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MULTIDIMENSIONAL INCOME TAXATION AND
ELECTORAL COMPETITION: AN EQUILIBRIUM

ANALYSIS∗

Oriol Carbonell-Nicolau† Efe A. Ok‡

April 2004

Abstract

One of the fundamental problems of the positive theory of income
taxation is explaining why the statutory income tax schedules in all
industrialized democracies are marginal-rate progressive. While it is
commonly believed that this is but a simple consequence of the fact
that the number of relatively poor voters exceeds that of richer vot-
ers in such societies, putting this contention in a voting equilibrium
context proves to be a nontrivial task. We study the Downsian model
in the context of nonlinear taxation and inquire about the possibility
of providing a formal argument in support of the aforementioned in-
tuition. We first show existence of mixed strategy equilibria and then
ask qualitative questions about the nature of these equilibria. Our
positive results show that there are cases where marginal-rate pro-
gressive taxes are chosen with probability one by the political parties.
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Our negative results show that, if the tax policy space is not artifi-
cially constrained, equilibria exist whose support does not lie within
the set of all marginal-rate progressive taxes.

Keywords: marginal-rate progressive taxation, electoral competition,
mixed strategy equilibrium.

JEL classification: D72

1 Introduction

One of the well-documented empirical regularities concerning income taxa-
tion is that all industrialized democracies (all OECD countries, in particular)
implement statutory income tax schedules the marginal tax rates (slopes) of
which are increasing in income.1 Given that his/her views about the income
tax policy is one of the most important traits of a political candidate, it
is natural to expect that this stylized fact reflects (however indirectly) the
preferences of the majority of the constituents of these societies. In fact,
this way of thinking seems to suggest a straightforward explanation of the
empirically observed popularity of marginal-rate progressivity, provided that
one subscribes to the one-man one-vote rule. Since the income distributions
of these countries are globally right-skewed (in the sense that the median in-
come is strictly smaller than the mean income for any right truncation of the
income distribution), the number of the poorer voters always exceeds that
of the richer voters, regardless of how one defines the cutoff that separates
the poor from the rich. Since poorer voters are typically the supporters of
progressive policies, so the argument goes, there would then be a natural
tendency for the marginal-rate progressive tax policies to be favored by the
majority. Even though the actual political processes are far more complex
than the scenario in which people vote directly over policies, this argument
appears to suggest a convincing reason for why progressive tax policies are
so widely adopted.

Put succinctly, the objective of the present paper is to understand what
makes and breaks this heuristic argument. Recently there appeared sev-

1Such tax functions are called marginal-rate progressive in public finance; they are
simply those tax functions that are convex. Concave tax schedules are called marginal-
rate regressive.
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eral papers in the related literature, which suggested certain formalizations.2

However, somewhat surprisingly, a canonical representative democracy vot-
ing model that is suitable for an immediate examination of the said argument
is not yet available. In this paper, we will try to remedy this situation by
focusing on a simple (but general) model that is appropriate for this purpose.
Our model consists of a two-party voting game in which each party (whose
objective is to win the elections) proposes tax functions from a given set A
of feasible tax functions (that raise the same revenue), and voters vote self-
ishly for the tax function that taxes them less (Section 3). Assuming that
the income distribution is right-skewed, we shall ask if there is any reason to
suspect that only the marginal-rate progressive tax policies will be proposed
in the equilibrium of this game. Such a setup seems abundantly natural for
the task at hand.

It is of course not sensible to view this simple model as novel; some of
the existing literature can be thought of as studying precisely this sort of
a game. But this literature functions by considering very restrictive choices
of policy spaces A (to the extent of confining attention to only linear and
quadratic tax functions). This is because, for large A, the voting game
becomes one of very large (possibly infinite) dimension, and it is long known
that such games lack pure strategy equilibria; our setup is no exception
(Subsection 4.1). In fact, this is perhaps a very good argument against the
heuristic claim about the popular support of marginal-rate progressivity; due
to voting cycles, one may not really be sure to which direction the majority
demand may shift. However, this counter argument is not readily convincing,
precisely because it ignores the possibility of mixed strategy equilibria. It is
indeed surprising that the common game theoretical methodology of looking
for mixed strategy equilibria in games that lack pure strategy equilibria seems
not at all considered for the type of voting games we consider here.3

2See Cukierman and Meltzer (1991), Gouveia and Oliver (1996), Marhuenda and
Ortuño-Ort́ın (1995, 1998), Roemer (1999), and Carbonell-Nicolau and Klor (2003).

3While one may find mixed strategies as conceptually more problematic than pure
strategies, there is no reason for them to be particularly inappropriate in the present
context. All the standard interpretations (limits of pure strategy equilibria of sequences
of slightly perturbed games, direct randomization, stability in beliefs, or summary of
average behavior) apply to the present setup without modification. In fact, mixed strategy
equilibria of voting games of redistribution are commonly studied in the literature, cf.
Myerson (1993), Lizzeri and Persico (2000, 2001), Laslier and Picard (2002), and Banks
et al. (2002). Finally, we note that Laslier (2000) provides an interpretation of electoral
mixed strategies.
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The contribution of this paper is then two-fold. First, we study here
the problem of existence of equilibrium in mixed strategies. This is not a
trivial matter, for the payoffs of the game feature marked discontinuities,
and hence the standard argument based on the Glicksberg existence theorem
does not apply to this setting. Nevertheless, we show here that the recent
existence results of Reny (1999) can be utilized to establish (in Subsection
4.2) the existence of mixed strategy equilibria. This shows that the heuris-
tic claim about the majority support for marginal-rate progressive taxation
cannot be dismissed simply by saying that the associated voting game lacks
an equilibrium.

Second, we ask what a mixed strategy equilibrium would look like in this
setup. Again as one may expect, the answer depends on which tax poli-
cies are feasible and which are not. If we wish to run, for example, the
marginal-rate progressive policies against the marginal-rate regressive ones,
then it is true that the policy that will be implemented in equilibrium will be
marginal-rate progressive with probability one (Subsection 5.1). This is an in-
teresting and not entirely obvious observation, and it amounts to embedding
the results of Marhuenda and Ortuño-Ort́ın (1995, 1998) into an equilibrium
context. Unfortunately, allowing for tax functions that are neither convex
nor concave changes the picture completely. In this case marginal-rate pro-
gressivity loses its privileged position. As we shall demonstrate by means of
a simple example, the probability of observing a marginal-rate regressive tax
in equilibrium may exceed that of observing a marginal-rate progressive tax
(Subsection 5.2). We find this observation quite puzzling. Nevertheless, our
example is only suggestive. A complete analysis requires studying the struc-
ture of the supports of the mixed strategy equilibria in general. We show that
the ad hoc constraints on the tax policy space introduced in Section 5 (and
in virtually all the related literature) are essential. In particular, for a fairly
general set of pre-tax income distributions, the supports of the mixed strat-
egy equilibria need not lie within the set of all marginal-rate progressive tax
policies (Subsection 5.2). Our results indicate that one should look some-
where else for the “explanation” of the commonly observed marginal-rate
progressive policies; on a closer inspection, there is a fundamental difficulty
in providing formal support of the claim that “there is a natural tendency for
the tax policies to be progressive in societies with right-skewed income dis-
tributions.” At the very least, this argument, which we formalize below for a
suitable restriction of the tax policies that can be proposed in the elections,
needs to be supplemented with another approach that explains the otherwise
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artificial constraints on the policy space.

2 Admissible Tax Schedules

The income taxation framework we adopt here is largely standard. We con-
sider an endowment economy with continuum many individuals. Let F be
the set of all distribution functions F : R → [0, 1] that are continuous and
strictly increasing on [0, 1] and satisfy F (0) = 0 and F (1) = 1. The incomes
of the constituents of the population are distributed on [0, 1] according to an
element of F . While each F ∈ F is completely arbitrary, as is standard (and
duly realistic), we shall sometimes assume that it is right-skewed, or more
generally, that the median income is strictly less than the average income
according to F :

mF := F−1
(

1

2

)
<
∫ 1

0
xdF (x) =: µF .

This weak assumption is but a straightforward formalization of the heuristic
statement that “the number of the poor people in the society is strictly less
than that of the rich people.”

A map t : [0, 1] → [0, 1] is said to be a tax function if it is continuous
and satisfies the following two properties:

• 0 ≤ t(x) ≤ x for all x,

• x 7→ t(x) and x 7→ x− t(x) are increasing maps on [0, 1].

The first property is a feasibility condition that disallows the presence of
negative taxation. The first part of the second requirement is an unexcep-
tionable fairness condition, while the second part guarantees (as all real-world
tax policies do) that the before-tax and after-tax income rankings of taxpay-
ers are identical.

In what follows, we will be interested in the aggregation of individual
preferences about “how” the tax should be collected assuming that the ques-
tion of “how much” should be collected is somehow answered outside the
present model. (So, even though we do not allow for negative taxation, our
model is, in effect, one of pure redistribution.) Specifically, we shall assume
here that, given F , tax policies are designed to collect at least an exogenously
given amount of revenue RF ∈ (0, µF ). Thus we impose the following revenue
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requirement for any tax function under consideration:∫ 1

0
tdF ≥ RF .

Any tax function that satisfies this property will be referred to as an admis-
sible tax function . We shall denote the set of all admissible tax functions
relative to F by T (F ). It is obvious that this set depends on both the income
distribution F and the target tax revenue RF . However, since we will keep
each RF as (arbitrarily) fixed throughout the sequel, adopting a notation
that does not make the dependence between T (F ) and RF explicit will not
cause any confusion.

It is important to note that T (F ) includes essentially all nonlinear tax
functions, and this class is simply too large to yield sharp insights relative to
the majority support for alternative tax policies. Indeed, the literature on
voting over income taxes is for the most part couched in terms of much smaller
subclasses of T (F ). For instance, to be able to make use of the median voter
theorem, the seminal papers of Romer (1975), Roberts (1977), and Meltzer
and Richards (1981), along with a large fraction of the recent literature on
the relation between income inequality and growth (see Bénabou (1996) for
a survey), consider only linear tax schemes.4 Since the linearity assumption
is obviously overly restrictive, many authors have tried to study the basic
voting problem in terms of larger classes of tax functions. For instance,
Gouveia and Oliver (1995) examine the issue for two-bracket piecewise linear
tax functions, and Cukierman and Meltzer (1991) and Roemer (1999) study
the quadratic tax functions. More generally, the work of Marhuenda and
Ortuño-Ort́ın (1995, 1998) allows for the class of all concave (marginal-rate
regressive) or convex (marginal-rate progressive) tax functions.5

Following the work of Marhuenda and Ortuño-Ort́ın, we shall also conduct
a part of our analysis by using this latter class. So let Tconv(F ) and Nconv(F )
stand for the set of all convex and nonlinear convex tax functions in T (F )
respectively, and denote the set of all concave tax functions in T (F ) as
Tconc(F ). The set of all marginal-rate progressive and regressive taxes is in
turn denoted as C(F ), that is,

4Some of these papers allow for negative taxation, so strictly speaking, do not fit in
the basic model of this paper. However, this is a minor point; the present model can be
adjusted easily to incorporate negative taxation.

5There are recent papers that provide exceptions. For instance, Carbonell-Nicolau and
Klor (2003) consider a representative democracy model that allows for the class of all
piecewise linear tax functions.
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C(F ) := Tconc(F ) ∪ Tconv(F ).

