustain-
able.
Keywords: Fiscal policy, Commitment, Time-consistency, Ramsey equilibrium, Markov
perfect equilibria, Sustainable equilibria.
JEL Classification Number: E62

1 Introduction

How should taxes, government expenditures, the fiscal and primary surpluses and govern-
ment liabilities be set over the business cycle? We assume that the government chooses
expenditures and taxes to maximize the utility of a representative household, utility is in-
creasing in government expenditures, only distortionary labor income taxes are available,
and the cycle is driven by exogenous technology shocks. We also assume that a complete
set of one-period Arrow securities are available in each period and state, but securities with
longer maturities are not.

∗I would like to thank Stefania Albanesi, Roberto Chang, Victor Rios-Rull, Stephanie Schmitt-Grohe,
Martin Uribe and seminar participants at Duke University for helpful discussions and suggestions. Address:
Department of Economics, Rutgers University, 75 Hamilton Street, New Brunswick NJ 08901. E-mail:
occhino@rutgers.edu. Web: http://econweb.rutgers.edu/occhino/. Any errors are my own.
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First, as in Lucas and Stokey (1983), Zhu (1992), and Chari, Christiano and Kehoe (1994),
we assume that the government can commit, and characterize the optimal competitive equi-
librium or Ramsey equilibrium. Following a suggestion by Kydland and Prescott (1980)
and Chang (1998), we add the promised value of government liabilities to the list of state
variables, and we express the competitive equilibria recursively as time-invariant functions of
the natural state variables (technology and government liabilities) and the additional state
variable, for any arbitrary initial value of the additional state variable. More conveniently,
we distinguish the first period from the following periods, we express the variables in the
first period as functions of the natural state variables only, while we express the variables
in the following periods recursively in terms of technology and the additional state variable
only. We then characterize the Ramsey equilibrium solving a first-period problem and a
continuation problem.

Our main result for the commitment case is that, in the benchmark case that the util-
ity function is constant elasticity of substitution between private and public consumption
and separable between the composite consumption good and leisure, taxes, government ex-
penditures and the primary surplus should all be positive constant fractions of production,
and both government liabilities and the fiscal surplus should be positively correlated with
production.

The intuition is the following. Since households and the government obtain utility from
the expected discounted value of public consumption, the government should purchase goods
in periods and states where the technology shock and the goods supply are high and the
intertemporal price of goods is low, so government expenditures should be increasing in
production. Also, since the tax distortion increases more than proportionally with the tax
rate, in order to smooth the tax distortion across periods and states the government should
smooth the tax rate across periods and states, so taxes should be increasing in production. In
the benchmark case, both taxes and government expenditures are constant positive fractions
of production, so the primary surplus is a constant fraction of production. The fraction must
be positive since the sum of the present discounted value of all primary surpluses is equal to
the initial government liabilities, which are positive. Since the primary surplus is a positive
constant fraction of production, and government liabilities are equal to the present discounted
value of current and future primary surpluses, government liabilities are positively correlated
with production. We show that this implies that the fiscal surplus is positively correlated
with production as well.

We then relax the commitment assumption, and we show how to determine numerically
whether the Ramsey equilibrium can be sustained by the threat to revert to a Markov
perfect equilibrium. As a first step, following Kydland and Prescott (1977), Klein and Rios-
Rull (2003) and Klein, Krusell and Rios-Rull (2004), we define Markov perfect equilibria, and
compare them with the Ramsey equilibrium. Then, adapting and modifying tools developed
in Stokey (1989), Chari and Kehoe (1990), Stokey (1991), Chang (1998) and Phelan and
Stacchetti (2001), we define recursive sustainable equilibria, and we determine numerically
whether the continuation of the Ramsey equilibrium from the second period on can be
sustained as a recursive sustainable equilibrium by the threat to revert to a Markov perfect
equilibrium. If so, it follows immediately that the Ramsey equilibrium is sustainable. We
find that, for realistic values of the preferences discount factor, the Ramsey equilibrium is
sustainable.
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The focus of this study is the optimal setting of taxes, government expenditures, fiscal
and primary surpluses and government liabilities over the business cycle, assuming that
the cycle is driven by technology shocks. The two features that distinguish it from other
studies are that government expenditures are endogenous, and the government period budget
constraint does not necessarily balance. The second feature is necessary for the study of the
optimal setting of the primary surplus. With regard to the first feature, we consider an open
question how important are the exogenous part of government expenditures and the part
endogenously chosen by the government. In our opinion, however, the endogenous part is
by far the most important, and accounts for the most sizeable changes like wars and new
public programs and investments.

Most previous studies model government expenditures exogenously, and answer a public
finance question. Among them, Lucas and Stokey (1983) characterize the optimal labor
income tax policy with commitment in a model subject to government expenditures shocks.
In addition, they show that the optimal policy with commitment is time-consistent if a
complete set of Arrow-Debreu securities for all future periods and states is available in
each period and state. Chamley (1986) introduces capital and characterizes the optimal
labor and capital income tax policy with commitment. Zhu (1992) Chari, Christiano and
Kehoe (1994), and Stockman (1998) characterize the optimal tax policy with commitment
in a model subject to government expenditures shocks and technology shocks, while Klein
and Rios-Rull (2003) characterize Markov perfect equilibria.

Other studies let government expenditures be determined endogenously, but add the
strong assumption that the government budget constraints balance in all periods and states.
Kydland and Prescott (1980) focus on the optimal recursive competitive equilibrium, Phelan
and Stacchetti (2001) on sequential equilibria, while Klein, Krusell and Rios-Rull (2004) on
Markov perfect equilibria.

A common finding in the above public finance literature is that taxes should be ap-
proximately proportional to production across periods and states. If the only sources of
uncertainty are technology shocks, the primary surplus should increase with production
since positive technology shocks increase both production and taxes. However, if the only
sources of uncertainty are government expenditures shocks, the primary surplus should de-
crease with production since positive government expenditures shocks increase government
expenditures, production and taxes, but have a larger impact on government expenditures
than taxes. The overall sign of the correlation between the primary surplus and produc-
tion depends on the relative importance of technology shocks and government expenditures
shocks. From the perspective of this literature, an additional contribution of this paper is
showing that, if the only sources of uncertainty are technology shocks, the primary surplus
should increase with production even in the case that government expenditures are chosen
endogenously. The result is not an obvious one especially since we also show that government
expenditures should increase with production.

In what follows, section 2 describes the model and defines competitive equilibria and
implementable allocations. Section 3 studies the Pareto optimum, which characterizes the
optimal competitive equilibrium in the case that lump-sum taxes are available. Section 4
assumes that only distortionary labor income taxes are available and studies the Ramsey
equilibrium. Section 5 considers Markov perfect equilibria, and section 6 focus on the sus-
tainability of the Ramsey equilibrium. Section 7 concludes.
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2 Model

Let the state of the economy be described by the first-order Markov process {st}
∞
t=0, st ∈ S,

S finite, with transition probabilities π(st+1|st). The initial state s0 is given. Let st ≡ {sj}
t
j=0

be the history of the state up to period t, and let πt(s
t|s0) be the probability of st conditional

on s0. Let ξ(st) be the technology in period t.
In each period t and history st, a representative household is endowed with n > 0 hours,

and chooses to work nt(s
t) ∈ [0, n] hours. Each hour of work produces ξ(st) units of a non-

storable consumption good, so aggregate production is yt(s
t) ≡ ξ(st)nt(s

t). Production can
be used for private consumption ct(s

t) ≥ 0 or public consumption gt(s
t) ≥ 0. The feasibility

constraints are then
ct(s

t) + gt(s
t) ≤ ξ(st)nt(s

t), all t, st (1)

Preferences are described by

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

where β ∈ (0, 1) is the preferences discount factor, and u(c, n, g) is twice continuously differ-
entiable, strictly increasing in its first and third arguments c and g, strictly decreasing in its
second argument n, strictly concave, and satisfies the Inada conditions limc→0 uc(c, n, g) = ∞
for all n, g, limn→n un(c, n, g) = −∞ for all c, g, and limg→0 ug(c, n, g) = ∞ for all c, n. Alter-
natively, in place of the second condition, one could assume that limn→+∞ un(c, n, g) = −∞
for all c, g, and that n is large enough so that n < n is optimal in all the following optimization
problems.

