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Existence of Equilibrium for Segmented Markets

Models with Interest Rate Monetary Policies

Filippo Occhino∗

February 2004

Abstract

Several papers have recently adopted the segmented markets model as a

framework for monetary analysis. The characteristic assumption is that some

households never participate in financial markets. This paper proves the exis-

tence of an equilibrium for segmented markets models where monetary policy

is defined in terms of the short-term nominal interest rate. The model allows

to consider the important cases where monetary policy affects output, and re-

sponds to any source of uncertainty, including output itself. The assumptions
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required for existence constrain the maximum value and the variability of the

nominal interest rate. The period utility function is logarithmic. The proof is

constructive, and shows how the model can be solved numerically. A similar

proof can be used in the case that monetary policy is defined in terms of the

bond supply.

Keywords: segmented markets, limited participation, interest rate monetary

policy, existence.

JEL Classification Number: C60, E52.

1 Introduction

Several papers, among which Alvarez, Lucas and Weber (2001), Lahiri, Singh and

Vegh (2003) and Occhino (2004), have recently adopted the segmented markets model

as a framework for monetary analysis. The characteristic assumption is that some

households never participate in financial markets. Occhino (2004) argues that the

segmented markets model displays more persistence than other limited participation

models, like the models in Grossman and Weiss (1983), Lucas (1990), Fuerst (1992),

and Christiano and Eichenbaum (1992), where households do not participate in fi-

nancial markets only temporarily. Also, Occhino (2003) shows that, differently from

representative agents monetary models, the segmented markets model can replicate

the persistent decrease of the aggregate output growth rate, and the persistent in-

crease of the real interest rate, which follow a contractionary monetary policy shock.
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The equilibrium of the segmented markets model, however, has been fully charac-

terized only in the case that monetary policy is defined in terms of the money supply.

This paper proves the existence of an equilibrium in the challenging case that mone-

tary policy is defined in terms of the short-term nominal interest rate. The analysis

is empirically important since monetary authorities of most OECD countries follow

interest rate monetary policies. In the U.S. case, Bernanke and Blinder (1992) show

that the federal funds rate, an overnight interest rate, is an excellent indicator of the

stance of monetary policy, and innovations to the federal funds rate can be identified

with monetary policy shocks.

The model allows the detrended aggregate output and the nominal interest rate

to jointly follow any stationary process. It covers, then, the important cases where

monetary policy affects output, and responds to any source of uncertainty, including

output itself. The assumptions required for the existence of an equilibrium constrain

the maximum value and the variability of the nominal interest rate. The period utility

function is logarithmic.

The proof consists in the following steps. First, the equilibrium is characterized by

a system of difference equations. Then, attention is restricted to recursive equilibria

where all normalized variables depend in a time-invariant way on the aggregate state

of the economy, and the equilibrium is characterized by a central functional equation.

Finally, an operator is defined whose fixed point is a solution to the functional equa-

tion, and the existence of a fixed point is established. The proof involves showing
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that the operator is monotone, which can be exploited to obtain a numerical solution.

In addition, Occhino (2000) shows that a similar proof can be used in the case that

monetary policy is defined in terms of the bond supply, like in Lucas (1990).

The paper is organized as follows. Section 2 describes the economy and defines

the competitive equilibrium, Section 3 derives the central functional equation char-

acterizing the equilibrium, and Section 4 proves the existence of a solution.

2 Economy

The model is a cash-in-advance endowment economy, with a large number of house-

holds and a monetary authority. Time is discrete and is indexed by t ≥ 0. There

are a single non-durable consumption good, money, and one-period nominal bonds,

which are claims to one unit of money payable at the end of the period. Households

are of two types, traders and non-traders. Let ω and ω∗ be respectively the number

of traders and non-traders. Households of the same type are identical in all respects.

The crucial difference between the two types of households is that non-traders spend

all their money purchasing consumption goods, while traders can purchase bonds as

well.

Households start each period with cash balances from the previous period. Then,

two markets meet in sequence, a bond market and a goods market. In the bond

market, the monetary authority sells one-period nominal bonds to the traders, at the

bond price qt > 0. Open market operations are conducted in terms of the short-
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term nominal interest rate. The monetary authority announces the bond price qt and

stands ready to issue and sell any number of bonds to clear the market at that price.

By assumption, the interest rate is strictly positive, and the bond price is strictly less

than one.