The set C(F ) is indeed an interesting subclass of T (F ), which has the ad-
vantage of containing all the other sets of tax functions mentioned in the
previous paragraph. Moreover, as shown by Marhuenda and Ortuño-Ort́ın
(1995, 1998), within this class, the problem of demonstrating the popular
support for marginal-rate progressive tax schedules becomes tractable. In
fact, one of the main results of this paper will provide such a demonstration
within a voting equilibrium analysis.

3 The Voting Game

This section introduces the basic voting game that we shall investigate in
what follows. This game can be viewed as the simplest possible model of
political competition that takes place in terms of income tax policies. It thus
provides a natural framework for examining the validity of the statement “if
the majority of a society is relatively poor, then there would be a majority
support for progressive policies.”

Take any nonempty subset A of T (F ), and consider two political parties
who are engaged in competition to hold office. Each party advocates an
income tax policy in A which is to be put in effect in case this party obtains
the support of the majority. Citizens evaluate proposals selfishly, that is, an
individual with income x regards the tax function t as more desirable than
the tax function τ if t(x) < τ(x). If party 1 proposes tax policy t and party
2 proposes tax policy τ , the share of individuals that strictly prefer t over τ
is determined as

w(t, τ) := pF

{
x ∈ [0, 1] : t(x) < τ(x)

}
≡
∫
{t<τ}

dF,

where pF is the Lebesgue-Stieltjes probability measure induced by F on [0, 1].
Of course, in this case the share of individuals who strictly prefer party 2’s
victory is w(τ, t). Parties are not ideological, we posit that their objective
is to maximize the net plurality defined as the difference between the vote
shares obtained by the candidates.6 We next provide a formal description of
the electoral game.

6We assume that indifferent voters toss a fair coin to determine their vote or abstain.
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Viewing A ⊆ T (F ) as a metric subspace of C[0, 1], we formalize the sce-
nario described above by means of a two-person zero-sum symmetric strategic
game

G(A) := (A, (u1, u2)),

where A corresponds to the action space of either party, that is, the feasible
tax policy space, and (u1, u2) : A2 → R2 models the payoff functions of the
players. In this paper, we will model the parties as maximizers of their net
plurality, that is, we suppose that

ui(t, τ) :=

{
w(t, τ)− w(τ, t) if i = 1,
w(τ, t)− w(t, τ) if i = 2.

(1)

This formulation is also used, for instance, by Kramer (1978) and Laslier and
Picard (2002). Alternatively, one can model the parties as maximizing their
vote shares with the proviso that indifferent individuals vote by tossing a fair
coin. In this case, we would have

u1(t, τ) := w(t, τ) +
1

2
pF{t = τ} and u2 = 1− u1. (2)

We will adopt the formulation given in (1) throughout this paper, yet our
entire development would remain unaltered (almost verbatim) if we used
instead the formulation in (2).7

It is important to note that G(A) depends on the action space A ⊆ T (F )
of the players. We do not make explicit the dependence of each ui on A,
hoping the domain of reference will be clear from the context. The choice of
A is crucial, for any particular choice (other than T (F )) would really amount
to limiting the possibilities for the tax designers in an ad hoc manner. The
best case scenario is of course to take A = T (F ). We shall demonstrate
shortly that it is possible to get results for various interesting choices for A
(including T (F )) and hence subgames of G(T (F )).8

7The reader may wonder about the possibility that candidates maximize their respective
probabilities of winning rather than vote shares. This would be equivalent to maximizing a
function which takes on value 1 for positive net pluralities and 0 otherwise. This objective
can be uniformly approximated by a continuous, strictly increasing, and symmetric around
zero transformation g(w(t, τ)−w(τ, t)) of the net plurality w(t, τ)−w(τ, t). The treatment
of the present work is easily adapted to accommodate g.

8By a subgame of a game in strategic form, we understand a game in which the action
spaces of the individuals are subsets of their corresponding action spaces in the mother
game, and in which the payoff functions are obtained by restricting the original payoff
functions to the resulting outcome space.
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4 Existence of Equilibrium for G(A)

A fundamental difficulty about general voting problems is that they often fail
to possess an equilibrium. It is presumably for this reason that the games
of the form G(A) have not been studied thoroughly in the related literature.
In this section we show that while existence of pure strategy equilibrium
is indeed a problem that should be taken seriously, switching attention to
mixed strategies provides a way out of this problem.

4.1 Negative Results: Pure Strategy Equilibrium

While there is reason to view G(T (F )) as a voting game of fundamental
importance for the positive theory of income taxation, things get icy when
one looks for its Nash equilibria in pure strategies. Indeed, the (potential)
multi-dimensionality of the action spaces of the parties makes it impossible
to utilize single dimensional voting equilibrium theorems like the median
voter theorem. While this is no guarantee that G(T (F )) does not possess
equilibria, this is unfortunately the case. The existence of Condorcet-type
cycles leads to the non-existence of a pure strategy Nash equilibrium for this
game.

Proposition 4.1. G(T (F )) does not have a pure strategy Nash equilibrium.

While its formal proof is somewhat tedious, this result is clearly a folk
theorem the intuition of which is quite simple. Given any admissible tax
function t with t(0+) > 0 (the no tax exemption case), one can always find
another tax function τ which is below t over an interval of pF -measure greater
than 1/2. A similar trick applies to those tax functions with exemption as
well, and hence the result. (We shall omit formalizing this elementary argu-
ment here for brevity.) As noted by Marhuenda and Ortuño-Ort́ın (1998),
the situation is analogous to the problem of dividing a cake of a fixed size
among three agents. The core of the induced (coalitional) game is empty,
since for any division of the cake, there is another division which is preferred
by exactly two of the individuals. This observation is the main culprit behind
Proposition 1.

Of course, one can escape this result by suitably restricting the involved
policy space. For instance, if A stands for the set of all two-bracket piecewise
linear admissible tax functions and F is globally right-skewed, then there is
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a unique Nash equilibrium of G(A), where the parties adopt the unique ad-
missible tax function that exempts everyone below the maximum possible
level of income (Gouveia and Oliver, 1996). However, the set of two-bracket
piecewise linear admissible tax functions is certainly unduly restrictive. For
instance, the result disappears if one allows for three-bracket taxes. Fur-
thermore, there is no pure strategy equilibrium for other natural choices for
A. For instance, the games G(C(F )) and G(Tconv(F )) do not possess a pure
strategy equilibrium (Klor, 2003).

Given the importance of the (large) subgames of G(T (F )) for the positive
theory of income taxation, however, we contend that Proposition 4.1 does not
provide enough reason to lose interest. A natural next question concerns the
existence of mixed strategy equilibria of G(T (F )) and its subgames. These
issues are discussed formally below.9

4.2 Positive Results: Mixed Strategy Equilibrium

Technically speaking, the difficulty with establishing the existence of equilib-
ria for G(T (F )) is the discontinuity of the objective functions ui. In principle,
these can be vast enough to yield even the non-measurability of the objective
function, which would in turn disallow one to talk about the mixed strategies
for this game in the standard way. Fortunately, however, this is not the case
here due to the following useful observation.

Lemma 4.2. The maps (t, τ) 7→ w(t, τ) and (t, τ) 7→ w(τ, t) are lower
semicontinuous on T (F )2.

Proof. Take any sequence (tn, τn) in T (F )2 such that tn → t and τn → τ .
By Fatou’s lemma,

lim inf w(tn, τn) = lim inf
∫ 1

0
1{tn<τn}dF ≥

∫ 1

0
lim inf 1{tn<τn}dF.

9There are other instances in the literature where a basic strategic model lacks an
equilibrium in pure strategies, and yet the mixed strategy extension of the model admits
and equilibrium, and reveals quite a bit about the structure of the game at hand. For
instance, it is well-known that the Bertrand duopoly model with constant marginal costs
and suitable capacity constraints does not have a pure strategy equilibrium—this is called
the Edgeworth paradox. Maskin (1986) and Osborne and Pitchik (1986), however, have
shown that this model possesses interesting mixed strategy equilibria. The definitive work
of Kreps and Sheinkman (1983) on this issue also requires the use of mixed strategies.
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But we have
lim inf 1{tn<τn} ≥ 1{lim tn<lim τn}.

For, if the left hand side takes value 0 at some y ∈ [0, 1], then tn(y) ≥ τn(y)
for infinitely many n, and this means that the right hand side cannot take
value 1 at y. Combining this observation with the previous inequality, we
get

lim inf w(tn, τn) ≥
∫ 1

0
1{lim tn<lim τn}dF = w(t, τ),

proving that w is lower semicontinuous on T (F ). The second claim is proved
similarly. ‖

Let A be a nonempty subset of T (F ). It follows from Lemma 4.2 that
the map w(t, τ) − w(τ, t) is Borel measurable. We may then conclude that
ui is a Borel measurable function for each i. This allows us to well-define the
mixed strategy extension of our voting game.

A mixed strategy for the game G(A) is defined as any Borel probability
measure on A. We extend the payoff functions of the players to the domain
of mixed strategy profiles in the usual way:

Ui(µ1, µ2) :=
∫
A2

uid(µ1 × µ2), µi ∈ P(A), i = 1, 2,

where P(A) represents the set of all Borel probability measures on A. Once
again, the dependence of each Ui on A is not made explicit, hoping the
domain of reference will be clear from the context. Each Ui : P(A)2 → R
is well-defined since any Borel measurable function on A2 is measurable in
the associated product measure space.10 As usual, by a mixed strategy
equilibrium of G(A) we mean a Nash equilibrium of the mixed extension
(P(A), (U1, U2)).

The problem that we now pose is the existence of mixed strategy equilibria
for some subgames of G(T (F )). There is one case in which we do not have to
work hard: the case of finite policy spaces. Indeed, Nash’s classic existence
theorem immediately yields the following observation.

Proposition 4.3. For any nonempty finite subset A of T (F ), G(A) has a
mixed strategy equilibrium.

10Given that T (F ) is a separable metric space (in fact a compact one, see Lemma 7.1),
the Borel σ-algebra of T (F )2 is identical to the product Borel σ-algebra on T (F )2.
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Since any choice of a finite subset of T (F ) may be regarded as arbitrary,
any characterization of the equilibria of finite versions of the electoral game
at hand will be unconvincing, unless, perhaps, one provides results that are
valid for any finite subset of the corresponding infinite strategy space. Rather
than dealing with finite action spaces, one may attempt a characterization of
the equilibria of G(T (F )) and other infinite-action subgames of it. To do so,
however, one needs to establish existence of equilibria for these games first.
This is not a trivial matter, for one is required to study infinite-action games
whose payoff functions are highly discontinuous.

To illustrate how badly behaved a game like G(T (F )) may be, consider
the tax functions τ , τ ′, and t depicted in Figure 1. Define the sequence (tn)

in T (F ) by tn :=
(
1− 1

n

)
τ + 1

n
τ ′ for each n. Observe that w(tn, t)−w(t, tn)

is positive and bounded away from zero for all n, yet we have ‖tn − τ‖∞ → 0
and w(τ, t) − w(t, τ) = −0.1. Thus, it is possible that every member of a
uniformly convergent sequence of tax policies yields a positive (and bounded
away from zero) net plurality against a feasible tax function, whereas the limit
of the sequence does a relatively bad job (in terms of net plurality) against
this tax function. This example explains why the expected payoff function Ui

is not lower semicontinuous, thereby demonstrating that the standard mixed
strategy equilibrium existence results (such as those of Glicksberg (1952) and
Tan, Jian, and Yuan (1995)) do not apply to the game G(T (F )) and other
subgames.

In this paper, we shall be interested in G(T (F )) and G(C(F )). It turns
out that both G(T (F )) and G(C(F )) can be shown to have mixed strategy
equilibria. This is, in fact, a main result of this paper.11

Theorem 4.4. The games G(T (F )) and G(C(F )) possess a mixed strategy
Nash equilibrium.