A complete set of one-period Arrow securities is available in each period and history, but
securities with longer maturities are not. Let qt(s

t, st+1) > 0 be the price of consumption
goods in period t + 1 and history {st, st+1} in terms of consumption goods in period t and
history st, and let the real interest rate rt(s

t) be defined by

1

1 + rt(st)
≡
∑

st+1∈S

qt(s
t+1)

Let bt(s
t) be the households’ real assets equal to the government real liabilities in period t

and history st, and let b0(s0) ≥ 0 be given. Let τt(s
t) < 1 be the labor income tax rate in

period t and history st. The primary surplus

δp
t (s

t) ≡ τt(s
t)ξ(st)nt(s

t) − gt(s
t)

is the difference between taxes and government expenditures, while the fiscal surplus

δf
t (st) ≡ δp

t (s
t) −

(

1 −
1

1 + rt(st)

)

bt(s
t)

is the primary surplus minus the interests on government liabilities.
A competitive equilibrium is an allocation {ct(s

t) ≥ 0, nt(s
t) ∈ [0, n], gt(s

t) ≥ 0,
bt+1(s

t+1)}∞t=0, and a tax and price system {τt(s
t) < 1, qt(s

t+1) > 0}∞t=0 such that:
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• Given {gt(s
t), τt(s

t), qt(s
t+1)}∞t=0, {ct(s

t), nt(s
t), bt+1(s

t+1)}∞t=0 solves the representative
household’s problem:

max
{ct(st)≥0,nt(st)∈[0,n],bt+1(st+1)}∞t=0

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

subject to: ct(s
t) − [1 − τt(s

t)]ξ(st)nt(s
t) +

∑

st+1∈S

qt(s
t+1)bt+1(s

t+1) = bt(s
t), all t, st

lim
t→∞

∑

st

(

t
∏

j=1

qj−1(s
j)

)

bt(s
t) = 0

• The government budget constraints are satisfied

bt(s
t) = τt(s

t)ξ(st)nt(s
t) − gt(s

t) +
∑

st+1∈S

qt(s
t+1)bt+1(s

t+1), all t, st

• The market for consumption goods is in equilibrium:

ct(s
t) + gt(s

t) = ξ(st)nt(s
t), all t, st

By Walras’ Law, the representative household’s budget constraints and the consumption
goods market equilibrium conditions imply that the government budget constraints are sat-
isfied.

From the necessary conditions of the household’s problem,

qt(s
t+1) =

βt+1uc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))πt+1(s

t+1|s0)

βtuc(ct(st), nt(st), gt(st))πt(st|s0)

=
βuc(ct+1(s

t+1), nt+1(s
t+1), gt+1(s

t+1))π(st+1|st)

uc(ct(st), nt(st), gt(st))
, all t, st

[1 − τt(s
t)]ξ(st) =

−un(ct(s
t), nt(s

t), gt(s
t))

uc(ct(st), nt(st), gt(st))
, all t, st

These two conditions, evaluated in equilibrium, express the tax and price system as a function
of the allocation, and they define the tax and price system associated with a given allocation.

Substituting the previous expressions for prices and tax rates into the household’s budget
constraints, we obtain the implementability constraints

uc(ct(s
t), nt(s

t), gt(s
t))[ct(s

t) − bt(s
t)] + un(ct(s

t), nt(s
t), gt(s

t))nt(s
t)

+
∑

st+1∈S

βuc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))bt+1(s

t+1)π(st+1|st) = 0, all t, st

lim
t→∞

∑

st

βtuc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)πt(s
t|s0) = 0

(2)

Definition 1 (Implementable allocations.) An allocation {ct(s
t) ≥ 0, nt(s

t) ∈ [0, n],
gt(s

t) ≥ 0, bt+1(s
t+1)}∞t=0 is implementable if it satisfies the feasibility constraints 1 with

equality and the implementability constraints 2.

5



One can show that competitive equilibria are implementable allocations together with their
associated tax and price systems {τt(s

t) < 1, qt(s
t+1) > 0}∞t=0.

Without loss of generality, we focus on implementable allocations for which bt(s
t) is the

following function of current and future consumption and labor,

uc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)

=
∞
∑

j=t

∑

sj

βj−t{uc(cj(s
j), nj(s

j), gj(s
j))cj(s

j) + un(cj(s
j), nj(s

j), gj(s
j))nj(s

j)}πt,j(s
j|st)

where πt,j(s
j|st) is the probability of sj conditional on st.

3 Pareto optimum

We begin considering the Pareto optimum, which characterizes the optimal competitive
equilibrium in the case that lump-sum taxes are available. A Pareto optimum is a contingent
sequence {ct(s

t), nt(s
t), gt(s

t)}∞t=0 which solves the following Pareto problem:

max
{ct(st)≥0,nt(st)∈[0,n],gt(st)≥0}∞t=0

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

subject to: ct(s
t) + gt(s

t) ≤ ξt(s
t)nt(s

t), all t, st

The Pareto optimum solves a sequence of static problems. For comparison with the
following sections, we formulate the problem recursively. A recursive Pareto optimum is a
set of policy functions c(s), n(s) and g(s) solving the following static optimization problem:

For all s: max
{c≥0,n∈[0,n],g≥0}

u(c, n, g) subject to: c + g ≤ ξ(s)n

Since u is continuous and strictly concave, and the constrained region is compact and convex,
a solution exists and is unique. Since u satisfies the Inada conditions, c > 0, n ∈ (0, n) and
g > 0. Since u is strictly increasing in c and g and strictly decreasing in n, the feasibility
constraint holds with equality.

Notice that the solution is a time-invariant function of technology {c(ξ(s)), n(ξ(s)),
g(ξ(s))}. Moreover, the previous problem consists in maximizing u subject to a budget
constraint where the price of labor in terms of both private and public consumption is ξ(s),
and the income is 0. Then, the effect of an increase in technology on consumption and labor is
the sum of an income effect and a substitution effect. If private consumption is a normal good,
both effects work in the same direction, and private consumption increases, (dc/dξ > 0). The
same holds in the case of public consumption (dg/dξ > 0). As a consequence, if both private
and public consumption are normal goods, aggregate production, which is equal to the sum
of private and public consumption, increases with technology (dy/dξ > 0). Both private
and public consumption, then, increase with production. With regard to leisure, however,
if leisure is a normal good, the income effect increases leisure, while the substitution effect
decreases it. The sign of the total effect depends on the utility function.
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The Lagrangian is

L = u(c, n, g) + µ[ξ(s)n − c − g]

where µ ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraint. The
necessary and sufficient conditions are

∂L

∂c
= uc(c, n, g) − µ = 0

∂L

∂n
= un(c, n, g) + µξ(s) = 0

∂L

∂g
= ug(c, n, g) − µ = 0

∂L

∂µ
= ξ(s)n − c − g = 0

which form a system of four equations in the four unknown {c, n, g, µ}. For comparison with
the next section, notice that, in the Pareto optimum, uc = ug, −un = ξuc and −un = ξug.

The result we are mostly interested is that government expenditures should increase
with production. The intuition is that, as long as there is some substitutability between
public consumption in different periods and histories, public consumption should be higher in
periods and histories where the supply of consumption goods is higher and the intertemporal
price of consumption goods is lower.

