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Abstract

This paper introduces bootstrap specification tests for diffusion processes. In the one-
dimensional case, the proposed test is closest to the nonparametric test introduced by Ait-
Sahalia (1996), in the sense that both procedures determine whether the drift and variance
components of a particular continuous time model are correctly specified. However, we compare
cumulative distribution functions, while Ait-Sahalia compares densities. In the multidimensional
and/or multifactor case, the proposed test is based on the comparison of the empirical CDF
of the actual data and the empirical CDF of the simulated data. The limiting distributions of
both tests are functionals of zero mean Gaussian processes with covariance kernels that reflect
data dependence and parameter estimation error (PEE). In order to obtain asymptotically valid
critical values for the tests, we use an empirical process version of the block bootstrap which
properly accounts for the contribution of PEE. An example based on a simple version of the Cox,
Ingersol and Ross (1985) square root process is outlined and related Monte Carlo experiments
are carried out. These experiments suggest that the test has good finite sample properties, even
for samples as small as 400 observations when tests are formed using critical values constructed
with as few as 100 bootstrap replications.

JEL classification: C12, C22.
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1 Introduction

This paper introduces two bootstrap specification tests for diffusion processes. In the one-dimensional
case, note that the invariant density associated with the diffusion is implied by the specification of
the drift and variance terms. Therefore, we can construct a Kolomogorov type test, based on com-
parison of the empirical cumulative distribution function and the cumulative distribution function
(CDF) implied by the specification of the drift and the variance, under the null model. This test,
which is the first of our two tests, is closest to the nonparametric test introduced by Ait-Sahalia
(1996), in the sense that both procedures determine whether the drift and variance components of a
particular continuous time model are correctly specified, although our test is based on a comparison
of CDFs, while Ait-Sahalia’s is based on a comparison of densities. Thus, his approach requires
the use of a nonparametric density estimator (and hence the choice of the bandwidth parameter)
and is characterized by a nonparametric rate, while our test has a parametric rate. In the case
of either multidimensional diffusions or multifactor models characterized by stochastic volatility,
the functional form of the invariant density of the return(s) is no longer guaranteed to be given in
closed form, upon joint specification of the drift and variance terms. However, in this case we can
still compare empirical distributions, and our second test is thus based on the comparison of the
empirical distribution of the actual data and the empirical distribution of the (model) simulated
data.

It should be noted that tests based on the comparison of CDFs have no power against 7.i.d.
alternatives that are generated by the same marginal density as that implied under Hy. However,
this feature of our tests is not particularly relevant in the context of highly dependent financial data,
for example. Nevertheless, it would in principle be interesting to construct specification tests for
diffusions based on the specification of the transition density. The main difficulty with this is that
knowledge of the drift and variance terms of a diffusion does not in turn generally imply knowledge
of the transition density. Indeed, if the functional form for the transition density were known, we
could test the hypothesis of correct specification of a diffusion via the generalized cross-spectrum
approach of Hong (2001), (see also Hong and Li (2002), and Hong, Li and Zhao (2002) for applica-
tion to testing financial models), or via the robust periodogram approach of Thompson (2002). In
the case in which the transition density is unknown, a test can be constructed by comparing the

kernel (conditional) density estimator of the actual and simulated data, as in Altissimo, Fornari



and Mele (2002).! Alternatively, closed form approximation of the transition density (and hence
the likelihood function) is proposed by Ait-Sahalia (1999, 2002), who also provides conditions under
which the argmax of the approximated likelihood is asymptotically equivalent to the “true” max-
imum likelihood estimator. Whether the same approach can be used to obtain an approximation
of the conditional distribution to be used in an implementation of a conditional Kolmogorov test,
along the lines of Andrews (1997), is left to future research. A possible justification for comparing
marginal distributions instead of conditional distributions is the case of subordinated diffusions (see
e.g. Conley, Hansen, Luttmer and Scheinkman (1997)), where the subordinated process may have
the same stationary density as the underlying diffusion, but not the same transition density.

As mentioned above, the test that we propose for the one-dimensional case is based on compar-
ison of the empirical CDF of the data and the distribution implied by the drift and the variance of
the diffusion, evaluated at the estimated parameters.? In the multidimensional and /or multifactor
case, our test is based on comparison of the empirical distribution of the data and the empirical
distribution of data simulated using estimated parameters. In both cases, parameters are estimated
via the simulated generalized method of moments (SGMM) approach of Duffie and Singleton (1993),
using as many moment conditions as parameters (exact identification). As is common with these
types of tests, the limiting distributions are functionals of zero mean Gaussian processes with co-
variance kernels that reflect both the contribution of parameter estimation error (PEE) as well as
the time series nature of the data. Thus, the limiting distributions are not nuisance parameters free
and critical values cannot be tabulated. Our approach is to provide valid asymptotic critical values
via an extension of the empirical process version of the block bootstrap which properly captures
the contribution of PEE, for the case where parameters are estimated via SGMM. Of note in this
context is that when the simulation error is negligible (i.e. the simulated sample grows faster than

the historical sample), and given exact identification, the results developed by Goncalves and White

'Unfortunately, in this context there is not a well defined conditional empirical distribution. Interestingly, Thomp-
son (2002) suggests an ingenious device (based on the use of an Euler scheme) for approximating the transition func-
tion, when the latter is unknown. However, the approximated conditional distribution function is not differentiable
over the parameter space, so that contribution of parameter estimation error to the limiting distribution cannot be

accounted for using his approach in conjunction with standard techniques.
%A Kolmogorov-Smirnov test for diffusion processes has previously been suggested by Fournie (1993), for the case

in which the continuous trajectories are observed.



(2002) for QMLE estimators extend to SGMM estimators.3

"The potential usefulness of our proposed bootstrap based tests is examined via a series of Monte
Carlo experiments in the context of testing the goodness of fit of a square root diffusion process,
which is specified using a simplified version of the Cox, Ingersoll and Ross (1985) model, under
the null hypothesis. Under the alternative, logged data are generated according to an Ornstein-
Uhlenbeck process, so that the data are lognormal. For samples of 400, 800, and 1200 observations,
and based on the use of bootstrap critical values constructed using as few as 100 replications,
rejection rates under the null are quite close to nominal values, and rejection rates under the
alternative are generally high.4

The rest of the paper is organized as follows. In Section 2, we outline the specification test
and analyze its asymptotic behavior, for the case of one-dimensional diffusions. Section 3 out-
lines the bootstrap procedure which we propose, and establishes its asymptotic validity. Section
4 discusses extention to multifactor models, and Section 5 contains the results from our Monte

Carlo experiments. Concluding remarks are contained in Section 6. All proofs are collected in an

appendix.

2 One-Dimensional Diffusion Specification Test

In this section we outline our test for the joint correct specification of the drift and variance terms

in one-dimensional stationary-ergodic diffusion processes. Let X (), t > 0, be a diffusion process

solution to the following stochastic differential equation:
dX () = b(X (t),00)dt + o (X (t),60)dW (t), (1)

where 6y € ©, © C R*, and O is a compact set.
It is known that the drift and variance terms (b(-) and o(-), respectively) uniquely determine

the stationary density, say f(z,#p), associated with the invariant probability measure of the above

3The issue of PEE is addressed by Thompson (2002) by providing upper bounds, which are valid for the case

of efficiently estimated parameters. Another approach is that of Hong and Li (2002), who perform out of sample
tests, with the estimation period growing faster than the prediction period; so that the contribution of PEE vanishes
asymptotically.

Tt is worth noting that the joint problem of simulating paths and simulating bootstrap replications make this
Monte Carlo study rather computationally intensive, and we are not aware of other simulation studies which analyze

the performance of bootstrap tests for diffusion processes.



diffusion process (see e.g. Karlin and Taylor (1981), pp. 241). In particular,
6(00) z 2b(v, 90) >

z,0)) = ———=—e ———=dv }, 2
00 = i o ([ Ay ® @
where ¢(6) is a constant ensuring that the density integrates to one. Now, suppose that we observe
a discrete sample (skeleton) of size T, say (X1,Xa,...,X7), of the underlying diffusion X (t), and
construct an estimator of 6y, say gT,S,h, which is based on the skeleton of the observed data as
well as on a (model) simulated path.5 Hereafter, we use the notation X (t) for the continuous time
process and the notation X; for the skeleton. In addition, let Fy(u) be the cumulative distribution

function associated with the underlying diffusion, and let F(u,6p) be the CDF associated with the
density in (2). We consider the following hypotheses:
Hy : Fy(u) = F(u,00), for all u € U (3)

versus

Hp : Fo(u) # F(u,8o), for some u € U, with nonzero Lebesgue measure. (4)

Now, note the a null hypothesis of joint correct specification of the drift and the variance terms
implies Hy in (3). However, the reverse does not hold, as Hy does not necessarily imply the correct
specification of the diffusion process (see equation (2)). In fact, we cannot rule out the possibility
that even though X; is not a skeleton of the solution to the stochastic differential equation in (1),

we still have that Pr(X; < u) = F(u, ). In order to test Hy versus H 4, consider the following test

statistic:®

Visn= [ Visnlwm(u)du, ®)
where

T
Visnu) = = 3 (1 < u} — Fla,r0)),
t=1

In the case in which the moment conditions can be written in closed form, we have that é},s,h = 5T, as S is
the sample length of the simulated path used in estimation of 0o, and h is the discretization parameter used in the

application of Euler and/or Milstein approximation schemes, for example (see below for further details).