The proof of Theorem 4.4 is given in Section 7, and is based on an exis-
tence theorem proved recently by Reny (1999). We note, for the record, that

11The techniques used elsewhere to study mixed electoral equilibria are not useful to
establish existence of equilibrium in the present setting. On the one hand, Myerson (1993),
Lizzeri and Persico (2000, 2001), and Laslier and Picard (2002) resort to constructive
methods that do not apply to the games G(T (F )) and G(C(F )). On the other hand,
Kramer (1978) provides a mixed strategy equilibrium existence result for an electoral
game in which policies can be represented as points in Rn. Since T (F ) and C(F ) differ
from Rn, Kramer’s result does not apply to our framework.
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a similar proof could be furnished using instead the main existence theorem
of Baye, Tian, and Zhou (1993).12

In sum, we may conclude that the problem of existence of equilibrium can
be resolved in terms of mixed strategies. Thus, it is not a futile exercise to
ask qualitative questions about the nature of these equilibria, especially with
regards to the majority support of marginal-rate progressive tax schedules.
This issue will be addressed in the next section.

5 Popular Support for Progressive Taxation

Due to the well-known problem of pure strategy equilibrium existence, the
implications of a model like G(A) for the popular support of marginal pro-
gressivity are studied in the literature only for very restrictive classes of tax
policies. To break free from the straightjacket of this existence problem,
Marhuenda and Ortuño-Ort́ın (1995, 1998) have recently studied the ques-
tion through a pairwise majority voting model, and they proved the interest-
ing result that a nonlinear marginal-rate progressive tax scheme (a nonlinear
member of Tconv(F )) beats any marginal-rate regressive tax function (a mem-
ber of Tconc(F )) under pairwise majority voting. While promising, there are
two major problems with this formulation.

The first difficulty is that it is not clear how one may be able to put this
observation in an equilibrium context. Without doing this, the economic
interpretation of the result is clearly suspect. The second difficulty is that,
even if one may be able to give an equilibrium “outlook” to this result by
adopting a weaker solution concept (such as Condorcet stability), this result
alone is not informative about the majority support of a marginal-rate pro-
gressive tax against a “wiggling” tax function that lies in the exterior of C.
In the following subsection, we shall offer a solution to the first problem by
using the model we have developed so far. Subsequently, we shall examine
the second difficulty, and show that the basic message of Marhuenda and
Ortuño-Ort́ın (1995, 1998) should be taken with a grain of caution.

12It is worth noting that the existence theorem of Simon and Zame (1990) does not apply
to our framework (a proof of this assertion is available from the authors upon request).
This is of interest in that our game provides an example that violates Simon and Zame’s
conditions and, nonetheless, satisfies not only Reny’s better reply security but also payoff
security. By contrast, the auction setting of Jackson and Swinkels (2003) violates better
reply security (for standard tie-breaking rules) and satisfies the conditions of an extension
of the Simon-Zame theorem to Bayesian games.
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5.1 Positive Results: Majority Support for Progres-
sivity

Let us denote the set of all nonlinear convex tax schedules in T (F ) by
Nconv(F ). The Marhuenda–Ortuño-Ort́ın theorem states that w(t, τ) > 1/2
for all (t, τ) ∈ Nconv(F ) × Tconc(F ) with

∫ 1
0 tdF =

∫ 1
0 τdF .13 Some authors

have interpreted this result as “formalizing” the intuition that “in a soci-
ety in which the numbers of poorer people exceed those of the richer, there
would be a majority support for marginal-rate progressive taxation.” Indeed,
an obvious implication of this result is that, had G(C(F )) possessed a pure
strategy equilibrium, in this equilibrium both parties would have proposed
marginal-rate progressive tax schedules. Unfortunately, G(C(F )) does not
have a pure strategy equilibrium (Klor, 2003), and hence the said “formula-
tion” is incomplete.

However, we can complete the picture by switching attention to mixed
strategies. Indeed, as shown in the previous section, G(C(F )) possesses a
mixed strategy equilibrium. We may then ask if the Marhuenda–Ortuño-
Ort́ın result is powerful enough to predict that marginal-rate regressive taxes
would never be played with positive probability in an equilibrium of such
game (and subgames of G(C(F ))). The answer is yes.

We can actually prove a more general fact here.

Proposition 5.1. Suppose that mF < µF . Let A be any subset of T (F ) such
that Nconv(F ) ∩ A 6= Ø and RF∫ 1

0
tdF

t ∈ A whenever t ∈ A and
∫ 1
0 tdF > RF .

If, for all t ∈ Nconv(F )∩A and τ ∈ A\Nconv(F ), t− τ is a nonlinear convex
function, t(x) = τ(x) holds for at most one x ∈ (0, 1], and t < τ on some
open neighborhood of 0, then any mixed strategy Nash equilibrium (µ1, µ2) of
G(A) satisfies µ1(Nconv(F ) ∩ A) = µ2(Nconv(F ) ∩ A) = 1.

Since it is easy to check that C(F ) satisfies the conditions of this propo-
sition, we obtain the following corollary that gives a formal answer to the
question posed above.

Corollary 5.2. Suppose that mF < µF . Any mixed strategy Nash equilibrium
(µ1, µ2) of G(C(F )) satisfies µ1(Nconv(F )) = µ2(Nconv(F )) = 1.

There is reason to view this result as the equilibrium version of the popu-
lar support theorem of Marhuenda and Ortuño-Ort́ın. It says that the parties

13Lemma 7.5 provides a generalization of this result.
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may have to randomize over their choices (or, what is equivalent, they may
have multiple best responses to their equilibrium beliefs about the proposals
of their opponents), but when it comes to the observable outcomes, we are
bound to see that all proposed tax policies are marginal-rate progressive. Put
this way, this result sounds like the formalization of the claim that “there
is a natural tendency for the tax policies to be marginal-rate progressive in
societies with right-skewed income distributions.”

It may be useful to outline the simple intuition behind Corollary 5.2.
Assume that, at an equilibrium of the game G(C(F )), both players play
some concave taxes with positive probability. It is easily seen that the fact
that the players are best responding to each other’s strategy implies that
only tax functions that collect exactly RF are assigned positive probability
at the equilibrium. But then at least one of these players may improve
her payoff by imitating her opponent’s strategy restricted to the part of the
support in Nconv(F ) (if no tax function in Nconv(F ) lies in the support of the
opponent’s strategy, any pure strategy from Nconv(F ) improves the payoffs
of the player). By doing so, this player obtains, on the one hand, a positive
net plurality against those regressive tax policies that are assigned positive
probability by her opponent (this is guaranteed by the Marhuenda–Ortuño-
Ort́ın theorem). On the other hand, her strategy ties against all progressive
taxes that are played with positive probability by the other candidate. Thus,
the deviation from the original equilibrium yields a positive payoff. Since the
game is symmetric and zero-sum, no player can obtain a positive payoff at
an equilibrium, and so the deviation is profitable.

5.2 Negative Results: Majority Support for Nonpro-
gressivity

The obvious shortcoming of Corollary 5.2 is its ad hoc restriction of the
feasible tax policies to be either marginal-rate progressive or marginal-rate
regressive. It is difficult to think of a reason why a tax designer would not
consider those tax schedules that are neither convex nor concave.14 So, it
is natural to ask how these results would modify if we included some such

14In fact, after the 1986 Tax Reform Act, there was a period of three years when the
statutory federal income tax schedule in the US was neither convex nor concave due to
the non-monotonicity of the top three brackets (see Mitra and Ok, 1996). So, it is fair to
say that such tax policies are considered by politicians/tax designers, but only rarely they
see the daylight.
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“wiggling” tax functions within the action spaces of the parties. It turns out
that the basic theme of the previous subsection may be substantially altered
in this case. Not only may then marginal-rate progressive tax policies be
played with probability less than one, but it is also possible that the presence
of “wiggling” taxes may act as a balancing factor that allows the marginal-
rate regressive taxes to be chosen more frequently than the marginal-rate
progressive taxes. This surprising possibility is demonstrated next.15

Example 5.3. Suppose that the distribution of income is represented by an
F in F whose corresponding probability density function is

f(x) = 2− 2x, 0 ≤ x ≤ 1.

It is easy to verify that the median income is below the mean income here;
in fact, the associated income distribution is globally right-skewed. We shall
consider the following tax functions:

t1(x) =

{
x/4 if 0 ≤ x ≤ 1/4,
α(x− 1

4
) + 1

16
if 1/4 < x ≤ 1,

t2(x) =

{
(4x)β/8 if 0 ≤ x ≤ 1/4,
x/2 if 1/4 < x ≤ 1,

t3(x) =

{
x/2 if 0 ≤ x ≤ 1/4,
γ(x− 1

4
) + 1

8
if 1/4 < x ≤ 1,

where we set α = 391
540

, β = 4
√

6
3

+ 1, and γ = 103
270

. (As Figure 2 makes
it transparent, t2 can be taken to be a three-bracket piecewise linear tax
function; these tax functions are hardly contrived.)

It is easily seen that all of these taxes collect revenue RF = 0.15, and
we have t1 ∈ Nconv(F ), t2 ∈ T (F ) \ C(F ), and t3 ∈ Tconc(F ). Furthermore,
routine calculations show that

w(t1, t2) = 0.41, w(t2, t1) = 0.59,

w(t1, t3) = 0.67, w(t3, t1) = 0.33,

w(t2, t3) = 0.43, w(t3, t2) = 0.57

15The following example is based on a modification of an example kindly communicated
to us by Tapan Mitra.
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(see Figure 2). Now let A := {t1, t2, t3}. The game G(A) may then be
represented by the following payoff bimatrix:

t1 t2 t3
t1 0, 0 −0.18, 0.18 0.34,−0.34
t2 0.18,−0.18 0, 0 −0.14, 0.14
t3 −0.34, 0.34 0.14,−0.14 0, 0

While this game has no pure strategy equilibrium, it possesses a unique mixed
strategy equilibrium in which both candidates randomize over the three tax
policies according to the vector of probabilities (7/33, 17/33, 3/11). Observe
that, in equilibrium, the lowest probability is placed on the marginal-rate
progressive tax function. ‖

This example suggests that there is a major difficulty with viewing the
Marhuenda–Ortuño-Ort́ın theorem as providing a basis for a positive theory
of progressive taxation even in the case of endowment economies. True, this
theorem can be put in an equilibrium format (as we did in Proposition 5.1 and
in Corollary 5.2), but doing this and allowing for non-convex, non-concave
tax schedules to be feasible may lead to a scenario in which the superiority
of convex taxes over concave taxes vanishes.

Admittedly, Example 5.3 is only suggestive. A fuller analysis requires one
to study the structure of the supports of the mixed strategy equilibria of the
game G(T (F )).16 In particular, it is of interest to determine whether one
can replace C(F ) with T (F ) in Corollary 5.2. A negative result in this regard
would yield the surprising conclusion that the link between the proportion
of the poor voters in a society and the marginal-rate progressivity of tax
functions is far weaker than commonly presumed.