After the bond market, all households participate in the goods market. Traders

and non-traders receive respectively constant fractions Λ > 0 and Λ∗ > 0 of the

exogenous stochastic aggregate endowment Yt > 0, with ωΛ+ω∗Λ∗ = 1. The endow-

ment cannot be consumed directly, and must be sold in exchange of money at the

price Pt > 0. Households can only consume goods purchased with money held before

the goods market session. The money supply is defined as the amount of dollars PtYt

spent in the goods market. Bonds are redeemed after the goods market closes.

The aggregate endowment Yt and the bond price qt are the only sources of un-

certainty in the economy. Let {Y t}
∞
t=0, be the non-stochastic steady state values of

the aggregate endowment, and let us assume that Y t+1/Y t is constant and equal to

α. We assume that the normalized aggregate endowment yt ≡ Yt/Y t and the bond

price qt are time-invariant functions y(zt) and q(zt) of the exogenous state zt of the

economy. In turn, zt follows a first-order Markov process with transition function

P : Z × B(Z) → [0, 1], where Z is a compact Borel set, and B(Z) denotes the Borel

subsets of Z. Intuitively, P (z, A) is the probability that the next-period exogenous

state belongs to the set A ∈ B(Z) given that the current exogenous state is equal to

z ∈ Z. The exogenous state zt is revealed at the very beginning of period t.
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Each trader chooses consumption Ct, bonds Bt, and next-period cash balances

At+1 to solve

max
{Ct>0,Bt,At+1>0}∞

t=0

E0

[

∞
∑

t=0

βtu(Ct)

]

subject to qtBt + PtCt ≤ At

At+1 = At − qtBt − PtCt + PtΛYt +Bt,

given the trader’ initial cash balances A0 > 0 in period zero, where E0 is the expecta-

tion conditional on information available after z0 has been revealed, the period utility

function u(C) ≡ log(C) is logarithmic, and β ∈ (0, 1).

Since the bond price qt is strictly less than one for all t, holding idle cash balances

is never optimal for traders, so the traders’ cash-in-advance constraint always holds

with equality. Then, the two constraints in the above maximization problem can be

substituted with the constraints

qtBt + PtCt = At

At+1 = PtΛYt +Bt

Non-traders spend all their initial cash balances purchasing consumption goods.

Under this assumption, the behavior of a non-trader is simply described by

PtC
∗
t = A∗

t , A
∗
t+1 = PtΛ

∗Yt

given the non-traders’ initial cash balances A∗
0 > 0 in period zero.
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The economy is described by the traders’ initial assets A0 > 0, the non-traders

initial assets A∗
0 > 0, the initial exogenous state z0, and the process for zt. An equi-

librium is a set of contingent sequences {Ct > 0, Bt, At+1 > 0}∞t=0 of consumption

demand, bonds demand and cash balances for traders, {C∗
t > 0, A∗

t+1 > 0}∞t=0 of con-

sumption demand and cash balances for non-traders, a contingent sequence {Dt}
∞
t=0 of

bonds supplied by the monetary authority, and a contingent sequence {Pt > 0}∞t=0 of

prices such that, given the prices, the traders’ contingent sequence solves the traders’

optimization problem, the non-traders’ contingent sequence satisfies the non-traders

equations, and the following bonds and goods market equilibrium condition hold:

ωBt = Dt

ωCt + ω∗C∗
t = Yt

The necessary first-order conditions for the traders’ optimization problem are

βtu′(Ct)− ν1
t Pt = 0

−qtν
1
t + ν2

t = 0

−ν2
t + Et[νt+1] = 0

and the transversality condition is

lim
t→∞

E0

[

ν1
t At

]

= 0

where ν1
t and ν2

t are the Lagrange multipliers associated with the two constraints. It

follows that

βtu′(Ct) = ν1
t Pt
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qtν
1
t = Et[ν

1
t+1]

The system describing the equilibrium is then

βt/Ct = ν1
t Pt

qtν
1
t = Et[ν

1
t+1]

qtBt + PtCt = At

At+1 = PtΛYt +Bt

PtC
∗
t = A∗

t

A∗
t+1 = PtΛ

∗Yt

ωBt = Dt

ωCt + ω∗C∗
t = Yt

3 Solution

For convenience, variables are normalized as follows. As in Lucas and Stokey (1987)

and Lucas (1990), nominal variables are normalized by aggregate cash balances avail-

able at the beginning of the period. Let At ≡ ωAt+ω∗A∗
t be the initial aggregate cash

balances. Then, yt ≡ Yt/Y t, µt ≡ ν1
tAt/β

tω, ct ≡ ωCt/Y t, bt ≡ ωBt/At, at ≡ ωAt/At,

c∗t ≡ ω∗C∗
t /Y t, a

∗
t ≡ ω∗A∗

t/At, dt ≡ Dt/At, gt ≡ At+1/At, pt ≡ PtY t/At. Also, let us

define λ ≡ ωΛ, so 1− λ = ω∗Λ∗. The previous system can then be written as

1/ct = µtpt
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qtgtµt = βEt[µt+1]

qtbt + ptct = at

gtat+1 = ptλyt + bt

ptc
∗
t = a∗t

gta
∗
t+1 = pt(1− λ)yt

bt = dt

ct + c∗t = yt

at + a∗t = 1

and the transversality condition can be written as

lim
t→∞

E0

[

βtµtat
]

