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1. Introduction

This paper assesses the contribution of monetary policy to the dynamics of bond real returns. We

assume that the monetary authority controls the short-term nominal interest rate. We then model

exogenously the joint dynamics of the aggregate endowment and the monetary policy variable, and

determine bond real returns endogenously.

We adopt a heterogenous agents variant of the limited participation framework, the seg-

mented markets model, previously studied by Alvarez and Atkeson (1996), Alvarez, Lucas and

Weber (2001), Lahiri, Singh and Vegh (2003), and Occhino (2004). The central feature is that a

set of households are permanently excluded from financial markets.

When markets are segmented, monetary policy has a direct effect. Changes in the stance

of monetary policy affect the distribution of cash balances and consumption expenditures across

households. An increase in interest rates induces traders to hold more bonds, to lower their holdings

of cash balances, and to reduce their purchases of consumption goods. The traders’ marginal utility

of consumption rises, lowering the stochastic discount factor, and increasing expected bond real

returns. The smaller the economic weight of traders in the economy, the larger is this liquidity

effect of monetary policy on bond real returns. With full participation, however, real returns

are determined exclusively by the aggregate endowment, so monetary policy can affect them only

indirectly.

We then take the full and segmented markets models to the data. Three empirical dimensions

are explored: the response of bond returns to nominal interest rate shocks; the autocorrelation

of bond returns; and the term structure of volatility. The evidence strongly favors the segmented

markets model in each case.

The full participation model has incorrect predictions about the impact effect of monetary

policy, with real returns rising after an increase in interest rates. Real returns fall in the segmented

markets model and closely track the impulse responses in the data thereafter.

The segmented markets model also matches the declining positive autocorrelations and in-

creasing volatilities of bond returns as time to maturity increases. The full participation model has

negative autocorrelations and can only match the higher volatilities of longer term bond returns

by overstating short-term bond volatility.

The paper is organized as follows: section 2 describes the economy and defines the equilibrium;

section 3 explains the numerical solution method; section 4 presents and comments on the empirical
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results; section 5 concludes.

2. Model

The model is a cash-in-advance endowment economy, with a large number of households and a

monetary authority. Time is discrete and is indexed by t ≥ 0. There is a single non-durable

consumption good, money, and one-period nominal bonds, which are claims to one unit of money

payable at the end of the period. Households are of two types, traders and non-traders. Let ω > 0

and ω∗ ≥ 0 be respectively the number of traders and non-traders. We will refer to the case where
ω∗ = 0 and ω∗ > 0 respectively as the full participation model and the segmented markets model.

Households of the same type are identical in all respects. The crucial difference between the

two types of households is that non-traders spend all their money purchasing consumption goods,

while traders can purchase bonds as well.

Households start each period with cash balances from the previous period. Then, two markets

meet in sequence, a bond market and a goods market.

In the bond market, the monetary authority sells one-period nominal bonds to the traders, at

the bond price qt > 0. The monetary authority announces the bond price, and stands ready to

issue and sell any number of bonds to clear the market at that price. Open market operations are

then conducted in terms of the short-term nominal interest rate it defined by

qt ≡ 1

1 + it
, (1)

while the bond supply and the money supply are determined endogenously. We assume that the

interest rate is strictly positive, and the bond price is strictly less than one.

After the bond market, all households participate in the goods market. Each trader and each

non-trader respectively receive constant fractions Λ > 0 and Λ∗ > 0 of the exogenous stochastic

aggregate endowment Yt > 0, with ωΛ+ ω∗Λ∗ = 1. The endowment cannot be consumed directly,

and must be sold in exchange of money at the price Pt > 0. Households can only consume goods

purchased with money held before the goods market session. The money supply Mt is defined as

the amount of dollars PtYt spent in the goods market. Bonds are redeemed after the goods market

closes.

The aggregate endowment Yt and the nominal interest rate it are the only sources of uncertainty

in the economy, and their joint dynamics is exogenously modeled as follows. Let {Y t, it}∞t=0 be
the non-stochastic steady state values of the aggregate endowment and the interest rate, and
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let us assume that Y t+1/Y t = α and it = i are constant over time. We assume that ẑt ≡
[log(Yt)− log(Y t), log(it)− log(i)] follows the AR(N) process,

ẑt =
NX
n=1

ẑt−nBn + ηtC, (2)

where Bn and C are 2 × 2 matrices, C is upper triangular, ηt is a 1 × 2 vector of independently
and identically distributed standard Gaussian shocks.