What the following proposition will show is that the ad hoc constraints
on the tax policy space introduced in this paper (and in virtually all the

16In related contexts, this sort of a question was studied by Dutta and Laslier (1999)
and Banks et al. (2002). These works, however, determine supersets of the supports of
the mixed strategy equilibria of certain voting games. For example, the main result of
Banks et al. (2002) entails in the present setup that the support of any mixed strategy
equilibrium of G(T (F )) is contained in the McKelvey uncovered set of T (F ) (McKelvey,
1986). Unfortunately, this result does not reveal much here, for the uncovered set of T (F )
equals T (F ). In this regard, the present query is rather different than that of Banks et
al. (2002). In contrast to these authors, here we prove the existence of mixed strategy
equilibria for G(T (F )) and G(C(F )) and are interested in what is contained within the
supports of these equilibria.
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related literature) are essential. In fact, for a fairly general set of pre-tax
income distributions, the supports of the mixed strategy equilibria of a slight
perturbation of the game G(T (F )) need not lie within the set of all marginal-
rate progressive tax policies whenever the parties are allowed to choose any
admissible tax function. To state this result formally, some preliminaries are
needed.

LetH be the set of all distribution functions H : R → [0, 1] with H(0) = 0
and H(1) = 1. By an open neighborhood of F ∈ F we mean an open subset
of H containing F . Given F ∈ F , we define xF as the point from (0, 1) such
that ∫ 1

xF

(x− xF )dF = RF ,

and, for a slightly perturbed version H of F ,

T (H) :=

{
t : t is a tax function and

∫ 1

0
tdH ≥ RH

}
,

where RH is fixed in
(
0,
∫ 1
0 xdH(x)

)
.

We may now define G(T (H)) as G(T (F )), with H replacing F .17 With
this terminology, our result can be stated as follows.

Theorem 5.4. Suppose that F ∈ F satisfies xF ≤ mF . Then any open
neighborhood of F contains H ∈ H such that there exists a Nash equilibrium
(µ1, µ2) of G(T (H)) with µi(Tconv(H)) < 1 for each i.

The condition on the pre-tax income distribution says that it is not pos-
sible to collect the target revenue by taxing at rate 0 below, at, and slightly
above the median. As the following example illustrates, there exist, among
those pre-tax income distributions for which Theorem 5.4 is valid, distribu-
tions that concentrate a relatively large share of the population around low
income levels. Intuition suggests that, for such distributions, an electoral
process in which candidates compete for votes and citizens cast their ballots
to minimize their tax burden guarantees the implementation of marginal-rate
progressive tax schemes. Theorem 5.4 demonstrates that this argument is
flawed.

17Since Lemma 4.2 may also be stated in terms of H, the mixed extension of G(T (H))
is well-defined.
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Example 5.4. Suppose that the distribution of income is represented by

F (x) =


0.7ax if 0 ≤ x < 0.1,
0.001(x− 0.1) + 0.07a if 0.1 ≤ x < 0.9 + ε,
0.001(0.8 + ε) + 0.07a + 0.299(x− 0.9− ε) if 0.9 + ε ≤ x ≤ 1,

where ε = 0.0999 and a = 5000000
354649

' 14.1. This distribution concentrates
about 98.69% of the population between 0 and 0.1, 1.26% between 0.1 and
0.9 + ε, and 0.04% between 0.9 + ε and 1, and so it is clearly right-skewed.
It is easily verified that xF ≤ mF whenever RF ∈

(
0.0188,

∫ 1
0 xdF

)
(i.e., the

target revenue is at least 33.14% of total income). ‖

6 Conclusion

In this paper we have tried to understand the apparently innocuous heuristic
claim that “majority of the poorer voters (a right-skewed income distribution)
is a central force behind the commonly observed popularity of marginal-rate
progressive tax schemes.” To this end, we have introduced a class of voting
games that seem to be rather natural for the analysis of the problem at hand.
The games considered here possess mixed strategy equilibria. Once existence
is guaranteed, the characterization of the supports of the mixed strategy
equilibria is not vacuous. We have demonstrated that it is possible to get
some support out of our model for the said heuristic claim: the equilibria of
certain classes may even have it that the probability of observing marginal-
rate progressive taxes is one. Nonetheless, our positive results can only be
sustained if the set of admissible tax schemes is sufficiently constrained. If
one wishes to allow for policy spaces that are not artificially constrained, one
must accept that it is not possible to provide a formal argument in support
of the aforementioned claim. Our results indicate that one should either look
somewhere else for the “explanation” of the link between right-skewedness of
income distributions and the observed marginal-rate progressivity of income
tax functions or else supplement our positive results with another approach
that explains the constraints on the policy space.

19



7 Proofs

Notation and Definitions. Given F ∈ F , define xF as the point from
(0, 1) such that ∫ 1

xF

(x− xF )dF = RF .

Define S(F ) as the family of all H ∈ H such that H is discrete on [0, xF ) and
H = F on [0, 1] \ D. For H ∈ H, let pH be the Lebesgue-Stieltjes measure
induced by H on [0, 1].

For F ∈ F and H ∈ S(F ), T (H) is compact in C[0, 1] (Lemma 7.1),
metric, and hence separable, so we may select a countable subset T o(H) of
T (H) that is dense in T (H). Let {q1, q2, q3, ...} be the set of all rational
numbers in [0, 1], and define

Tqn(H) :=
{
t ∈ T (H) : t = 0 on [0, qn] and t > 0 elsewhere

}
.

Each Tqn(H) is a subset of a separable metric space and thus a separable
space itself, so to each Tqn(H) there corresponds a countable subset T o

qn
(H)

of Tqn(H) that is dense in Tqn(H). Put

T ∗(H) := T o(H) ∪
⋃
n

T o
qn

(H).

Being the union of countably many countable sets, T ∗(H) is countable, and
so we may write

T ∗(H) :=
{
t1(H), t2(H), t3(H), ..., tn(H), ...

}
.

Take a sequence of positive reals (εn) converging to 0. Define the sequences

T1(H) :=
{
τ ε1
1 (H)

}
,

T2(H) :=
{
τ ε2
1 (H), τ ε1

2 (H)
}
,

T3(H) :=
{
τ ε3
1 (H), τ ε2

2 (H), τ ε1
3 (H)

}
,

...

Tn(H) :=
{
τ εn
1 (H), τ

εn−1

2 (H), τ
εn−2

3 (H), ..., τ ε1
n (H)

}
,

...

as follows:
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• τ ε1
1 (H) is some element of Nε1(t1(H)) such that τ ε1

1 (H) = 0 on [0, a−ε1]
whenever t1(H) = 0 on [0, a];18

• for n ∈ {2, 3, 4, ...} and k ∈ {1, 2, ..., n}, τ
εn−k+1

k (H) is some element of
Nεn−k+1

(tk(H)) such that

• τ
εn−k+1

k (H) = 0 on [0, a−εn−k+1] whenever tk(H) = 0 on [0, a] and

• τ
εn−k+1

k (H)(x) 6= τ
εm−l+1

l (H)(x) if τ
εn−k+1

k (H)(x) > 0 for each x ∈
supp{pH}∩D, every l ∈ {1, 2, ..., k−1}, and any m ∈ {1, 2, ..., n−
1}.

Set

T̃ (H) :=
∞⋃

n=1

Tn(H).

We then define, for each F ∈ F , S∗(F ) to be the family of all H ∈ S(F )
satisfying pH{x} < pH{(x, 1]} for every x ∈ supp{pH} ∩ [0, xF ).

The set of all tax functions from T (H) that are convex when restricted to
the sub-domain supp{pH} is represented by Tconv(H). Finally, given H ∈ H,
P(T (H)) designates the set of all Borel probability measures on T (H). ‖

Lemma 7.1. For F ∈ F and H ∈ S(F ) ∪ F , the sets T (H) and Tconv(H)
are compact subsets of C[0, 1].

Proof. Fix F ∈ F and H ∈ S(F )∪F . Let us first show that T (H) is bounded
and closed in C[0, 1]. For any t, τ ∈ T (H), we have ‖t− τ‖∞ ≤ 1 since the

ranges of both t and τ are contained in [0, 1]. Thus diam
(
T (H)

)
≤ 1 and

hence T (F ) is bounded. To prove the closedness claim, take any sequence (tn)
in T (F ) and assume that ‖t− tn‖∞ → 0 (as n → ∞) for some t ∈ C[0, 1].
Then (tn) converges uniformly to t, thereby guaranteeing that t is a tax
function. Due to uniform convergence, we also have∫ 1

0
tdF =

∫ 1

0
lim tndF = lim

∫ 1

0
tndF = RF ,

and hence we may conclude that t ∈ T (F ). Thus T (H) is closed in C[0, 1].
We next claim that T (H) is equicontinuous. To see this, pick an arbitrary

t ∈ T (H) and take any x, y ∈ [0, 1] with x > y. By monotonicity of the post-
tax function, we have x − t(x) ≥ y − t(y) so that t(x) − t(y) ≤ x − y.

18In what follows, for any t ∈ T (F ) and δ > 0, Nδ(t) stands for the open δ-neighborhood
of t in T (F ) or T (H), depending on the context.
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Interchanging the roles of x and y, we may thus conclude that |t(x)− t(y)| ≤
|x−y| for all x, y ∈ [0, 1]. So, for any x ∈ [0, 1] and any ε > 0, we have |t(x)−
t(y)| < ε whenever |x− y| < ε. This proves that T (H) is equicontinuous.

Given the observations noted in the previous two paragraphs, Arzelà-
Ascoli theorem entails that T (H) is a compact subset of C[0, 1]. Since
Tconv(H) is a closed subset of T (H), this observation also establishes the
compactness of Tconv(H). ‖

Lemma 7.2. Suppose that p ∈ P(A), ε > 0, and A ∈
{
T (F ), Tconv(F )

}
.

Then, for any τ ∈ A, there exists τ ∗ ∈ A such that

lim inf
∫
A

(w(τ ∗, t)− w(t, τ ∗))pn(dt) ≥
∫
A

(w(τ, t)− w(t, τ))p(dt)− ε

for every sequence (pn) converging weakly to p.

Proof. We first suppose that A = T (F ). Pick ε > 0 and τ ∈ T (F ). We
suppose that

∫ 1
0 τdF = RF , for the case where

∫ 1
0 τdF > RF is handled

similarly. Define x∗ := inf {x : τ(y) − τ(x) = y − x whenever x ≤ y ≤ 1}.
Note that either 0 < x∗ < 1 or x∗ = 1. Suppose first that 0 < x∗ < 1. For
ε > 0 with [x∗ − ε, x∗ + ε] ⊆ [0, 1], let

tε(x) :=


0 if 0 ≤ x ≤ x∗ − ε− τ(x∗ − ε),
τ(x∗ + ε) if x∗ − ε + τ(x∗ + ε)− τ(x∗ − ε) < x ≤ 1,
τ(x∗ − ε)− (x∗ − ε) + x elsewhere,

and put tε := max{τ, tε}. For each ε and every real α,
∫ 1
0 [αtε +(1−α)tε]dF is

continuous in α. Further, observe that there exists ε◦ such that
∫ 1
0 tεdF < RF

and
∫ 1
0 tεdF > RF for all ε ∈ (0, ε◦). It follows from the intermediate value

theorem that an αε ∈ (0, 1) exists associated to each ε ∈ (0, ε◦) such that∫ 1
0 [αεtε + (1 − αε)tε]dF = RF . Suppose next that x∗ = 1. Define, for each

ε ∈ (0, 1),

τ ε(x) :=

{
0 if 0 ≤ x ≤ 1− ε− τ(1− ε),
τ(1− ε)− (1− ε) + x if 1− ε− τ(1− ε) < x ≤ 1,

and τ ε := max{τ, τ ε}. Reasoning as before, one may establish the existence
of ε• such that there corresponds to each ε ∈ (0, ε•) a βε ∈ (0, 1) such that∫ 1
0 [βετ ε + (1− βε)τ ε]dF = RF . Put

tε :=

{
αεtε + (1− αε)tε if 0 < x∗ < 1,
βετ ε + (1− βε)τ ε if x∗ = 1.
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Observe that each tε is an admissible tax function. Further, there is a se-
quence (εn) of positive real numbers converging to 0 such that tεn < τ on
{τ > 0} \ [x∗ − εn, x