In Monte Carlo experiments that are reported on below, we also examine the finite sample properties of two

different version of the test statistic, namely |Vr,g4| = fu IVr,5,1n(u)|m(u)du, and |Vr,s.n|*"P = sup,cy |Virs.n(u)].



with U the compact interval defined below (see Assumption 2) and [;; m(u)du = 1. Further, §T,57h
is the simulated GMM (SGMM) estimator, defined to be:

’ﬂ |

~ 1 & 5 6 I a4 1
Orsn = arg min <f ;g(Xt) ; 9(Xin > ( ; S g 9(Xin )
= arg Ieréiél GT,51(0) WrGr s p(6), (6)

where g denotes a vector of p moment conditions, © C RP (so that we have as many moment condi-

tions as parameters), and Xz n=X [9Nth /8]’ with S = Nh (S denotes simulation path length and h
is the discretization interval). Finally, Wy is the inverse of a heteroskedasticity and autocorrelation

(HAC) robust covariance matrix estimator. That is:

T—lp

ISy (0050 = 7 2o ) (960 - £ 5t X) )

T——lT t= T+1+lT
where w; = 1 —7/(lp +1). In order to construct simulated estimators, we require simulated paths,

under the null diffusion. If we use a Milstein scheme (see e.g. Pardoux and Talay (1985)), then

1
Xin - X?}c—l)h = b(Xégk—l)hvg)h + U(X(ok—l)hv‘g)ekh - §U(X(9k—1)h79)IU(X(0k—1)h79)h
1
+‘2'0(X(0k—1)h7 H)IU(X?k—l)hv 0)err, (8)

where €, A2 N(0,h), k =1,...,N, Nh = S, and ¢’ is the derivative with respect to the first

where G oo (8) WoGoo(8) = plim7 5,00 h0 Gr,sn(0)WrGr,gh(0), and 6 = 6 under the null. The
reason why we limit our attention to the exactly identified case is that this ensures that Goo(67) =0,
even when the model used to simulate the diffusion is misspecified, in the sense of differing from
the underlying DGP.”

A complete treatment of the asymptotic behavior of (non simulated) GMM in the joint presence

of overidentification and misspecification is provided by Hall and Inoue (2003), who show that in

"First order conditions imply that

1
VoGoo (81 W' Gou(8') =
However, in the case for which the number of parameters and the number of moment conditions is the same,

VoGoo(07) w'is invertible, and so the first order conditions also imply that G " =o.



the case of a HAC-type weighting matrix, the rate of convergence depends on the lag truncation
parameter. For the sake of simplicity, we focus on SGMM estimators in this paper. However, in
the case of correct specification, we could equally rely on Indirect Inference (II: Gourieroux, Mon-
fort and Renault (1993)) and Efficient Method of Moments (EMM: Gallant and Tauchen (1996)).8
In addition to simulation based methods, approximate maximum likelihood estimators have re-
cently received considerable attention. For example, Ait-Sahalia (1999, 2002) suggests a closed
form approximation of the likelihood function, and Altissimo, Mele and Fornari (2003) propose an
estimator based on the minimization of the distance between a kernel density estimator constructed
using the actual data and one constructed using simulated data, in which case they provide condi-
tions under which such estimators are asymptotically equivalent to maximum likelihood estimators.
Nevertheless, it is not immediate to see what the properties of the Ait-Sahalia and Altissimo et
al. estimators are in the misspecified case. Finally, nonparametric estimation of multidimensional

diffusions via spectral decomposition of the generator function is studied by Chen, Hansen and

Scheinkman (2000).

The following assumptions are used in the sequel.
Assumption Al (Al): X(t),t € R*, is a strictly stationary, geometric ergodic diffusion, under
both the null and the alternative hypotheses. Under the null, the invariant density is f(-,8p), with
cumulative distribution function F(-, 6p).
Assumption A2 (A2): b(-) and o(-), as defined in (1), are twice continuously differentiable. Also,
b,b',0, and o’ are Lipschitz, with Lipschitz constant independent of 4.
Assumption A3 (A3): F(u,0) is twice continuously differentiable in the interior of © x U,
where © and U are compact subsets of RP and of R, respectively. Also, VoF(u,9), V2F(u,#) and
VouF(u,0) are jointly continuous on the interior of © x U.

Assumption A4 (A4): For any fixed h and V8 € 0, X,‘zh is geometrically ergodic and strictly

stationary.®

Assumption A5 (A5): Wr %3 Wy = Y51, where,

A unified framework for simulation based estimators, which nests SGMM, II and EMM, is provided in Dridi
(1999).

°Stramer and Tweedie (1997) propose a new algorithm for simulating the path of a diffusion which ensures that
the geometric ergodicity of the underlying diffusion is inherited by the simulated paths. This is in general the case

for the Euler or the Milstein scheme, whenever the drift grows at most at a linear rate and the drift and variance

terms are not “too big”.



S0 = S50 E((9(X1) = B(g(X1)))(9(X115) — E(g(X1s,)))).
Assumption A6 (A6): V6 € O, and for all h, ||g(Xgh)||2+5 < C < oo, g(Xgh) is Lipschitz,
uniformly on 9, § — E(g(Xgh)) is continuous, and g(Xt),g(th),Vngh are 2r—dominated (the
last two also on ©) for r > 3/2.10
Assumption A7 (A7): Unique identifiability: Goo(8") WoGoo(67) < Goo(8) WoGoeo(8), V0 # 61
Assumption A8 (A8): (i) é\TYS,h and 41 are in the interior of ©; (ii) g(X?) is twice continuously
differentiable in the interior of ©; and (iii) Dt = E(8g?/06|s_1) exists and is of full rank, p.
Assumption Al requires the diffusion to be geometric ergodic, under both hypotheses. Note also
that Al ensures that the skeleton is strong mixing with mixing coefficients decaying at a geometric
rate. A3 imposes very mild smoothness requirements on the cumulative distribution function under
the null, and is thus easily verified. A4-A7 ensure consistency and asymptotic normality of é\T,S,h,

under both hypotheses.

Theorem 1: Let A1-A8 hold. As T, S — o0, h — 0, T/S — 0, and Th? — 0:
(i) Under Hy,

V%S’h:/UZQ(u)W(u)du,

where Z is a Gaussian process with covariance kernel given by:

K(u,u') = B _Z (H{X1 < u} = F(u,00))(1{X,s < u} — F(u,b)))
+VoF (u,60) D"Wo DV F(u,6))) — 2V F (u,8p) (DY WD)~ D0
X _Z E((9(Xs) = E(9(X1)))(1{X1 < u} — F(u,60))). (9)

(ii) Under H, there exists an € > 0 such that,
. 1 o
TlgréoPr(TVT’S,h >e)=1.

As the estimated parameters are /T consistent, PEE does not vanish asymptotically, but
instead enters into the asymptotic covariance kernel (the last two lines in (9) summarize the con-
tribution of PEE to the kernel). Note that in the statement of the theorem above, we require
that the simulated sample size grows at a faster rate than the historical sample. We can relax this
requirement and still get convergence to a functional of a Gaussian process, although the covariance

kernel would be slightly different. However, in order to establish validity of the block bootstrap

10 et 9(X?1)i be the i — th element of 9(X? ). We require SUPpeo 19(X7 )il < Dy, with sup, E(Dy)?" < .



under SGMM, we require T/S — 0. Of further note is that by varying the interval of integration,

U, over which the specification test is constructed, one can assess the ‘goodness’ of specification

over various regions of the distribution.

3 Bootstrap Critical Values

The limiting distribution of Vr_,%’ s is a functional of a Gaussian process with a covariance kernel
that reflects both PEE and the time series nature of the data. Thus, critical values cannot be
tabulated. In the present context, valid asymptotic critical values can be obtained in three ways.
First, one can use the conditional p-value approach of Corradi and Swanson (2002), which extends
Hansen’s (1996) and Inoue’s (2001) results to the case of non vanishing PEE. Second, one can use
the subsampling method of Politis, Romano and Wolf (1999). Third, one can use an appropriate
block bootstrap procedure. A drawback of the first two approaches is that the simulated (or
subsample based) critical values diverge at rate [ (where ! plays the role of the blocksize length or
denotes the subsample size) under the alternative. Thus, we choose to use the third approach.!! In
order to show the first order validity of the block bootstrap in our context, we derive the limiting
distribution of appropriately formed bootstrap statistics and show that they coincide with the
limiting distribution in Theorem 1. Then, a test with correct asymptotic size and unit asymptotic
power can be obtained by comparing the value of the original statistic with bootstrapped critical
values.

In the presence of dependent observations, but no PEE, valid bootstrap critical values are
straightforwardly provided by an empirical version of the Kiinsch (1989) block bootstrap (see e.g.
Buhlmann (1994), Naik-Nimbalkar and Rajarshi (1994) or Peligrad (1998)).}2 However, in the

' As the limiting distributions in Theorem 1 (above) and Theorem 3 (below) are not pivotal, bootstrap critical

values do not provide any refinement of first order asymptotics (see e.g. Hall (1992) ch.3).
2Equally, one could use an empirical version the stationary bootstrap of Politis and Romano (1994a,b). The main

difference between the block bootstrap and the stationary bootstrap of Politis and Romano (PR: 1994a) is that the
former uses a deterministic block length, which may be either overlapping as in Kiinsch (1989) or non-overlapping
as in Carlstein (1986), while the latter resamples using blocks of random length. One important feature of the PR
bootstrap is that the resampled series, conditional on the sample, is stationary, while a series resampled from the
(overlapping or non overlapping) block bootstrap is nonstationary, even if the original sample is strictly stationary.
However, Lahiri (1999) shows that all block boostrap methods, regardless of whether the block length is deterministic

or random, have a first order bias of the same magnitude, but the bootstrap with deterministic block length has a



present context we need a bootstrap procedure which properly mimic the contribution of PEE
to the covariance kernel. Goncalves and White (2002) show the first order validity of the block
bootstrap for QMLE (or m—estimators), for the case of dependent and heterogeneous observations.
In the sequel we show that, in the stationary case, their results are valid also for SGMM estimators
in the exact identification case and when the simulated series sample size grows faster than the
historical sample size. While a formal proof is provided in the appendix, it is worthwhile to also
give an intuitive explanation of our result. First, if T'/S — 0, simulation error is negligible, SGMM
is asymptotically equivalent to GMM, and consequently we do not need to bootstrap the simulated
series. Second, in the exactly identified case, the bootstrap sample always satisfies the moment
conditions, therefore GMM estimators can be treated the same way that QMLE estimators are
treated.

