
Swanson, Norman R.; Corradi, Valentina

Working Paper

The Block Bootstrap for Parameter Estimation Error
In Recursive Estimation Schemes, With Applications to
Predictive Evaluation

Working Paper, No. 2003-13

Provided in Cooperation with:
Department of Economics, Rutgers University

Suggested Citation: Swanson, Norman R.; Corradi, Valentina (2003) : The Block Bootstrap for
Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive
Evaluation, Working Paper, No. 2003-13, Rutgers University, Department of Economics, New
Brunswick, NJ

This Version is available at:
https://hdl.handle.net/10419/23170

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/23170
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


The Block Bootstrap for Parameter Estimation Error In Recursive
Estimation Schemes, With Applications to Predictive Evaluation∗

Valentina Corradi1 and Norman R. Swanson2

1Queen Mary, University of London and 2Rutgers University
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Abstract

This paper introduces a new block bootstrap which is valid for recursive m-estimators, in the sense that its use

suffices to mimic the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, where R denotes the length of the estimation

period, P the number of recursively estimated parameters, θ̂t is a recursive m−estimator constructed using the first

t observations, and θ† is its probability limit. In the recursive case, earlier observations are used more frequently

than temporally subsequent observations. This introduces a bias to the usual block bootstrap. We circumvent this

problem by first resampling R observations from the initial R sample observations, and then concatenating onto this

vector an additional P resampled observations from the remaining sample. Thereafter, θ̂∗t is constructed using the

resampled series, and an adjustment term is added to 1√
P

∑T−1
t=R

(
θ̂∗t − θ̂t

)
in order to ensure that the distribution

of this sum is the same as the distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
. This parameter estimation error bootstrap for

recursive estimation schemes can be used to provide valid critical values in a variety of interesting testing contexts,

and three such leading applications are developed. The first is a generalization of the reality check test of White

(2000) that allows for non vanishing parameter estimation error. The second is an out-of-sample version of the

integrated conditional moment (ICM) test of Bierens (1982,1990) and Bierens and Ploberger (1997) which provides

out of sample tests consistent against generic (nonlinear) alternatives. Finally, the third is a procedure assessing

the relative out-of-sample predictive accuracy of multiple conditional distribution models. This procedure is based

on an extension of the Andrews (1997) conditional Kolmogorov test. The main findings from a small Monte Carlo

experiment indicate that: (i) the adjustment term used in the suggested bootstrap substantially improve coverage

rates relative to a bootstrap without adjustment, and (ii) the suggested bootstrap is as reliable as the standard block

bootstrap within the context of full sample estimation.
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1 Introduction

The main objective of this paper is to suggest a new block bootstrap which is valid for recursive m-

estimators, in the sense that its use suffices to mimic the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
,

where R denotes the length of the estimation period, P the number of recursively estimated pa-

rameters, θ̂t is a recursive m−estimator constructed using the first t observations, and θ† is its

probability limit. We call this bootstrap the parameter estimation error (PEE) bootstrap for re-

cursive estimation schemes (or alternatively, the recursive PEE bootstrap). For fixed sampling

schemes, the properties of the block bootstrap for m−estimators and/or GMM estimators with de-

pendent observations have been studied by several authors. For example, Hall and Horowitz (1996)

and Andrews (2002a) show that the block bootstrap provides improved critical values, in the sense

of asymptotic refinements, for “studentized” GMM estimators and for tests of overidentifying re-

strictions, in the case where the covariance across moment conditions is zero after a given number

of lags.1,2 In addition, Inoue and Shintani (2001) show that the block bootstrap provides asymp-

totic refinements for linear overidentified GMM estimators for general mixing processes. A recent

contribution which is useful in our context is that of Goncalves and White (2002a and 2002b), who

show that for m−estimators, the limiting distribution of
√

T (θ̂∗T − θ̂T ) provides a valid first order

approximation to that of
√

T (θ̂T − θ†) for heterogeneous and near epoch dependent series, where

θ̂∗T is a resampled estimator, and T denotes the length of the entire sample. Based on the results

mentioned above, one might expect 1√
P

∑T−1
t=R

(
θ̂∗t − θ̂t

)
to have the same limiting distribution as

1√
P

∑T−1
t=R

(
θ̂t − θ†

)
. However, in the recursive case, earlier observations are used more frequently

than temporally subsequent observations. This introduces a bias to the usual block bootstrap, as

under standard resampling with replacement schemes, any block from the original sample has the

same probability of being selected. We circumvent this problem by first forming bootstrap samples

as follows. Resample R observations from the initial R sample observations, and then concatenate

onto this vector an additional P resampled observations from the remaining sample. Thereafter,
1More recently, Andrews (2002b) suggests a new block bootstrap, called the block-block bootstrap, which ensures

better higher order refinements than the standard block bootstrap. The key element in his approach is an adjustment

of the original statistic in such a way that both the original and the bootstrap statistics share the same dependence

structure.
2For the case of Markov processes, Horowitz (2002) introduces a new bootstrap procedure, based on a nonpara-

metric estimator of the transition density, which provides “better” higher order refinements than the block bootstrap.
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construct 1√
P

∑T−1
t=R

(
θ̂∗t − θ̂t

)
and add an adjustment term in order to ensure that the distribution

of the sum of both components is the same as the distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, conditional

on the sample, and for all samples except a set of probability measure approaching zero. The ad-

justment term compensates for the fact that, when resampling from the last P observations, each

block (of length l) has the same chance of being drawn, while in the construction of the actual

m−estimator, earlier observations are more heavily used.

In principle, one could also devise a resampling scheme in which blocks are more heavily drawn

from the beginning of the sample and, within each block, “earlier” observations are more heavily

weighted. However, in practice, it is in general not feasible to implement a weighted resampling

which exactly mimics the long run covariance of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
.

The recursive PEE bootstrap can be used to provide valid critical values in a variety of interest-

ing testing contexts, and three such leading applications are developed. The first is a generalization

of the reality check test of White (2000) that allows for non vanishing parameter estimation er-

ror. The second is an out-of-sample version of the integrated conditional moment (ICM) test of

Bierens (1982,1990) and Bierens and Ploberger (1997) which provides out of sample tests consis-

tent against generic (nonlinear) alternatives. Finally, the third is a procedure assessing the relative

out-of-sample predictive accuracy of multiple conditional distribution models. This procedure is

based on an extension of the Andrews (1997) conditional Kolmogorov test. There are two key links

between these applications. First, all applications are made operational via use of the recursive

PEE bootstrap. Second, all applications allow for misspecification among all models being esti-

mated and compared, as opposed to the usual practice of assuming correct (dynamic) specification

under the null hypothesis.3,4

To be more specific, the first application concerns the reality check of White (2000), which

extends the Diebold and Mariano (1995) and West (1996) test for the relative predictive accuracy

of two models by allowing for the joint comparison of multiple misspecified models against a given
3This second feature is important when constructing predictive models, for example, as it is natural not to impose

correct specification of any of the competing models; and if one were to impose correct specification under the null

hypothesis, then inference would not be valid in general (e.g. when the assumption of martingale difference sequence

errors is violated - see Corradi and Swanson (2003a)).
4Motivation for comparing misspecified models can be taken from the finance literature. For example, Hansen,

Heaton and Luttmer (1995) and Hansen and Jeganathan (1997) consider the problem of comparing multiple misspec-

ified models from the perspective of asset pricing and stochastic discount factor models.
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benchmark. White obtains valid asymptotic critical values for his test via use of the Politis and

Romano (1994) stationary bootstrap for the case in which parameter estimation error is asymptot-

ically negligible. Using the recursive PEE bootstrap, we generalize the reality check to the case in

which parameter estimation error does not vanish asymptotically.