Each trader chooses consumption Ct, bonds Bt, and next-period cash balances At+1 to solve

max
{Ct>0,Bt,At+1>0}∞t=0

E0

" ∞X
t=0

βtu(Ct)

#
, (3)

subject to

qtBt + PtCt ≤ At,

At+1 = At − qtBt − PtCt + PtΛYt +Bt,
(4)

given the traders’ initial cash balances A0 > 0 in period zero. E0 is the expectation conditional on

information available after ẑ0 has been revealed. The period utility function u(C) ≡ C1−σ/(1−σ)

is constant relative risk aversion, and the preferences discount factor satisfies βα1−σ ∈ (0, 1).
Since the bond price qt is strictly less than one for all t, holding idle cash balances is never

optimal for traders, so the traders’ cash-in-advance constraint always holds with equality. Then,

the two constraints (4) in the problem (3) can be substituted with

qtBt + PtCt = At,

At+1 = PtΛYt +Bt.
(5)

Non-traders spend all their initial cash balances purchasing consumption goods. Under this

assumption, the behavior of a non-trader is simply described by,

PtC
∗
t = A∗t ,

A∗t+1 = PtΛ
∗Yt,

(6)

given the non-traders’ initial cash balances A∗0 > 0 in period zero.

The economy is described by the traders’ initial assets A0, the non-traders initial assets A∗0,

the initial exogenous state [ẑ0, . . . , ẑ−N+1], and the law of motion (2) for the exogenous state ẑt.

Histories are made of the sequences of all possible realizations of the shocks ηt. An equilibrium

is a set of contingent sequences {Ct > 0, Bt, At+1 > 0}∞t=0 of consumption demand, bond demand
and cash balances for traders, {C∗t > 0, A∗t+1 > 0}∞t=0 of consumption demand and cash balances
for non-traders, a contingent sequence {Dt}∞t=0 of bonds supplied by the monetary authority, and
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a contingent sequence {Pt > 0}∞t=0 of prices such that the traders’ contingent sequence solves the
traders’ optimization problem (3), the non-traders’ contingent sequence satisfies the non-traders’

equations (6), and the bond and goods market equilibrium conditions

ωBt = Dt,

ωCt + ω∗C∗t = Yt.
(7)

The necessary first-order conditions for the traders’ optimization problem are

βtu0(Ct)− ν1tPt = 0,

−qtν1t + ν2t = 0,

−ν2t +Et[ν
1
t+1] = 0,

(8)

and the transversality condition is

lim
t→∞E0

£
ν1tAt

¤
= 0, (9)

where ν1t and ν2t are the Lagrange multipliers associated with the two constraints (5). From the

first-order conditions, it follows that

βtu0(Ct) = ν1tPt,

qtν
1
t = Et[ν

1
t+1].

(10)

The system describing the equilibrium is, then, made of the identity (1), the law of motion (2)

for the exogenous state, the traders’ first-order conditions (10), the traders’ constraints (5), the

non-traders’ constraints (6), and the equilibrium conditions (7).

In this paper, we focus on the predictions of the model about bond real returns. All throughout,

bond real returns are real holding period returns of discount real bonds, which are assets with a

fixed real payoff at some fixed maturity date. To compute the price of any financial asset, we

assume that only traders can participate in the bond market. From standard arguments, it follows

that the equilibrium price Qt of a one-period financial asset with nominal payoff Πt+1 and the

equilibrium real price Q∗t of a one-period financial asset with real payoff Π∗t+1 are given by

ν1tQt = Et[ν
1
t+1Πt+1],

ν1tQ
∗
tPt = Et[ν

1
t+1Π

∗
t+1Pt+1].

(11)

Multi-period financial assets are priced in the same way, recursively.

3. Solution

For convenience, variables are normalized as follows. As in Lucas (1990), nominal variables are

normalized by aggregate cash balances available at the beginning of the period. Let At ≡ ωAt +
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ω∗A∗t be the initial aggregate cash balances. Then, yt ≡ Yt/Y t, νt ≡ u0(ω)ν1tAt/β
tu0(Y t)Y t,

ct ≡ ωCt/Y t, bt ≡ ωBt/At, at ≡ ωAt/At, c∗t ≡ ω∗C∗t /Y t, a∗t ≡ ω∗A∗t/At, dt ≡ Dt/At, γt ≡ At+1/At,

pt ≡ PtY t/At. Also, let us define λ ≡ ωΛ = 1−ω∗Λ∗ the traders’ share of the aggregate endowment.
Then, λ = 1 in the full participation model, and λ ∈ (0, 1) in the segmented markets model.