In order to implement the appropriate bootstrap statistic, we proceed as follows. At each
replication, draw b blocks (with replacement) of length ! from the sample X; where T' = [b. Thus,
the first block is equal to X;41, ..., X;14, for some i = 0,1,...T — I, with probability 1/(T" -1+ 1),
the second block is equal to X;y1,..., X4y, for some 4, with probability 1/(T =1+ 1), and so
on for all blocks. More formally, let Iy, k = 1,...,b be i.i.d. discrete uniform random variables on
[0,1,...,T—1], and let T = bl. Then, the resampled series, is such that X1, X5 0 X X, X7 =
X1, Xn42, 0 X4, X1y oy X I,+1, and so a resampled series consists of b blocks that are discrete

¢.2.d. uniform random variables, conditional on the sample. Now, define the simulated SGMM

estimator as:

T

/ T S
~ 1
0},5,,1 = argmm( E (X9) E g(Xth ) ( E ~3 E Xgh))
t=1 t=1 t=1

= argmlnGT ()WTGTSh(g) (10)

’ﬂ |

and note that we do not need to resample the simulated series. The reason is that, as T'/S — oo,

simulation error vanishes asymptotically and so there is no need to mimic its contribution to the

covariance kernel. Finally, define the bootstrap statistic as:

Vi = / g p (W) (u)du, (11)

smaller first order variance. In addition, the overlapping block boostrap is more efficient than the non overlapping
block bootstrap.



with [, m(u)du = 1, and

* 1 * O 0
Visn(w) = == 3 (MX7 < w) = 1{X, <u)) = (Flu,Brsp) - Flursn))) . (12)
t=1
The validity of the suggested bootstrap procedure is stated in the subsequent theorem.
Theorem 2: Let A1-A7 hold. As T, S — oo, h — 0, T/S — 0, Th? — 0, | — oo and I/NT — 0

Plw:sup
vER

P ( /U V2% o ()7 (w)du < v)

_P (/U (VT,S,h(u) —VTE (I{Xt <u} - F(u,ef)))2 m(u)du < v)

>5>—>0,

where P* denotes the probability law of the resampled series, conditional on the sample.

In summary, from Theorem 2 we know that V:,%fg p has a well defined limiting distribution, con-
ditional on the sample and for all samples except a set of probability measure approaching zero.
Furthermore, the limiting distribution coincides with that of V:,%’ s> under Hy. The above results
suggest proceeding in the following manner. For any bootstrap replication, compute the boot-
strapped statistic, V:ﬁ,’g7h. Perform B bootstrap replications (B large) and compute the percentiles
of the empirical distribution of the B bootstrapped statistics. Reject Hy if Vﬁ, s, 1s greater than the
(1—a)th-percentile of this empirical distribution. Otherwise, do not reject Hy. Now, for all samples
except a set with probability measure approaching zero, VTQ, s, has the same limiting distribution
as the corresponding bootstrapped statistic, under Hy. Thus, the above approach ensures that
the test has asymptotic size equal to a. Under the alternative, V% s, diverges to infinity, while
the corresponding bootstrap statistic has a well defined limiting distribution. This ensures unit
asymptotic power. Note that the validity of the bootstrap critical values requires the number of
bootstrap replications to go to infinity, although in practice we need to choose B. Andrews and
Buchinsky (2000) suggest an adaptive rule for choosing B, while Davidson and McKinnon (2000)
suggest a pretesting procedure ensuring that there is a “small probability” of drawing different
conclusions from the ideal bootstrap and from the bootstrap with B replications, for a test with a
given level. However, in our case, the limiting distribution is a functional of a Gaussian process, so
that we do not know the explicit density function. Thus, we cannot directly apply the approaches
suggested in the papers above. In the Monte Carlo section below, we analyze the robustness of our

findings to the choice of B, and find that even for values of B as small as 100, the bootstrap has

good finite sample properties.
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4 Extension to Multifactor Diffusion Models

In the case of multidimensional and/or multifactor diffusion models, knowledge of the drift and of
the diffusion matrix no longer implies knowledge of the invariant density. Thus, the test suggested
in Section 2 cannot be generalized in a straightforward manner to the multidimensional case. This is
quite a severe limitation, as many applications, such as term structure analysis, require multifactor
models (see e.g. Day and Singleton (2000,2002)). Therefore, in this section we outline a new test
which is based on comparison of the empirical CDF of historical data and the empirical CDF of
(model) simulated data, where data are simulated using estimators constructed via application of
SGMM. A related test based on the comparison of historical data and simulated data is discussed
in Corradi and Swanson (CS: 2003), in the context of real business cycle model evaluation. The test
introduced below differs from the CS tests in two main respects. Namely: (i) we are interested in
continuous time processes and thus we account for discretization error (CS consider only discrete
time models); and (ii) parameters estimators are constructed using both actual and simulated data
(in CS, parameters are either calibrated or estimated using only historical data).

In providing an extension to the multidimensional case of the above test of one-dimensional
models, a first difficulty lies in the choice of the discrete approximation scheme. In particular, the
diffusion process X (t) can be expressed as a function of the driving Brownian motion W(t), in the
one-dimensional case. However, in the multidimensional case, where we have X (t) € RP, note that
X (t) cannot in general be expressed as a function of the p driving Brownian motions, but is instead
a function of (W;(t), s W;(s)dWi(s)), i,5 = 1,..p (see e.g. Pardoux and Talay (1985), p.30-32).
For this reason, simple approximation schemes like the Euler or the Milstein schemes, which do not
involve approximation of stochastic integrals, may not be adequate in the multidimensional case.
One situation in which the Milstein scheme does straigthforwardly generalize to the multidimen-
sional case is when the diffusion matrix is commutative. Let £(X) = ( o(X) . . op(X) ) ,

where 0;(X) is a p x 1 vector, for i = 1,...,p. If for all ,57=1,..,p,

90, (X) 80;(X) . doi (X dai(X
( 90X, o 0Xp )O-"(X) - ( _fij((l_l o 6;)(,,2 )GJ(X)a

then ¥(X) is commutative. It is immediate to see that almost all of the most frequently used
stochastic volatility (SV) models violate the commutativity property. The intuitive reason for this

is that both the variance of the observable asset and the variance of the (unobservable) variance
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process depend only on the volatility process. In this situation, more “sophisticated” approximation
schemes are necessary.
In the remainder of this section, we specialize to the case of two-factor stochastic volatility

models. Extension to general multidimensional and multifactor models follows directly. Consider:
dX(t) bl(X( ) 9) 0’11(V(t) 0) 0'12(V(t) 9)
dt + ’ dWi(t) + ’ dWa(t),
( av (1) ) ( ba(V (1), 6) 0 O+ v )20 3
where W1, and Ws; are independent standard Brownian motions. It is immediate to see that
the diffusion in (13) violates the commutativity property. Also, note that most of the popular SV

models, such as the square-root model of Heston (1993), the GARCH diffusion model of Nelson

(1990), the lognormal model of Hull and White (1987) and the eigenfunction models of Meddahi
(2001) can be written as (13) above.

Let
b— by oo [ o1 012 (14)
by |’ 0 o9 )’

and define the following generalized Milstein scheme (see eq. (3.3), p.346 in Kloeden and Platen
(1999)):

X(ok+1)h = X7 + b1 (X, O)h + 011 (Vi 0)e1,(b+1)n + 012(Vieh, 0)€a, (k191

1 0o12(VE .0
+—022(th79)“12( :)

2 v u(E+Dh
o V0 9 (k+1)h
+022(th>9)ﬂ% / </ dwh r> dWo (15)

Vi = Vi + 02V, 0Oh + 09a(V,, 0)€z,(k+1)h

0oz (Vlceha 0) 2

1
+5022(Vi, 0) v €2,(k+1)h (16)

2
where h_1/2ei’kh ~ N(0,1), 3= 1,2, E(e1 kn€2mpn) = 0 for all k and m, and

b — 51(V7 0) b1(V,0) — Lo99(V, 6) 8a12(V,6)
b(V, 0) o ( EZ(V, 9) ) ( b2(V 0) _ ;0,22(‘/ 9) 0220192 ) .

The last terms on the RHS of (15) involves stochastic integrals and cannot be explicitly computed.

However, they can be approximated, up to an error of order o(h) by (see eq. (3.7), p.347 in Kloeden
and Platen (1999)):

/k(k+1)h </ dWy r> dWsa s = h ( &1&2 + /Pp (1 p€2 — '“2,1051))
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+h Pl
2m —~r
r=1

(q,r (\/552 + 772,1") — o (\/551 + 771,r)> )

where for j = 1,2, &, i, S, jr are 4dN(0, 1) and p, = 1—12 - %g Py ;15, and p is such that as

h — 0, p — c0. Now, define,

1 T 1 S ~ .
Zrsn(u) = JT Z (1{Xt <u}f— g Z 1{Xz£’s’ < U}) ) (17)
t=1 t=1

where Xgh = X[HNth/S], S = Nh, th is generated using (15) and (16), and §T,S,h is as defined in
equation (6), except that Xg p, 18 simulated using (15) and (16).

The theorem below requires a strengthened version of Assumption A2 above. Namely:
Assumption A2’ (A2'): b(-) and o(-) (as defined in (13) and (14)) and 045(V, 0)@%‘,‘—@2 are twice
continuously differentiable, Lipschitz, with Lipschitz constant independent of 6, and grow at most
at a linear rate, uniformly in ©, for 4,4, k,. = 1,2.