4 Ramsey equilibrium

We now turn to the analysis of the optimal competitive equilibrium, or Ramsey equilibrium.
Following Lucas and Stokey (1983), the allocation of the Ramsey equilibrium maximizes the
utility of the representative household among implementable allocations:

max
{ct(st)≥0,nt(st)∈[0,n],gt(st)≥0,bt+1(st+1)}∞t=0

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

subject to:

uc(ct(s
t), nt(s

t), gt(s
t))[ct(s

t) − bt(s
t)] + un(ct(s

t), nt(s
t), gt(s

t))nt(s
t)

+
∑

st+1∈S

βuc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))bt+1(s

t+1)π(st+1|st) = 0, all t, st

lim
t→∞

∑

st

βtuc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)πt(s
t|s0) = 0

ct(s
t) + gt(s

t) ≤ ξt(s
t)nt(s

t), all t, st

Notice that we write the feasibility constraints with inequality instead of equality. This allows
to determine the sign of the multipliers without affecting the solution, since the feasibility
constraints are binding at the optimum.
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We would like to express the conditions defining implementable allocations (except the
limit condition) recursively. We follow a suggestion by Kydland and Prescott (1980) and
Chang (1998), and we add the promised value of government liabilities

θt(s
t) ≡ uc(ct(s

t), nt(s
t), gt(s

t))bt(s
t), all t, st

to the list of state variables. After substituting the expression for θt(s
t) in the conditions

defining implementable allocations, we restrict attention to the implementable allocations
which, in the first period, depend on the natural state variables st and bt(s

t), while, in the
following periods, depend recursively on the natural state variables st and bt(s

t) as well as the
additional state variable θt(s

t). Incidentally, we notice that it would be equivalent (and not
more restrictive) to restrict attention to the implementable allocations which, in all periods,
depend recursively on the natural state variables st and bt(s

t) as well as the additional state
variable θt(s

t) for any arbitrary initial value of the additional state variable θ0(s0).
However, for this model, it is possible and convenient to further restrict attention to

the following recursive implementable allocations which, from the second period on, do not
depend on bt(s

t):

Definition 2 (Recursive implementable allocations.) A recursive implementable allo-

cation is a set of first-period functions and continuation functions.

The first-period functions are {c0(b0, s0) ≥ 0, n0(b0, s0) ∈ [0, n], g0(b0, s0) ≥ 0, and

θ1(b0, s0, s1)} satisfying

uc(c0, n0, g0)b0(s0) = uc(c0, n0, g0)c0 + un(c0, n0, g0)n0 +
∑

s1∈S

βθ1(s1)π(s1|s0)

c0 + g0 = ξ(s0)n0

The continuation functions are allocation functions {c(θ, s) ≥ 0, n(θ, s) ∈ [0, n], g(θ, s) ≥
0, b(θ, s)} and a law of motion for the additional state variable θ′(θ, s, s′) satisfying:

θ = uc(c, n, g)c + un(c, n, g)n +
∑

s′∈S

βθ′(s′)π(s′|s)

lim
t→∞

∑

st

βtθt(s
t)πt(s

t|s0) = 0

c + g = ξ(s)n

θ = uc(c, n, g)b

where θ1(s
1) ≡ θ1(b0, s0, s1), and θt(s

t) is obtained starting from (θ1(s
1), s1) and iterating

with the law of motion θ′(θ, s, s′).

Notice that the first-period functions depend on b and s, while the continuation functions
depend on θ and s. Our strategy is to focus on recursive implementable allocations ignoring
the limit condition in the definition, characterize the recursive solution, and check that the
limit condition is satisfied.

The Ramsey problem, then, can be divided into the following first-period problem and
continuation problem.
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The continuation problem consists in finding a value function w(θ, s), and policy functions
{c(θ, s) ≥ 0, n(θ, s) ∈ [0, n], g(θ, s) ≥ 0, θ′(θ, s, s′)} solving the following Bellman equation:

For all θ, s: w(θ, s) = max
{c≥0,n∈[0,n],g≥0,θ′(s′)}

{

u(c, n, g) +
∑

s′∈S

βw(θ′(s′), s′)π(s′|s)

}

subject to: θ = uc(c, n, g)c + un(c, n, g)n +
∑

s′∈S

βθ′(s′)π(s′|s)

c + g ≤ ξ(s)n

Once the continuation problem has been solved, government liabilities b(θ, s) are deter-
mined by

b(θ, s) ≡ uc(c(θ, s), n(θ, s), g(θ, s))/θ

In the numerical examples considered below, for fixed s, the function b(θ, s) is strictly in-
creasing for values of θ smaller than a threshold (the values corresponding to the good part
of the Laffer curve), and strictly decreasing for higher values. We focus on the values of θ
smaller than the threshold, we invert b(θ, s), and we express θ as a function of b and s —
Let θ(b, s) denote the function. Then, we determine the continuation value of the Ramsey
equilibrium as a function of b and s by

For all b, s: vC(b, s) ≡ w(θ(b, s), s)

Given the value function w(θ, s), the first-period Ramsey problem is

vR(b0(s0), s0) = max
{c0≥0,n0∈[0,n],g0≥0,θ1(s1)}

{

u(c0, n0, g0) +
∑

s1∈S

βw(θ1(s1), s
′)π(s1|s0)

}

subject to: uc(c0, n0, g0)b0(s0) = uc(c0, n0, g0)c0 + un(c0, n0, g0)n0 +
∑

s1∈S

βθ1(s1)π(s1|s0)

c0 + g0 ≤ ξ(s0)n0

4.1 Results

The Lagrangian for the continuation problem is

L = u(c, n, g) +
∑

s′∈S

βw(θ′(s′), s′)π(s′|s)

+ λ

[

uc(c, n, g)c + un(c, n, g)n +
∑

s′∈S

βθ′(s′)π(s′|s) − θ

]

+ µ[ξ(s)n − c − g]

where λ is the Lagrange multiplier associated with the implementability constraint, and
µ ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraints.
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Assuming that the solution satisfies c > 0, n ∈ (0, n) and g > 0, and that it satisfies the
feasibility constraints with equality, the necessary conditions are

∂L

∂c
= (1 + λ)uc(c, n, g) + λucc(c, n, g)c + λunc(c, n, g)n − µ = 0

∂L

∂n
= (1 + λ)un(c, n, g) + λucn(c, n, g)c + λunn(c, n, g)n + µξ(s) = 0

∂L

∂g
= ug(c, n, g) + λucg(c, n, g)c + λung(c, n, g)n − µ = 0

∂L

∂θ′(s′)
= βwθ(θ

′(s′), s′)π(s′|s) + βλπ(s′|s) = 0, all s′

∂L

∂λ
= uc(c, n, g)c + un(c, n, g)n +

∑

s′∈S

βθ′(s′)π(s′|s) − θ = 0

∂L

∂µ
= ξ(s)n − c − g = 0

wθ(θ, s) =
∂L

∂θ
= −λ

The Lagrangian for the first-period problem is

L0 = u(c0, n0, g0) +
∑

s1∈S

βw(θ1(s1), s
′)π(s1|s0)

+ λ0

[

uc(c0, n0, g0)[c0 − b0(s0)] + un(c0, n0, g0)n0 +
∑

s1∈S

βθ1(s1)π(s1|s0)

]

+ µ0[ξ(s0)n0 − c0 − g0]

where λ0 is the Lagrange multiplier associated with the implementability constraint, and
µ0 ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraints.

Assuming that the solution satisfies c0 > 0, n0 ∈ (0, n) and g0 > 0, and that it satisfies
the feasibility constraints with equality, the necessary conditions are

∂L0

∂c0
= (1 + λ0)uc(c0, n0, g0) + λ0ucc(c0, n0, g0)[c0 − b0(s0)] + λ0unc(c0, n0, g0)n0 − µ0 = 0

∂L0

∂n0
= (1 + λ0)un(c0, n0, g0) + λ0ucn(c0, n0, g0)[c0 − b0(s0)] + λ0unn(c0, n0, g0)n0 + µ0ξ(s0) = 0

∂L0

∂g0
= ug(c0, n0, g0) + λ0ucg(c0, n0, g0)[c0 − b0(s0)] + λ0ung(c0, n0, g0)n0 − µ0 = 0

∂L′

∂θ1(s1)
= βwθ(θ1(s1), s1)π(s1|s0) + βλ0π(s1|s0) = 0, all s1

∂L0

∂λ0
= uc(c0, n0, g0)[c0 − b0(s0)] + un(c0, n0, g0)n0 +

∑

s1∈S

βθ1(s1)π(s1|s0) = 0

∂L0

∂µ0
= ξ(s0)n0 − c0 − g0 = 0

vR
b (b0(s0), s0) =

∂L

∂b0(s0)
= −λ0uc(c0, n0, g0)
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From the necessary conditions of the first-period problem,

−λ0(b0(s0), s0) = wθ(θ1(s1), s1), all s1

so wθ(θ1(s1), s1) is constant and equal to λ0 for all s1. From the necessary conditions of the
continuation problem,

wθ(θ, s) = −λ(θ, s) = wθ(θ
′(θ, s, s′), s′), all s′

It follows that wθ(θ, s) is constant along the equilibrium path, i.e. for all the values of
(θ, s) which are reached starting from (θ1(s1), s1), all s1, and iterating on the law of motion
θ′(θ, s, s′) for all s′. Also, λ(θ, s) is constant and equal to λ0 along the equilibrium path as
well. Then, recalling that b0(s0) ≥ 0 and gt(s

t) > 0 all t and st, one can show that λ > 0
following the same argument as in Lucas and Stokey (1983).