The system describing the equilibrium can then be written as

qt(1 + it) ≡ 1, (12a)

u0(ct) = νtpt, (12b)

qtγtνt = βEt[νt+1]u
0(α)α, (12c)

qtbt + ptct = at, (12d)

γtat+1 = ptλyt + bt, (12e)

ptc
∗
t = a∗t , (12f)

γta
∗
t+1 = pt(1− λ)yt, (12g)

bt = dt, (12h)

ct + c∗t = yt, (12i)

at + a∗t = 1, (12j)

together with the law of motion (2) for the exogenous state. The transversality condition (9) can

be written as

lim
t→∞E0

£
βtu0(Y t)Y tνtat/u

0(ω)ω
¤
= 0, (13)

and the asset pricing equations (11) as

γtνtQt = βEt[νt+1Πt+1]u
0(α)α,

νtQ
∗
t pt = βEt[νt+1Π

∗
t+1pt+1]u

0(α).
(14)

It is convenient to derive an equivalent system as follows. From the households’ budget con-

straints (12e) and (12g), it follows that

γtat+1 + γta
∗
t+1 = ptλyt + bt + pt(1− λ)yt,

qtγt[at+1 + a∗t+1] = qtptyt + qtbt.

Then, using the households’ cash-in-advance constraints (12d) and (12f), the bond price (12a), and
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the goods market equilibrium condition (12j),

qtγt[at+1 + a∗t+1] = qtptyt + at − ptct + a∗t − ptc
∗
t ,

qtγt = qtptyt + 1− ptct − ptc
∗
t ,

qtγt + (1− qt)ptyt = 1,

which we use in place of the traders’ budget constraint (12e) in the previous system (12).

In the non-stochastic steady state, all normalized variables are constant over time, and yt = 1.

Since βα1−σ ∈ (0, 1), the transversality condition (13) is satisfied in the non-stochastic steady
state. After log-linearizing1 the system around the non-stochastic steady state, we obtain

q̂t +
i

1 + i
ı̂t ≡ 0,

−σĉt = ν̂t + p̂t,

q̂t + γ̂t + ν̂t = Et[ν̂t+1],

qb[q̂t + b̂t] + pc[p̂t + ĉt] = aât,

qγ[q̂t + γ̂t] + (1− q)py[− q

1− q
q̂t + p̂t + ŷt] = 0,

p̂t + ĉ∗t = â∗t ,

γ̂t + â∗t+1 = p̂t + ŷt,

b̂t = d̂t,

cĉt + c∗ĉ∗t = yŷt,

aât + a∗â∗t = 0,

(15)

where the variables without the time subscript are the non-stochastic steady state values, while

the variables with the hat are the percentage deviations from the steady state values.

The system (15) together with the law of motion (2) for the exogenous state can be reduced to

a four equation system in the two exogenous variables ŷt and ı̂t, the endogenous state variable â∗t ,

and the control variable ν̂t. With standard methods, we derive the linear system describing the

equilibrium evolution of the three state variables ŷt, ı̂t, and â∗t , and linking all the other variables

1 We have solved the model with the alternative methodology described in Occhino (2004). The methodology
consists in defining the recursive competitive equilibrium as functions solving a system of equations, devising
an operator whose fixed point is an equilibrium, and iterating on the operator until convergence. The
advantage of this approach is that it avoids linearizing the model. The disadvantage is that it requires
keeping the number of state variables as low as possible, and it can be used only for the case N = 1.
Although the two methodologies are very different, they yield similar results in the N = 1 case.
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to the three state variables2. Then, we derive the percentage deviation Q̂t of the price of a one-

period financial asset as a function of the percentage deviation Π̂t+1 of its nominal payoff and

the percentage deviation Q̂∗t of the real price of a one-period financial asset as a function of the

percentage deviation Π̂∗t+1 of its real payoff from

γ̂t + ν̂t + Q̂t = Et[ν̂t+1 + Π̂t+1],

ν̂t + Q̂∗t + p̂t = Et[ν̂t+1 + Π̂
∗
t+1 + p̂t+1].

(16)

Multi-period financial assets are priced recursively.