Theorem 3: Let A1,A2" and A3-A8 hold, with Xg » generated according to (15) and (16). As
T,8—00,h—0,T/S—0,T?/S — o0, Sh — 0:
(1) Under Hy,

Z%’S,h:>/UZ2(u)7r(u)du,

where Z is a Gaussian process with covariance kernel given by K(u,u') equal to:

o0

K(uu) = E( 30 ({X < u} = F(u,00))(1{X < u} — F(u,6,))) + Hy(66) D" Wo DO (6,)

==

=245 (60) (D*WoD®)ID"WO 37 B ((g(X.) — E(g(X1))(1{X1 < u} — F(u,6p))),
$=—00 (18)
where u7(60) = B (f(u, 00) Ve X{3,)
(ii) Under H 4, there exists an € > 0 such that,

1
lim Pr(TZ%,S,h >e)=1.

— 00

Analogous to that in Theorem 1, the limiting distribution in Theorem 3 is a functional of a zero
mean Gaussian process, with a covariance kernel that reflects both PEE and the dependence of the
data. In fact, the only difference between the covariance kernel in (9) and that in (18) lies in the

contribution of PEE. Note also that we require Sh — 0 instead of Th? — 0, which is a stronger
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requirement on the discrete approximation stepsize, h. Further, we require S to grow at a rate

faster than T, but slower than 72.

The relevant bootstrap statistic is:

S

T ~ ~
1 (s
ZFs p(u Z < HX¢ <u} - 1{X; <u}) - 5 (1{this'h <u}— 1{Xt0;{s'h < U}>> ;

t=1 (19)

where Xty,Tl‘S’h and Xz ,Tl’s’h are constructed as in (15), using 5}1 s, and §T,S,h respectively, and where
5} s and §T s,n are defined in (6) and (10). The following theorem then holds.

Theorem 4: Let A1,A2 and A3-A7 hold, with X eh generated according to (15) and (16). As
T,S —o00,h—0,T/S —0,T*/S — 00, Sh— 0,1 — oo and I//T — 0:

(/ ZTSh )du<v>

-P </U <Z},S’h(u) ~VTE (I{Xt <u}— F(u,HT)>>2 7(u)du < v)

We can thus proceed using the approach discussed below the statement of Theorem 2.

Plw:sup|P
veR

>€>—>0.

5 Monte Carlo Evidence

In this section we discuss implementation of the diffusion specification test and of the bootstrap
procedure outlined in Sections 2 and 3, for the case in which we want to test the null hypothesis that

the CDF is a gamma distribution. In particular consider the diffusion below, which is a simplified

version of the square root process discussed in Cox, Ingersoll and Ross (1985):13

dX(t) = ((c1 — a) = X(1))dt + /a1 X (£)dW (), ¢; >0, and ¢; —a > 0. (20)

From Wong (1964, pp. 264-265), it is known that the stationary density associated with X (t)

belongs to the linear exponential (or Pearson) family. The process has a non-central chi-squared

¥Note that this diffusion is obtained by defining the drift and the variance as in equations (10) and (11) in Wong
(1964), setting 8=1,c=0,d = c1, e = 0 in his equation (10), and setting a = —1, b = —a in his equation (11). The

resulting diffusion is indeed a square root process.
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transition density, and the invariant density is a gamma. The invariant density can be written as!?:

(921)—2(1—0,/01)12(1—04/61)—1 exp(—x/(%))

f(@ia,e1) = T(2(1 = a/c1) , T(2(1-a/er)) = /Ooo 1207/ oxp(—t)dt.

It follows that,

() =20e/e0 g2/ (s (%))do

F(u;a,c;) = T —aje) . (21)

For the CDF in (21), the first two moments are known (the mean is (c1 — a) and the variance is
% (c1—a)). For details, see Johnson, Kotz and Balakrishnan ((1994), ch. 17). Thus, we can use (non
simulated) GMM to estimate the parameters of the CDF. Also, as we have two moment conditions
and two parameters (exact identification), there is some (af, cJ{) for which the moment conditions

are satisfied under both the null and the alternative hypotheses. Along these lines, define

(@, &) = arg I(I;lien® G (O)WrG(6), (22)
where
GO =( (+rhXi—(@-a), FTLG-%?-%@-a)).
and
1 T 1 I T
Wrt =72 fufi 5 2 we 30 (ffig + fr fi)
t=1 T=1  t=7+t

with fy = (fu, far)'s fu = (Xt = X), far = (X4 — X)2, T = + e fuo and wy = 1 — il
Further, assume that we are interested in testing the null hypothesis that the CDF is as defined
in (21). Finally, note that although the process defined under Hy is very restrictive, and does not
correspond to those versions of the Cox, Ingersol and Ross (1985) model frequently estimated in
practice, it provides us with a convenient form of the square root process with which to illustrate
the application of our diffusion specification test. In the above model, consider the simple case
where ¢; = 3, and @ = —3 (one of the cases considered in the experiments reported on below). We
generated 1000 observations according to this model. A histogram of these observations is given

in Panel 1 of Figure 1. In addition, daily and monthly observations on the 3-month Treasury Bill

rate were downloaded from the St. Louis Federal Reserve (FRED) Database. As the daily data

Tl oy -1

Note that the invariant density under the null hypothesis can be written as flz; a1, a2) 22

exp(—z/az)
T(ay) ?

which is the standard form of the density (see e.g. Johnson, Kotz and Balakrishnan (1994)). In our case, a; =
2(c1 —a)/c1 and a2 = ¢1/2.
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were available starting in 02/01/1962, we constructed histograms for these two series starting at
that date. These are reported in Panels 2 and 3 of Figure 1. It is interesting that although the
historical data are generally ‘smoother’ than those generated under Hy, they have similar minima,
maxima, means, medians, and standard deviations when compared with the simulated data. Thus,
even the restrictive example considered here for illustrative purposes is not too far removed from

reality.

Given the discussion in Section 2 above, the statistic used in our simulation exercise is:1%

Visn=Vi = [ Viwr(du,

where

o - fu(g)—2(1—8ﬁ1)x2(1—3ﬁ\1)“1exp(—I/(a‘))dm
w(@-ﬁ;(%f“}" = e R )

and @ and ¢) are defined as in (22). The bootstrap statistic is:

Visn =V = [ VE (),

where
o o~ ~ Tk
1 & ()20 208 ) e~/ () da
) = 752 ( W= TR - /)
1 X

S (8208730 52051001 exepy(—/(E2) )i
Ly (1{)&, <u}— 022 T(2(1-a/e) 2 '

In the above expression, X denotes the pseudo time series, resampled according to the moving
block scheme described in Section 3. Also, @* and & are defined as:
(@*, €7) = arg min G*()WrG*(6), (23)
a,c1 €0

where
¢'0)=( (+Ta Xi ~(@-a), (3T =X -%-a) ).

Given the exact identification of the parameters in this example, the bootstrap series satisfies the

moment conditions (in the limit) and so no recentering term is required.

'5In addition to examining the finite sample performance of VZ , we also examine the properties of |Vr|

= f, Ve (w)|m(u)du, and [Vl*™® = sup, ¢ |Vir(us)].
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In our test level experiments, we simulate data, according to (20) by using the discrete Milstein

approximation scheme given in equation (8).16 Tt follows that discrete samples are generated

according to:

1 _
D(X{e—1yns R = ((c1 — @) — Xu—1yn ), o(X{om1yn 8) = \/er X1y, o (Xfe1yp:8) = 5 (Xk-1)n) V2 /e

Rejection frequencies are tabulated for (a,c;) = {(~2,2),(-3,3), (-4, 4)}.1 For power experiments

we generate log of X(t) as an Ornstein-Uhlenbeck process. Namely, we define:
dlog X (t) = —61 log X (t)dt + cdW (t), 6, >0,

so that X (t) has a lognormal CDF. In practice we simulate the approximate discrete trajectories

of Yin = log(Xgy,) using the floowing Milstein scheme:
Ykh = —91Yv(k_1)hh + O€Lh, \/Eékh ~ N(O, 1), th = exp(Ykh).

Note that under both hypotheses the DGP is characterized by a diffusion term which is locally, but
not globally Lipschitz. In the power experiments, we set 0% = {0.1,0.5, 1.0} and 6 = {0.3,0.6,0.9}.
Summarizing, the null is that X; has a gamma CDF, while the alternative is that X; does not
have a gamma CDF. In all experiments, parameters are estimated using GMM, given the moment
conditions implied under Hy, and V2, |Vy| , and |Vi| 5P test statistics are constructed. Further,
h is set equal to T!, samples of T = {400,800,1200} observations are generated, block lengths of
1=1{2,4,5,8,10,20,25,40,50} are tried, the integration interval U is set equal to [0, 15], statistics
are formed based on uniform grids of 50 points in U, and critical values are set equal to the 90%*
percentile of the bootstrap distribution. Finally, we tried B = {100, 200, 500}. As results are
qualitatively the same for all three values of B, we report only the findings for B = 100.

Results based on data generated according to Hy are collected in Table 1, while those based on
data generated according the H4 are in Tables 2-4. Recalling that the “nominal” rejection rate is

10%, note that for samples of 400 observations, empirical rejection rates range from around 8% to

18Note that in (24) below, paths are only simulated at the “true” parameter values. Thus, we can suppress the
dependence of parameters on the simulation trajectory.

"The three parameterizations considered under Hy can be expressed in terms of aj;and a9 as: (a1,02) =
{(4,1),(4,3/2),(4,2)}. The shapes of the densities with these parameterizations are given in Johnson, Kotz and
Balakrishnan (1994 pp. 341). Results qualitatively similar to those reported in Table 1 were also found for
(on,a2) = {(10/3,3/2),(14/3,3/2)}, although they are not reported here.
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15%, while for samples of 1200 observations, the range is approximately 10% to 13%. Interestingly,
results seem to be quite robust to the choice of blocklength, . From Tables 2-4, we see that empirical
rejection frequencies under the alternative are also somewhat robust to the choice of blocklength,
although finite sample power in some cases increases rather substantially with sample size (see e.g.
Table 2, Panels a and b). However, when the variability of the process is 02 = 0.5 or o2 = 1.0,

finite sample power is above 0.85 for all sample sizes and cases considered (see Tables 3 and 4).