Also, along the equilibrium path, θ′(θ, s, s′) is not a function of θ or s. It follows that,
along the equilibrium path and from the second period on, it is possible to express the current
value of θ as a function of the current value of s — Let θ(s) denote the function. The limit
condition then becomes

lim
t→∞

∑

st

βtuc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)πt(s
t|s0) = 0

lim
t→∞

∑

st

βtθt(s
t)πt(s

t|s0) = 0

lim
t→∞

∑

st

βtθ(st)πt(s
t|s0) = 0

and is satisfied since θ(st) takes a finite set of values and is therefore bounded, while βt

converges to zero.
Comparing the necessary conditions of the first-period and continuation problems, and

recalling that λ = λ0, it follows that period 0 is special whenever b0(s0) > 0. The reason
is that the real government liabilities in period 0 are given and are financed through distor-
tionary taxes in other periods and histories. To minimize the tax distortions, the government
has an incentive to decrease the price of consumption goods in period 0 relative to other
periods and histories. It also follows that the continuation of the Ramsey equilibrium is
not the Ramsey equilibrium for the continuation economy, so the Ramsey problem is not
recursive. In particular, vR(b, s) > vC(b, s). Then, in the economy with commitment, the
optimal policy is not time-consistent. Below, we show that the Ramsey equilibrium can be
associated with an optimal (time-consistent) policy in the economy without commitment.

In what follows, we restrict attention to the equilibrium path from the second period on.
For convenience, we rewrite the following necessary conditions of the continuation problem:

(1 + λ)uc(c, n, g) + λucc(c, n, g)c + λunc(c, n, g)n − µ = 0

(1 + λ)un(c, n, g) + λucn(c, n, g)c + λunn(c, n, g)n + µξ(s) = 0

ug(c, n, g) + λucg(c, n, g)c + λung(c, n, g)n − µ = 0

ξ(s)n − c − g = 0

(3)

11



Given the constant λ, the previous conditions form a system of four equations in the four
unknown c, n, g and µ.

Assuming that the solution exists and is unique, it is a time-invariant function of tech-
nology {c(ξ(s)), n(ξ(s)), g(ξ(s)), µ(ξ(s))}, i.e. it does not depend on θ and it depends on s
only through technology ξ(s). It follows that the marginal utility of consumption uc(ξ(s)),
production y(ξ(s)) the tax rate τ(ξ(s)) and the primary surplus δp(ξ(s)) are time-invariant
functions of technology as well. Prices q(s, s′) depend on the current state s as well as the
next period state s′, while the real interest rate r(s) depends on the current state s. Also,
recalling that bt(s

t) is a function of current and future consumption and labor, government
liabilities b(s) are time-invariant functions of the current state s, and so is the fiscal surplus
δf(s). Clearly, if ξ(s) is a one-to-one function, functions of the state can be expressed as
functions of technology. We emphasize that, from the second period on, all the variables of
interest in this economy are time-invariant functions of the current state s, so they are all
perfectly correlated with each other.

It is instructive to compare some properties of the continuation of the Ramsey equilibrium
and the Pareto optimum, in the case that u is separable in its three arguments. The necessary
conditions 3 imply that, in the Ramsey equilibrium, −(1+λ)un−λunnn = ξug, so −un < ξug,
while −un = ξug in the Pareto optimum. Also, −(1+λ)un−λunnn = (1+λ)ξuc +λξuccc, so
−un < ξuc, while −un = ξuc in the Pareto optimum. Then, recalling that (1− τ)ξuc = −un,
the tax rate τ is strictly positive. Intuitively, the distortionary labor income tax tends to
discourage labor, production, private consumption and public consumption relative to the
Pareto optimum. Finally, (1 + λ)uc + λuccc = ug, so the sign of ug − uc is the same as the
sign of uc + uccc, while uc = ug in the Pareto optimum.

4.2 Numerical solution

The results so far suggest the following efficient strategy for solving numerically the Ramsey
problem.

First, consider the continuation problem. Using the necessary conditions 3, c, n, g and
µ are expressed as functions of λ and s — Let c(λ, s), n(λ, s), g(λ, s) and µ(λ, s) denote the
four functions. Then, recalling that λ is constant along the equilibrium path, the value ω
associated with λ and s is determined by the functional equation

For all λ, s: ω(λ, s) = u(c(λ, s), n(λ, s), g(λ, s)) +
∑

s′∈S

βω(λ, s′)π(s′|s)

Notice that, for fixed λ, the previous is a simple linear system of equations in the unknowns
ω(λ, s) for all s ∈ S. Let ω(λ) be the column vector of the unknowns ω(λ, s), let u(λ) be the
column vector of the constants u(c(λ, s), n(λ, s), g(λ, s)), and let P be the transition matrix
of the state. Then,

ω(λ) − βPω(λ) = u(λ)

ω(λ) = (I − βP )−1u(λ)

where I is the identity matrix.
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The next step is to determine the function λ(θ, s). However, it is convenient to first
determine θ as a function of λ and s. Recall that, along the equilibrium path and from the
second period on, the current value of θ is a function of the current value of s. Then, the
function θ(λ, s) is determined by the functional equation

For all λ, s: uc(c(λ, s), n(λ, s), g(λ, s))c(λ, s) + un(c(λ, s), n(λ, s), g(λ, s))n(λ, s)

+
∑

s′∈S

βθ(λ, s′)π(s′|s) − θ(λ, s) = 0

Here again, for fixed λ, the previous is a simple linear system of equations in the unknowns
θ(λ, s) for all s ∈ S. Let θ(λ) be the column vector of the unknowns θ(λ, s), let uc(λ)c(λ) +
un(λ)n(λ) be the column vector of the constants, and let P be the transition matrix of the
state. Then,

θ(λ) − βPθ(λ) = uc(λ)c(λ) + un(λ)n(λ)

θ(λ) = (I − βP )−1[uc(λ)c(λ) + un(λ)n(λ)]

where I is the identity matrix.
Notice that, for fixed s, θ(λ, s) may have the properties of a Laffer curve, i.e. it may

be inverted-U shaped, so the correspondence λ(θ, s) may have two values for small values
of θ, and no values for large values of θ. This is one reason why it is convenient to first
characterize θ(λ, s) rather than λ(θ, s). In the case that θ(λ, s) has the properties of a Laffer
curve, we focus on the good part of the Laffer curve, i.e. the part of the curve corresponding
to small values of λ until the maximum value of θ is reached. On that part, we invert
the function θ(λ, s), and obtain λ(θ, s). Alternatively, for fixed s, θ(λ, s) may be a strictly
increasing function for all λ > 0, as it occurs in the numerical examples considered below.
In this case, we invert the function θ(λ, s) for all λ > 0. Once λ(θ, s) has been obtained, the
value function is determined by w(θ, s) = ω(λ(θ, s), s), and similarly the associated policy
functions.

Government liabilities b as a function of λ and s are determined by

b(λ, s) = θ(λ, s)/uc(c(λ, s), n(λ, s), g(λ, s))

For fixed s, b(λ, s) may have the properties of a Laffer curve, as it occurs in the numerical
example considered later in this section. Then, we focus on the good part of the Laffer curve,
invert the function b(λ, s) on that part, obtain λ(b, s), and determine the value function by
vC(b, s) = ω(λ(b, s), s).