= 0

It is convenient to derive the following two equations. From the goods market equi-

librium condition, the non-traders’ cash-in-advance constraint, and the last equation

of the system, it follows that

ptct + ptc
∗
t = ptyt

ptct + a∗t = ptyt

ptct + (1− at) = ptyt

Also, from the households’ budget constraints, and the last equation of the system,

it follows that

gtat+1 + gta
∗
t+1 = ptλyt + bt + pt(1− λ)yt
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gt = ptyt + bt

Then, using the equation just derived and the traders’ cash-in-advance constraint,

gt = ptct + (1− at) + bt

gt = 1− qtbt + bt

The equilibrium is, then, characterized by the following equivalent system

1/ct = µtpt

qtgtµt = βEt[µt+1]

qtbt + ptct = at

gtat+1 = ptλyt + bt

gt = 1− qtbt + bt

ptct + (1− at) = ptyt

ptc
∗
t = a∗t

at + a∗t = 1

bt = dt

Notice that the first six equations of the system do not depend on the variables c∗t ,

a∗t and dt. Also, with a solution to the first part of the system, it is easy to determine

c∗t , a
∗
t and dt from the last three equations. We now look, then, for a solution to the

first part of the system.

10



Let us restrict attention to stationary recursive equilibria, where aggregate nor-

malized variables depend in a time-invariant way on two aggregate state variables.

The first state variable is the exogenous state zt. The second state variable is the

share θt ≡ at of cash balances held by traders at the beginning of the period. Let us

denote Θ ⊆ (0, 1] the interval where θt takes values in equilibrium. For convenience,

st ≡ (zt, θt) is the aggregate state of the economy, and S ≡ Z×Θ is the set of possible

values that st can take. The evolution of θt must be determined endogenously. In

particular, one must determine an interval Θ, and a law of motion θt+1 = θ′(st), such

that θ′(st) ∈ Θ, for all st ∈ S.

Recall that the bond price qt and the normalized aggregate endowment yt are

known functions of the exogenous state zt. Making explicit the dependence of the

other variables on the aggregate state, the previous system becomes:

1/c(st) = µ(st)p(st)

q(zt)g(st)µ(st) = βE[µ(zt+1, θ
′(st))|zt] = β

∫

Z
µ(zt+1, θ

′(st))P (zt, dzt+1)

q(zt)b(st) + p(st)c(st) = θt

g(st)θ
′(st) = p(st)λy(zt) + b(st)

g(st) = 1− q(zt)b(st) + b(st)

p(st)c(st) + (1− θt) = p(st)y(zt)

In what follows, we will establish the existence of a state space Θ and a solution

to the previous system such that θ′(s) belongs to Θ. The equilibrium can be, then,
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easily derived. Notice that, since β ∈ (0, 1), the transversality condition

lim
t→∞

E0

[

βtµ(st)a(st)
]

= 0

is satisfied in any recursive stationary equilibrium.

For convenience, let us drop the time index. Let us start deriving a preliminary

equation for the law of motion θ′(s). From the traders’ cash-in-advance constraint,

one obtains

q(z)b(s) + p(s)c(s) = θ

1− θ + p(s)c(s) = 1− q(z)b(s)

p(s)y(z) = 1− q(z)b(s),

where the last step uses the goods market equilibrium condition. Then, from the

traders’ budget constraint

θ′(s)g(s) = b(s) + p(s)λy(z)

θ′(s)g(s) = (1− λ)b(s) + λ[p(s)y(z) + b(s)]

θ′(s)g(s) = (1− λ)b(s) + λ[1− q(z)b(s) + b(s)]

θ′(s)[1− q(z)b(s) + b(s)] = (1− λ)b(s) + λ[1− q(z)b(s) + b(s)]

θ′(s) = λ+ (1− λ)b(s)/[1− q(z)b(s) + b(s)]

where the second step follows from the preliminary equation previously derived, and

the third from the expression for g(s). After defining the value of the bond supply
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v(s) ≡ q(z)b(s), the previous relation can be written as

θ′(s) = λ+ (1− λ)
v(s)

q(z)− q(z)v(s) + v(s)
. (1)

We are, now, in a position to derive a central functional equation for the value of

the bond supply v(s). From the traders’ first-order condition, one obtains

β
∫

Z
µ(z′, θ′(s))P (z, dz′) = µ(s)q(z)g(s)

β
∫

Z

1

p(z′, θ′(s))c(z′, θ′(s))
P (z, dz′) =

q(z)g(s)

p(s)c(s)
.