6 Concluding Remarks

In this paper we have outlined two parametric specification tests for diffusion processes. In the one-
dimensional case, we outline a test that is based on a comparison of the empirical distribution of the
skeleton of the diffusion and the CDF implied by the specification of the drift and the variance terms,
with the latter evaluated at estimated (simulated GMM) parameters. In the multidimensional
and/or multifactor case, we outline a related test that is based on a comparison of the empirical
distributions of the actual and simulated data. In both cases, the limiting distribution is a functional
of Gaussian process with a covariance kernel that reflects data dependence and parameter estimation
error. In order to obtain asymptotically valid critical values for the tests, we propose an extension of
the empirical version of the block bootstrap which properly captures the contribution of parameter
estimation error.

In an illustration, the one-dimensional test is applied to the problem of selecting between two
alternative continuous time diffusion models, and a limited number of Monte Carlo experiments

are carried out, with results suggesting that the tests hold some promise, even when applied to

samples of data as small as 400 observations.
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7 Appendix

The proof of Theorem 1 requires the following Lemma.

Lemma Al: Let A1-A2, A4-A8 hold. If as T, S — o0, h — 0, T/S — 0 and h*T — 0, then
VT (Br,5n - 61) % N(0, DVW,DY),

where Wy and D' are defined in assumptions A5 and A8 respectively.

Proof of Lemma A1: Note that, because of the first order conditions, V4G, g,h(é\T,S,h)’ WTGT,S,h(gTﬁ,h) =

0, then via a mean value expansion around 67,

0= VeGT,S,h(§T,S,h)'WTGT,S,h(9T) + VBGT,S,h(gT,S,h)IWTVBGT,S,h@T,S,h) <§T,S,h — OT) ,

where éT,S,h € (GAT,SJL, 9T> . Thus,

~ ~ — —1 —~
VT (9T,s,h ~ QT) = (—VoGT,s,h(9T,s,h)'WTVeGT,S,h(9T,s,h)) VoGr,58(01,50) WrvVTGr (6.
(25)

We begin by showing that as T, S — oo, h — 0, T/S — 0 and h?T — 0,
VTGrsn(0h) S N(O, Wy L), (26)

Now, given Al and A5,
1 T JT S
o _ vt
VTGrsu(67) thl 9(X1)) S Z( (9(x7, )))
—vT (E(g(Xl,h» — B(g(x? >>) ~VT (B ( (9(x7") - Bg(x))), (27)
we need to show that the second, third and fourth term on the RHS of (27) approach zero in

probability, as 7,5 — oo, h — 0, T/S — 0 and A*T — 0. By the first order conditions,

-1
VoGoo(01) WG (67) = 0 and so, as (VgGoo(OT)’WT) exists, Goo(0T) = 0, where, given A1l
and A3,

S T
0= Goo(6") = plimgconog Z (x2h) phm:r-»ooT Z = E(g(x")) ~ B(g(X1)),

thus the last term on the RHS of (27) is zero. Now, given A2 and recalling that hT? — 0, the
second last term on the RHS of (27) is 0p(1), as a straightforward consequence of Theorem 2.3 in

Pardoux and Talay (1985). Given A1, A2, A4 and A6, ﬁ P (g(Xf}L) - E(g(Xffh))) is bounded
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in probability, as it satisfies a central limit theorem, and so for T = o(S) it vanishes to zero. Given

A5, the statement in (26) follows straightforwardly. Finally, given A2, and A4-AS, via the uniform

law of large numbers for mixing process, as T, S — oo and h — 0,
sup |G7.5,n(8) WrGr,5,1(8) — G WoGoo| 25 0,
and so given unique identifiability, A7, (§T Sh— HT) Pro. Also, given A2, and A4-A7,
sup |VoGir,s,4(60) WrV Gr,5(6) — D(6) WoD(6)| 0,
and so, given that (@p,s,h - QT) s 0,
VeGT,S,h(gT,S,h)/WTVGT,S,h(pT,S,h) 5 pt'wibt,
where D(0") = DI. The statement in the Lemma then follows.

Proof of Theorem 1: (i) Recall that 81 = 6, under the null. We first show convergence in
distribution for any given u € U, then we show convergence of the finite dimensional distributions
and finally stochastic equicontinuity over U, this will ensure that Vr,s,n(.) weakly converges to Z,
and the desired result then follows from the continuous mapping theorem. Given A1, the skeleton

X1,X9,..., Xr is a strictly stationary strong mixing sequence with mixing coefficients decaying at

a geometric rate. Given A2, we can write

T
Vrsn(u) = % > ((1{Xt < u} — F(u,60)) — (F(u,0r,54) ~ Flu, 90)))
t=1
T
= % Z (l{Xt S u} - F(’U;,OO)) bt VQF(uaaT,S,h)/ﬁ(é\T,S,h —_ 90)
t=1
= IlT(u) + IQT(U),

where @T,S,h € (§T,S,h,90). Recalling A1, A4-A8, by the central limit theorem for strong mixing

Lir(u) \ 4 Vi(u) C(u)
(Ii(u))*N(o’(c(u) vz<u>>’

sequences,

where, given Lemma Al,

o0

Vi(w) = B( 3 (1{X1 < u} ~ Fu,00))(1{X; < u} — F(u,6))),

S=—00
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Vo(u) = VoF (u,0) DYWo DOV F(u, 6y))),

C(u) = =V F(u,80) (D" WD) "L D"W, i E((9(Xs) = E(g(X1))({X1 < u} — F(u,6p))).

§=—00
Thus, St gn(u) 4, N(0, K(u,u)), where K(u,u) = Vi(u) + Va(u) + 2C(u). A straightforward
application of the Cramer Wold device ensures that

Vir s n(u) d K(u,u) K(u,u)
( Vr.sn(u') ) = N, < K(u,u') K@/, ) ) ’

where K(u,u') is as defined in (9). As U is compact in R, (and so totally bounded) in order to

show weak convergence, we need to show that Vr,s,n(u) is stochastically equicontinuous on U,(see

e.g. Pollard 1990, section 10), that is

limsupy g_,00 p—o Pr (sup sup  |Vpsn(u) — Vrgp(u)| > 5) =0 (28)

Ul |u—u!|<6

Now (28) will follow if we can show that

. 1 ¢ N Pl -
limsupy_, Pr (S%puqfilské N ; ({Xy <u} = Fu,6p)) — (1{X; < u } = F(u',6)))| > 5/2) (;9())

limsupr,§_,00,h—0 Pr (Sup sup ’(VeF(U,gT)I — VoF (W, 07,5) WT(Orsh — 90)‘ > 5/2> =0
U ulu—u!|<§ (30)

with aT,S,h € (gT,S,h, 6o). We begin by considering (30); by a mean value expansion, we have,

k

> (VuoF (@, 0r,50) VT (Orsp; — 6o;)(u —u')
=1

< k max  sup IVu’gF(u,Q)j||\/T(§T,S7h,j —8oj)|sup sup |u—1|
i=l..kyx0eUx0 Ul u—u| <6

sup  sup
Uyl u—u <6

Now

. . e/2
k1 Pr | |VT(® = 00| > =0,
im sup f(l By = b05) 5supuwxe;vu,am,o)j;)

given that \/T(é\T’S’h —0p) = Op(1), and A3 ensures that Vo F(u,8) is jointly continuous on © x U,
and s0 supyxpey o [VuoF(u,0);] < C. It remains to show (29).
Let my(u) = 1{X; < u} — F(u,6p) and note that,

sup sup [me(u)| = 1 (31)
t<T,T>1 uel
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Without loss of generality set u < o/,

1/p

sup (E <sup sup (lmt(u)—mt(U')lp)>> P22

t<T,T>1 U ulfu—ul|<6

1/p
<sup sup |F(u,6) — F(u/,6p)| + (E <sup sup (H{u<X; < u’})p>>

uoylu—ul|<§ U uilu—u!|<§

u+6 1/p
< sup [V F(u,8)|6 + (sup/ f(:v)da:) <206, (32)
uxU uelU Ju
given A3. Stochastic equicontinuity then follows by Philipp (1982) (see (i)-(iii) in example 2(a)
in Andrews (1993)). In fact (i) is satisfied given the geometric ergodicity of the skeleton, (ii)
is ensured by (31) and as shown by Andrews (1993, pp. 201), (iii) is implied by (32). Given
stochastic equicontinuity and convergence of the finite dimensional distributions, it follows that
Vrsn(-) = Z(-) where Z is the Gaussian process with the covariance kernel defined in (9). The
statement then follows from the continuous mapping theorem.
(ii)
1 & -
Srisn(u) = = > (X < u} = Fo(w)) — VT(F(u, Brsp) — Fy(u))) .
t=1

The first term on the RHS of the above expression satisfies a central limit theorem and so is Op(1).

With regard to the second term, it diverges at rate v/T for all u in a subset of positive Lebesgue

measure. The statement in (ii) then follows.

Hereafter, P* denotes the probability law of the resampled series X¢, and d* denotes P*—convergence
in distribution, conditional on the sample. Also, with the notation op« (1) Pr —P, we mean a term

which approaches zero in P*—probability, conditional on the sample and for all sample, but a subset

of measure approaching zero.
The proof of Theorem 2 requires the following Lemma.