Once w(θ, s) has been obtained, determining the value function vR(b, s) and the as-
sociated policy functions is a simple static optimization problem. We substitute the two
constraints into the objective function and use a grid search method. Alternatively, one can
use the necessary conditions to determine c, g, n, µ and b as functions of (λ, s). We find
that this second method works only for positive values of b.
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4.3 Benchmark economy

We now turn to the case that the utility function is

u(c, n, g) ≡

{

Af(c,g)1−σ−1
1−σ

− Φn1+ϕ

1+ϕ
σ > 0, σ 6= 1

A log(f(c, g))− Φn1+ϕ

1+ϕ
σ = 1

f(c, g) ≡

{

(

αc
ǫ−1

ǫ + (1 − α)g
ǫ−1

ǫ

)
ǫ

ǫ−1

ǫ > 0, ǫ 6= 1

cαg1−α ǫ = 1

where A > 0, α ∈ (0, 1), Φ > 0 and ϕ > 0. The utility function is separable between the
composite consumption good and labor. The elasticity of substitution between private and
public consumption is constant and equal to ǫ. Although limn→n un(c, n, g) = −Φnϕ > −∞
we assume that n is large enough so that the solution is still described by the necessary
conditions 3.

Let us start considering the simpler case ǫ = 1. In this case, uccc = [α(1 − σ) − 1]uc,
ugcc = α(1 − σ)ug, and unnn = ϕun, so the necessary conditions 3 become

[1 + λα(1 − σ)]uc − µ = 0

(1 + λ + λϕ)un + µξ = 0

[1 + λα(1 − σ)]ug − µ = 0

ξ(s)n − c − g = 0

It is easy to show that λ satisfies 1 + λα(1 − σ) > 0.
Notice that uc = ug like in the Pareto optimum. However, −(1 + λ + λϕ)un = ξ[1 +

λα(1 − σ)]uc, so −un < ξuc = ξug, while −un = ξuc = ξug in the the Pareto optimum.
The tax rate is determined by

1 − τ =
−un

ξuc

=
1 + λα(1 − σ)

1 + λ + λϕ
< 1

so the tax rate is strictly positive and constant along the equilibrium path. Taxes τξn
are then a strictly positive constant fraction τ of production. Moreover, from uc = ug, it
follows that private consumption c and public consumption g are respectively strictly positive
constant fractions α and 1 − α of production. The primary surplus δp is then a constant
fraction τ − (1 − α) of production.

From c = αξn and g = (1 − α)ξn, it follows that uc is equal to B(ξn)−σ, where B ≡
A (αα(1 − α)1−α)

1−σ
> 0, so the marginal utility of consumption is a strictly decreasing

function of production. Then,

(1 + λ + λϕ)(−un) = [1 + λα(1 − σ)]ucξ

(1 + λ + λϕ)Φnϕ = [1 + λα(1 − σ)]B(ξn)−σξ

(1 + λ + λϕ)Φnϕ+σ = [1 + λα(1 − σ)]Bξ1−σ

so labor n is a strictly increasing (decreasing) function of technology ξ if and only if 1−σ > 0
(1 − σ < 0). Also,

(1 + λ + λϕ)Φnϕ = [1 + λα(1 − σ)]B(ξn)−σξ

(1 + λ + λϕ)Φ(ξn)ϕ+σ = [1 + λα(1 − σ)]Bξ1+ϕ
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so production ξn is a strictly increasing function of technology ξ. Collecting the results so
far, production ξn, private consumption c, public consumption g and taxes τξn are strictly
increasing functions of technology ξ, while the marginal utility of consumption uc is a strictly
decreasing function of technology ξ.

We now turn to the sign of the primary surplus δp and of government liabilities b. In the
simple case that b0(s0) = 0, period 0 should be treated as all other periods and histories,
so the sign of the primary surplus is the same in all periods and histories. Since initial
government liabilities b0(s0) are equal to the sum of the discounted value of all primary
surpluses, the primary surplus is equal to zero in all periods and histories. Then, since
government liabilities bt(s

t) are equal to the sum of the discounted value of all primary
surpluses from period t on, government liabilities bt(s

t) are equal to zero in all periods and
histories.

Suppose now that b0(s0) > 0 implies b1(s
1) > 0 for at least one history s1. This is indeed

the case in the numerical examples considered below. With arguments analogous to the
previous paragraph, since b1(s

1) is equal to the sum of the discounted value of all primary
surpluses from the second period on, and since the sign of the primary surplus is the same
from period 1 on, the primary surplus is strictly positive from period 1 on. In turn, this
implies that the primary surplus δp is a strictly positive fraction of production, so it is a
strictly increasing function of technology ξ. Also, since government liabilities bt(s

t) are equal
to the sum of the discounted value of all primary surpluses from period t on, government
liabilities bt(s

t) are strictly positive from period 1 on. In the case that b0(s0) < 0, the
conclusions in this paragraph are reverted.

To determine the real interest rate, government liabilities and the fiscal surplus, we now
restrict the transition function assuming that the transition matrix P is a weighted average
of the identity matrix I and a stochastic matrix Q with identical rows:

P = ρI + (1 − ρ)Q,

where ρ ∈ [0, 1). Equivalently, letting πQ(st+1) be a probability mass function over the state,

π(st+1|st) = ρχ(st+1 = st) + (1 − ρ)πQ(st+1)

where χ is an indicator function equal to 1 if st+1 = st and 0 otherwise. The process for the
state, then, is an average of a perfectly serially correlated process and an i.i.d. process.

With this transition function, the intertemporal price of consumption goods is determined
by

qt(s
t+1) =

βuc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))π(st+1|st)

uc(ct(st), nt(st), gt(st))

q(st, st+1) =
βuc(ξ(st+1))π(st+1|st)

uc(ξ(st))

q(st, st+1) = β

[

ρχ(st+1 = st) + (1 − ρ)
uc(ξ(st+1))πQ(st+1)

uc(ξ(st))

]

where uc(ξ) = B(ξn(ξ))−σ.
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Then, the real interest rate is determined by

1

1 + rt(st)
=
∑

st+1∈S

qt(s
t+1)

1

1 + r(ξ(st))
= β

[

ρ + (1 − ρ)
EQ(uc)

uc(ξ(st))

]

where EQ(uc) ≡
∑

st+1∈S uc(ξ(st+1))πQ(st+1) is a strictly positive constant since the marginal
utility of consumption uc is strictly positive. Since the marginal utility of consumption uc is
a strictly decreasing function of technology ξ, the real interest rate is a strictly decreasing
function of technology ξ as well.

Moreover, recalling that government liabilities are time-invariant functions b(st) of the
state, government liabilities are determined by

bt(s
t) = τt(s

t)ξ(st)nt(s
t) − gt(s

t) +
∑

st+1∈S

qt(s
t+1)bt+1(s

t+1)

b(st) = δp(ξ(st)) +
∑

st+1∈S

q(st, st+1)b(st+1)

b(st) = δp(ξ(st)) + β

[

ρb(st) + (1 − ρ)
EQ(ucb)

uc(ξ(st))

]

(1 − βρ)b(ξ(st)) = δp(ξ(st)) + β(1 − ρ)
EQ(ucb)

uc(ξ(st))

where EQ(ucb) ≡
∑

st+1∈S uc(ξ(st+1))b(st+1)πQ(st+1) is a constant. In the case that b0(s0) >
0, recall that government liabilities b are strictly positive, so EQ(ucb) > 0, and the primary
surplus δp is a strictly increasing function of technology ξ. Then, since the marginal utility
of consumption uc is a strictly decreasing function of technology ξ, government liabilities b
are a strictly increasing function of technology ξ and production.