β
∫

Z

1

θ′(s)− q(z′)b(z′, θ′(s))
P (z, dz′) =

q(z)[1− q(z)b(s) + b(s)]

θ − q(z)b(s)
,

where the last step uses the expression for g(s), and the traders’ cash-in-advance

constraint. Substituting v(s) ≡ q(z)b(s), and using the previous relation 1, one

obtains the functional equation

v(s)

θ − v(s)
≡

∫

Z

β

1− λ

θ′(s)− λ

θ′(s)− v(z′, θ′(s))
P (z, dz′), (2)

all s ∈ S, where s ≡ (z, θ), and the law of motion θ′(s) satisfies the relation 1.

4 Existence

This section establishes the existence of a space Θ where θ takes values in equilibrium,

and a solution v(s) to the functional equation 2, such that the function θ′(s) given

by the relation 1 takes values in Θ, for all s ∈ S. With the solution in hand, one can,

then, derive the equilibrium.
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The assumptions required constrain the level and the variability of the nominal

interest rate. The proof consists in defining an operator whose fixed point is a so-

lution to the functional equation, showing that the operator is monotone, using the

monotonicity of the operator to construct a sequence of functions converging to a

limit point, and showing that the limit point is, indeed, a fixed point of the operator.

The proof, however, is complicated by the fact that the unknown function appears

as argument of itself in the functional equation. It is, then, necessary to work with

a subset of functions with known monotonicity properties, and to establish that the

operator maps that set into itself.

First, let us introduce the function v?(q), v? : (0, β)→ (0, β), as follows

v?(q) ≡
β − q

1− q
.

v?(q) is equal to β when q is equal to 0, is continuous and strictly decreasing in q,

and is equal to 0 when q is equal to β.

v?(q) has the following economic interpretation. Consider for a moment a deter-

ministic stationary economy where the bond price is constant and equal to q, the

value of the bond supply is constant and equal to v, all the normalized variables are

constant, and all the nominal variables grow at the growth rate 1 − v + v/q of the

aggregate cash balances. Since the multiplier is constant over time, from the traders’

Euler equation it follows that q(1− v+ v/q) = β, which is simply the Fisher equation

stating that the gross real interest rate is equal to the ratio of the gross nominal in-

terest rate to the gross inflation rate. The equation can be written as q− qv+ v = β,
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or v = (β − q)/(1 − q), so v = v?(q). Hence, v?(q) is the constant value of the bond

supply in a deterministic stationary economy where the bond price is constant and

equal to q, all the normalized variables are constant, and all the nominal variables

grow at the growth rate of the aggregate cash balances.

Let q and q be respectively the smallest and greatest values of q, and let us define

v ≡ v?(q), and v ≡ v?(q). Let M be the metric space of measurable functions

on S taking values in [v, v], with the sup norm. The following theorem 4.1 proves

that, if v(s) belongs to M, then θ′(s) takes values in the interval [θ, θ], where θ ≡

λ+ (1− λ)v/(q − qv + v), and θ ≡ λ+ (1− λ)v/(q − qv + v). Then, after letting the

interval Θ where θ takes values in equilibrium be the interval [θ, θ], we will only need

to determine a solution v ∈M to the functional equation 2.

Theorem 4.1 For any v ∈ M, the function θ′(z, θ) defined in 1 takes values in the

interval [θ, θ].

Proof. For any v ∈M and any s ∈ S,

θ′(s) = λ+ (1− λ)
v(s)

q(z)− q(z)v(s) + v(s)

≤ λ+ (1− λ)
v(s)

q(z)− q(z)v + v(s)

≤ λ+ (1− λ)
v

q(z)− q(z)v + v

≤ λ+ (1− λ)
v

q − qv + v
= θ;
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where the first inequality follows from v(s) ≤ v for any s ∈ S; the second from v < 1

and v(s) ≤ v for any s ∈ S; the third from v < 1 and q(z) ≥ q for any s ∈ S; and the

last equality from the definition of θ.

Similarly, one can show that θ′(s) ≥ θ.