The objective of the second application is to test the predictive accuracy of a given (non)linear

model against generic (non)linear alternatives. The ICM type test used for this purpose differs from

those developed by Bierens (1982,1990) and Bierens and Ploberger (1997) because parameters are

estimated recursively, out-of-sample prediction models are analyzed, and the null hypothesis is that

the reference model is the best “loss function specific” predictor, for a given information set. This

application builds on previous work by Corradi and Swanson (2002) who use a conditional p-value

method for constructing critical values in this context, extending earlier work by Hansen (1996) and

Inoue (2001). However, the conditional p-value approach they use suffers from the fact that under

the alternative, the simulated statistics diverge (at rate as high as
√

l̃), conditional on the sample,

where l̃ plays a role analogous to the block length in the block bootstrap. As this feature may lead

to reduced power in finite samples, we establish in the second application that the recursive PEE

bootstrap can yields a
√

P -consistent test.

The third application builds on much of the recent literature on predictive evaluation, which

has focused on out of sample comparison of models for the conditional mean (see among oth-

ers Diebold and Mariano (1995), West (1996), Clark and McCracken (2001), McCracken (2000),

White (2000), Corradi, Swanson and Olivetti (2001), and Corradi and Swanson (2002)). How-

ever, there are several instances in which a “good” model of the conditional mean does not suffice.

For example, financial risk management involves tracking the entire distribution of a portfolio; or

measuring certain distributional aspects, such as value at risk (see e.g. Duffie and Pan (1997)).

In these cases, the choice of the best loss function specific model for the conditional mean may

not be of too much help. Important contributions that go beyond the examination of models

of conditional mean include assessing the correctness of conditional interval prediction (Christof-

fersen (1998)) and assessing volatility predictability by comparing unconditional and conditional

interval forecasts (Christoffersen and Diebold (2000)).5 A natural extension of these papers that

allows for the joint evaluation of all conditional aspects, and hence the evaluation of the underly-
5Prediction confidence intervals are also discussed in Granger, White and Kamstra (1989) Chatfield (1993),

Diebold, Tay and Wallis (1998), Clements and Taylor (2001), and the references cited therein.
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ing predictive density, is outlined in Diebold, Gunther and Tay (DGT: 1998). By making use of

the probability integral transform, DGT suggest a simple and effective means by which predictive

densities can be evaluated (see also Bai (2001), Diebold, Hahn and Tay (1999), and Hong (2001)).

A feature common to the papers cited above is that they test the null hypothesis of (dynamic)

correct specification. In the third application we outline a different approach to predictive den-

sity evaluation, which is based in part on ideas developed in Andrews (1997) and Corradi and

Swanson (2003b). The main question that we address is the following: Given an information set

Xt, which distributional model from amongst a set of misspecified models yields the more “accu-

rate” out-of-sample prediction of the “true” distribution of yt+1, given Xt? The most noteworthy

departure of our approach from others is that we compare distributional models, all of which

may be misspecified, either dynamically or otherwise. More specifically, our objective is to form

parametric conditional distributions for a scalar random variable, yt+1, given some collection of

conditioning variables, Zt, and to select among these. Define the group of conditional distribution

models from which we want to make a selection as F1(u|Zt, θ†1), ..., Fn(u|Zt, θ†n), and define the

true conditional distribution as F0(u|Zt, θ0) = Pr(yt+1 ≤ u|Zt). Relative accuracy among these

models is measured using a distributional analog of mean square error (i.e. the average over U of

E

((
Fi(u|Zt, θ†i )− F0(u|Zt, θ0)

)2
)

, where u ∈ U , and U is a possibly unbounded set on the real

line). For a given benchmark model, application of the recursive PEE bootstrap then enables us to

construct appropriate critical values when testing whether any competing model is “better” than

the benchmark.

In order to assess the finite sample performance of the PEE recursive bootstrap, we carry out

a set of Monte Carlo experiments in which we compare the new bootstrap with a version thereof

that does not contain adjustment terms as well as with a standard version of the block bootstrap

in which the entire sample of data is used to estimate the parameters of a model, instead of using

subsamples with recursive estimation schemes. Interestingly, our bootstrap method appears to

yield coverage probabilities approximately as good as when the standard block bootstrap is used,

and there is clear evidence that the adjustment terms yield substantive improvements relative to

the version of the recursive PEE bootstrap that does not contain the adjustment terms.

The rest of the paper is organized as follows. Section 2 explains the block bootstrap for recursive

m−estimators and establishes its first order validity. Sections 3, 4 and 5 outline the three applica-

tions of the recursive block boostrap: White’s reality check, out of sample integrated conditional
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moment tests and predictive density evaluation. Monte Carlo findings are discussed in Section 6.

Finally, concluding remarks are given in Section 7. All proofs are collected in an Appendix. Here-

after, P ∗ denotes the probability law governing the resampled series, conditional on the sample, E∗

and V ar∗ the mean and variance operators associated with P ∗, o∗P (1) Pr−P denotes a term con-

verging to zero in P ∗−probability, conditional on the sample except a subset of probability measure

approaching zero, and finally O∗
P (1) Pr−P denotes a term which is bounded in P ∗−probability,

conditional on the sample except a subset of probability measure approaching zero.

2 The Block Bootstrap for Parameter Estimation Error in Recur-

sive Schemes

In this section, we establish the first order validity of the block bootstrap when parameters are

estimated using the recursive m-estimator defined as follows.

Let Zt = (yt, ..., yt−s1+1, Xt, ..., Xt−s2+1), t = 1, ..., T, and let s = max{s1, s2}. Additionally, we

henceforth assume that i = 1, ..., n models are estimated, as in the applications outlined in Section

3 and 5 below. Now, define the recursive m-estimator for the parameter vector associated with

model i as:

θ̂i,t = arg min
θi∈Θi

1
t

t∑

j=s

qi(yj , Z
j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n (1)

and

θ†i = arg min
θi∈Θi

E(qi(yj , Z
j−1, θi)), (2)

where qi denotes the objective function for model i. Following standard practice (such as in the

real-time forecasting literature), this estimator is first computed using R observations. In our

applications we focus on 1-step ahead prediction, and the recursive estimators are thus computed

first using R + 1 observations, and then R + 2 observations, and so on until the last estimator is

constructed using T − 1 observations; resulting in a sequence of P = T − R estimators. These

estimators are then used to construct sequences of P 1-step ahead forecasts and associated forecast

errors, for example.