Furthermore, using the definition of fiscal surplus and the government budget constraints,
one can derive the following convenient expression for the fiscal surplus:

δf
t (st) =

∑

st+1∈S

qt(s
t+1)

(

bt(s
t) − bt+1(s

t+1)
)

δf (st) =
∑

st+1∈S

q(st, st+1) (b(ξ(st)) − b(ξ(st+1)))

δf(ξ(st)) =
∑

st+1∈S

β(1 − ρ)
uc(ξ(st+1))πQ(st+1)

uc(ξ(st))
(b(ξ(st)) − b(ξ(st+1)))

δf(ξ(st)) = β(1 − ρ)
EQ(uc)b(ξ(st)) − EQ(ucb)

uc(ξ(st))

Recall that EQ(uc) > 0 and EQ(ucb) > 0, government liabilities b are strictly increasing in
technology ξ, while the marginal utility of consumption uc is strictly positive and strictly
decreasing in technology ξ. Although the fiscal surplus is not necessarily increasing in tech-
nology ξ, it is strictly positive for values of technology above a threshold, and strictly negative
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for values of technology below the threshold. This suggests that the fiscal surplus tends to
be positively correlated with technology and production. For instance, in the case that there
are only two states s1 < s2, with ξ(s1) < ξ(s2), government liabilities take a strictly smaller
value when the state is s1 than when it is s2. Then, δf is strictly negative when the state is
s1, and strictly positive when the state is s2. In this case, the fiscal surplus is indeed strictly
increasing in technology ξ and production.

Most of the previous conclusions hold in the general case of constant elasticity of substi-
tution ǫ. The proof is rather long but straightforward. First, using the necessary conditions,
one guesses and verifies that private consumption c and public consumption g are strictly
positive constant fractions of production, summing up to one. The fractions are constant
in the sense that they do not depend on technology ξ, but they do depend on the constant
multiplier λ as well as the parameters of the utility function σ and ǫ. Under the guess, uc,
uccc, ug and ugcg are all proportional to y−σ. All the other conclusions, except that uc is
in general different from ug, follow from the same arguments as in the case of unitary elas-
ticity. Taxes and the primary surplus are strictly positive constant fractions of production.
Production is strictly increasing in technology. Government liabilities are strictly increasing
in technology and production, and the fiscal surplus tends to be positively correlated with
technology and production.

4.4 Numerical example

The following numerical example document the previous conclusions. It has been solved
using the numerical strategy described above. The utility function is

u(c, n, g) ≡ A[α log(c) + (1 − α) log(g)] − Φ
n1+ϕ

1 + ϕ

with A = 1, α = 0.75, Φ = 1 and ϕ = 1. Total available hours are n = 4. The preferences
discount factor is β = 0.99. The state space is S = {s1, s2}, and the transition matrix is
[0.95, 0.05; 0.05, 0.95]. Technology is ξ(s1) = 0.9 and ξ(s2) = 1.1. The parameter values
are chosen so that, approximately, in the deterministic steady state, the ratio of public
consumption to private consumption is 1/3, the ratio of labor to total available hours is
1/4, the labor supply elasticity is 1, the real interest rate is 4%, and the first-order serial
correlation of technology is 0.9. We chose an unrealistically high value for the standard
deviation in order to plot clearer figures. The utility is separable in its three arguments, and
the elasticity of substitution between private and public consumption is constant and equal
to one.

Let us first focus on the solution of the continuation problem. Figures 1 and 2 plot several
functions of λ for each level of s. Recall that λ is constant along the equilibrium path. Then,
all the variables of interest are perfectly correlated with each other, and, for each fixed λ, the
sign of the correlation can be easily inferred from the figures. Notice that we also consider
small values of λ corresponding to negative values of initial government liabilities b0(s0).

For this economy, (1 + λ + λϕ)Φnϕ+1 = 1, so labor n does not depend on s. Aggregate
production ξn is the product of technology and labor. Private and public consumption are
respectively constant fractions α and 1 − α of aggregate production. The multiplier µ is
equal to the inverse of aggregate production.
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The tax rate τ is constant and equal to (λ + λϕ)/(1 + λ + λϕ). The ratio of the primary
surplus δp to aggregate production is then constant and equal to τ − (1 − α). Notice that
there is a threshold value λ∗ (equal to 1/6 in this numerical example) such that τ − (1− α)
is a strictly negative constant for λ < λ∗, and a strictly positive constant for λ > λ∗. Then,
for λ < λ∗, the primary surplus is negative and strictly decreasing in production, while for
λ > λ∗ it is positive and strictly increasing in production. The same applies to debt b. For
λ > λ∗, the fiscal surplus is positive when production is high, and negative when technology
and production is low, while the reverse is true for λ < λ∗.

One can show that, since utility is logarithmic, the value of debt θ(λ, s) does not depend
on s, and is strictly increasing for all λ > 0, so it does not have the properties of a Laffer
curve. However, the last two panels consider a larger domain for λ, and show that both the
primary surplus δp and the debt b have the properties of a Laffer curve. Focusing on values
of λ lower than the value that maximizes the primary surplus (equal to 1.5 in this numerical
example) amounts to restricting attention to the good part of the Laffer curve.

Let us now turn to the first-period problem, and compare its optimal policies with the
ones of the continuation problem. Figures 3 and 4 plot the relevant variables as functions
of debt d for each level of s, for the continuation problem. Figures 5 and 6 plot the relevant
variables as functions of debt d for each level of s, for the first-period problem.

There are important qualitative differences. In the continuation problem, the higher
government liabilities, the higher taxes and the primary surplus, in accordance with the
general principle that the tax distortion should be smoothed across periods and states.
Then, the higher the tax rate, the lower labor, production and consumption.

The first-period problem, however, is a one-period problem taking current government
liabilities as given. In the case that government liabilities are strictly positive, since current
government liabilities must be financed by (current and) future surpluses, the higher real
government liabilities b, the stronger the governments incentive to decrease the intertemporal
price of current consumption goods in terms of future consumption goods. Hence, the higher
government liabilities, the stronger the government’s incentive to decrease the tax rate, to
increase labor, production and consumption, and to decrease the marginal utility of current
consumption. In the numerical example, the incentive outweighs the general principle that
the tax distortion should be smoothed across periods and states.

This, however, needs not be true in general. The lower the preferences discount factor β,
the more important becomes the general principle of tax smoothing relative to the govern-
ment’s incentive to decrease the intertemporal price of current consumption goods in terms
of future consumption goods. For instance, figures 7 and 8 plot the relevant variables as
functions of debt d for each level of s, for the first-period problem, for the case that β = 0.5.
In this case, the policies of the first-period problem are qualitative similar to those of the
continuation problem. In particular, the higher government liabilities, the higher the tax
rate.

5 Markov perfect equilibria

We now turn to the study of the optimal policy without commitment. In each period
t, first the state variable st, the technology ξ(st) and the government liabilities bt(s

t) are
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realized, then the government chooses the tax rate τt and public consumption gt, and finally
the households choose private consumption ct, labor nt and next-period contingent assets
bt+1(s

t+1).
In this section, we focus on Markov perfect equilibria, studied by Klein and Rios-

Rull (2003) and Klein, Krusell and Rios-Rull (2004), and compare them with the Ramsey
equilibrium. In the next section, we show how to determine whether the Ramsey equilibrium
can be sustained by the threat to revert to a Markov perfect equilibrium.

Borrowing a concept in Kydland and Prescott (1977), the policy associated with a Markov
perfect equilibrium is the optimal policy given the past choices of households and the gov-
ernment (given the current situation), and given that the future policy is chosen in the same
way. Markov perfect equilibria are sustainable equilibria which depend recursively on the
natural state variables only, namely st and bt(s

t). Hence, they can be sustained without any
threat to revert to other sustainable equilibria. They are also the limit as the time horizon
goes to infinity of the sustainable equilibria of the finite-horizon economy.