To gain further insight, after using −σĉt = ν̂t + p̂t from the previous system (15), the last

equation can be written as

Q̂∗t = Et[−σ(ĉt+1 − ĉt) + Π̂
∗
t+1], (17)

which is a familiar asset pricing equation relating the real price of a one-period financial asset to

its real payoff and to the intertemporal marginal rate of substitution of the subset of households

which participate in financial markets. In the specific case of a one-period real bond, the real

payoff is constant, so Π̂∗t+1 = 0, and the percentage deviation of its real price Q̂∗t is equal to

minus the expectation of the relative risk aversion σ times the percentage deviation of the traders’

consumption growth rate. Equivalently,

r̂t = σEt[ĉt+1 − ĉt], (18)

the deviation r̂t of the real interest rate from its steady state value is equal to the relative risk

aversion σ times the expected percentage deviation of the consumption growth rate of the subset

of households which participate in financial markets.

4. Results

4.1 Calibration

The key parameters in the model are the traders’ share of the aggregate endowment λ and the

relative risk aversion σ. λ is a measure of the traders’ economic weight. For instance, in the

case that all households receive the same endowment, λ is the percentage of traders, that is the

2 The solution method is based on the eigenvalue decomposition of the matrix describing the evolution of the
state and control variables. Very small imaginary parts of the solution are dropped. As a check, the model has
been solved using MATLAB files written by Chris Sims and Paul Klein available at http://www.ssc.uwo.ca/
economics/faculty/klein/. Their solution method is based on the Schur decomposition of the matrix describ-
ing the evolution of the state and control variables. The two methods yield identical solutions.
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ratio ω/(ω + ω∗) of the number of traders to the total number of households. When λ is equal

to 1, the economy is the benchmark full participation, representative agent, endowment economy

with cash-in-advance constraints. The lower λ, the greater is the degree of market segmentation.

Below, we show results for values of λ in the range between 0.01 and 1, and for values of σ in the

range between 0.5 and 3. We consider λ = 0.1 and σ = 2 as benchmark values3 for the segmented

markets model.

To calibrate the other parameters, we use monthly data for the period 1970:01-1999:12 from

CRSP and from the FRED II Database of the Federal Reserve Bank of St. Louis.

Each period is one month. The aggregate endowment growth rate α− 1 in the non-stochastic
steady state is set equal to 0.0025, to match the 3.02% average yearly growth rate of real personal

consumption expenditure (nondurable goods and services). The inverse of the gross real interest

rate βu0(α) in the non-stochastic steady state is set equal to 0.9939 to match the 7.34% aver-

age yearly real rate of return on the value-weighted total stock market index. The value of the

preferences discount factor β, then, varies with the relative risk aversion σ.

To obtain the law of motion (2) for the exogenous state ẑt, we run a VAR with N lags of the

linearly-detrended logarithm of real personal consumption expenditure and the logarithm of the

effective federal funds rate. We set N = 12 on the basis of the AIC, but we found the results were

not very sensitive to this choice.

We now compare the predictions of the full participation model (λ = 1) and the segmented

markets model (λ ∈ (0, 1)) on bond real returns dynamics with data. Bond real returns are real
holding period returns of Treasury bonds with constant maturities. For ease of interpretation, we

express rates in annual percentage points, and we multiply logarithms by 100.

4.2 Impulse response analysis

We begin with an impulse response analysis emphasizing the liquidity effect of monetary policy

on bond real returns. We make the standard structural assumption that a monetary policy shock

does not effect the aggregate endowment contemporaneously. We then estimate a tri-variate VAR

system consisting of the detrended log consumption, the log federal funds rate, and the bond real

return. We decompose the covariance matrix of the innovations using the Cholesky factorization,

and we identify a contractionary monetary policy shock as a positive shock to the federal funds

3 In related work, Landon-Lane and Occhino (2004) estimate a segmented markets model with data on the
money growth rate and the inflation rate, and obtain a maximum likelihood estimate of λ at 0.13.
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rate equation. Figure 1 shows the impulse responses over a 24-month period to a 100 basis point

increase in the federal funds rate.

[Insert Figure 1 Here]

The figure shows that, in the impact period of a contractionary monetary policy shock, bond

returns decrease for maturities of 3 months and higher. The 3-month bond return falls by −0.33%,
the 1-year by −1.70%, and the 2-year by −2.61%. Returns stay negative for a few periods and
then become positive for most of the following periods until the shock dissipates near the end of

the 24-month horizon analyzed.

The full participation model mis-characterizes the bond return responses. 3-month, 1-year and

2-year bond returns rise in the impact period of a contractionary shock, and are negative for most

of the following periods.