In order to properly capture the contribution of parameter estimation error given the recursive

sampling scheme, it suffices to form bootstrap samples by first resampling R observations from
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the initial R sample observations, and then concatenating onto this an additional P observations

resampled from the P remaining sample observations. More specifically, let b1l1 + b2l2 = T − s+ 1,

with b1l1 = R− s + 1 and b2l2 = P. Also, let Wt = (yt, Z
t−1). First, draw b1 overlapping blocks, of

length l1, from s, ..., R and then draw b2 overlapping blocks, of length l2, from data indexed by R+

1, ..., R+P, with replacement. The first R−s+1 pseudo observations, W ∗
s ,W ∗

s+1, ...,W
∗
s+l−1, ...,W

∗
R,

are equal to WIR
1
,WIR

1 +1, ...,WIR
1 +l1−1, ..., WIR

b1
+l1−1, where IR

i , i = 1, ..., b1 are independent uni-

form random draws on the interval s, ..., R − l1 + 1; and the remaining P pseudo observations,

W ∗
R+1,W

∗
R+2, ..., W

∗
R+l, ..., W

∗
R+P , are equal to WIP

1
, WIP

1 +1, ..., WIP
1 +l2−1, ..., WIP

b2
+l2−1, where IP

i ,

i = 1, ..., b2 are independent uniform random draws from data indexed by R+1, R+2, ..., R+P−l−1.

Thus, conditional on the (entire) sample, the pseudo time series W ∗
t , t = s, ..., R, R + 1, ..., R + P,

consists of b = b1+b2 asymptotically independent, but non identically distributed blocks of length l1

and l2 respectively.6 Also, conditionally on the sample, all of the moments of each block are asymp-

totically homogeneous, under the assumption that the underlying sample is strictly stationary.

Therefore, the rescaled (partial) sums of the blocks satisfy the law of large numbers and the central

limit theorem for asymptotically independent and homogeneous random variables, conditional on

the (entire) sample. Now, define the recursive PEE bootstrap m-estimator as,

θ̂∗i,t = arg min
θi∈Θi

1
t

t∑

j=s

qi(y∗j , Z
∗,j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n.

In order to establish the asymptotic validity of this version of the block bootstrap, we require the

following assumptions.

Assumption A1: (yt, Xt), with yt scalar and Xt an Rζ−valued (0 < ζ < ∞) vector, is a strictly

stationary and absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

Assumption A2: (i) θ†i is uniquely identified (i.e. E(qi(yt, Z
t−1, θi)) > E(qi(yt, Z

t−1, θ†i )) for

any θi 6= θ†i ); (ii) qi is twice continuously differentiable on the interior of Θi, for i = 1, ..., n, and

for Θi a compact subset of R%(i); (iii) the elements of ∇θi
qi and ∇2

θi
qi are p−dominated on Θi,

with p > 2(2 + ψ), where ψ is the same positive constant as defined in Assumption A1; and (iii)

E
(−∇2

θi
qi(θi)

)
is negative definite uniformly on Θi.

7

6More precisely, each block from R + 1, ..., R + P − l − 1 may overlap with any block from s, ..., R for at most s

observations, where s is finite.
7We say that ∇θiqi(yt, Z

t−1, θi) is 2r−dominated on Θi if its j − th element, j = 1, ..., %(i), is such that��∇θiqi(yt, Z
t−1, θi)

��
j
≤ Dt, and E(|Dt|2r) < ∞. For more details on domination conditions, see Gallant and White
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Assumption A3: T = R + P, and as T →∞, P/R → π, with 0 < π < ∞.

Assumptions A1 and A2 are standard memory, moment, smoothness and identifiability condi-

tions. A1 requires (yt, Xt) to be strictly stationary and absolutely regular. The memory condition

is stronger than α−mixing, but weaker than (uniform) φ−mixing. Assumption A3 requires that R

and P grow at the same rate. Of course, if R grows faster than P , then Ψ∗
R,P (as defined below)

vanishes in probability, and there is no need to capture the contribution of parameter estimation er-

ror when constructing bootstrap critical values for predictive accuracy tests such as those discussed

in the sequel.

Define:

Ψ∗
R,P =

1√
P

T−1∑

t=R

(
θ̂∗i,t − θ̂i,t

)
+

(
− 1

T

T∑
t=s

∇2
θi

qi(yt, Z
t−1, θ̂i,T )

)−1

× 1√
P

P−1∑

j=1

aR,j


∇θiqi(yR+j , Z

R+j−1, θ̂i,T )− 1
P

P∑

j=1

∇θiqi(yR+j , Z
R+j−1, θ̂i,T )


 , (3)

where aR,j = 1
R+j + 1

R+j+1 + ... + 1
R+P−1 .

Theorem 1: Let A1-A3 hold. Also, assume that as P,R →∞, l1, l2 →∞, and that l2
P 1/4 → 0 and

l1
R1/4 → 0. Then, as P and R →∞,

P

(
ω : sup

v∈<%(i)

∣∣∣∣∣P
∗
R,P

(
Ψ∗

R,P ≤ v
)− P

(
1√
P

T−1∑

t=R

(
θ̂i,t − θ†i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗
R,P denotes the probability law of the resampled series, conditional on the (entire) sample.

Broadly speaking, Theorem 1 states that Ψ∗
R,P has the same limiting distribution as 1√

P

∑T−1
t=R

(
θ̂i,t − θ†i

)
,

conditional on sample, and for all samples except a set with probability measure approaching zero.

As outlined in the following sections, application of Theorem 1 allows us to capture the contribu-

tion of (recursive) parameter estimation error to the covariance kernel of the limiting distribution

of various statistics.

Though a detailed proof of Theorem 1 is given in the appendix, it is worthwhile giving an

intuitive explanation of why there is an adjustment term in Ψ∗
R,P , as one might expect that

1√
P

∑T−1
t=R

(
θ̂∗i,t − θ̂i,t

)
has the same limiting distribution as 1√

P

∑T−1
t=R

(
θ̂i,t − θ†i

)
. For notational

simplicity, let hi,t = ∇θiqi(yt, Z
t−1, θ†i ) and h∗i,t = ∇θiqi(y∗t , Z∗,t−1, θ†i ). Via a mean value expansion

(1988, pp. 33).
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around θ†, using a similar argument as in Lemma A5 in West (1996), we have

1√
P

T−1∑

t=R

(
θ̂i,t − θ†i

)
= B†

i

aR,0√
P

R∑
t=s

hi,t + B†
i

1√
P

P−1∑

j=1

aR,jhi,R+j + oP (1), (4)

where B†
i =

(
E

(
−∇2

θiqi(yt, Z
t−1, θ†i )

))−1
. Also,

1√
P

T−1∑

t=R

(
θ̂∗i,t − θ̂i,t

)
= B†

i

aR,0√
P

R∑
t=s

(
h∗i,t − hi,t

)
+ B†

i

1√
P

P−1∑

j=1

aR,j

(
h∗i,R+j − hi,R+j

)
+ o∗P (1), Pr−P.