∗ + εn] for every n.19 Thus, we may fix ε∗ ∈ (0, ε
4
) with

0 < x∗ − ε∗, x∗ + ε∗ < 1 if x∗ < 1, and tε∗ < τ on {τ > 0} \ [x∗ − ε∗, x∗ + ε∗].
Then to each t ∈ T (F ) there corresponds a δ > 0 such that every f ∈ Nδ(t)
satisfies

w(tε∗ , f)− w(f, tε∗) > w(τ, t)− w(t, τ)− ε. (3)

We shall prove this assertion assuming that 0 < x∗ < 1. The case where x∗ =
1 is dealt with in a similar fashion. Choose η ∈ (ε∗, min{1−x∗−ε∗, x∗−ε∗, ε

4
})

and define

d :=

{
minx∈[so+η,x∗−η]∪[x∗+η,1] τ(x)− tε∗(x) if so + η ≤ x∗ − η,
minx∈[x∗+η,1] τ(x)− tε∗(x) if so + η > x∗ − η,

where so := sup{x : τ(x) = 0}. Let t be arbitrary in T (F ), and choose any

f ∈ Nδ(t), where 0 < δ < min
{
d, t
(

sup{x : t(x) = 0}+η
)}

/2. Let Sc be the

complement of S :=
[
sup

{
x : t(x) = 0

}
, sup

{
x : t(x) = 0

}
+ η

]
∪
[
so, so +

η
]
∪
[
x∗ − η, x∗ + η

]
in [0, 1]. Then

w(τ, t)− w(t, τ) = 2w(τ, t) + pF{τ = t} − 1

= 2
(
pF

{
{τ < t} ∩ S

}
+ pF

{
{τ < t} ∩ Sc

})
+ pF

{
{τ = t} ∩ S

}
+ pF

{
{τ = t} ∩ Sc

}
− 1

< ε + 2pF

{
{τ < t} ∩ Sc

}
+ pF

{
{τ = t} ∩ Sc

}
− 1

= ε + 2
(
pF

{
{tε∗ < τ < t} ∩ Sc

}
+ pF

{
{tε∗ ≥ τ < t} ∩ Sc

})
+ pF

{
{tε∗ < τ = t} ∩ Sc

}
+ pF

{
{tε∗ ≥ τ = t} ∩ Sc

}
− 1

= ε + 2
(
pF

{
{f ≤ tε∗ < τ < t} ∩ Sc

}
+ pF

{
{f > tε∗ < τ < t} ∩ Sc

}
19To see this, it suffices to show that there is a sequence (εn) of positive real numbers

converging to 0 such that the left-hand derivative τ ′− of τ at x∗ − εn is less than 1 for
each n. If τ is constant on (a, x∗) for some a there is nothing to prove, so let τ be
nonconstant on any (a, x∗). For each ε with x∗ ≥ ε > 0, consider the function fε(x) :=
τ(x∗) − τ(x) − x∗−x

ε [τ(x∗) − τ(x∗ − ε)], which vanishes when x = x∗ − ε and x = x∗.
Because fε is continuous and not nil, it follows that there exists y ∈ (x∗ − ε, x∗) such
that the left-hand derivative of fε at y is positive, whereby τ(x∗)−τ(x∗−ε)

ε > τ ′−(y). Since
τ ∈ T (F ), the left-hand side of this inequality is less than 1, whence τ ′−(y) < 1. The
desired conclusion follows.
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+ pF

{
{f ≤ tε∗ ≥ τ < t} ∩ Sc

}
+ pF

{
{f > tε∗ ≥ τ < t} ∩ Sc

})
+ pF

{
{f ≤ tε∗ < τ = t} ∩ Sc

}
+ pF

{
{f > tε∗ < τ = t} ∩ Sc

}
+ pF

{
{f ≤ tε∗ ≥ τ = t} ∩ Sc

}
+ pF

{
{f > tε∗ ≥ τ = t} ∩ Sc

}
− 1.

Observe that, because f ∈ Nδ(t),

pF

{
{f ≤ tε∗ < τ < t} ∩ Sc

}
= pF

{
{f ≤ tε∗ ≥ τ < t} ∩ Sc

}
= pF

{
{f ≤ tε∗ < τ = t} ∩ Sc

}
= 0

and pF

{
{f ≤ tε∗ ≥ τ = t} ∩ Sc

}
≤ pF{f = tε∗}. Therefore,

w(τ, t)− w(t, τ)

< ε + 2
(
pF

{
{f > tε∗ < τ < t} ∩ Sc

}
+ pF

{
{f > tε∗ ≥ τ < t} ∩ Sc

})
+ pF

{
{f > tε∗ < τ = t} ∩ Sc

}
+ pF{f = tε∗}

+ pF

{
{f > tε∗ ≥ τ = t} ∩ Sc

}
− 1

≤ ε + 2w(tε∗ , f) + pF{tε∗ = f} − 1

= ε + w(tε∗ , f)− w(f, tε∗).

This establishes (3).
Pick any p ∈ P(T (F )). The proof the lemma (for the case where A =

T (F )) is complete if we show that every sequence (pn) converging weakly to
p satisfies

lim inf
∫
T (F ) (w(tε∗ , t)− w(t, tε∗))pn(dt)

≥
∫
T (F ) (w(τ, t)− w(t, τ))p(dt)− ε.

(4)

To this end, let ϕ : T (F ) → R be the lim inf of the map t 7→ w(tε∗ , t) −
w(t, tε∗) on T (F ), that is,

ϕ(t) := lim
δ↓0

inf
{
w(tε∗ , f)− w(f, tε∗) : f ∈ Nδ(t)

}
.

Because ϕ is lower semicontinuous,

lim inf
∫
T (F )

ϕdpn ≥
∫
T (F )

ϕdp (5)
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whenever (pn) converges weakly to p (see, e.g., Aliprantis and Border (1999),
Theorem 14.5). Because to each t ∈ T (F ) there corresponds a δ > 0 such
that every f ∈ Nδ(t) satisfies (3), we must have ϕ(t) ≥ w(τ, t)− w(t, τ)− ε
for all t ∈ T (F ). Thus, we may write

w(tε∗ , t)− w(t, tε∗) ≥ ϕ(t) ≥ w(τ, t)− w(t, τ)− ε for all t ∈ T (F ).

These inequalities, along with (5), imply (4) for every sequence (pn) converg-
ing weakly to p, as desired.

It remains to prove the lemma for A = Tconv(F ). This can be done by
means of the previous argument after the replacement of T (F ) by Tconv(F )
and the following redefinition of tε:

tε(x) :=

{
0 if 0 ≤ x ≤ xε,
[to(x∗+ε)−to(x∗−ε)](x−x∗+ε)

2ε
+ to(x

∗ − ε) if xε < x ≤ 1,

where

xε :=
(x∗ − ε)to(x

∗ + ε)− (x∗ + ε)to(x
∗ − ε)

to(x∗ + ε)− to(x∗ − ε)
. ‖

Definition 7.3 (Reny, 1999). Suppose thatA ⊆ T (F ). The mixed extension
of G(A) is payoff secure if for every i ∈ {1, 2}, µ = (µ1, µ2) ∈ P(A)2, and
ε > 0, there exists νi ∈ P(A) such that Ui(νi, µ̃−i) ≥ Ui(µ)− ε for all µ̃−i in
some open neighborhood of µ−i.

Lemma 7.4. The mixed extensions of G(Tconv(F )) and G(T (F )) are payoff
secure.

Proof. We prove the lemma for G(T (F )). The argument for G(Tconv(F )) is
identical. Fix µ = (µ1, µ2) ∈ P(T (F ))2, ε > 0, and i ∈ {1, 2}. We have to
show that there exists νi ∈ P(T (F )) such that Ui(νi, µ̃−i) ≥ Ui(µ)− ε for all
µ̃−i in some open neighborhood of µ−i.

It is clear that there exists τ ∈ T (F ) such that

Ui(τ, µ−i) > Ui(µ)− ε

4
. (6)

By Lemma 7.2, there exists τ ∗ ∈ T (F ) such that every sequence {µn} con-
verging weakly to µ−i satisfies

lim inf
∫
T (F )

(w(τ ∗, t)−w(t, τ ∗))µn(dt) ≥
∫
T (F )

(w(τ, t)−w(t, τ))µ−i(dt)− ε

2
.
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Hence, Ui(τ
∗, µ̃−i) ≥ Ui(τ, µ−i)− 3ε

4
for every µ̃−i in some open neighborhood

of µ−i. From these inequalities and (6), we see that Ui(τ
∗, µ̃−i) ≥ Ui(µ) − ε

for every µ̃−i in some open neighborhood of µ−i, as we sought. ‖

The following lemma is a generalization of the theorem of Marhuenda and
Ortuño-Ort́ın (1995).

Lemma 7.5. Suppose that mF < µF . If, for t ∈ Nconv(F ) and τ ∈ T (F ) \
Nconv(F ) with

∫ 1
0 tdF ≤

∫ 1
0 τdF ,

(i) t− τ is a nonlinear convex function,

(ii) t(x) = τ(x) holds for at most one x ∈ (0, 1], and

(iii) t < τ on some open neighborhood of 0,

then w(t, τ) > 1/2.

Proof. Suppose that mF < µF and fix t ∈ Nconv(F ) and τ ∈ T (F )\Nconv(F )
satisfying ∫ 1

0
tdF ≤

∫ 1

0
τdF, (7)

(i), (ii), and (iii). Either t 6= τ everywhere on (0, 1] or t = τ at a unique
point x∗ in (0, 1]. In the former case, (7) gives w(t, τ) > 1/2, as desired.
If t = τ at a unique point x∗ in (0, 1], (iii) ensures that t|(0,x∗) < τ |(0,x∗)

and t|(x∗,1] > τ |(x∗,1]. On the other hand, since t − τ is a non-affine convex
function on [0, 1], Jensen’s inequality and (7) give

(t− τ)(µF ) <
∫ 1

0
(t− τ)dF ≤ 0.

Therefore, mF < µF < x∗, and hence w(t, τ) > F (mF ) = 1/2. ‖

Lemma 7.6. If G(Tconv(F )) has a mixed strategy Nash equilibrium, so does
G(C(F )).

Proof. Let ν = (ν1, ν2) be a mixed strategy Nash equilibrium of G(Tconv(F )).
We shall show that ν is also a mixed strategy Nash equilibrium of G(C(F )).
Take i ∈ {1, 2}. Say i = 1. Fix any µ1 ∈ P(C(F )). Consider the case where
any t ∈ supp{µ1} has

∫ 1
0 tdF = RF . If µ1(Tconv(F )) = 0, we have

U1(µ1, ν2) =
∫
Tconv (F )

∫
Nconc(F )

u1(t, τ)µ1(dt)ν2(dτ).
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It is easily seen that any t ∈ supp{ν2} satisfies
∫ 1
0 tdF = RF because ν is a

Nash equilibrium of G(Tconv(F )). Since, by Lemma 7.5, u1(t, τ) ≤ 0 whenever
(t, τ) ∈ Nconc(F ) × Tconv(F ) and

∫ 1
0 tdF =

∫ 1
0 τdF = RF , U1(µ1, ν2) ≤ 0.