To determine a solution to the functional equation 2, let us make the following

assumption constraining the minimum value q of the process for q(z) relative to the

level of markets segmentation:

Assumption 4.1 v ≤ λ.

The assumption constrains the ratio of the value of the bond supply to the sum of

the value of the bond supply and the money supply to be less than the traders’ share

of the aggregate endowment.

Let us define the operator T as follows:

(Tv)(s) ≡
θR(s)

1 +R(s)
, (3)

where R(s) is the right hand side of the functional equation 2. The following theo-

rem 4.2 proves that, under assumption 4.1, T :M→M. Since a fixed point of T is

a solution to the functional equation 2, we will need to look for a fixed point of T .

Theorem 4.2 Under assumption 4.1, the operator T defined in 3 satisfies T :M→

M.

Proof. For any v ∈ M and any s ∈ S, the right hand side of the functional
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equation 2 is

R(s) ≡
∫

Z

β

1− λ

θ′(s)− λ

θ′(s)− v(z′, θ′(s))
P (z, dz′)

≤
β

1− λ

θ′(s)− λ

θ′(s)− v

≤
β

1− λ

θ − λ

θ − v

=
βv

q − qv + v

1

θ − v

=
v

θ − v
≡ R;

where the first inequality follows from v(s) ≤ v for any s ∈ S; the second from

assumption 4.1 and theorem 4.1; the next equality from the definition of θ; and the

following from the definition of v. Hence,

(Tv)(s) =
θR(s)

1 +R(s)
≤

θR

1 +R
=

θv

θ − v

θ − v

θ
= v;

where the first equality follows from the definition of T ; the inequality from θ ≤ θ < 1

for any θ ∈ Θ, and from the inequality previously derived; and the next equality from

the definition of R.

Similarly, one can show that

R(s) ≥
v

θ − v
≡ R,

and that

(Tv)(s) =
θR(s)

1 +R(s)
≥ v.

The measurability of Tv follows from the fact that P (z, A) is a measurable function

of z for all A ∈ B(Z).
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It is convenient to restrict our search for a fixed point of T to the subset D ⊂M of

the functions v(s) such that v(z, θ)/θ is weakly increasing in θ: as the traders’ share

of cash balances increases, their nominal investment in bonds increases relative to

their consumption expenditure. Notice that, if v ∈ D, v(z, θ) is strictly increasing in

θ: as the traders’ share of cash balances increases, their nominal investment in bonds

increases in absolute value. Then, the following theorem 4.3 proves that θ′(z, θ) is

strictly increasing in θ, theorem 4.4 proves that T : D → D, and theorem 4.5 proves

that T is monotone.

Theorem 4.3 For any v ∈ D, the function θ′(z, θ) defined in 1 is strictly increasing

in θ.

Proof. For any v ∈ D, any z ∈ Z and any θ1, θ2 ∈ Θ, θ1 < θ2,

θ′(z, θ1) = λ+ (1− λ)
v(z, θ1)

q(z)− q(z)v(z, θ1) + v(z, θ1)

< λ+ (1− λ)
v(z, θ1)

q(z)− q(z)v(z, θ2) + v(z, θ1)

< λ+ (1− λ)
v(z, θ2)

q(z)− q(z)v(z, θ2) + v(z, θ2)
= θ′(z, θ2);

where the first inequality follows from the fact that v(z, θ) is strictly increasing in θ;

and the second from v(s) ≤ v < 1 for any s ∈ S, and the fact that v(z, θ) is strictly

increasing in θ.

Theorem 4.4 Under assumption 4.1, the operator T defined in 3 satisfies T : D →

D.
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Proof. In light of theorem 4.2, I only need to show that (Tv)(z, θ)/θ is weakly

increasing in θ. Indeed, I will show that the monotonicity is strict. For any v ∈ D,

any z ∈ Z and any θ1, θ2 ∈ Θ, θ1 < θ2, the right hand side of the functional equation 2

is

R(z, θ1) ≡
∫

Z

β

(1− λ)

θ′(z, θ1)− λ

θ′(z, θ1)− v(z′, θ′(z, θ1))
P (z, dz′)

<
∫

Z

β

(1− λ)

θ′(z, θ1)− λ

θ′(z, θ1)− v(z′, θ′(z, θ2))
P (z, dz′)

≤
β

(1− λ)

∫

Z

θ′(z, θ2)− λ

θ′(z, θ2)− v(z′, θ′(z, θ2))
P (z, dz′) = R(z, θ2);

where the strict inequality follows from the fact that v(z, θ) is strictly increasing in

θ and from theorem 4.3; and the weak inequality from v(s) ≤ v for any s ∈ S, from

assumption 4.1, and from theorem 4.3. It follows that

(Tv)(z, θ1)

θ1
=

R(z, θ1)

1 +R(z, θ1)
<

R(z, θ2)

1 +R(z, θ2)
=

(Tv)(z, θ2)

θ2
,

which concludes the proof that (Tv)(z, θ)/θ is strictly increasing in θ.