The decline of expected bond returns is due to a negative deviation of the aggregate con-

sumption growth rate from its steady state value4. In the full participation model, the stochastic

discount factor is a function of the aggregate consumption growth rate. The deviation of the real

interest rate in (18), as well as the deviations of expected real returns, remain negative for most

of the periods following a contractionary monetary policy shock.

The segmented markets model, however, correctly predicts the sign of the bond returns, al-

though it tends to overstate the impact effect of the shock. The 3-month bond return falls by

−1.08% in the impact period, the 1-year and 2-year bond returns fall by −3.91% and −5.18%.
After the first period, bond returns become quickly positive, and match closely their empirical

counterparts.

With segmented markets, the stochastic discount factor is determined by the intertemporal

marginal rate of substitution of households which participate in financial markets. As pointed out

by Grossman and Weiss (1983), Lucas (1990), Alvarez and Atkeson (1996) and Occhino (2004)

in different limited participation models, a contractionary monetary policy shock decreases the

participants’ cash balances and consumption expenditures, increases their expected consumption

growth rate, and as in (18), increases the real interest rate and expected real returns. The seg-

mented markets model then matches the positive returns in the data that follow the impact period

of a contractionary monetary policy shock.

4 Christiano, Eichenbaum and Evans (1999) document that the deviation of the aggregate production growth
rate is negative for about six quarters after a contractionary monetary policy shock.
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To make a formal comparison between the full participation and the segmented markets models,

we follow the design suggested by Canova (2001). We compute [16%, 84%] confidence bands for the

empirical impulse responses using the Sims and Zha (1999) procedure. We then count the number

of periods when the model impulse response is consistent with its’ empirical counterpart.

The best fit for the segmented markets model is the 2-year bond return, for which the model

response falls into the 68% confidence bands 15 periods out of 24. At that horizon, the full

participation model response falls within the bands only 8 times. The comparison favors the

segmented markets model for all four maturities. For the 1-month bond return, the count is 10 for

segmented markets, and only 3 for full participation. At 3-months, the counts are 6 versus 1, and

at 1-year, the counts are 9 versus 2. Summing over these four securities, the impulse responses fall

within the bands 41.7% of the times for the segmented markets model and only 16.7% of the times

for the full participation model. The Diebold-Mariano (1995) statistic for the number of impulse

responses falling within the bands is 4.38 which clearly favors the segmented markets model.

4.3 Bond return autocorrelations

We now consider the autocorrelation structure of short-term bond real returns. Tables 1.1 and

1.2 display the first-order autocorrelation coefficients of the aggregate endowment, the nominal

interest rate, and bond real returns with maturities 1 to 24 months in the model and in the data,

for several values of the traders’ share λ of the aggregate endowment and relative risk aversion σ.

[Insert Table 1.1 and 1.2 Here]

The autocorrelations of the logarithm of the aggregate endowment and the nominal interest

rate approximately match the autocorrelations of the linearly detrended log consumption and the

federal funds rate.

Bond returns data reveal a smooth decline of the first-order autocorrelation as a function of

maturity. The 1-month autocorrelation is 0.48. At 1-year, the autocorrelation has fallen to 0.31;

by 2-years, the autocorrelation is 0.25.

The full participation model is far from replicating these moments. There is a short-run

positive autocorrelation of 0.03 at the 1-month horizon, but it is much smaller than in the data.

The autocorrelations then turn negative until the 11-month returns. Here again, the bond return

autocorrelations are simply inheriting through the stochastic discount factor the behavior of the

aggregate consumption growth rate.
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The segmented markets model, however, correctly predicts the sign of the autocorrelations,

and their decline with maturity, although the predicted decline is faster than in the data. For our

benchmark case of σ = 2 and λ = 0.1, the 1-month autocorrelation is 0.64 compared with 0.48,

while the 1-year autocorrelation is 0.10 compared with 0.31. Except for the 1-month maturity,

the model autocorrelations are lower than in the data. Nonetheless, the Diebold-Mariano statistic,

comparing the root mean squared errors of the full participation and the segmented markets models,

is 6.64, strongly favoring the assumption of market segmentation.

4.4 Bond market volatility

We now turn to the contribution of the liquidity effect of monetary policy to the volatility structure

of bond real returns. Tables 2.1 and 2.2 display the standard deviations of the aggregate endow-

ment, the nominal interest rate and bond real returns in the model and in the data, for several

values of λ and σ.