Lemma A2: Let A1-A2, A4-A8 hold. If as T, S — oo, h — 0, T/S — 0, h*T — 0,1 — o0, and
/T — 0, then

)

Pr ( sup

zeRP

P* (VT (B~ Br.50) < =) = P (VE (Brsn - o) <) > ) 0
Proof of Lemma A2: Via a mean value expansion around of,
0 =VoG7 51(07,58) WrGh g, (01) + VGG’TI’,S,h(5},S,h),WTv0G},S,h(y;‘,S,h) (é\;“,S,h - QT) ,
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where 5}’ sh € (5} Shy QT) . Thus,

0 ) o* -1 * 0% *
VT (9*T,s,h - (ﬂ) = (—VGG*T,s,h(%,s,h)/WTVeG},s,h(9T,s,h)) VOGT,S,h(OT,S,h)/WT\/TGT,S,h(QT)v
and so given (25),

\/T (5},S,h - 9AT,S7h)

* n* 1] * * -1 * % ’ \/‘ * Il t
= (*VHGT,S,h(eT,S,h) WTV9GT,S,h(9T,S,h)) VoG1.51(07,51) WrVT (GT,s,h(9 ) = Grsh(0 ))
Y * -1 * Nk
+((_V9G§",S,h(0;“,5,h)/WTv0G§’,S,h(0T,S,h)) VoG5 (07.5.1) Wr
—~ _ -1 o~

— (—VeGT,s,h(9T,s,h)'WTV0GT,S,h(9T,s,h)) VeGT,S,h(QT,S,h)'WT> VTGr,sn(6").

We begin by showing that /T (G;S’h(m) - GT,S,h(OT)) has the same limiting distribution as

\/TGT,S,h(HT), conditionally on the samples, and for all samples except a set of probability measure

approaching zero. Note that,
VT (Grsn(60") = Goo(81)) = VT (Gh5(01) = Gr.sn(0)) + VT (G5 0(61) - Goa(8))

where for h?T — 0, the last term on the RHS above is op(1), by the same argument used in the
proof of Lemma Al. Also, given Al-A4 and given that T/S — 0 (i.e. the simulation error is

vanishing), by the same argument as in the proof of Lemma A1,

T
VI (Ghsnl8h) = Grsn(®) = <= 3~ (0(X7) = 4(X0) +op-(1). (33)
t=1

Thus, given Al and A6, by Theorem 3.5 in Kiinsch (1989), the RHS of (33) has the same limiting
distribution as # ST (e(Xy) - E(g(X1))), conditionally on the samples, and for all samples
except a set of probability measure approaching zero. Therefore, /T (G} S’h(HT) — GT,s,h(GT)> 4

N(0,Wy), Pr —P, where d* denotes P*—convergence in distribution. We now need to show that

O s — 0° = op-(1),Pr —P. (34)

First, note that

Gr.51(0) = Goo(6) = (G 54(6) — G1,51(8)) + (Cr,54(6) = Gool6)) = 0p-(1) + (1) P .
35

uniformly in 6. In fact, as we do note resample the simulated series, given Al, A4, A6, the first

term on the RHS of (35) is op«(1) + o(1) Pr—P because of Lemma A2 in Goncalves and White
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(2002), the second is op(1) by the same argument as in the proof of Lemma Al. Therefore, given
A5,

sup |G5,5.4(0) Wr Gy 5,(6) — GloWoGoo| B3 0, Pr—P,

and, given A7, (34) follows. By a similar argument, given (34), it also follows that,
((_VGG;’,S,h(é\:},s,h)IWTVGG},S,h(5;,S,h))_1 VeG*T,S,h(@fr,s,h)'WT
— (‘”VQGT,S,h(é\T,S,h)IWTV9GT,S,h(9T,S,h))_1 VQGT,S,h(gT,S,h)/WT> =0, pr-p,
and, as VT'Gr g, (6T) = Op(1), the statement in the lemma follows.

Proof of Theorem 2:

T
Visa(u) = Z (UX? <} = U{Xe <) = VoF (u, 07,5 )VT (855~ Or,s) -
=1 (36)

Now, given Al and A3, by the empirical process version of the block bootstrap of Naik-Nimbalkar
and Rajarshi (1994, Theorem 2.1), ﬁ S (H{XF <u) - 1{X; < u}) has the same limiting dis-
tribution, as a process over U, as ﬁ >, (I{Xt <u}-— F(u,HT) . Also, given A3 and recalling

(34), VgF(u,g;’S,h) — Vo F(u,6") = op+ (1) Pr —P. The statement in the theorem then follows from
Lemma A2.

Proof of Theorem 3: (i) Recall that 6" = 6, under the null. Now, for any given u € U,

T -
1 v 0
Zrsplu) = —= Z HXe su} - —= Z 1 {X{’O <u-— (Xt;ﬁ»h - Xf")}
t t=1
1

T ~
- = > (1{X; < u} — F(u,6p)) Z ( {X{’O <u- (Xt",ﬁs’h —Xf")}

t=1 t=1

iy i (F (u _ (xfg - X;%) ,90> - Flu, 90)> -

(o om ol - o (o) )
t=1

1{x} < u} - Flu, 90)) +op(1), (37)

/pjm
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where the op(1) term holds uniformly in . In order to show (37), we first need to show that,

sup

o,
X, DSk _ x0o
th t
t<8

= op(1). (38)

First, note that

sup Xfﬁ’s‘h - Xte0 < sup Xz% - Xf(" + sup Xzz’s’h - ij‘;1 . (39)
t<s t<§
As for the first term on the RHS of (3 )
s 158 9
Pe(sup x| >e) = Sore(t- x> ) < L5 (s - xe)
t<S =1 =1 ’

= Sp(|x%, - xof <05h 0 as Sh — 0, 40
- 2 | 1,h — M1 —3 —Uas - (40)

where the second last equality on the RHS of (40) follows from A1l (stationarity-ergodicity of the
discrete approximation for all h), while the last inequality, given A2’ and (15),(16) follows from
Theorem 10.3.5 in Kloeden and Platen (1999). As for the second term on the RHS of (39),

5T,s,h 8o
sup Xt,h - Xt’h

! aT,S,h N
VX, (9T,S,h - 90) ,
t<S ’

< sup
t<S

where, pT,S,h € <§T,S,h790) , and, given Lemma Al, <§T,S,h — 00) = OP(T_1/2). Further, given the
domination condition in A6,
> s)

V/ 9TSh

Pr (supT 1/2 V'XQT“

t<S

s
5) < ZPr( —1/2
t=1

S
S S
—1/2 A4 .
SE:Pr( /2D, >e)<—4ﬁE(D) 0if =5 — 0.

Then, (37) follows because of the stochastic equicontinuity in u of - 75 > ( {Xfo < u} — F(u, 90)) .
Thus,

Zrsp(u) =

5l

t=1

_%_T i <F (u - (Xz,Tl’Sv“ - Xf’o) ,60> - F(u,%)) +0p(1), (41)

t=1

XT: (1{X; < u} — F(u,6p)) \/T_i( {xP <u} - F(u,60))

with the op(1) term holding uniformly in w. The second term on the RHS of (41) is op(1), for

T/S — 0, by the same argument as that used in the proof of Theorem 1. As for the third term on
the RHS of (41), it can be written as:

1 ) -
~3 Z (u - ( XPsn _ Xtoc’) ,90) leXf,z’S’h\/T (9T,S,h - 90) ,
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where f denotes the derivative of F' with respect to its argument. Given A3, and recalling (38),

and Lemma Al, %25:1 f <’U, — <Xf};»s,h _ Xfo) 790) veXzz,S,h = E (f(u,Qo)Vngf,’l) + 0p(1) —
P (0o + op(1). Thus,

T
ZTSh Z (1{X; < u} — F(u,@o)) - u}(@g)ﬁ (§T,S,h — 90) .

The covariance kernel is thus as given in (18), given Lemma A1, and the final result is an immediate

consequence of the continuous mapping theorem.

(ii) By the same argument as that used in part (i),

Zrsn(u) = %é(l{& <u} — Fo(u gZ( (U— ( 5”" —X9°> ,00> —F(u,90)>

t=1 t=1

VT (F(u,6) — Fo(w)) + op(1).

The result then follows by the same arguments as those used in the proof of Theorem 1.

Proof of Theorem 4:

T s
Z;’,S,h(u) = % Z(l{X: Su} —UHX; <u}) — gz (1{Xt;‘15h <u}— 1{X9T5h < u})
=1 t=1

= Lhr—Irgsh.

Now,

S ~ ~
o )
Lrsn = g > (1 {X{’O <u-— (Xt,,Tf"‘ —~ Xf“)} —F (u - (th;“ - Xf(’) ,90>>
t=1
SFE (o (1)) o () )
t=1
s ~ ~
2 (7 (o= (e ) ) - (- (e ) ) )

By a similar argument to that used in the proof of Theorem 3, and recalling that T'/S — 0, the
first two terms on the RHS of (42) are op(1), uniformly in u. As for the last term on the RHS of

(42), it can be written as:
1 o ~
g SF <u - (Xfﬁ’s’h - Xt9°> 90> VoXaT ShNT (%,s,h - 90)
O 5.1 o o7, s, h\/_ )
Flu={Xen™" = X)) .00 ) VX, 25" VT (Br,5 — 60
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13 7 50 ~ ~
= 521 (u - (Xf;vsvh - Xf°> ,90> VoXon VT (85— Or,5n)
=1
1 S E}Sh 90 7 E;Sh S aTSh 00 ] ETSh
+§Z Flo={Xen™ =X )00 ) VoXy 3™ =3 f (u={ Xgp™" = X{° ) ,60 0 X¢p"
=1 ~
xV'T (AT,S,h - 90)
S Y —
1 o * —~ ~
= § Zf (u — (Xt,zys'h —_ Xt00> 790) V'ngﬁ,s,h\/T (9}75’}1 — OT,S,h) + OP*(I), Pr —P,

the desired result then follows from the same arguments as those used in the proof of Theorem 2.

27



8 References

Ait-Sahalia, Y., (1996), Testing Continuous Time Models of the Spot Interest Rate, Review of
Financial Studies, 9, 385-426.

Ait-Sahalia, Y., (1999), Transition Densities for Interest Rate and Others Nonlinear Diffusions,
Journal of Finance, LIV, 1361-1395.

Ait-Sahalia, Y., (2002), Maximum Likelihood Estimation of Discretely Sampled Diffusions: A
Closed Form Approximation Approach, Econometrica, 70, 223-262.

Altissimo, F., F. Fornari and Mele, (2002), Testing the Closeness of Conditional Densities by
Simulated Nonparametric Methods, Working Paper, London School of Economics.