Further, U1(ν) = 0 because ν is a Nash equilibrium. Hence U1(µ1, ν2) ≤
U1(ν). If, on the other hand, µ1(Tconv(F )) > 0, define the probability measure
µ̃1 on the Borel subsets of Tconv(F ) as follows:

µ̃1(B) := µ1(B)
(
1 +

µ1(Nconc(F ))

µ1(Tconv(F ))

)
.

Then,

U1(µ1, ν2) =
∫
Tconv (F )

∫
Nconc(F )

u1(t, τ)µ1(dt)ν2(dτ)

+
∫
Tconv (F )

∫
Tconv (F )

u1(t, τ)µ1(dt)ν2(dτ)

≤
∫
Tconv (F )

∫
Tconv (F )

u1(t, τ)µ1(dt)ν2(dτ)

≤
(
1 +

µ1(Nconc(F ))

µ1(Tconv(F ))

) ∫
Tconv (F )

∫
Tconv (F )

u1(t, τ)µ1(dt)ν2(dτ)

=
∫
Tconv (F )

∫
Tconv (F )

u1(t, τ)µ̃1(dt)ν2(dτ)

= U1(µ̃1, ν2),

where the first inequality holds because∫
Tconv (F )

∫
Nconc(F )

u1(t, τ)µ1(dt)ν2(dτ) ≤ 0

by Lemma 7.5. Because ν is a mixed strategy Nash equilibrium of G(Tconv(F )),
we have U1(µ̃1, ν2) ≤ U1(ν). Combine this inequality with the previous equa-
tion to obtain U1(µ1, ν2) ≤ U1(ν). It is clear that if U1(µ1, ν2) ≤ U1(ν)
for every µ1 ∈ P(C(F )) with

∫ 1
0 tdF = RF for any t ∈ supp{µ1}, then

U1(µ1, ν2) ≤ U1(ν) for every µ1 ∈ P(C(F )). We conclude that ν is also a
mixed strategy Nash equilibrium of G(C(F )). ‖

Proof of Theorem 4.4. The game G(T (F )) is compact (Lemma 7.1). Further,
its mixed extension is payoff secure (Lemma 7.4) and u1 +u2, being constant
on T (F )2, is upper semicontinuous on T (F )2. It follows from Corollary 5.2
of Reny (1999) that G(T (F )) possesses a mixed strategy Nash equilibrium.
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A similar argument guarantees the existence of a mixed strategy Nash equi-
librium of G(Tconv(F )). Lemma 7.6 then ensures that G(C(F )) also possesses
a mixed strategy Nash equilibrium. ‖

Lemma 7.7. Suppose that mF < µF . Let A be any subset of T (F ) such that
Tconc(F ) ∩ A 6= Ø, Nconv(F ) ∩ A 6= Ø, and RF∫ 1

0
tdF

t ∈ A whenever t ∈ A and∫ 1
0 tdF > RF . Suppose that, for all t ∈ Nconv(F ) ∩ A and τ ∈ A \ Nconv(F ),

the conditions (i)-(iii) of Lemma 7.5 are fulfilled. Then,∫
A∩Tconc(F )

∫
A∩Nconv(F )

u1(t, τ)µ1(dt)µ2(dτ) > 0

for any (µ1, µ2) ∈ P(A)2 with
∫ 1
0 tdF = RF whenever t ∈ supp{µi} and

i ∈ {1, 2}.
Proof. Assume the antecedent. Choose any (µ1, µ2) ∈ P(A)2 with

∫ 1
0 tdF =

RF for each t ∈ supp{µi} and every i. Fix (to, τo) in (A ∩Nconv(F ))× (A ∩
Tconc(F )) and assume that (to, τo) is in the support of µ1×µ2. By Lemma 7.5,
we have w(to, τo) > 1/2. Since w is lower semicontinuous (Lemma 4.2), one
can find ε > 0 and an open neighborhood O of (to, τo) on which w(t, τ) > 1

2
+ε.

Let A1 := ((A∩Tconc(F ))× (A∩Nconv(F )))\O and A2 := ((A∩Tconc(F ))×
(A ∩Nconv(F ))) ∩O. Observe that∫

(A∩Nconv (F ))×(A∩Tconc(F ))
wd(µ1 × µ2)

≥ inf
(t,τ)∈A1

w(t, τ)(µ1 × µ2)(A1) + inf
(t,τ)∈A2

w(t, τ)(µ1 × µ2)(A2)

≥ (µ1 × µ2)(A1)
1

2
+ (µ1 × µ2)(A2)

(1

2
+ ε

)
> 1/2.

This implies
∫
(A∩Tconc(F ))×(A∩Nconv (F )) wd(µ1 × µ2) < 1/2. We may therefore

write∫
A∩Tconc(F )

∫
A∩Nconv (F )

u1(t, τ)µ1(dt)µ2(dτ)

=
∫
(A∩Nconv (F ))×(A∩Tconc(F ))

wd(µ1 × µ2)−
∫
(A∩Tconc(F ))×(A∩Nconv (F ))

wd(µ1 × µ2)

> 0,

as we sought. ‖
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Proof of Proposition 5.1. Suppose that mF < µF . Let A be any subset of
T (F ) such that Nconv(F ) ∩ A 6= Ø and RF∫ 1

0
tdF

t ∈ A whenever t ∈ A and∫ 1
0 tdF > RF . Suppose that, for all t ∈ Nconv(F ) ∩ A and τ ∈ A \ Nconv(F ),

• t− τ is a nonlinear convex function, and

• t(x) = τ(x) holds for at most one x ∈ (0, 1].

Take µ = (µ1, µ2) ∈ P(A)2. Suppose that µ2(A ∩ Tconc(F )) > 0. We shall
show that µ is not a mixed strategy Nash equilibrium of G(A). It is easily
seen that, because RF∫ 1

0
tdF

t ∈ A whenever t ∈ A and
∫ 1
0 tdF > RF , µ is not

a Nash equilibrium of G(A) if
∫ 1
0 tdF > RF for some t ∈ supp{µi} and

some i. Therefore, we consider only the case where
∫ 1
0 tdF = RF for each

t ∈ supp{µi} and every i.
Suppose that U1(µ) > 0. Then U2(µ) < 0. Since U2(µ1, µ1) = 0 >

U2(µ), µ is not a Nash equilibrium. Next, suppose that U1(µ) ≤ 0 and
µ2(A ∩ Nconv(F )) = 0. Pick t ∈ Nconv(F ) ∩ A. By assumption, t∗ :=

RF∫ 1

0
tdF

t ∈ Nconv(F ) ∩ A. Since µ2(A ∩ Nconv(F )) = 0, Lemma 7.7 implies

U1(t
∗, µ2) > 0. Hence U1(t

∗, µ2) > U1(µ), and so µ is not a Nash equilibrium.
We now turn to the case where U1(µ) ≤ 0 and µ2(A ∩ Nconv(F )) > 0.

Define the probability measure µ̃1 on the Borel subsets of A as follows:

µ̃1(B) :=
µ2(B ∩Nconv(F ))

µ2(A ∩Nconv(F ))
.

Observe that µ̃1(B) = µ2(B)
(
1 + µ2(A∩Tconc(F ))

µ2(A∩Nconv (F ))

)
whenever B ⊆ Nconv(F ).

Consequently, we have

U1(µ̃1, µ2)

=
∫
A∩Tconc(F )

∫
A∩Nconv (F )

u1(t, τ)µ̃1(dt)µ2(dτ)

+
∫
A∩Nconv (F )

∫
A∩Nconv (F )

u1(t, τ)µ̃1(dt)µ2(dτ)

>
∫
A∩Nconv (F )

∫
A∩Nconv (F )

u1(t, τ)µ̃1(dt)µ2(dτ)

=
(
1 +

µ2(A ∩ Tconc(F ))

µ2(A ∩Nconv(F ))

) ∫
A∩Nconv (F )

∫
A∩Nconv (F )

u1(t, τ)µ2(dt)µ2(dτ)

= 0

≥ U1(µ),
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where the first inequality holds by Lemma 7.7. Thus, µ is not a Nash equi-
librium. ‖

Lemma 7.8. For each H ∈ ⋃
F∈F S(F ), t ∈ T (H), ε > 0, and every

neighborhood K of t, there exists τ ∈ T̃ (H) ∩K such that τ = 0 on [0, a− ε]
whenever t = 0 on [0, a].

Proof. Fix F ∈ F , H ∈ S(F ), t ∈ T (H), ε > 0, and a neighborhood K of
t. We only consider the case where t = 0 on some interval [0, a] and t > 0
elsewhere, for the case where t > 0 on [0, 1] is analogous.

Suppose that t = 0 on some interval [0, a] and t > 0 elsewhere. It suffices
to show that there exists τ ∈ T̃ (H)∩K such that τ = 0 on [0, a−ε]. Observe
that we may choose a rational number q in (a−ε, a) such that Tq(H)∩K 6= Ø.
Because Tq(H) ∩ K 6= Ø and T o

q (H) is dense in Tq(H), we may pick f from

T o
q (H)∩K. Because f ∈ T ∗(H) =

{
t1(H), t2(H), t3(H), ...

}
, there is some k

with tk(H) = f . Let η be the radius of K. Then, for n sufficiently high,

0 < εn < min
{
η, q − (a− ε)

}
,

and τ εn
k (H) is an element of Nεn(tk(H)) with τ εn

k (H) = 0 on [0, q − εn]. It
follows that tk(H) ∈ K and tk(H) = 0 on [0, a− ε]. Since tk(H) ∈ T̃ (H), the
proof is complete. ‖

Lemma 7.9. Suppose that F ∈ F . Then any H ∈ S∗(F ) sufficiently close
to F satisfies, for each i, ui(τ, t) > 0 for some τ ∈ T (H) and every t ∈ T (H)
with t = 0 on supp{pH} ∩ [0, xF ).

Proof. Suppose that F ∈ F . Because the set of probability measures on
[0, 1] with finite support is dense in H (Billingsley, 1968), any H ∈ S∗(F )

sufficiently close to F has max
{
supp{pH} ∩ [0, xF )

}
sufficiently close to xF .

For H with max
{
supp{pH} ∩ [0, xF )

}
close to xF , it is easily seen that

ui(τ, t) > 0 for some τ ∈ T (H) and every t ∈ T (H) with t = 0 on supp{pH}∩
[0, xF ). ‖

Lemma 7.10. Suppose that H ∈ ⋃
F∈F S(F ), p ∈ P(T (H)), and ε > 0.

Then, for any τ ∈ T (H), there exists τ ∗ ∈ T̃ (H) such that

lim inf
∫
T (H)

(w(τ ∗, t)− w(t, τ ∗))pn(dt) ≥
∫
T (H)

(w(τ, t)− w(t, τ))p(dt)− ε
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for every sequence (pn) converging weakly to p.

Proof. The argument from the proof of Lemma 7.2 can be used to prove this
lemma. One needs only to observe that the analogue of x∗ must lie in [xF , 1]
and the analogue of tε∗ may actually be chosen from T̃ (H) by Lemma 7.8. ‖

Definition 7.11 (Reny, 1996). A subset A of T (H) ensures local payoff
security of Ui on P(T (H))2 if, for each µ = (µ1, µ2) ∈ P(T (H))2 and every
ε > 0, there exists νi ∈ P(T (H)) with νi(A) = 1 such that Ui(νi, µ̃−i) ≥
Ui(µ)− ε for all µ̃−i in some open neighborhood of µ−i.

Lemma 7.12. Suppose that H ∈ ⋃
F∈F S(F ). Then the set T̃ (H) ensures

local payoff security of Ui on P(T (H))2 for each i.