(5)

Now, the first term on the RHS of (5) has the same limiting distribution as the first term on

the RHS of (4), conditional on sample. However, the second term on the RHS of (5) does not

have the same limiting distribution as the second term on the RHS of (4), conditional on sam-

ple. The reason for this is that, up to a term of order O∗
P

(
l/
√

P
)

, E∗
(

1√
P

∑P−1
j=1 aR,jh

∗
i,R+j

)
=

1√
P

∑P−1
j=1 aR,j

1
P

∑P−1
j=1 hi,R+j 6= 1√

P

∑P−1
j=1 aR,jhi,R+j . Now, rewrite (5) as,

1√
P

T−1∑

t=R

(
θ̂∗i,t − θ̂i,t

)
=


B†

i

aR,0√
P

R∑
t=s

(
h∗i,t − hi,t

)
+ B†

i

1√
P

P−1∑

j=1

aR,j


h∗i,R+j −

1
P

P−1∑

j=1

hi,j







−B†
i

1√
P

P−1∑

j=1

aR,j


hi,R+j − 1

P

P−1∑

j=1

hi,j


 + o∗P (1), Pr−P. (6)

As shown in the proof of the theorem, the term in square brackets in (6) mimics the limiting

distribution of 1√
P

∑T−1
t=R

(
θ̂i,t − θ∗i

)
, conditional on sample. Also, the difference between the second

term on the RHS of (3) and B†
i

1√
P

∑P−1
j=1 aR,j

(
hi,R+j − 1

P

∑P−1
j=1 hi,j

)
, vanishes asymptotically.

Therefore, the adjustment term completely offsets the second term on the RHS of (6), as R, P

go to infinity. In the following sections we outline three applications in which valid bootstrap

critical values can be constructed using the above approach for mimicing the limiting distribution

of 1√
P

∑T−1
t=R

(
θ̂i,t − θ†i

)
.

3 White’s Reality Check for Data Snooping

In this section, we extend the White (2000) reality check to the case in which the effect of parameter

estimation error does not vanish asymptotically. In particular, we show that the block bootstrap

for recursive m-estimators properly mimics the contribution of parameter estimation error to the

covariance kernel of the limiting distribution of the original reality check test. Although we focus
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our attention in this paper on the recursive PEE bootstrap, which is based on resampling blocks of

deterministic length, we conjecture that the same approach can be used to extend the stationary

bootstrap employed by White (2000) to the case of nonvanishing parameter estimation error.

Let the generic forecast error be ui,t+1 = yt+1 − κi(Zt, θ†i ), and let ûi,t+1 = yt+1 − κi(Zt, θ̂i,t),

where κi(Zt, θ̂i,t) is the conditional mean function under model i. As above, we assume that the

set of regressors may vary across different models, so that Zt is meant to denote the collection of

all potential regressors. Following White (2000), define the statistic

SP = max
k=2,...,n

SP (1, k),

where

SP (1, k) =
1√
P

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1)) , k = 2, ..., n,

with g a given loss function. Recall that in this test, parameter estimation error need not be

accounted for in the covariance kernel of the limiting distribution unless g 6= qi for some i. This

follows upon examination of the results of both West (1996) and White (2000). In particular, in

West (1996), the parameter estimation error components that enter into the covariance kernel of

the limiting distribution of his test statistic are zero whenever the same loss function is used for

both predictive evaluation and in-sample estimation. The same argument holds for the reality check

test. This means that as long as g = qi ∀i, the White test can be applied regardless of the rate of

growth of P and R. When we write the covariance kernel of the limiting distribution of the statistic

(see below), however, we include terms capturing the contribution of parameter estimation error,

thus implicitly assuming that g 6= qi for some i. In practice, one reason why we allow for cases

where g 6= qi is that least squares is sometimes better behaved in finite samples and/or easier to

implement than more generic m−estimators, so that practitioners sometimes use least squares for

estimation and more complicated (possibly asymmetric) loss functions for predictive evaluation.8

Of course, there are also applications for which parameter estimation error does not vanish, even

if the same loss function is used for parameter estimation and predictive evaluation. One such
8Consider linex loss, where g(u) = eau − au − 1, so that for a > 0 (a < 0) positive (negative) errors are more

(less) costly than negative (positive) errors. Here, the errors are exponentiated, so that in this particular case, laws

of large numbers and central limit theorems may require a large number of observations before providing satisfactory

approximations. This feature of linex loss is illustrated in the Monte Carlo findings of Corradi and Swanson (2002).

(Linex loss is studied in Zellner (1993), Christoffersen and Diebold (1996, 1997) and Granger (1999), for example.)
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application is discussed in the next section.

For a given loss function, the reality check tests the null hypothesis that a benchmark model

(defined as model 1) performs equal to or better than all competitor models (i.e. models 2,...,n).

The alternative is that at least one competitor performs better than the benchmark. Formally, the

hypotheses are:

H0 : max
k=2,...,n

E (g(u1,t+1)− g(uk,t+1)) ≤ 0

and

HA : max
k=2,...,n

E (g(u1,t+1)− g(uk,t+1)) > 0.

In order to derive the limiting distribution of SP we require the following additional assumption.

Assumption A4: (i) κi is twice continuously differentiable on the interior of Θi and the elements

of ∇θiκi(Zt, θi) and ∇2
θi

κi(Zt, θi) are p−dominated on Θi, for i = 2, ..., n, with p > 2(2+ψ), where

ψ is the same positive constant as that defined in Assumption A1; (ii) g is positive valued, twice

continuously differentiable on Θi, and g, g′ and g′′ are p−dominated on Θi with p defined as in (i);

and (iii) let ckk =

limT→∞ V ar
(

1√
T

∑T
t=s (g(u1,t+1)− g(uk,t+1))

)
, k = 2, ..., n, define analogous covariance terms,

cj,k, j, k = 2, ..., n, and assume that [cj,k] is positive semi-definite.

Assumptions A4(i)-(ii) are standard smoothness and domination conditions imposed on the

conditional mean functions of the models. Assumption A4(iii) is standard in the literature that

uses DM type tests (see e.g. West (1996) and White (2000)), and states that at least one of the

competing models has to be nonnested with (and not nesting) the benchmark.