Theorem 4.5 Under assumption 4.1, the operator T : D → D defined in 3 is mono-

tone.

Proof. Consider any v1, v2 ∈ D such that v1(s) ≤ v2(s) for any s ∈ S. Let us

define θ′1(s) and θ′2(s) the function θ′(s) respectively when v = v1 and v = v2. Then,

the following steps show that θ′1(s) ≤ θ′2(s) for any s ∈ S:

θ′1(s) = λ+ (1− λ)
v1(s)

q(z)− q(z)v1(s) + v1(s)

≤ λ+ (1− λ)
v1(s)

q(z)− q(z)v2(s) + v1(s)
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≤ λ+ (1− λ)
v2(s)

q(z)− q(z)v2(s) + v2(s)
= θ′2(s);

where the first inequality follows from v1(s) ≤ v2(s) for any s ∈ S; and the second

from v2(s) ≤ v < 1 for any s ∈ S, and v1(s) ≤ v2(s) for any s ∈ S.

Let us define R1(s) and R2(s) the right hand side of the functional equation 2

respectively when v = v1 and v = v2. Then, the following steps show that R1(s) ≤

R2(s) for any s ∈ S:

R1(s) =
∫

Z

β

1− λ

θ′1(s)− λ

θ′1(s)− v1(z′, θ′1(s))
P (z, dz′)

≤
∫

Z

β

1− λ

θ′1(s)− λ

θ′1(s)− v1(z′, θ′2(s))
P (z, dz′)

≤
∫

Z

β

1− λ

θ′1(s)− λ

θ′1(s)− v2(z′, θ′2(s))
P (z, dz′)

≤
∫

Z

β

1− λ

θ′2(s)− λ

θ′2(s)− v2(z′, θ′2(s))
P (z, dz′) = R2(s);

where the first inequality follows from θ′1(s) ≤ θ′2(s) for any s ∈ S, and from the

fact that v2(z, θ) is strictly increasing in θ; the second from v1(s) ≤ v2(s) for any

s ∈ S; and the third from v2(s) ≤ v for any s ∈ S, from assumption 4.1, and from

θ′1(s) ≤ θ′2(s) for any s ∈ S.

It follows that, for any s ∈ S,

(Tv1)(s) =
θR1(s)

1 +R1(s)
≤

θR2(s)

1 +R2(s)
= (Tv2)(s),

which concludes the proof that T is monotone.

Now, let us construct a sequence of functions in D as follows:

v0 ≡ v, and vn ≡ T nv0, all n ≥ 1. (4)
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Notice that T : D → D implies that, if vn ∈ D, then vn+1 = Tvn ∈ D, all n ≥ 0.

Since v0 ∈ D, by induction, vn ∈ D, all n ≥ 0.

Then, notice that v0 ≡ v and v1 ∈ D imply v0 ≤ v1. Also, the monotonicity of

T implies that, if vn ≤ vn+1, then vn+1 = Tvn ≤ Tvn+1 = vn+2, all n ≥ 0. Hence,

by induction, the sequence {vn}∞n=0 is weakly increasing. Since vn ≤ v, all n ≥ 0,

the sequence {vn}∞n=0 converges pointwise to a function, call it v
∞. Since vn ∈ D, all

n ≥ 0, and since v∞ is the pointwise limit of the sequence {vn}∞n=0, v
∞ also belongs

to D.

To compute a numerical approximation to v∞, Occhino (2000) discretizes the state

space S with a grid of a finite number of states, applies the operator T to the constant

function v, and iterates until convergence is reached. Although v∞ is not necessarily a

fixed point of T , its numerical approximation turns out to be a fixed point of T and,

therefore, a solution to the functional equation 2. Moreover, the same fixed point

is obtained applying the operator T to the constant function v and iterating until

convergence is reached. Hence, abstracting from the fact that we are dealing with a

numerical approximation of v∞ and not with v∞ itself, v∞ is the only fixed point in

D. The argument is the same as in the proof of the Corollary of Theorem 17.7 of

Stokey and Lucas with Prescott (1989). Suppose that v ∈ D is a fixed point of T .