[Insert Table 2.1 and 2.2 Here]

The most striking feature of the data is that the volatility of bond real returns is a steeply

increasing function of maturity. The 1-month standard deviation is 3.67, the 1-year and 2-year are

8.47 and 13.01 respectively.

The full participation model (λ = 1) is not able to replicate the volatility of bond returns. At

the benchmark relative risk aversion σ = 2, it significantly under-predicts bond returns volatilities

for maturities of 1-year and higher. When the relative risk aversion is higher, all volatilities

increase, so the full participation model over-predicts bond return volatilities for short maturities.

For instance, when σ = 3, the full participation model approximately matches the 1-year volatility,

still under-predicts the 2-year volatility, and significantly over-predicts the volatility for maturities

up to 6 months.

The segmented markets model accounts for the contribution of monetary policy to bond returns

volatility. The model with λ = 0.1 and σ = 2 does an excellent job in predicting the volatility of

bond returns as function of maturity. The Diebold-Mariano statistic for a root mean squared error

loss function is 3.02 which favors the segmented markets model over the full participation model

at the 99% confidence level.

The predicted bond return volatility in the segmented markets case derives from two sources.

The first is the aggregate endowment volatility, which is common to full participation models.
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The second is the volatility of the monetary policy variable, namely the nominal interest rate. The

higher the relative risk aversion, the more effective the first source. The higher market segmentation

(the lower λ), the more effective the second source. Both increasing the risk aversion and increasing

market segmentation increase bond returns volatility.

The model cannot replicate bond returns volatilities further along the yield curve. To fully

explain the volatility of assets with longer maturities, we would need to introduce more persistent

shocks. Bansal and Yaron (2003), for instance, introduce an additional stochastic component of

the aggregate endowment growth rate with small volatility and large persistence.

5. Conclusion

In a segmented markets model, we have been able to account for the contribution of monetary

policy to bond real returns. Data on Treasury bond returns strongly favor the segmented markets

model over the full participation model. For maturities up to 2 years, the segmented markets model

is able to replicate the sign and the size of the impulse response of bond returns to monetary policy

shocks, it correctly predicts the sign of their autocorrelation, and it closely matches their volatility

along the yield curve.

In future work, we plan to study the effect of endogenizing production. With real sector shocks,

we hope to explain the impact of segmented markets on long term bonds and equities.
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Table 1.1
Impact of Market Segmentation and Risk Aversion on Autocorrelations

σ = 3 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 0.0297 0.7256 0.7371 0.6298 0.4434 0.4850
2-month -0.2809 0.4408 0.6022 0.4500 0.1546 0.4838
3-month -0.2099 0.2019 0.5199 0.4946 0.2419 0.4802
4-month -0.1533 0.1015 0.3977 0.4569 0.2802 0.4726
5-month -0.1904 0.0659 0.3106 0.3842 0.2247 0.4608
6-month -0.1582 0.0470 0.2462 0.3333 0.2341 0.4455
7-month -0.1999 0.0285 0.1833 0.2486 0.1639 0.4272
8-month -0.1594 0.0260 0.1578 0.2255 0.1789 0.4063
9-month -0.1006 0.0242 0.1367 0.2037 0.2014 0.3833
10-month -0.1135 0.0170 0.1127 0.1668 0.1624 0.3589
11-month 0.0298 0.0116 0.0963 0.1485 0.1893 0.3334
1-year 0.0331 0.0162 0.0917 0.1427 0.1975 0.3074
2-year -0.1592 0.0822 0.0680 0.0825 0.1000 0.2470

σ = 2 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 0.0297 0.6279 0.7123 0.6366 0.4507 0.4850
2-month -0.2809 0.2384 0.5317 0.4530 0.1649 0.4838
3-month -0.2099 0.0422 0.3945 0.4599 0.2520 0.4802
4-month -0.1533 -0.0148 0.2683 0.3927 0.2882 0.4726
5-month -0.1904 -0.0319 0.1923 0.3114 0.2318 0.4608
6-month -0.1582 -0.0365 0.1448 0.2576 0.2385 0.4455
7-month -0.1999 -0.0482 0.0997 0.1844 0.1667 0.4272
8-month -0.1594 -0.0436 0.0852 0.1644 0.1795 0.4063
9-month -0.1006 -0.0381 0.0744 0.1476 0.1987 0.3833
10-month -0.1135 -0.0432 0.0590 0.1192 0.1595 0.3589
11-month 0.0298 -0.0403 0.0521 0.1079 0.1827 0.3334
1-year 0.0331 -0.0306 0.0518 0.1047 0.1895 0.3074
2-year -0.1592 0.0315 0.0462 0.0641 0.0948 0.2470