Proposition 2: Let assumptions A1-A4 hold, then

max
k=2,...,n

(
SP (1, k)−

√
PE (g(u1,t+1)− g(uk,t+1))

)
d→ max

k=2,...,n
S(1, k),

where S = (S(1, 2), ..., S(1, n)) is a zero mean Gaussian process with covariance kernel given by V,

with V a n× n matrix with i, i element

vi,i = Sgigi + 2Πµ′1B
†
1C11B

†
1µ1 + 2Πµ′iB

†
i CiiB

†
i µi − 4Πµ′1B

†
1C1iB

†
i µi + 2ΠSgiq1

B†
1µ1 − 2ΠSgiqi

B†
i µi,

where Sgigi =
∑∞

τ=−∞E ((g(u1,1)− g(ui,1)) (g(u1,1+τ )− g(ui,1+τ ))) ,

Cii =
∑∞

τ=−∞E

((
∇θiqi(y1+s, Z

s, θ†i )
)(
∇θiqi(y1+s+τ , Z

s+τ , θ†i )
)′)

,

Sgiqi
=

∑∞
τ=−∞E

(
(g(u1,1)− g(ui,1))

(
∇θiqi(y1+s+τ , Z

s+τ , θ†i )
)′)

,

B†
i =

(
E

(
−∇2

θiqi(yt, Z
t−1, θ†i )

))−1
, µi = E (∇θig(ui,t+1)) , and Π = 1− π−1 ln(1 + π).
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Just as in White (2000), note that under the null, the least favorable case arises when

E
(
g(u1,t+1)− g(uk,t+1)

)
= 0, ∀ k. In this case, the distribution of SP coincides with that of

maxk=2,...,n

(
SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1))

)
, so that SP has the above limiting distri-

bution, which is a functional of a Gaussian process with a covariance kernel that reflects uncertainty

due to parameter estimation error and dynamic mispecification. Additionally, when all competitor

models are worse than the benchmark, the statistic diverges to minus infinity at rate
√

P . Fi-

nally, when only some competitor models are worse than the benchmark, the limiting distribution

provides a conservative test, as SP will always be smaller than

maxk=2,...,n

(
SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1))

)
, asymptotically. Of course, when HA holds,

the statistic diverges to plus infinity at rate
√

P.

In a recent paper, Hansen (2001) explores the point made by White (2000) that the reality

check test can have level going to zero at the same time that power goes to unity (i.e. that the test

is conservative unless E (g(u1,t+1)− g(uk,t+1)) = 0, ∀ k), and suggests a mean correction for SP in

order to address this feature of the test. Our version of the reality check has the same features and

can also be modified using the method proposed by Hansen.9

Recall that the maximum of a Gaussian process is not Gaussian in general, so that standard

critical values cannot be used to conduct inference on SP . As pointed out by White (2000), one

possibility in this case is to first estimate the covariance structure and then draw 1 realization

from an (n − 1)-dimensional normal with covariance equal to the estimated covariance structure.

From this realization, pick the maximum value over k = 2, . . . , n. Repeat this a large number of

times, form an empirical distribution using the maximum values over k = 2, . . . , n, and obtain

critical values in the usual way. A drawback to this approach is that we need to rely on an

estimator of the covariance structure based on the available sample of observations, which in many

cases may be small relative to the number of models being compared. Furthermore, whenever the
9An alternative to the bootstrap critical values, may the construction of critical values based on subsampling

(e.g. Politis, Romano and Wolf (1999), Ch.3). Heuristically, we construct T − 2bT statistics using subsamples

of length bT , where bT /T → 0; the empirical distribution of the statistics computed over the various subsam-

ples, properly mimics the distribution of the statistic. Thus, it provides valid critical values even for the case of

maxk=2,...,m E (g(u1,t+1)− g(uk,t+1)) = 0, but E (g(u1,t+1)− g(uk,t+1)) < 0 for some k.Needless to say, the prob-

lem is that unless the sample is very large, the empirical distribution of the subsampled statistics provides a poor

approximation to the limiting distribution of the statistic. The subsampling approach has been followed by Linton,

Maasoumi and Whang (2003), in the context of testing for stochastic dominance.

11



forecasting errors are not martingale difference sequences (as in our context), heteroskedasticity

and autocorrelation consistent covariance matrices should be estimated, and thus a lag truncation

parameter must be chosen. Another approach which avoids these problems involves using the

stationary bootstrap of Politis and Romano (1994). This is the approach used by White (2000),

and in general, bootstrap procedures have been shown to perform well in a variety of finite sample

contexts (see e.g. Diebold and Chen (1996)). Our approach is to apply the recursive PEE bootstrap

outlined above.

Hereafter, let u∗i,t+1 = y∗t+1 − κi(Z∗,t, θ
†
i ) and û∗i,t+1 = y∗t+1 − κi(Z∗,t, θ̂∗i,t), where

θ̂∗i,t = arg min
θi∈Θi

1
t

t∑

j=s

qi(y∗j , Z
∗,j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n, (7)

and let ũi,t+1 = yt+1 − κi(Z∗,t, θ̂i,T ). Recall that y∗t , Z∗,t has been obtained via the resampling

procedure described in Section 2. Define

S∗P = max
k=2,...,n

S∗P (1, k),

where

S∗P (1, k) =
1√
P

T−1∑

t=R

((
g(û∗1,t+1)− g(û1,t+1)

)− (
g(û∗k,t+1)− g(ûk,t+1)

))

+
1
T

T∑
t=s

∇θ1g(û1,t+1)

(
− 1

T

T∑
t=s

∇2
θ1

q1(yt, Z
t−1, θ̂1,T )

)−1

× 1√
P

P−1∑

i=1

aR,i

(
∇θ1q1(yR+i, Z

R+i−1, θ̂1,T )− 1
P

P−1∑

i=1

∇θ1q1(yR+i, Z
R+i−1, θ̂1,T )

)

− 1
T

T∑
t=s

∇θk
g(ûk,t+1)

(
− 1

T

T∑
t=s

∇2
θk

qk(yt, Z
t−1, θ̂k,T )

)−1

× 1√
P

P−1∑

i=1

aR,i

(
∇θk

qk(yR+i, Z
R+i−1, θ̂k,T )− 1

P

P−1∑

i=1

∇θ1q1(yR+i, Z
R+i−1, θ̂k,T )

)
,(8)

where aR,i = 1
R+i + 1

R+i+1 + ... + 1
R+P−1 , ∇θ1g(û1,t+1) = g′(yt+1 − κ1(Zt, θ̂1,T ))∇θ1κ1(Zt, θ̂1,T ),

∇θk
g(ũk,t+1) is defined analogously, and with the notation g′ and g′′ we mean the first and second

derivatives of g with respect to its argument.

Proposition 3: Let assumptions A1-A4 hold. Also, assume that as P,R → ∞, l1, l2 → ∞, and

that l2
P 1/4 → 0 and l1

R1/4 → 0. Then, as P and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
R,P

(
max

k=2,...,n
S∗P (1, k) ≤ v

)
− P

(
max

k=2,...n
Sµ

P (1, k) ≤ v

)∣∣∣∣ > ε

)
→ 0,
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and

Sµ
P (1, k) = SP (1, k)−

√
PE (g(u1,t+1)− g(uk,t+1)) ,

The above result suggests proceeding in the following manner. For any bootstrap replication,

compute the bootstrap statistic, S∗P . Perform B bootstrap replications (B large) and compute the

quantiles of the empirical distribution of the B bootstrap statistics. Reject H0, if SP is greater

than the (1 − α)th-percentile. Otherwise, do not reject. Now, for all samples except a set with

probability measure approaching zero, SP has the same limiting distribution as the corresponding

bootstrapped statistic when E (g(u1,t+1)− g(uk,t+1)) = 0 ∀ k, ensuring asymptotic size equal to α.