A Markov perfect equilibrium is a set of a value function v(b, s), associated policy func-
tions c(b, s), n(b, s), g(b, s), b′(b, s, s′), and a future policy function θ(b, s) to be adopted in
all future periods, which satisfy

• Given the future policy function θ(b, s), the value function v(b, s) and its associated
policy functions solve the Bellman equation:

For all b, s: vM(b, s) = max
{c≥0,n∈[0,n],g≥0,b′(s′)}

{

u(c, n, g) +
∑

s′∈S

βvM(b′(s′), s′)π(s′|s)

}

subject to: uc(c, n, g)b = uc(c, n, g)c + un(c, n, g)n +
∑

s′∈S

βθ(b′(s′), s′)π(s′|s)

c + g ≤ ξ(s)n

• The future and the current policy functions are the same:

For all b, s: θ(b, s) = uc(c(b, s), n(b, s), g(b, s))b

In the Ramsey equilibrium, the government chooses optimally a unique set of policy
functions to be adopted both in the current period and in all future periods. In particular,
the government chooses the future policy functions taking into full account how the current
households’ choices depend on the future policy functions. In a Markov perfect equilibrium,
however, the government chooses optimally a set of policy functions to be adopted only in the
current period, for a given set of policy functions to be adopted in all future periods. Only
after the current period optimization problem has been solved, the requirement that current
and future policy functions be the same is added. It might help the intuition considering
the government in the current period as a different agent from the government in all future
periods, so it cannot choose the policy functions to be adopted in all future periods. The
future policy functions will be chosen by the future government taking as given the choices in
the current period, and ignoring their dependence on the future policy functions. The value
of a Markov perfect equilibrium is, then, lower, in general, than the value of the Ramsey
equilibrium.
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5.1 Results

The Lagrangian is

L = u(c, n, g) +
∑

s′∈S

βvM(b′(s′), s′)π(s′|s)

+ λ

[

uc(c, n, g)c + un(c, n, g)n +
∑

s′∈S

βθ(b′(s′), s′)π(s′|s) − uc(c, n, g)b

]

+ µ[ξ(s)n − c − g]

where λ is the Lagrange multiplier associated with the implementability constraint, and
µ ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraints.

Assuming that the solution satisfies c > 0, n ∈ (0, n) and g > 0, and that it satisfies the
feasibility constraints with equality, the necessary conditions are

∂L

∂c
= (1 + λ)uc(c, n, g) + λucc(c, n, g)(c − b) + λunc(c, n, g)n − µ = 0

∂L

∂n
= (1 + λ)un(c, n, g) + λucn(c, n, g)(c − b) + λunn(c, n, g)n + µξ(s) = 0

∂L

∂g
= ug(c, n, g) + λucg(c, n, g)(c − b) + λung(c, n, g)n − µ = 0

∂L

∂b′(s′)
= βvM

b (b′(s′), s′)π(s′|s) + βλθb(b
′(s′), s′)π(s′|s) = 0 all s′

∂L

∂λ
= uc(c, n, g)c + un(c, n, g)n +

∑

s′∈S

βθ(b′(s′), s′)π(s′|s) − uc(c, n, g)b = 0

∂L

∂µ
= ξ(s)n − c − g = 0

vM
b (b, s) =

∂L

∂b
= −λuc(c, n, g)

Also, from the Markov perfect equilibrium definition,

For all b, s: θ(b, s) = uc(c(b, s), n(b, s), g(b, s))b

θb(b, s) = uc(c(b, s), n(b, s), g(b, s)) +
duc(c(b, s), n(b, s), g(b, s))

db
b

Relative to the Ramsey equilibrium, it is harder to characterize how variables co-vary
with technology. First, λ is not constant any more but depends on b and s. Also, government
liabilities b appear in the necessary conditions. Next-period government liabilities b′(b, s, s′)
depend on the next-period state s′ as well, i.e. government liabilities are state-contingent
and vary with technology. Hence, as s and ξ(s) vary, b varies as well, and the full effect of s
and ξ(s) on any variable is the sum of its direct effect and its indirect effect through b.

The following observations, however, may be helpful. On one hand, the higher real gov-
ernment liabilities b, the higher the tax rate, the lower labor, production and consumption,
the higher the marginal utility of consumption uc. On the other hand, since current govern-
ment liabilities b must be financed by (current and) future surpluses, the higher real govern-
ment liabilities b, the stronger the governments incentive to increase labor and consumption

20



and decrease the marginal utility of consumption uc, in order to decrease the intertemporal
price of current consumption goods. This incentive is stronger when government liabilities
are higher, and disappears when they are equal to zero. Hence, the sign of the term duc = db
in the last equation is positive, at least for values of b sufficiently close to zero.

Then, at least for small values of b, from the previous conditions,

−vM
b (b, s)

uc(c, n, g)
= λ(b, s) =

−vM
b (b′(s′), s′)

θb(b′(s′), s′)
all s′

=
−vM

b (b′(s), s)

θb(b′(s), s)

=
−vM

b (b′(s), s)

uc(b′(s), s)

uc(b
′(s), s)

θb(b′(s), s)
<

−vM
b (b′(s), s)

uc(b′(s), s)
= λ(b′(s), s)

which shows that λ(b, s), a measure of tax distortion, increases over time for any fixed s.
Since λ(b, s) is strictly increasing in b on the good part of the Laffer curve, government
liabilities increase over time.

Recall that government liabilities b are stationary in the Ramsey equilibrium. Relative
to the Ramsey policy, Markov perfect policies take b as given and decrease uc in order to
decrease the intertemporal value of b. This is implemented through a lower tax rate leading
to higher labor, production and consumption and a lower marginal utility of consumption uc

relative to the Ramsey policy. As a result of the lower tax rate, future government liabilities
b are higher relative to the Ramsey policy, and therefore government liabilities increase over
time. Notice that the difference between the Ramsey policy and Markov perfect policies
is that the Ramsey policy commits to a fixed current uc, while Markov perfect policies
manipulate it. Indeed, if uc were held fixed in the expression θ = ucb, then θb = uc, so
λ(b, s) = λ(b′(s), s), and the Markov perfect policy would be the same as the Ramsey policy.

A Markov perfect equilibrium can be computed with the following two methods. Given
an initial function θ(b, s), one can determine the other functions by the standard value
function iterations method. Then, one can use the just obtained functions to update the
function θ(b, s), and iterate until convergence. Alternatively, given initial functions θ(b, s)
and vM(b, s), obtain the other functions solving the simple static optimization problem in the
definition of Markov perfect equilibrium. Then, using the just obtained functions, update
both functions θ(b, s) and vM(b, s) simultaneously, and iterate until convergence. This second
method corresponds to computing the Markov perfect equilibrium of the infinite horizon
economy as the limit as the time horizon goes to infinity of the Markov perfect equilibrium
of the finite horizon economy.

We have used the second method to compute a Markov perfect equilibrium for the same
numerical example considered at the end of section 4. However, we have restricted the choice
of consumption c to be strictly below 2/3ξ(s). This amounts to constraining the government
not to depart too far from the continuation of the Ramsey equilibrium where consumption
is below 0.75ξ(s). In particular, the government never chooses a negative tax rate. We hope
that the constraint on consumption gives discipline to the government, and allows it to reach
a strictly higher value vM(b, s). Without the constraint, we obtain convergence but we find
that vM(b, s) = −∞ for all positive values of b, and we are not confident in the correctness
of the result. Figures 9 and 10 plot the relevant variables as functions of debt d for each
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level of s. It is disappointing to notice that the constraint that we have added is severely
binding. Also, contrary to our previous argument, consumption and the marginal utility of
consumption do not change with b in this numerical example.

6 Ramsey as sustainable equilibrium

In this section, we show how to determine numerically whether the Ramsey equilibrium can
be sustained by a sustainable equilibrium, as defined by Chary and Kehoe (1990).

As in the previous section, in each period t, first the state variable st, the technology
ξ(st) and the government real liabilities bt(s

t) are realized, then the government chooses the
tax rate τt and public consumption gt, and finally the households choose private consump-
tion ct, labor nt and next-period contingent assets bt+1(s

t+1). Histories are re-defined to
include the government’s choices of tax rates and public consumption. Loosely speaking, a
sustainable equilibrium is a sequence of functions of the histories such that, at any period
and history, the continuation outcome is a competitive equilibrium of the continuation econ-
omy, and the government maximizes the continuation value. More precisely, after defining
zt ≡ {st, τt, gt}, let zt ≡ {zj}

t
j=0 be the history of the state up to period t, with z−1 ≡ {∅}.