Model Data
log(y) 0.9719 0.9716

i 0.9871 0.9771
D-M 6.6374

Autocorrelation coefficients of the aggregate endowment, the nominal interest rate and bond

real returns in the model and in the data. λ is the traders’ share of the aggregate endowment, σ

is the relative risk aversion. D-M is the Diebold-Mariano statistic comparing the full participation

and the segmented markets models in the benchmark case σ = 2 and λ = 0.1. The statistic has an

asymptotic normal distribution.
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Table 1.2
Impact of Market Segmentation and Risk Aversion on Autocorrelations

σ = 1 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 0.0297 0.4549 0.6642 0.6516 0.4724 0.4850
2-month -0.2809 -0.0501 0.3584 0.4369 0.1956 0.4838
3-month -0.2099 -0.1508 0.1619 0.3465 0.2802 0.4802
4-month -0.1533 -0.1624 0.0689 0.2412 0.3087 0.4726
5-month -0.1904 -0.1660 0.0255 0.1648 0.2492 0.4608
6-month -0.1582 -0.1609 0.0057 0.1222 0.2471 0.4455
7-month -0.1999 -0.1692 -0.0148 0.0765 0.1717 0.4272
8-month -0.1594 -0.1599 -0.0168 0.0656 0.1782 0.4063
9-month -0.1006 -0.1494 -0.0169 0.0582 0.1890 0.3833
10-month -0.1135 -0.1554 -0.0232 0.0432 0.1502 0.3589
11-month 0.0298 -0.1426 -0.0206 0.0412 0.1649 0.3334
1-year 0.0331 -0.1295 -0.0170 0.0417 0.1684 0.3074
2-year -0.1592 -0.1050 -0.0122 0.0272 0.0821 0.2470

σ = 0.5 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 0.0297 0.2965 0.5852 0.6507 0.5082 0.4850
2-month -0.2809 -0.2373 0.1326 0.3457 0.2462 0.4838
3-month -0.2099 -0.2729 -0.0353 0.1697 0.3204 0.4802
4-month -0.1533 -0.2695 -0.0798 0.0757 0.3292 0.4726
5-month -0.1904 -0.2720 -0.0971 0.0273 0.2618 0.4608
6-month -0.1582 -0.2653 -0.1013 0.0058 0.2435 0.4455
7-month -0.1999 -0.2740 -0.1097 -0.0161 0.1660 0.4272
8-month -0.1594 -0.2636 -0.1067 -0.0185 0.1633 0.4063
9-month -0.1006 -0.2529 -0.1029 -0.0188 0.1636 0.3833
10-month -0.1135 -0.2610 -0.1063 -0.0254 0.1282 0.3589
11-month 0.0298 -0.2430 -0.0998 -0.0221 0.1339 0.3334
1-year 0.0331 -0.2321 -0.0959 -0.0197 0.1342 0.3074
2-year -0.1592 -0.2322 -0.0964 -0.0228 0.0643 0.2470

Model Data
log(y) 0.9719 0.9716

i 0.9871 0.9771

Autocorrelation coefficients of the aggregate endowment, the nominal interest rate and bond

real returns in the model and in the data. λ is the traders’ share of the aggregate endowment, σ

is the relative risk aversion.
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.
Table 2.1

Impact of Market Segmentation and Risk Aversion on Volatilities
σ = 3 Data

λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01
1-month 6.4168 5.3974 4.1326 3.4020 2.8154 3.6679
2-month 7.6663 5.9082 4.3074 3.6148 3.1624 3.9051
3-month 7.0517 7.2337 4.6186 3.6135 3.0055 4.1642
4-month 7.0226 8.5698 5.2559 3.8686 3.0005 4.4809
5-month 7.4876 9.3295 5.8439 4.1834 3.1505 4.8545
6-month 7.6704 10.0353 6.5598 4.5934 3.2381 5.2278
7-month 7.6219 10.5914 7.3787 5.2223 3.6332 5.7439
8-month 7.8148 10.9524 8.0249 5.6529 3.7316 6.2455
9-month 7.8900 11.4091 8.7610 6.1868 3.8704 6.7755
10-month 7.5804 11.7927 9.5251 6.8527 4.3019 7.3269
11-month 7.5991 12.7189 10.5958 7.7164 4.6392 7.8926
1-year 8.2558 12.9822 11.1212 8.1345 4.7580 8.4653
2-year 10.2395 10.7096 13.8110 12.2110 8.0916 13.0127