On the other hand, when one or more competitor models are strictly dominated by the benchmark,

the rule provides a test with asymptotic size between 0 and α. Under the alternative, SP diverges to

(plus) infinity, while the corresponding bootstrap statistic has a well defined limiting distribution,

ensuring unit asymptotic power.

4 Out-of-Sample Integrated Conditional Moment Tests

Corradi and Swanson (CS: 2002) draw on both the consistent specification and predictive ability

testing literatures and propose a test for predictive accuracy which is consistent against generic

nonlinear alternatives, and which is designed for comparing nested models. The test is based on

an out-of-sample version of the integrated conditional moment (ICM) test of Bierens (1982,1990)

and Bierens and Ploberger (1997). One reason why using an ICM type test is more intuitively

appealing in our context than, say, a Diebold and Mariano (DM: 1995), West (1996) or reality

check type test, is that in addition to comparing nested models, we also use the same loss function

for estimation and for predictive evaluation. To explain the problem that can arise when not using

an ICM type test, consider the DM test. Note first that the difference between functionals of the

“true” forecast errors is identically zero when the null model is nested. Additionally, as discussed

above, parameter estimation error vanishes whenever the same loss function is used both in- and

out-of-sample, regardless of the value of π. Thus, when the same loss function is used throughout,

and the null model is nested, the numerator of DM type tests vanishes in probability under the

null.10 It turns out that the limiting distribution of the ICM type test statistic proposed by CS
10Note that McCracken (1999) shows that a particular version of the DM test in which a null model is compared

against a fixed alternative and the numerator is multiplied by
√

P has a nonstandard limiting distribution. However,
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is a functional of a Gaussian process with a covariance kernel that reflects both the time series

structure of the data as well as the contribution of parameter estimation error. As a consequence,

critical values are data dependent and cannot be directly tabulated. CS establish the validity

of the conditional p-value method for constructing critical values in this context, thus extending

earlier work by Hansen (1996) and Inoue (2001). However, the conditional p-value approach suffers

from the fact that under the alternative, the simulated statistics diverge (at rate as high as
√

l̃),

conditional on the sample and for all samples except a set of measure zero, where l̃ plays a role

analogous to l in the block bootstrap. As this feature may lead to reduced power in finite samples,

we establish in this application that the recursive PEE bootstrap can also be used.

Summarizing the testing approach used in this application, assume that the objective is to test

whether there exists any unknown alternative model that has better predictive accuracy than a

given benchmark model, for a given loss function. A typical example is the case in which the

benchmark model is a simple autoregressive model and we want to check whether a more accurate

forecasting model can be constructed by including possibly unknown (non)linear functions of the

past of the process or of the past of some other process(es).11 Although this is the case that we

focus on, the benchmark model can in general be any (non)linear model. As mentioned above, one

important feature of this application is that the same loss function is used for in-sample estimation

and out-of-sample prediction (see Granger (1993) and Weiss (1996)). In contrast to the previous

application, however, this does not ensure that parameter estimation error vanishes asymptotically.

Let the benchmark model be:

yt = θ†1,1 + θ†1,2yt−1 + u1,t, (9)

where θ†1 = (θ†1,1, θ
†
1,2)

′ = arg minθ1∈Θ1 E(q1(yt − θ1,1 − θ1,2yt−1)), θ1 = (θ1,1, θ1,2)′, yt is a scalar,

q1 = g, as the same loss function is used both for in-sample estimation and out-of-sample predictive

evaluation, and everything else is defined above. The generic alternative model is:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)w(Zt−1, γ) + u2,t(γ), (10)

his approach does not apply in the current context, as we consider generic alternatives, and as we allow for misspec-

ification of all models being compared rather than assuming correct specification under the null. On the other hand,

Giacomini (2002b) provides a test for conditional predictive ability valid for both nested and nonnested models. The

key ingredient of her test is the fact that parameters are estimated using a fixed rolling window.
11For example, Swanson and White (1997) compare the predictive accuracy of various linear models against neural

network models using both in-sample and out-of-sample model selection criteria.
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where θ†2(γ) = (θ†2,1(γ), θ†2,2(γ), θ†2,3(γ))′ = arg minθ2∈Θ2 E(q1(yt − θ2,1 − θ2,2yt−1 − θ2,3w(Zt−1, γ))),

θ2(γ) = (θ2,1(γ), θ2,2(γ), θ2,3(γ))′, θ2 ∈ Θ2, where Γ is a compact subset of <d, for some finite d.

The alternative model is called “generic” because of the presence of w(Zt−1, γ), which is a generi-

cally comprehensive function, such as Bierens’ exponential, a logistic, or a cumulative distribution

function (see e.g. Stinchcombe and White (1998) for a detailed explanation of generic comprehen-

siveness). One example has w(Zt−1, γ) = exp(
∑s2

i=1 γiΦ(Xt−i)), where Φ is a measurable one to

one mapping from < to a bounded subset of <, so that here Zt = (Xt, ..., Xt−s2+1), and we are

thus testing for nonlinear Granger causality. The hypotheses of interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0 versus HA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (11)

Clearly, the reference model is nested within the alternative model, and given the definitions of θ†1
and θ†2(γ), the null model can never outperform the alternative. For this reason, H0 corresponds

to equal predictive accuracy, while HA corresponds to the case where the alternative model out-

performs the reference model, as long as the errors above are loss function specific forecast errors.

It follows that H0 and HA can be restated as:

H0 : θ†2,3(γ) = 0 versus HA : θ†2,3(γ) 6= 0,

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Now, given the definition of θ†2(γ),

note that

E


g′(yt+1 − θ†2,1(γ)− θ†2,2(γ)yt − θ†2,3(γ)w(Zt, γ))×




−1
−yt

−w(Zt, γ)





 = 0,

where g′ is defined as above. Thus, under H0 we have that θ†2,3(γ) = 0, θ†2,1(γ) = θ†1,1, θ†2,2(γ) = θ†1,2,

and E(g′(u1,t+1)w(Zt, γ)) = 0. Thus, we can once again restate H0 and HA as:

H0 : E(g′(u1,t+1)w(Zt, γ)) = 0 versus HA : E(g′(u1,t+1)w(Zt, γ)) 6= 0, (12)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Finally, define û1,t+1 = yt+1 −
(

1 yt

)
θ̂1,t. Following CS, the test statistic is:

MP =
∫

Γ
mP (γ)2φ(γ)dγ, (13)

and

mP (γ) =
1

P 1/2

T−1∑

t=R

g′(û1,t+1)w(Zt, γ), (14)
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where
∫
Γ φ(γ)dγ = 1, φ(γ) ≥ 0, and φ(γ) is absolutely continuous with respect to Lebesgue measure.