Let {gt(z
t−1, st) ≥ 0, τt(z

t−1, st) < 1}∞t=0 be a government strategy, and let {ct(z
t) ≥ 0,

nt(z
t) ∈ [0, n], bt+1(z

t, st+1), qt(z
t, st+1) > 0}∞t=0 be an economy strategy. These strategies

generate recursively an outcome, namely an allocation and a tax and price system, and an
associated value. Also, at each period t and history {zt−1, st} the strategies induce continu-
ation strategies and continuation outcomes and values. A sustainable equilibrium is a pair
of government and economy strategies such that, at each period t and history {zt−1, st},
the continuation outcome is a competitive equilibrium of the continuation economy, and the
government action {gt(z

t−1, st), τt(z
t−1, st)} maximizes the continuation value.

Chang (1998) and Phelan and Stacchetti (2001) show that, after adding the continuation
value of sustainable equilibria as a state variable, the set of values of all sustainable equi-
libria can be characterized recursively. Also, the value of any sustainable equilibrium can
be obtained with a recursive sustainable equilibrium. Here, we adapt their arguments to
our model, modifying them. A recursive sustainable equilibrium is a value correspondence
V (b, s), policy functions c(v, b, s), n(v, b, s), g(v, b, s), b′(v, b, s, s′), a law of motion v′(v, b, s,
c, n, g, b′(s′), s′) : (b′, s′) → V (b′, s′) for the continuation value, and a future policy function
θ(v, b, s), satisfying:

• Given v′(v, b, s, c, n, g, b′(s′), s′) and θ(v, b, s), the value correspondence V (b, s) and the
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policy functions solve the Bellman equation:

For all b, s, all v ∈ V (b, s):

v = max
{c≥0,n∈[0,n],g≥0,b′(s′)}

{

u(c, n, g) +
∑

s′∈S

βv′(c, n, g, b′(s′), s′)π(s′|s)

}

subject to:

uc(c, n, g)b = uc(c, n, g)c + un(c, n, g)n +
∑

s′∈S

βθ(v′(c, n, g, b′(s′), s′), b′(s′), s′)π(s′|s)

c + g ≤ ξ(s)n

• The future and the current policy functions are the same:

For all b, s, for all v ∈ V (b, s): θ(v, b, s) = uc(c(v, b, s), n(v, b, s), g(v, b, s))b

First, notice that, if the value correspondence V (b, s) is a value function, so the law of mo-
tion for the continuation value can depend only on (b′(s′), s′), then the recursive sustainable
equilibrium can be sustained without any threat to revert to other sustainable equilibria,
and the definition is the same as for Markov perfect equilibria.

In the general case that V (b, s) is not a function, the law of motion for the continuation
value plays a crucial role. The future continuation value v′(c, n, g, b′(s′), s′) as a function of
the last two arguments is constrained to be in the value correspondence V (b′(s′), s′) but can
vary with the current choices c, n, g, b′(s′). The current government takes as given the law of
motion for the continuation value, and correctly believes that the future continuation value
depends on its current choices. This is what may give an additional incentive to the current
government to make a choice closer to the Ramsey choice.

To determine whether the value vR(b, s) of the Ramsey equilibrium can be sustained
by a sustainable equilibrium, we first determine whether the continuation value vC(b, s) of
the Ramsey equilibrium can be sustained by the following recursive sustainable equilibrium.
Let V (b, s) = {vM(b, s), vC(b, s)}, so the value correspondence is made of only two value
functions, the one of a Markov perfect equilibrium and the one of the continuation value
of the Ramsey equilibrium. If v = vM(b, s), the law of motion for the continuation value
v′(v, b, s, c, n, g, b′(s′), s′) is equal to vM(b′(s′), s′) regardless of the current government’s
choice. If v = vC(b, s), however, the law of motion for the continuation value v′(v, b, s, c, n, g,
b′(s′), s′) is equal to vC(b′(s′), s′) if the current government’s choice is the Ramsey choice,
and it is equal to vM(b′(s′), s′) otherwise. Let the policy functions be the ones associated
with the continuation of the Ramsey equilibrium and the Markov perfect equilibrium. The
previous is a recursive sustainable equilibrium in the case that vC(b, s) ≥ vM(b, s) for all
(b, s).

Then, in the case that vC(b, s) ≥ vM(b, s) for all (b, s), we only need to establish that, in
the first period, vR(b, s) ≥ vM(b, s) for all (b, s), which is immediately true since the Ramsey
equilibrium is the optimal competitive equilibrium. It follows that the value of the Ramsey
equilibrium is higher than the value of the Markov perfect equilibrium at each period and
history, and the value vR(b, s) of the Ramsey equilibrium can be sustained by the threat to
revert to a Markov perfect equilibrium.
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Figure 11 plots the value functions vR(b, s), vC(b, s) and vM(b, s) for the numerical ex-
ample described at the end of section 4. All the value functions are decreasing in debt b and
increasing in the state s. For this numerical example, vR(b, s) > vC(b, s) > vM(b, s) all (b, s),
although it is not easy to see it in the figure. Since the condition vC(b, s) ≥ vM(b, s) holds
for all (b, s), the continuation of the Ramsey equilibrium can be sustained as a recursive
sustainable equilibrium. Then, the Ramsey equilibrium is a sustainable equilibrium.

We emphasize that the condition vC(b, s) ≥ vM(b, s) for all (b, s) needs not be true
in general, and it ceases to hold when the preferences discount factor β decreases below a
threshold value. For the numerical example considered, the threshold value is below β = 0.8.

Also, notice that the value of the Ramsey equilibrium cannot be sustained by a recursive
sustainable equilibrium as defined in this paper. To sustain it as a recursive sustainable
equilibrium as in Chang (1998) and Phelan and Stacchetti (2001), one should add to the list
of state variables the promised value of government liabilities.

7 Conclusion

Our main result under commitment is that, in a benchmark case, taxes, government ex-
penditures and the primary surplus should all be constant positive fractions of production,
and both government liabilities and the fiscal surplus should be positively correlated with
production. In addition, we have shown that, for realistic values of the preferences discount
factor, the Ramsey equilibrium can be sustained by the threat to revert to a Markov perfect
equilibrium.

As explained in the introduction, in models where government expenditures are exoge-
nous, the overall sign of the correlation between the primary surplus and production depends
on the relative importance of technology shocks and government expenditures shocks. In this
paper, we have shown that the correlation is positive if government expenditures are chosen
endogenously. A main direction for research will be to model both the endogenous and the
exogenous part of government expenditures, and to quantitatively characterize the optimal
fiscal policy.
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Figure 1: Continuation of the Ramsey equilibrium.
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Figure 2: Continuation of the Ramsey equilibrium.
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Figure 3: Continuation of the Ramsey equilibrium.
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Figure 4: Continuation of the Ramsey equilibrium.
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Figure 5: Ramsey equilibrium.
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Figure 6: Ramsey equilibrium.
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Figure 7: Ramsey equilibrium. β = 0.5.
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Figure 8: Ramsey equilibrium. β = 0.5.

33



−40 −20 0 20 40
0.6

0.7

0.8

0.9

1

1.1
Labor

Debt d
−40 −20 0 20 40

0.6

0.8

1

1.2

1.4
Production

Debt d

−40 −20 0 20 40
0.55

0.6

0.65

0.7

0.75
Private consumption

Debt d
−40 −20 0 20 40
0

0.1

0.2

0.3

0.4
Public consumption

Debt d

−40 −20 0 20 40
0.05

0.1

0.15

0.2

0.25

0.3
Taxes

Debt d
−40 −20 0 20 40

−0.4

−0.2

0

0.2

0.4
Primary surplus

Debt d

n(d,s
1
)

n(d,s
2
)

y(d,s
1
)

y(d,s
2
)

c(d,s
1
)

c(d,s
2
)

g(d,s
1
)

g(d,s
2
)

τ(d,s
1
) y(d,s

1
)

τ(d,s
2
) y(d,s

2
)

δp(d,s
1
)

δp(d,s
2
)

Figure 9: Markov perfect equilibrium.
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Figure 10: Markov perfect equilibrium.
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Figure 11: Value functions.
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