Notice that v0 ≡ v and v ∈ D imply v0 ≤ v. Also, the monotonicity of T implies

that, if vn ≤ v, then vn+1 = Tvn ≤ Tv = v, all n ≥ 0. Hence, by induction, vn ≤ v,

all n ≥ 0. Since v∞ is the pointwise limit of the sequence {vn}∞n=0, v
∞ ≤ v. A similar
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argument starting with v0 ≡ v leads to v∞ ≥ v. Hence, if v ∈ D is a fixed point of

T , then v = v∞.

An existence result is proven under the following additional assumption constrain-

ing the variability of the process for q(z):

Assumption 4.2 v/v ≤ β/q.

Under this additional assumption, the following theorem 4.7 proves that T : Dθ → Dθ,

where Dθ is the subset of D of the functions v such that θ−v(z, θ) is weakly increasing

in θ: as the traders’ share of cash balances increases, their consumption expenditure

increases. Notice that any function v(z, θ) belonging to Dθ has bounded slope (and

is, therefore, continuous) with respect to its second argument θ. As a corollary, the

pointwise limit v∞ of the sequence {vn}∞n=0 defined in 4 exists and belongs to Dθ.

The next theorem 4.8 proves that v∞ solves the functional equation 2.

Theorem 4.6 For any v ∈ Dθ, any z ∈ Z, and any θ1, θ2 ∈ Θ, θ1 < θ2, the law of

motion θ′(z, θ) defined in 1 satisfies

θ′(z, θ2)− θ′(z, θ1) ≤
θ′(z, θ1)− λ

v(z, θ1)

q

β
[θ2 − θ1].

Proof. Consider any v ∈ Dθ, any z ∈ Z, and any θ1, θ2 ∈ Θ, θ1 < θ2. Then,

θ′(z, θ2)− θ′(z, θ1)

= (1− λ)

[

v(z, θ2)

q(z)− q(z)v(z, θ2) + v(z, θ2)
−

v(z, θ1)

q(z)− q(z)v(z, θ1) + v(z, θ1)

]

= (1− λ)

[

q(z)[v(z, θ2)− v(z, θ1)]

[q(z)− q(z)v(z, θ2) + v(z, θ2)][q(z)− q(z)v(z, θ1) + v(z, θ1)]

]
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=
θ′(z, θ1)− λ

v(z, θ1)

q(z)[v(z, θ2)− v(z, θ1)]

q(z)− q(z)v(z, θ2) + v(z, θ2)

≤
θ′(z, θ1)− λ

v(z, θ1)

q(z)[θ2 − θ1]

q(z)− q(z)v(z, θ2) + v(z, θ2)

≤
θ′(z, θ1)− λ

v(z, θ1)

q(z)

q(z)− q(z)v + v
[θ2 − θ1]

≤
θ′(z, θ1)− λ

v(z, θ1)

q

q − qv + v
[θ2 − θ1]

=
θ′(z, θ1)− λ

v(z, θ1)

q

β
[θ2 − θ1];

where the first inequality follows from the fact that θ− v(z, θ) is weakly increasing in

θ; the second from q(z) < 1 for any z ∈ Z and from v(s) ≥ v for any s ∈ S; the third

from q(z) ≤ q for any z ∈ Z; and the following equality from the definition of v.

Theorem 4.7 Under assumptions 4.1 and 4.2, the operator T defined in 3 satisfies

T : Dθ → Dθ.

Proof. In light of the previous theorems, I only need to show that, if v ∈ Dθ,

then θ − (Tv)(z, θ) is weakly increasing in θ. Consider any v ∈ Dθ, any z ∈ Z, and

any θ1, θ2 ∈ Θ, θ1 < θ2. Then, the difference of the right hand side of the functional

equation 2 evaluated respectively in θ = θ2 and θ = θ1 is

R(z, θ2)−R(z, θ1)

≡
∫

Z

β

1− λ

θ′(z, θ2)− λ

θ′(z, θ2)− v(z′, θ′(z, θ2))
P (z, dz′)

−
∫

Z

β

1− λ

θ′(z, θ1)− λ

θ′(z, θ1)− v(z′, θ′(z, θ1))
P (z, dz′)

≤
∫

Z

β

1− λ

θ′(z, θ2)− λ

θ′(z, θ1)− v(z′, θ′(z, θ1))
P (z, dz′)
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−
∫

Z

β

1− λ

θ′(z, θ1)− λ

θ′(z, θ1)− v(z′, θ′(z, θ1))
P (z, dz′)

=
∫

Z

β

1− λ

θ′(z, θ2)− θ′(z, θ1)

θ′(z, θ1)− v(z′, θ′(z, θ1))
P (z, dz′)

≤
∫

Z

β

1− λ

θ′(z, θ1)− λ

θ′(z, θ1)− v(z′, θ′(z, θ1))
P (z, dz′)

1

v(z, θ1)

q

β
[θ2 − θ1]

= R(z, θ1)
1

v(z, θ1)

q

β
[θ2 − θ1];

where the first inequality follows from theorem 4.3 and the fact that θ − v(z, θ) is

weakly increasing in θ; the second inequality from theorem 4.6; and the last equality

from the definition of R(s).