In the sequel, we need:

Assumption A5: (i) w is a bounded, twice continuously differentiable function on the interior of

Γ and ∇γw(Zt, γ) is bounded uniformly in Γ; and (ii) ∇γ∇θ1q
′
1,t(θ1)w(Zt−1, γ) is continuous on

Θ1 × Γ, where q′1,t(θ1) = q′1(yt − θ1,1 − θ1,2yt−1), Γ a compact subset of Rd and is 2r−dominated

uniformly in Θ1 × Γ, with r ≥ 2(2 + ψ) where ψ is the same positive constant as that defined in

Assumption A1.

Assumption A5 requires the function w to be bounded and twice continuously differentiable;

such a requirement is satisfied by logistic or exponential functions, for example.

Proposition 4: Let assumptions A1-A3 and A5 hold. Then, the following results hold: (i) Under

H0,

MP =
∫

Γ
mP (γ)2φ(γ)dγ

d→
∫

Γ
Z(γ)2φ(γ)dγ,

where mP (γ) is defined in equation (14) and Z is a Gaussian process with covariance kernel given

by:

K(γ1, γ2) = Sgg(γ1, γ2) + 2Πµ′γ1
B†ShhB†µγ2 + ΠB†µ′γ1

Sgh(γ2)

+Πµ′γ2
B†Sgh(γ1),

with µγ1 = E(∇θ1(g
′
t+1(u1,t+1)w(Zt, γ1))), B† = (−E(∇2

θ1
q1(u1,t)))−1,

Sgg(γ1, γ2) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)g′(u1,s+j+1)w(Zs+j , γ2)),

Shh =
∑∞

j=−∞E(∇θ1q1(u1,s)∇θ1q1(u1,s+j)′),

Sgh(γ1) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)∇θ1q1(u1,s+j)′), and γ, γ1, and γ2 are generic elements of

Γ.

(ii) Under HA, for ε > 0, limP→∞ Pr
(

1
P

∫
Γ mP (γ)2φ(γ)dγ > ε

)
= 1.

As in the previous application, the limiting distribution under H0 is a Gaussian process with a

covariance kernel that reflects both the dependence structure of the data and, for π > 0, the effect

of parameter estimation error. Hence, critical values are data dependent and cannot be tabulated.

In order to implement this statistic using the recursive PEE bootstrap, define12

θ̂∗1,t = (θ̂∗1,1,t, θ̂
∗
1,2,t)

′ = arg min
θ1∈Θ1

1
t

t∑

j=2

q1(y∗j − θ1,1 − θ1,2y
∗
j−1). (15)

12Recall that y∗t , Z∗,t has been obtained via the resampling procedure described in Section 2
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Also, define û∗1,t+1 = y∗t+1 −
(

1 y∗t
)
θ̂∗1,t. The bootstrap test statistic is:

M∗
P =

∫

Γ
m∗

P (γ)2φ(γ)dγ,

where, recalling that g = q1,

m∗
P (γ) =

1
P 1/2

T−1∑

t=R

(
g′(û∗1,t+1)w(Z∗,t, γ)− g′(û1,t+1)w(Zt, γ)

)

+
1
T

T∑

t=2

∇θ1q1(yt − θ̂1,1,T − θ̂1,2,T yt−1)w(Zt, γ)

(
− 1

T

T∑

t=2

∇2
θ1

q1(yt − θ̂1,1,T − θ̂1,2,T yt−1)

)−1

× 1√
P

P−1∑

i=1

aR,i

(
∇θ1q1(yR+i − θ̂1,1,T − θ̂1,2,T yR+i−1)

− 1
P

P−1∑

i=1

∇θ1q1(yR+i − θ̂1,1,T − θ̂1,2,T yR+i−1)

)

Proposition 5: Let assumptions A1-A3 and A5 hold. Also, assume that as P,R →∞, l1, l2 →∞,

and that l2
P 1/4 → 0 and l1

R1/4 → 0. Then, as P and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
R,P

(∫

Γ
m∗

P (γ)2φ(γ)dγ ≤ v

)
− P

(∫

Γ
mµ

P (γ)2φ(γ)dγ ≤ v

)∣∣∣∣ > ε

)
→ 0,

where aR,i = 1
R+i + 1

R+i+1 + ... + 1
R+P−1 and mµ

P (γ) = mP (γ)−√PE
(
g′(u1,t+1)w(Zt, γ)

)
.

The above result suggests proceeding the same way as in the first application. For any bootstrap

replication, compute the bootstrap statistic, M∗
P . Perform B bootstrap replications (B large) and

compute the percentiles of the empirical distribution of the B bootstrap statistics. Reject H0 if

MP is greater than the (1− α)th-percentile. Otherwise, do not reject. Now, for all samples except

a set with probability measure approaching zero, MP has the same limiting distribution as the

corresponding bootstrap statistic under H0, thus ensuring asymptotic size equal to α. Under the

alternative, MP diverges to (plus) infinity, while the corresponding bootstrap statistic has a well

defined limiting distribution, ensuring unit asymptotic power.

5 Predictive Density Evaluation

In several instances, such as financial risk management, for example, one is interested in predicting

either a particular confidence interval (e.g. Value at Risk) or the entire conditional distribution of a

variable of interest. Hence, over the last few years, a new strand of literature addressing the issue of
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predictive density evaluation has arisen (see e.g. Diebold, Gunther and Tay (DGT: 1998), Christof-

fersen (1998), Bai (2001), Diebold, Hahn and Tay (1999), Hong (2001) and Christoffersen, Hahn

and Inoue (2001)). The literature on the evaluation of predictive densities is largely concerned with

testing the null of correct dynamic specification of an individual conditional distribution model.

On the other hand, in the literature on the evaluation of point forecast models it is acknowledged

that all models in a group that is being evaluated may be misspecified (see e.g. White (2000) and

Corradi and Swanson (2002)). In this application, we draw on elements of these two literatures

in order to provide a test for choosing among a group of misspecified out-of-sample predictive

density models. Reiterating our above point, the focus of most of the papers cited above is that

the density associated with the true conditional distribution is clearly the best predictive density.

Therefore, evaluation of predictive densities is usually performed via tests for the correct (dynamic)

specification of the conditional distribution. Along these lines, by making use of the probability

integral transform, DGT suggest a simple and effective means by which predictive densities can

be evaluated. Using the DGT terminology, if pt(yt|Ωt−1) is the “true” conditional distribution of

yt|Ωt−1, then pt(yt|Ωt−1) is an identically and independently distributed uniform random variable

on [0, 1]; so that the difference between an empirical version of pt(yt|Ωt−1) constructed using esti-

mated parameters and the 45 degree line can be used as measure of goodness of fit.13 A feature

common to the papers cited above is that the null hypothesis is that of (dynamic) correct speci-

fication. Our approach differs from these as we do not assume that any of the competing models

(including the benchmark) are correctly specified. Thus, we posit that all models should be viewed

as approximations of some true unknown underlying data generating process.