Proof. Suppose that H ∈ ⋃
F∈F S(F ). Fix i ∈ {1, 2}, µ = (µ1, µ2) ∈

P(T (H))2, and ε > 0. We have to show that there exists νi ∈ P(T (H))
with νi(T̃ (H)) = 1 such that Ui(νi, µ̃−i) ≥ Ui(µ)− ε for all µ̃−i in some open
neighborhood of µ−i.

It is clear that there exists τ ∈ T (H) such that

Ui(τ, µ−i) > Ui(µ)− ε

4
. (8)

By Lemma 7.10, there exists τ ∗ ∈ T̃ (H) such that every sequence {µn}
converging weakly to µ−i satisfies

lim inf
∫
T (H)

(w(τ ∗, t)−w(t, τ ∗))µn(dt) ≥
∫
T (H)

(w(τ, t)−w(t, τ))µ−i(dt)− ε

2
.

Hence, Ui(τ
∗, µ̃−i) ≥ Ui(τ, µ−i)− 3ε

4
for every µ̃−i in some open neighborhood

of µ−i. From these inequalities and (8), we see that Ui(τ
∗, µ̃−i) ≥ Ui(µ) − ε

for every µ̃−i in some open neighborhood of µ−i. ‖

Definition 7.13 (Reny, 1996). A strategic approximation to the game
G(T (H)) is a countable set of pure strategies Q ⊆ T (H) such that

(i) for every i ∈ {1, 2}, sup{Ui(t, µ−i) : t ∈ Q} = sup{Ui(t, µ−i) : t ∈
T (H)} for all µ−i ∈ P(T (H)), and

(ii) whenever (An) is an increasing sequence of finite sets whose union is
Q, any limit of equilibria of the sequence of finite games (G(An)) is an
equilibrium of G(T (H)).20

20Finite sets are included among those which are considered countable, so Q may be
finite.
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Lemma 7.14. Suppose that H ∈ ⋃F∈F S(F ). Then, Q is a strategic approx-
imation to G(T (H)) if Q is a countable subset of T (H) that ensures local
payoff security of Ui on P(T (H))2 for each i.

Proof. Suppose that H ∈ S(F ) for some F ∈ F . Suppose that Q is a count-
able subset of T (H) that ensures local payoff security of Ui on P(T (H))2 for
each i. The set T (H) is a compact metric space (Lemma 7.1). Further, the
sum of the players’ payoff functions is upper semicontinuous on P(T (H))2

(in fact, constant on P(T (H))2). It follows from Theorem 4 of Reny (1996)
that Q is a strategic approximation to G(T (H)).21 ‖

Lemma 7.15. Suppose that F ∈ F satisfies xF ≤ mF , and let H ∈ S∗(F ) be
sufficiently close to F in the sense of Lemma 7.9. If µ = (µ1, µ2) is a Nash
equilibrium of G(T (H)) with µn = (µn

1 , µ
n
2 ) → µ for some sequence (µn),

where each µn is a Nash equilibrium of G(An) and (An) is an increasing
sequence of finite sets whose union is T̃ (H), then µi(Tconv(H)) < 1 for each
i.

Proof. Fix F ∈ F with xF ≤ mF and choose H ∈ S∗(F ) sufficiently close
to F in the sense of Lemma 7.9. Let µ = (µ1, µ2) be a Nash equilibrium of
G(T (H)) with µn = (µn

1 , µ
n
2 ) → µ for some sequence (µn), where each µn

is a Nash equilibrium of G(An) and (An) is an increasing sequence of finite
sets whose union is T̃ (H). Suppose that µi(Tconv(H)) = 1 for some i, say for
i = 2. We shall obtain a contradiction.

Set
t := sup

{
t : t ∈ supp{µ2}

}
.

A contradiction is easily obtained if t = 0 on supp{pH} ∩ [0, xF ), for then
Lemma 7.9 gives τ ∈ T (H) such that u1(τ, t) > 0 for every t ∈ supp{µ2},
and this cannot hold true if µ is a Nash equilibrium of G(T (H)).

Throughout the sequel, we assume that t(x) > 0 for some x ∈ supp{pH}∩
[0, xF ). Put

y := min
{
x : x ∈ supp{pH} and t(x) > 0

}
.

We proceed in a number of steps.

21Theorem 4 of Reny (1996) requires that the vector payoff function of the game
G(T (H)) satisfy a condition termed reciprocal upper semicontinuity. As pointed out by
Reny, the upper semicontinuity of the sum of the players’ payoffs on P(T (H))2 is a suf-
ficient condition for the vector payoff function of the game G(T (H)) to be reciprocally
upper semicontinuous.
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Step 0. To each δ > 0 and every ε > 0 there corresponds an N such that, for
every n ≥ N ,

µn
2

(
cl Nδ

(
supp{µ2}

))
> 1− ε.22

Proof. Fix δ and ε > 0. Because µn
2 → µ2 and Nδ

(
supp{µ2}

)
is open, we

have

lim inf µn
2

(
Nδ

(
supp{µ2}

))
≥ µ2

(
Nδ

(
supp{µ2}

))
= 1.

It follows that there exists N such that

µn
2

(
cl Nδ

(
supp{µ2}

))
≥ µn

2

(
Nδ

(
supp{µ2}

))
> 1− ε

for every n ≥ N . ‖

Step 1. For some α > 0 and any (fn) with

fn ∈ arg max

{
t(y) : t ∈ supp{µn

2}∩cl Nα

(
arg max

{
t(y) : t ∈ supp{µ2}

})}
, 23

ε, γ > 0, a subsequence (nk) of (n), and J may be found such that, for every
k ≥ J , f ∗nk

∈ T (H) and Bnk
⊆ T (H) with µnk

2 (Bnk
) > γ exist such that

f ∗nk
< fnk

− ε on (y, 1] ∩ supp{pH}, f ∗nk
= 0 on [0, y) ∩ supp{pH}, and

u1(f̃nk
, t) > u1(fnk

, t) + ε

for each f̃nk
∈
{
t̃ ∈ Nβ(f ∗nk

) : t̃ = 0 on [0, y) ∩ supp{pH}
}
, every t ∈ Bnk

,
and some β > 0.

Proof. Let
τ := sup arg max

{
t(y) : t ∈ supp{µ2}

}
and

τ := inf arg max
{
t(y) : t ∈ supp{µ2}

}
.

22The set Nδ

(
supp{µ2}

)
designates

⋃
t∈supp{µ2} Nδ(t).

23Since µn
2 → µ2, supp{µn

2} ∩ cl Nα

(
arg max

{
t(y) : t ∈ supp{µ2}

})
is non-empty for

n sufficiently high.
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Set y := min
{
x : x ∈ supp{pH} ∩ (y, 1]

}
and y := max

{
x : x ∈ supp{pH} ∩

[0, y)
}
. It is easily seen that µi(Tconv(H)) = 1 and y < xF imply τ(y) < y−y

and
τ(y) < τ(y) ≤ τ(y) < τ(y) + y − y.

Fix m and α with m > max
{
2, 1+pH{[0,y)}

pH{y}

}
and

0 < α <
1

m + 2
min

{
y − y − τ(y), τ(y)− τ(y), τ(y) + y − y − τ(y)

}
.

For each n, let

fn ∈ arg max
{
t(y) : t ∈ supp{µn

2}∩ cl Nα

(
arg max

{
t(y) : t ∈ supp{µ2}

})}
.

Pick η ∈
(
0, min

{
α, 1

2
(1− xF )

})
. Let

εη/4 := min

{
H
(
a +

η

4

)
−H(a) : a ∈

[
xF , 1− η

4

]}
.

Since H is strictly increasing on [xF , 1], εη/4 > 0. Take ε with

0 < ε <
1

2
min

{
η, εη/4

}
.

Define, for each n,

f ∗n(x) :=


0 if 0 ≤ x < y,
τ(y)+mα

y−y
(x− y) if y ≤ x < y,

τ(y) + mα + fn(y)−η−τ(y)−mα
y−y

(x− y) if y ≤ x < y,

fn(x)− η if y ≤ x ≤ 1,

Sn :=
{
t ∈ supp{µn

2} : t intersects with 1
2
f ∗n + 1

2
fn in [xF , 1]

}
,

Sn :=
{
t ∈ supp{µn

2} : t > 1
2
f ∗n + 1

2
fn on [xF , 1]

}
,

Sn :=
{
t ∈ supp{µn

2} : t < 1
2
f ∗n + 1

2
fn on [xF , 1]

}
,

On :=
{
t ∈ supp{µn

2} : t(y) > fn(y)
}
.

Being a closed subset of the compact space T (H) (Lemma 7.1),

cl Nα

(
arg max

{
t(y) : t ∈ supp{µ2}

})
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is itself compact. Because (fn) lies in cl Nα

(
arg max

{
t(y) : t ∈ supp{µ2}

})
,

this set contains the limit point f of some subsequence of (fn). Without
loss of generality, let fn → f . Similarly, we may write, by passing to a
subsequence if necessary, f ∗n → f ∗ for some f ∗ ∈ T (H).

It is easily seen that xF ≤ mF implies the existence of θ > 0 with
u1(fn, t) < −θ for each t ∈ Sn and every n and u1(τ, t) > θ for each

(τ, t) ∈
({

t̃ ∈ Nθ(f
∗
n) : t̃ = 0 on [0, y) ∩ supp{pH}

}
∪ Sn

)
× Sn

and every n. Since f ∗ → f ∗, f ∗n ∈ Nθ/2(f
∗) for every n ≥ L and some L.

Therefore, u1(τ, t) > θ for each

(τ, t) ∈
{
t̃ ∈ Nθ/2(f

∗) : t̃ = 0 on [0, y) ∩ supp{pH}
}
× Sn

and every n ≥ L. Now Lemma 7.8 gives f ◦ ∈ T̃ (H) with u1(f
◦, t) > θ for

each t ∈ Sn and every n ≥ L.
If µn

2 (Sn) → 0 and µn
2 (Sn) → 0, then µn

2 (Sn) → 1, and so

U1(fn, µ
n
2 ) =

∑
t∈Sn

µn
2 (t)u1(fn, t) +

∑
t∈Sn∪Sn

µn
2 (t)u1(fn, t)

≤ µn
2 (Sn)

(
max
t∈Sn

u1(fn, t)
)

+ µn
2

(
Sn ∪ Sn

)(
max

t∈Sn∪Sn

u1(fn, t)
)

< −θµn
2 (Sn) + µn

2

(
Sn ∪ Sn

)(
max

t∈Sn∪Sn

u1(fn, t)
)

→ −θ < 0,

thereby contradicting that (µn
2 , µ

n
2 ) is a Nash equilibrium of G(An).

If µn
2 (Sn) → 0 and µn

2 (Sn) 6→ 0, there must be a subsequence
(
µnk

2 (Snk
)
)

with µnk
2 (Snk

) → ρ for some ρ > 0. Without loss of generality, let
(
µn

2 (Sn)
)

be one such subsequence. Either ρ = 1 or 0 < ρ < 1.
If ρ = 1, then

U1(f
◦, µn

2 ) =
∑
t∈Sn

µn
2 (t)u1(f

◦, t) +
∑

t∈An\Sn

µn
2 (t)u1(f

◦, t)

→ θ > 0.