Now, the following steps show that, as θ increases, the percentage increase in the

function 1 +R(z, θ) is less or equal than the percentage increase in θ itself:

(1 +R(z, θ2))− (1 +R(z, θ1))

1 +R(z, θ1)

≤
1

1 +R(z, θ1)
R(z, θ1)

1

v(z, θ1)

q

β
[θ2 − θ1];

=
θ1R(z, θ1)

1 +R(z, θ1)

1

v(z, θ1)

q

β

θ2 − θ1

θ1

= (Tv)(z, θ1)
1

v(z, θ1)

q

β

θ2 − θ1

θ1

≤
v

v

q

β

θ2 − θ1

θ1

≤
θ2 − θ1

θ1
;

where the first inequality follows from the inequality previously obtained; the second

equality from the definition of T ; the following inequality from v(s) ≥ v for all s ∈ S

and theorem 4.2; and the last inequality from assumption 4.2.
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The previous inequality implies that

1 +R(z, θ2)

1 +R(z, θ1)
≤

θ2

θ1
,

θ1

1 +R(z, θ1)
≤

θ2

1 +R(z, θ2)
,

so θ/(1 +R(z, θ)) is weakly increasing in θ. Since the definition of T implies that

θ − (Tv)(s) = θ −
θR(s)

1 +R(s)
=

θ

1 +R(s)
,

it follows that θ − (Tv)(z, θ) is also weakly increasing in θ.

Theorem 4.8 Under assumptions 4.1 and 4.2, the pointwise limit v∞ ∈ Dθ of the

sequence {vn}∞n=0 defined in 4 solves the functional equation 2.

Proof. Let us define θ′n(s) and θ′∞(s) the function θ′(s) respectively when v = vn

and v = v∞. Since the sequence {vn} converges pointwise to v∞, the sequence {θ′n}

converges pointwise to θ′∞.

Now, for any s ∈ S, any z′ ∈ Z, and any n ≥ 0,

|v∞(z′, θ′∞(s))− vn(z′, θ′n(s))|

≤ |v∞(z′, θ′∞(s))− vn(z′, θ′∞(s))|+ |vn(z′, θ′∞(s))− vn(z′, θ′n(s))|

≤ |v∞(z′, θ′∞(s))− vn(z′, θ′∞(s))|+ |θ′∞(s)− θ′n(s)|,

where the last inequality follows from the facts that vn(z, θ) is strictly increasing in θ,

and θ−vn(z, θ) is weakly increasing in θ, so the absolute value of the slope of vn(z, θ)

with respect to θ is less than one. As n → ∞, the first absolute value converges
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to zero since the sequence {vn} converges pointwise to v∞, and the second absolute

value converges to zero since the sequence {θ′n} converges pointwise to θ′∞. Notice,

here, that we need to exploit the fact that the slopes of the functions belonging to

Dθ with respect to their second argument are uniformly bounded.

Let us define fn(s, z′), f∞(s, z′) and f(s, z′) the argument of the integral on the

right hand side of the functional equation 2 respectively when v = vn, v = v∞

and when v is constant and equal to v. From the results obtained so far, it follows

that the sequence {fn}∞n=0 converges pointwise to f∞. Also, fn ≤ f , all n ≥ 0,

fn are integrable, all n ≥ 0, and f is also integrable. By the Lebesgue Dominated

Convergence Theorem, f∞ is integrable, and its integral is equal to the limit of the

integrals of fn.

Let us define Rn(s) and R∞(s) the right hand side of the functional equation 2

respectively when v = vn and v = v∞. From the results obtained so far, it follows

that the sequence {Rn}∞n=0 converges pointwise to R∞. Hence, for any s ∈ S,

v∞(s) = lim
n→∞

vn+1(s) = lim
n→∞

(Tvn)(s)

= lim
n→∞

θRn(s)

1 +Rn(s)
=

θR∞(s)

1 +R∞(s)
= (Tv∞)(s),

that is v∞ solves the functional equation 2. Notice, here, that the fourth equality

follows from the results previously obtained, and not from the continuity of T . The

reason is that T is uniformly continuous in the sup norm, while the sequence {vn}

converges to v∞ only pointwise.
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