Altissimo, F., A. Mele and F. Fornari, (2003), Simulated Nonparametric Estimation of Continuous
Time Models of Asset Prices and Returns, Working Paper, London School of Economics.
Andrews, D.W.K., (1993), An Introduction to Econometric Applications of Empirical Process The-
ory for Dependent Random Variables, Econometric Reviews, 12, 183-216.

Andrews, D.W.K., (1997), A Conditional Kolmogorov Test, Econometrica, 65, 1097-1128.
Andrews, D.W.K. and M. Buchinsky, (2000), A Three Step Method for Choosing the Number of
Bootstrap Replications, Econometrica, 68, 23-52.

Biihlmann, P., (1995), The Blockwise Bootstrap for General Empirical Processes of Stationary
Sequences, Stochastic Processes and their Applications, 58, 2, 247-266.

Chen, X., L.P. Hansen, and J. Scheinkman, (2000), Principal Components and the Long Run,
Working Paper, New York University.

Conley, T.G., E.G.J. Luttmer, L.P. Hansen and J.A. Scheinkman (1997), Short-Term Interest Rates
as Subordinated Diffusions, Review of Financial Studies, 10, 525-577.

Corradi, V., and N.R. Swanson, (2002), A Consistent Test for Out of Sample Nonlinear Predictive
Ability, Journal of Econometrics, 110, 353-381, 2002.

Corradi, V. and N.R. Swanson, (2003), Evaluation of Dynamic Stochastic General Equilibrium
Models Bases on Distributional Comparison of Simulated and Historical Data, Working Paper,
Rutgers University and Queen Mary, University of London.

Cox, J.C., J.E. Ingersoll and S.A. Ross, (1985), A Theory of the Term Structure of Interest Rates,
Econometrica, 53, 385-407.

Dridi, R., (1999), Simulated Asymptotic Least Squares Theory, Working Paper, London School of

28



Economics.

Duffie, D. and K. Singleton, (1993), Simulated Moment Estimation of Markov Models of Asset
Prices, Econometrica, 61, 929-952.

Fournie, E., (1993), Un Test de Type Kolmogorov-Smirnov pour Processus de Diffusion Ergodiques,
W.P. 1696, INRIA.

Gallant, A.R. and G. Tauchen, (1996), Which Moments to Match, Econometric Theory, 12, 657-
681.

Gard, T.C., (1988), Introduction to Stochastic Differential Equations, Marcel Dekker, New York.
Gourieroux, C., A. Monfort and E. Renault, (1993), Indirect Inference, Journal of Applied Econo-
metrics, 8, 85-118.

Gongalves, S. and H. White, (2002), Maximum Likelihood and the Bootstrap for Dynamic Nonlinear
Models, Working Paper, CRDE, Cirano, University of Montreal.

Hall, P., (1992), The Bootstrap and Egeworth Ezpansion, Springer and Verlag, New York.

Hall, P., and J.L. Horowitz, (1996), Bootstrap Critical Values for Tests Based on Generalized
Method of Moments Estimators, Econometrica, 64, 891-916.

Hall, A.R., and A. Inoue, (2003), The Large Sample Behavior of the Generalized Method of Mo-
ments Estimator in Misspecified Models, Journal of Econometrics, 361-394.

Hansen, B.E., (1996), Inference When a Nuisance Parameter is Not Identified Under the Null
Hypothesis, Econometrica, 64, 413-430.

Heston, S.L., (1993), A Closed Form Solution for Option with Stochastic Volatility with Applica-
tions to Bond and Currency Options, Review of Financial Studies, 6, 327-344.

Hong, Y., (2001), Evaluation of Out of Sample Probability Density Forecasts with Applications to
S&P 500 Stock Prices, Working Paper, Cornell University.

Hong, Y.M., and H. Li, (2002) Nonparametric Specification Testing for Continuous Time Models
with Applications to Term Structure Interest Rates, Working Paper, Cornell University.

Hong, Y.M., H. Li, and F. Zhao, (2002) Out of Sample Performance of Spot Interest Rate Models,
Working Paper, Cornell University.

HI, J., and A. White, (1987), The Pricing of Options on Assets with Stochastic Volatility, Journal
of Finance, XLII, 281-300.

Inoue, A., (2001), Testing for Distributional Change in Time Series, Econometric Theory, 17, 156-
187.

29



Inoue, A., and M. Shintani, (2001), Bootstrapping GMM Estimators for Time Series, Working
Paper, North Carolina State University and Vanderbilt University.

Johnson, N.L., S. Kotz and N. Balakrishnan, (1994), Continuous Univariate Distributions I, Wiley,
New York.

Karlin, S., and H.M. Taylor, (1981), A Second Course in Stochastic Processes, Academic Press,
San Diego.

Kloeden, P.E., and E. Platen, (1999), Numerical Solution of Stochastic Differential Equations,
Springer and Verlag, New York.

Kiinsch H.R., (1989), The Jackknife and the Bootstrap for General Stationary Observations, Annals
of Statistics, 17, 1217-1241.

Meddahi, N., (2001), An Eigenfunction Approach for Volatility Modeling, Working Paper, Univer-
sity of Montreal.

Naik-Nimbalkar U.V. and M.B. Rajarshi, (1994), Validity of Blockwise Bootstrap for Empirical
Processes with Stationary Observations, Annals of Statistics, 22, 980-994.

Nelson, D.B., (1990), ARCH as Diffusion Approximations, Journal of Econometrics, 45, 7-38.
Pardoux, E. and D. Talay, (1985), Discretization and Simulation of Stochastic Differential Equa-
tions, Acta Applicandae Mathematicae, 3, 23-47.

Peligrad M., (1998), On the Blockwise Bootstrap for Empirical Processes for Stationary Sequences,
Annals of Probability, 26, 877-901.

Philipp, W., (1982), Invariance Principles for Sums of Mixing Random Elements and the Multi-
variate Empirical Process, Colloquia Mathematica Societatis Janos Bolyai, 36, 843-873.

Politis, D.N., and J.P. Romano, (1994a), The Stationary Bootstrap, Journal of the American
Statistical Association, 89, 1303-1313.

Politis, D.N., and J.P. Romano, (1994b), Limit Theorems for Weakly Dependent Hilbert Space
Valued Random Variables with Applications to the Stationary Bootstrap, Statistica Sinica, 4, 461-
476.

Politis, D.N., J.P. Romano, and M. Wolf, (1999), Subsampling, Springer and Verlag, New York.
Pollard, D., (1990), Empirical Processes: Theory and Applications, CBMS, Conference Series in
Probability and Statistics, v.2, Hayward, CA, Institute of Mathematical Statistics.

Radulovic D., (1996), The Bootstrap for Empirical Processes Based on Stationary Observations,
Stochastic Processes and their Applications, 65, 259-281.

30



Stramer, O. and R.L. Tweedie, (1997) Geometric and Subgeometric Convergence of Diffusions with
Given Stationary Distribution and their Discretization, Working Paper, University of Iowa and
Colorado State University.

Thompson, S.B., (2002), Evaluating the Goodness of Fit of Conditional Distributions with an
Application to the Affine Term Structure, Working Paper, Harvard University.

Wong, E., (1964), The Construction of a Class of Stationary Markov Processes, in Sizteenth Sym-
posia in Applied Mathematics: Stochastic Processes in Mathematical Physics and Engineering, ed.

by R. Bellman, American Mathematical Society, Providence, RI.

31



Figure 1: Simulated and Actual Data,
Panel 1: 1000 Observations Generated According to dX (t) = (6 — X (t))dt + V33X (t)dW (t)
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Panel 2: Monthly 3-mo Treasury Bill Data for the Period 2/1962-9/2000 (Ann. %)
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Panel 3: Daily 3-mo Treasury Bill Data for the Period 02/01/1962-09/22/2000 (Ann. %)
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Table 1: Diffusion Specification Test Rejection Frequencies: Empirical Level*
Data Generated Under Ho With (c1,a)={(2, -2),(3, -3),(4, —4)}

1 T=400 observations T=800 observations T=1200 observations
VR Vel WVrlr vZ2 V| (vl V2 (V| (Vg
Panel a: ¢1 =2, a = —-2

2 0.086 0.096 0.092 0.114 0.122 0.124 0.130 0.144 0.132
3 0.088 0.092 0.090 0.096 0.106 0.118 0.112 0.136 0.118
5 0.080 0.096 0.098 0.100 0.114 0.114 0.132 0.134 0.118
8 0.084 0.098 0.090 0.104 0.114 0.114 0112 0124 0.126
10 0.078 0.086 0.088 0.106 0.110 0.130 0.122  0.128 0.122
20 0.086 0.096 0.088 0.096  0.096 0.112 0.116 0.126 0.128
25 0.086 0.096 0.092 0.112 0.108 0.104 0.118 0.122 0.126
40 0.094 0.100 0.094 0.096 0.106 0.114 0.114 0.124 0.118
50 0.096 0.108 0.112 0.098 0.106 0.112 0.128 0.118 0.130

Panel b: ¢ =3, a= -3

2 0140 0.134 0.128 0.148 0.142 0.118 0.116  0.122 0.094
3 0124 0.124 0.128 0.130 0.134 0.130 0.108 0.120 0.094
5 0144 0.144 0.126 0.134 0.136 0.122 0.112 0.112 0.108
8 0.130 0.122 0.120 0.132 0.126 0.116 0.108 0.120 0.102
10 0.136 0.134 0.132 0.148 0.142 0.122 0.110 0.110 0.104
20 0126 0.124 0.132 0.146  0.142 0.118 0.114 0.110 0.100
25 0134 0.134 0.138 0.140 0.134 0.136 0.112  0.114 0.096
40 0.128 0.128 0.134 0.138 0.142 0.116 0.112  0.102 0.102
50 0.144 0.146 0.146 0.144 0.148 0.126 0.112  0.108 0.096