But since (An) is an increasing sequence of sets whose union is T̃ (H) and
f ◦ ∈ T̃ (H), there exists l with f ◦ ∈ Al and U1(f

◦, µl
2) > 0, contradicting

that (µl
2, µ

l
2) is a Nash equilibrium of G(Al).
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If, on the other hand, 0 < ρ < 1, then we may write (passing to a
subsequence if necessary) µn

2 (Sn) → % for some % > 0. Define, for each n,
the probability measure µ̃n

2 on An as follows:

µ̃n
2 (B) :=

µn
2 (B ∩ Sn)

µn
2 (Sn)

.

Then,

U1(µ̃
n
2 , µ

n
2 )

=
∑

τ∈An

µ̃n
2 (τ)

( ∑
t∈Sn

µn
2 (t)u1(τ, t) +

∑
t∈Sn

µn
2 (t)u1(τ, t) +

∑
t∈Sn

µn
2 (t)u1(τ, t)

)

=
∑

τ∈Sn

µ̃n
2 (τ)

( ∑
t∈Sn

µn
2 (t)u1(τ, t) +

∑
t∈Sn∩On

µn
2 (t)u1(τ, t)

+
∑

t∈Sn\On

µn
2 (t)u1(τ, t) +

∑
t∈Sn∩On

µn
2 (t)u1(τ, t) +

∑
t∈Sn\On

µn
2 (t)u1(τ, t)

)

=
1

µn
2 (Sn)

∑
τ∈Sn∩On

∑
t∈An

µn
2 (τ)µn

2 (t)u1(τ, t)

+
1

µn
2 (Sn)

∑
τ∈Sn\On

µn
2 (τ)

( ∑
t∈Sn

µn
2 (t)u1(τ, t) +

∑
t∈Sn∩On

µn
2 (t)u1(τ, t)

+
∑

t∈Sn\On

µn
2 (t)u1(τ, t) +

∑
t∈Sn∩On

µn
2 (t)u1(τ, t) +

∑
t∈Sn\On

µn
2 (t)u1(τ, t)

)

>
1

µn
2 (Sn)

∑
τ∈Sn∩On

∑
t∈An

µn
2 (τ)µn

2 (t)u1(τ, t)

+
θ

µn
2 (Sn)

µn
2

(
Sn \ On

)
µn

2

(
Sn \ On

)
+

1

µn
2 (Sn)

∑
τ∈Sn\On

µn
2 (τ)

( ∑
t∈Sn

µn
2 (t)u1(τ, t)

+
∑

t∈Sn∩On

µn
2 (t)u1(τ, t) +

∑
t∈Sn∩On

µn
2 (t)u1(τ, t)

)

→ θ%ρ

%
> 0,

for µn
2 (Sn) → 0 by assumption, µn

2 (On) → 0, µn
2 (Sn \ On) → %, and µn

2 (Sn \
On) → ρ. Thus, a contradiction is obtained in this case as well.
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We conclude that µn
2 (Sn) 6→ 0, and so a subsequence

(
µnk

2 (Snk
)
)

may

be obtained that satisfies µnk
2 (Snk

) → λ for some λ > 0. Without loss of

generality, let
(
µn

2 (Sn)
)

be one such subsequence. Because µn
2 (Sn) → λ and

µn
2 (On) → 0, µn

2 (Sn \ On) > γ for all n ≥ K, some K, and some γ > 0.
Define Bn := Sn \ On for each n. Choose β ∈ (0, η/8).

Fix any n ≥ K. One can show that f ∗n ∈ T (H).24 Further, we have
µn

2 (Bn) > γ because n ≥ K. On the other hand, the definitions of ε and f ∗n
entail f ∗n = 0 on [0, y) ∩ supp{pH} and f ∗n < fn − ε on (y, 1] ∩ supp{pH}.
Finally, given an arbitrary

f̃n ∈
{
t̃ ∈ Nβ(f ∗n) : t̃ = 0 on [0, y) ∩ supp{pH}

}
and t ∈ Bn, t intersects with 1

2
f ∗n + 1

2
fn in [xF , 1], say at z. We consider

the case where
[
z, z + η

4

]
⊆ [xF , 1] (if this were not the case, we would have[

z − η
4
, z
]
⊆ [xF , 1] and a similar argument would work). Since the right-

derivative of t does not exceed 1 everywhere on this map’s domain, we have

f ∗n = fn − η < t < fn on I :=
[
z, z + η

4

]
.

Therefore, letting Ic be the complement of I in [0, 1],

u1(f̃n, t) = pH{f̃n < t} − pH{t < f̃n}
= pH

{
{f̃n < t} ∩ I

}
+ pH

{
{f̃n < t} ∩ Ic

}
− pH{t < f̃n}

24Verifying that f∗n is a tax function is immediate after the observation of the following
facts. First, the definition of α entails τ(y)+mα

y−y ≤ 1. Second,

fn(y)− η − τ(y)−mα ≥ τ(y)− α− η − τ(y)−mα ≥ 0

if τ(y)−τ(y) ≥ (2+m)α, which holds true by the definition of α. Third, fn(y)−η−τ(y)−mα
y−y ≤

1 if
(1−m)α− η ≤ y − y + τ(y)− τ(y),

which is true by the definitions of α and η. To see that f∗n is an admissible tax function,
observe that ∫ 1

0

f∗ndH ≥
∫ 1

0

fndH ≥ RH

if
α
(
pH{y}(m− 1)− pH{[0, y)}

)
≥ η

(
1− pH{y}

)
,

which holds true by the definitions of m, α, and η.
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≥ H
(
z +

η

4

)
−H(z) + pH

{
{fn < t} ∩ Ic

}
− pH{t < fn}

≥ εη/4 + pH

{
{fn < t} ∩ Ic

}
− pH{t < fn}

> ε + pH

{
{fn < t} ∩ I

}
+ pH

{
{fn < t} ∩ Ic

}
− pH{t < fn}

> ε + u1(fn, t),

as we sought. ‖
Step 2. There exist f • ∈ T̃ (H) and a subsequence (νn

2 ) of (µn
2 ) such that

U1(f
•, νn

2 ) > 0 for every n.

Proof. For each n, choose

fn ∈ arg max
{
t(y) : t ∈ supp{µn

2}∩ cl Nα

(
arg max

{
t(y) : t ∈ supp{µ2}

})}
.

Step 1 gives, for each n, ε, γ > 0, a subsequence (nk) of (n), and J such

that, for every k ≥ J , f ∗nk
∈ T (H) and Bnk

⊆ T (H) with µnk
2

(
Bnk

)
> γ exist

with f ∗nk
< fnk

− ε on (y, 1] ∩ supp{pH}, f ∗nk
= 0 on [0, y) ∩ supp{pH}, and

u1(f̃nk
, t) > u1(fnk

, t) + ε

for each f̃nk
∈
{
t ∈ Nβ(f ∗nk

) : t = 0 on [0, y)∩ supp{pH}
}
, every t ∈ Bnk

, and

some β > 0. To ease notation, assume (nk) = (n). Because (f ∗n) lies in the
compact space T (H) (Lemma 7.1), it contains a subsequence that converges
in T (H). Without loss of generality, let (f ∗n) be one such subsequence, and
denote its limit point by f ∗.

Since f ∗n → f ∗, there exists M such that f ∗n ∈ Nmin{β/2,ε/2}(f
∗) for every

n ≥ M . Further, f ∗n → f ∗ and f ∗n = 0 on [0, y) ∩ supp{pH} for every n
imply f ∗ = 0 on [0, y)∩ supp{pH}. It follows that, for every n ≥ max{J, M},
f ∗ < fn − ε

2
on (y, 1] ∩ supp{pH}, f ∗ = 0 on [0, y) ∩ supp{pH}, and

u1(f̃ , t) > u1(fn, t) + ε

for each f̃ ∈
{
t ∈ Nβ/2(f

∗) : t = 0 on [0, y) ∩ supp{pH}
}

and every t ∈ Bn.

This and Lemma 7.8 yield f • ∈ T̃ (H) such that, for each n ≥ max{J, M},

f • < fn on (y, 1] ∩ supp{pH}, (9)

f • = 0 on [0, y) ∩ supp{pH}, (10)

38



and
u1(f

•, t) > u1(fn, t) + ε for every t ∈ Bn. (11)

The definition of each fn, along with (9), (10), f •, fn ∈ T̃ (H) for every n
(so that h(y) 6= fn(y) for each h ∈ T̃ (H) and every n), and H ∈ S∗(H) (so
that pH{y} < pH{(y, 1]}), implies

u1(f
•, t) ≥ u1(fn, t)

for each t ∈ supp{µn
2} \ Tn and every n ≥ max{J, M}, (12)

where each Tn is defined as

Tn := supp{µn
2} \ cl Nα

(
supp{µ2}

)
.

By Step 0, an N exists such that

µn
2 (Tn) < γε

4
for every n ≥ N.

From this, (11), (12), and µn
2 (Bn) > γ for every n ≥ J , we obtain, for

n ≥ max{J, M, N},

U1(f
•, µn

2 ) =
∑
t∈Bn

µn
2 (t)u1(f

•, t) +
∑

t∈An\Bn

µn
2 (t)u1(f

•, t)

≥
∑
t∈Bn

µn
2 (t)

(
u1(fn, t) + ε

)
+

∑
t∈An\Bn

µn
2 (t)u1(f

•, t)

> γε +
∑
t∈Bn

µn
2 (t)u1(fn, t) +

∑
t∈An\Bn

µn
2 (t)u1(f

•, t)

= γε +
∑
t∈Bn

µn
2 (t)u1(fn, t)

+
∑

t∈(An\Bn)\Tn

µn
2 (t)u1(f

•, t) +
∑

t∈(An\Bn)∩Tn

µn
2 (t)u1(f

•, t)

>
γε

2
+
∑
t∈Bn

µn
2 (t)u1(fn, t)

+
∑

t∈(An\Bn)\Tn

µn
2 (t)u1(fn, t) +

∑
t∈(An\Bn)∩Tn

µn
2 (t)u1(fn, t)

=
γε

2
+
∑

t∈An

µn
2 (t)u1(fn, t)

=
γε

2
> 0,
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where the last equality holds true because fn ∈ supp{µn
2} and (µn

2 , µ
n
2 ) is a

Nash equilibrium of G(An). ‖

Let (Dn) be the subsequence of (An) corresponding to (νn
2 ) from Step 2.

Since f • ∈ T̃ (H) and (An) is an increasing sequence whose union is T̃ (H),
f • ∈ Dn for some n. This and Step 2 yield f • ∈ Dn and U1(f

•, νn
2 ) > 0 for

some n, thereby contradicting that (νn
2 , νn

2 ) is a Nash equilibrium of G(Dn).
‖

Proof of Theorem 5.4. Suppose that F ∈ F satisfies xF ≤ mF . Take any
H ∈ S∗(F ) sufficiently close to F in the sense of Lemma 7.9. Let (An) be
an increasing sequence of finite sets whose union is T̃ (H). To each n there
corresponds a Nash equilibrium (µn

1 , µ
n
2 ) of G(An).

The set T̃ (H) is a countable subset of T (H) that ensures, by virtue of
Lemma 7.12, local payoff security of each Ui on P(T (H))2. It follows from
Lemma 7.14 that T̃ (H) is a strategic approximation to G(T (H)), and so

any limit of equilibria of the sequence of finite games
(
G(An)

)
is an equilib-

rium of G(T (H)). Since P(T (H))2 is sequentially compact (in fact, compact
and metric), a subsequence of the sequence (µn

1 , µ
n
2 ) exists that converges in

P(T (H))2. The limit (µ1, µ2) of one such subsequence is therefore a Nash
equilibrium of G(T (H)). Now Lemma 7.15 gives µi(Tconv(H)) < 1 for each
i. ‖
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