σ = 2 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 4.2778 4.6673 3.9877 3.4189 2.8293 3.6679
2-month 5.1109 5.3514 4.2217 3.6364 3.1714 3.9051
3-month 4.7011 6.7076 4.7261 3.7255 3.0192 4.1642
4-month 4.6817 7.8242 5.5369 4.0986 3.0233 4.4809
5-month 4.9918 8.3238 6.2417 4.5188 3.1810 4.8545
6-month 5.1136 8.7330 7.0202 5.0334 3.2834 5.2278
7-month 5.0813 9.0669 7.8790 5.7584 3.6962 5.7439
8-month 5.2099 9.1783 8.4936 6.2522 3.8112 6.2455
9-month 5.2600 9.3855 9.1579 6.8302 3.9704 6.7755
10-month 5.0536 9.5990 9.8528 7.5339 4.4202 7.3269
11-month 5.0661 10.2226 10.7702 8.3940 4.7822 7.8926
1-year 5.5039 10.2441 11.1355 8.7922 4.9147 8.4653
2-year 6.8263 8.1288 12.3435 12.2838 8.3553 13.0127

Model Data
log(y) 1.5460 1.5307

i 2.7392 3.2341
D-M 3.0163

Standard deviations of the aggregate endowment, the nominal interest rate and bond real

returns in the model and in the data. λ is the traders’ share of the aggregate endowment, σ is

the relative risk aversion. D-M is the Diebold-Mariano statistic comparing the full participation

and the segmented markets models in the benchmark case σ = 2 and λ = 0.1. The statistic has an

asymptotic normal distribution.
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Table 2.2
Impact of Market Segmentation and Risk Aversion on Volatilities

σ = 1 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 2.1389 3.6948 3.8601 3.4964 2.8730 3.6679
2-month 2.5554 4.5692 4.2797 3.7567 3.2019 3.9051
3-month 2.3506 5.6629 5.1962 4.1210 3.0658 4.1642
4-month 2.3409 6.2596 6.2420 4.7848 3.0996 4.4809
5-month 2.4959 6.3640 7.0256 5.4281 3.2832 4.8545
6-month 2.5568 6.4326 7.7576 6.1255 3.4311 5.2778
7-month 2.5406 6.5531 8.5069 6.9800 3.8950 5.7439
8-month 2.6049 6.4756 8.9198 7.5337 4.0587 6.2455
9-month 2.6300 6.5011 9.3335 8.1236 4.2753 6.7755
10-month 2.5268 6.6077 9.7868 8.8116 4.7743 7.3269
11-month 2.5330 6.9178 10.3463 9.5754 5.2009 7.8926
1-year 2.7519 6.7769 10.3929 9.8577 5.3697 8.4653
2-year 3.4132 5.5916 9.9322 11.7073 9.0569 13.0127

σ = 0.5 Data
λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01

1-month 1.0695 2.7318 3.7236 3.6140 2.9509 3.6779
2-month 1.2777 3.5553 4.4106 4.0115 3.2594 3.9051
3-month 1.1753 4.1894 5.6016 4.7947 3.1629 4.1642
4-month 1.1704 4.3853 6.5848 5.7526 3.2638 4.4809
5-month 1.2479 4.3286 7.1597 6.5376 3.5075 4.8545
6-month 1.2784 4.3063 7.6056 7.2779 3.7470 5.2778
7-month 1.2703 4.3716 8.0433 8.0799 4.3035 5.7439
8-month 1.3025 4.2846 8.1553 8.5189 4.5553 6.2455
9-month 1.3150 4.2827 8.2862 8.9494 4.8682 6.7755
10-month 1.2634 4.3572 8.4893 9.4477 5.4441 7.3269
11-month 1.2665 4.5041 8.7435 9.9573 5.9663 7.8926
1-year 1.3760 4.3625 8.5915 10.0058 6.1893 8.4653
2-year 1.7066 3.8243 7.9445 10.1933 10.1097 13.0127

Model Data
log(y) 1.5460 1.5307

i 2.7392 3.2341

Standard deviations of the aggregate endowment, the nominal interest rate and bond real

returns in the model and in the data. λ is the traders’ share of the aggregate endowment, σ is the

relative risk aversion.
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Figure 1: Impulse Responses to Monetary Shock
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