Panel c: ¢c; =4,a= -4

2 0120 0.124 0.122 0.114 0.132 0.112 0.108 0.114 0.112
3 0110 0.124 0.114 0.120 0.122 0.110 0.108 0.108 0.110
5 0120 0.130 0.122 0.106 0.104 0.106 0.112 0.108 0.106
8 0114 0.122 0.120 0.122 0.122 0.102 0.106 0.102 0.106
10 0.128 0.126 0.130 0.112  0.116 0.112 0.108 0.112 0.112
20 0.136 0.138 0.116 0.130  0.130 0.112 0.104 0.116 0.104
25 0.148 0.150 0.124 0.128 0.132 0.112 0.112 0.116 0.120
40 0.138  0.140 0.124 0.142  0.140 0.116 0.114 0.124 0.112
50 0.148 0.156 0.156 0.128  0.146 0.120 0.104 0.118 0.106

(*) Notes: The first column of numerical entries are block lengths used in the construction of bootstrap critical
values. All other numerical entries are rejection frequencies based on application of the one-dimensional diffusion
specification test discussed above. Results for three versions of the test, denoted V2, |Vr|, and |Vr|*“P are reported.
Critical values are set equal to the 90'* percentile of the empirical distribution of the bootstrap statistics, and all

empirical distributions are constructed using 100 bootstrap replications. All results are based on 1000 Monte Carlo
simulations (see above for further details)
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Table 2: Diffusion Specification Test Rejection Frequencies: Empirical Power I*
Data Generated Under H4 With 0% = 0.1

l T=400 observations T=800 observations T=1200 observations
VE Vel Vel V2 V| Vet V2 (V| [l
Panel a: 6 =0.3

2 0.543 0.563 0.473 0.783  0.820 0.727 0.893 0.903 0.850
3 0480 0.503 0.457 0.750  0.783 0.710 0.877 0.887 0.837
5 0483 0.490 0.433 0.750  0.787 0.700 0.870  0.880 0.827
8 0.463 0.480 0.423 0.720  0.760 0.677 0.860  0.863 0.830
10 0.450 0.483 0.397 0.720  0.747 0.700 0.850 0.867 0.823
20  0.460 0.447 0.427 0.723  0.753 0.677 0.847 0.873 0.790
25 0.437 0.443 0.417 0.727  0.740 0.667 0.847 0.870 0.820
40 0467 0477 0.427 0.707 0.727 0.683 0.847  0.867 0.827
50 0.450 0.450 0.413 0.717  0.727 0.670 0.857 0.870 0.827

Panel b: 6§ = 0.6

2 0.333 0.363 0.290 0.570  0.587 0.483 0.723 0.763 0.630
3 0.340 0.353 0.287 0.567 0.583 0.467 0.717  0.747 0.623
5 0337 0.353 0.260 0.560 0.593 0.453 0.710 0.750 0.617
8 0.340 0.360 0.290 0.560 0.587 0.450 0.717 0.743 0.623
10 0.343 0.357 0.280 0.560 0.607 0.443 0.710 0.757 0.613
20 0330 0.357 0.283 0.540 0.590 0.440 0.720 0.740 0.620
25  0.327  0.357 0.283 0.547 0.577 0.427 0.703 0.743 0.607
40 0.350 0.350 0.313 0.533 0.573 0.447 0.717 0.750 0.613
50 0.353 0.363 0.330 0.537 0.583 0.457 0.707 0.753 0.627
Panel c: § =0.9

2 0213 0.243 0.193 0.377  0.460 0.297 0.510 0.603 0.360
3 0223 0.253 0.183 0.383 0.453 0.273 0.513 0.583 0.360
5 0233 0.247 0.197 0.390 0.480 0.297 0.523 0.587 0.363
8 0.237 0.253 0.200 0.380 0.453 0.283 0.497  0.587 0.370
10 0.230 0.250 0.193 0.367  0.440 0.270 0.503  0.580 0.367
20 0.223 0.257 0.193 0.363 0.470 0.283 0.490 0.573 0.363
25 0.243 0.270 0.217 0.390 0.480 0.277 0.477  0.590 0.387
40  0.267 0.280 0.233 0.370  0.467 0.300 0.503  0.590 0.387
50  0.260 0.273 0.237 0.393 0477 0.313 0.497  0.580 0.373

) Notes: See notes to Table 1.

34



Table 3: Diffusion Specification Test Rejection Frequencies: Empirical Power IT*
Data Generated Under H4 With 02 = 0.5

o~

T=400 observations T'=800 observations T=1200 observations
V2 Vr| _{vrlevr V2 Vr|  |Velsvr V2 Vrl  |Vr|ovP
Panel a: 6§ =0.3

2 0953 0.873 0.980 0.990 0.957 1.000 0.993 0.977 1.000
3 0950 0.843 0.977 0.997 0.963 1.000 0.993 0.967 1.000
5 0943 0.857 0.980 0.987  0.960 1.000 0.990 0.973 1.000
8 0933 0.853 0.977 0.990 0.940 1.000 0.990  0.960 1.000
10 0.950 0.850 0.967 0.987  0.937 1.000 0.990 0.950 1.000
20 0.937 0.833 0.970 0.990 0.947 1.000 0.990 0.957 1.000
25 0920 0.837 0.957 0.983 0.947 1.000 0.993  0.960 1.000
40 0.910 0.833 0.957 0.987  0.943 1.000 0.990  0.947 1.000
50 0.907 0.820 0.943 0.993 0.943 1.000 0.990 0.963 1.000

Panel b: 6 =0.6

2 0937 0.883 0.937 1.000 0.987 1.000 1.000 1.000 1.000
3 0917 0.860 0.910 0.997  0.987 1.000 1.000 1.000 1.000
5 0923 0.857 0.913 1.000 0.990 1.000 1.000 1.000 1.000
8 0917 0.853 0.897 0.993 0.990 1.000 1.000 1.000 1.000
10 0923 0.857 0.900 0.997  0.993 1.000 1.000 1.000 1.000
20 0903 0.847 0.897 1.000 0.997 1.000 1.000 1.000 1.000
25 0.890 0.837 0.910 1.000  0.990 1.000 1.000 1.000 1.000
40 0913 0.820 0.890 0.993 0.990 1.000 1.000 0.997 1.000
50 0.900 0.830 0.900 0.993 0.993 1.000 1.000 1.000 1.000

Panel ¢: 6 =0.9

2 0870 0.857 0.723 0.983  0.980 0.950 0.997  0.997 0.993
3 0867 0.853 0.737 0.980 0.980 0.953 0.993 0.997 0.990
5 0.857 0.853 0.723 0.987 0.983 0.957 0.997  0.997 0.993
8 0.857 0.850 0.713 0.987  0.980 0.957 0.997  0.997 0.990
10 0.863 0.850 0.743 0.980 0.973 0.963 0.993 0.997 0.993
20 0.850 0.840 0.723 0.983 0.980 0.957 0.997 0.993 0.993
25 0.843 0.827 0.717 0.987  0.977 0.960 0.997  0.997 0.993
40 0.830 0.827 0.720 0.983  0.980 0.953 0.997  0.993 0.993
50 0.823 0.830 0.723 0.973 0.973 0.950 0.997 0.993 0.997

*) Notes: See notes to Table 1.
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Table 4: Diffusion Specification Test Rejection Frequencies: Empirical Power III*
Data Generated Under H4 With 02 = 1.0

~

T=400 observations T=800 observations T=1200 observations
Vi Vol Velr VR el Vel VR | Vel
Panel a: 8 =0.3

2 0987 0.973 1.000 1.000  1.000 1.000 1.000 1.000 1.000
3 0977 0.967 0.997 0.997  1.000 1.000 1.000 1.000 1.000
5 0983 0.967 1.000 1.000  1.000 1.000 1.000  1.000 1.000
8 0.967 0.953 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.967 0.953 0.997 1.000 1.000 1.000 1.000  1.000 1.600
20 0947 0.933 0.990 1.000 1.000 1.000 1.000 1.000 1.000
25 0960 0.933 0.997 1.000 1.000 1.000 1.000 1.000 1.000
40 0.933 0.920 0.987 0.997  0.997 1.000 1.000 1.000 1.000
50  0.937 0.907 0.987 0.997  0.993 1.000 1.000 0.997 1.000

Panel b: § =0.6

2 0.987 0.890 0.997 0.997 0.960 1.000 0.997 0.973 1.000
3 0977 0.887 1.000 0.993  0.957 1.000 0.993  0.957 1.000
5 0980 0.890 0.997 0.990 0.970 1.000 0.997  0.957 1.000
8 0983 0.900 0.993 0.990 0.943 1.000 0.993 0.963 1.000
10  0.987 0.893 1.000 0.993 0.957 1.000 0.997  0.967 1.000
20 0973 0.883 0.993 0.993 0.953 1.000 0.997 0.970 1.000
25 0983 0.890 0.997 0.997  0.960 1.000 0.993  0.967 1.000
40 0.983 0.890 0.997 0.993 0.960 1.000 0.993  0.967 1.000
50 0.990 0.887 0.997 0.993 0.963 1.000 0.990  0.970 1.000

Panel ¢: § =0.9

2 0987 0.903 0.990 0.993  0.977 1.000 1.000 0.997 1.000
3 0973 0.927 0.990 1.000 0.980 1.000 1.000 0.997 1.000
5 0983 0910 0.993 0.997  0.980 1.000 1.000 0.993 1.000
8 0973 0.903 0.993 1.000 0.977 1.000 1.000 0.993 1.000
10 0973 0.903 0.993 1.000 0.990 1.000 1.000 1.000 1.000
20 0953 0.913 0.987 0.997  0.980 1.000 0.997  0.993 1.000
25 0.960 0.893 0.990 0.997  0.990 1.000 0.997  0.993 1.000
40 0.970 0.897 0.990 1.000 0.987 1.000 1.000 0.997 1.000
50 0.970 0.910 0.997 0.997  0.983 1.000 1.000 0.990 1.000

) Notes: See notes to Table 1.
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