13Using the same approach, Bai (2001) proposes a Kolmogorov type test based on the comparison of pt(yt|Ωt−1, bθT )

with the CDF of a uniform on [0, 1]. As a consequence of using estimated parameters, the limiting distribution of

his test reflects the contribution of parameter estimation error and is not nuisance parameter free. To overcome this

problem, Bai (2001) uses a novel device based on a martingalization argument to construct a modified Kolmogorov

test which has a nuisance parameter free limiting distribution. His test has power against violations of uniformity but

not against violations of independence. Hong (2001) proposes an interesting test, based on the generalized spectrum,

which has power against both uniformity and independence violations, for the case in which the contribution of

parameter estimation error vanishes asymptotically. If the null is rejected, Hong (2001) also proposes a test for

uniformity robust to non independence, which is based on the comparison between a kernel density estimator and

the uniform density. Diebold, Hahn and Tay (1999) propose a nonparametric correction for improving the density

forecast when the uniform (but not the independence) assumption is violated.
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In this application, our objective is to “choose” a conditional distribution model that provides

the most accurate out-of-sample approximation of the true conditional distribution, given multiple

predictive densities, and allowing for misspecification under both the null and the alternative hy-

potheses. At first blush, it may seem that the probability integral transform approach will yield

a solution to this problem. However, it is difficult to map the degree of deviation from uniformity

and independence into a meaningful measure of the degree of misspecification of a model, so that

the probability integral transform method does not easily extend to the evaluation of multiple

misspecified models.

Another strategy that yields tests of the null of correct specification that are equally as useful

as those discussed above is the conditional Kolmogorov test approach of Andrews (1997), which is

based on a direct comparison of empirical joint distributions with the product of parametric con-

ditional and nonparametric marginal distributions. Corradi and Swanson (2003b) extend Andrews

(1997) in order to allow for the in-sample comparison of multiple misspecified models. Our focus

in this application is to extend their results to out-of-sample predictive density evaluation via use

of the block recursive bootstrap. More specifically, and using the notation outlined above, our ob-

jective is to form parametric conditional distributions for a scalar random variable, yt+1, given Zt,

and to select among these. Define the group of conditional distribution models from which we want

to make a selection as F1(u|Zt, θ†1), ..., Fn(u|Zt, θ†n), and define the true conditional distribution as

F0(u|Zt, θ0) = Pr(yt+1 ≤ u|Zt). Hereafter, assume that qi(yt, Z
t−1, θi) = − ln fi(yt|Zt−1, θi), where

fi(·|·, θi) is the conditional density associated with Fi, i = 1, ..., n, so that in this application, θ†i
is the probability limit of a quasi maximum likelihood estimator (QMLE). If model i is correctly

specified, then θ†i = θ0. In the sequel, F1(·|·, θ†1) is taken as the benchmark model, and the objective

is to test whether some competitor model can provide a more accurate approximation of F0(·|·, θ0)

than the benchmark.14

We begin by assuming that accuracy is measured using a distributional analog of mean square

error. More precisely, the squared (approximation) error associated with model i, i = 1, ..., n, is

measured in terms of the average over U of E

((
Fi(u|Zt, θ†i )− F0(u|Zt, θ0)

)2
)

, where u ∈ U , and

14In this test, the competing models are known. This is different than the probability integral transform approach

where only the null model is explicitly stated.
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U is a possibly unbounded set on the real line. The hypotheses of interest are:

H0 : max
k=2,...,n

∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du ≤ 0
(16)

versus

HA : max
k=2,...,n

∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du > 0,
(17)

where φ(u) ≥ 0 and
∫
U φ(u) = 1, u ∈ U ⊂ <, U possibly unbounded. Note that for a given

u, we compare conditional distributions in terms of their (mean square) distance from the true

distribution. We then average over U.15,16 The statistic is:

ZP = max
k=2,...,n

∫

U
ZP,u(1, k)φ(u)du, (18)

15Kitamura (2002) proposes a comparison among misspecified conditional models, subject to given moment restric-

tions, in terms of the conditional entropy. Giacomini (2002a) proposed an evaluation method for predictive densities

based on a weighted likelihood ratio, accuracy is measured in terms of the Kullback Leibler Information Criterion

(KLIC).
16If interest focuses on predictive conditional confidence intervals (see e.g. Christoffersen (1998)), so that the

objective is to “approximate” Pr(u ≤ yt+1 ≤ u|Zt), then the null and alternative hypotheses can be stated as:

H ′
0 : max

k=2,...,n
E

���
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

�
− �F0(u|Zt, θ0)− F0(u|Zt, θ0)

��2

−
��

Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k)
�
− �F0(u|Zt, θ0)− F0(u|Zt, θ0)

��2
�
≤ 0.

versus

H ′
A : max

k=2,...,n
E

���
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

�
− �F0(u|Zt, θ0)− F0(u|Zt, θ0)

��2

−
��

Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k)
�
− �F0(u|Zt, θ0)− F0(u|Zt, θ0)

��2
�

> 0.

Analogously, if interest focuses on testing the null of equal accuracy of only two predictive conditional distribution

models, say F1 and Fk, we can simply state the hypotheses as:

H ′′
0 :

Z
U

E

��
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

�2

−
�
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

�2
�

φ(u)du = 0

versus

H ′′
A :

Z
U

E

��
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

�2

−
�
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

�2
�

φ(u)du 6= 0.
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where

ZP,u(1, k) =
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2
−

(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t)

)2
)

.
(19)

In this application we find more ”natural” to estimate each model by QMLE, so that in terms of

equation (1) qi = − ln fi, where fi is the conditional density associated with model i, and θ̂i,t is

defined as θ̂i,t = arg maxθi∈Θi
1
t

∑t
j=s ln fi(yj , Z

j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n.

In Corradi and Swanson (2003b) we show how the hypotheses above can be restated as

H0 : max
k=2,...,n

∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du ≤ 0

versus

HA : max
k=2,...,n

∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du > 0,

where µ2
i (u) = E

((
1{yt ≤ u} − Fi(u|Zt, θ†i )

)2
)

. In the sequel, we require the following additional

assumption.

Assumption A6: (i) Fi(u|Zt, θi) is continuously differentiable on the interior of Θi and∇θiFi(u|Zt, θ†i )

is 2r-dominated on Θi, uniformly in u, r > 2, i = 1, ..., n;17 and (ii) let vkk(u) =plimT→∞

V ar

(
1√
T

∑T
t=s

(((
1{yt+1≤ u} − F 1(u|Zt, θ†1)

)2
−µ2

1(u)
)
−

((
1{yt+1≤ u} − F k(u|Zt, θ†k)

)2
−µ2

k(u)
)))

,

k = 2, ..., n, define analogous covariance terms, vj,k(u), j, k = 2, ..., n, and assume that [vj,k(u)] is

positive semi-definite, uniformly in u.

Analogous to assumption A4, assumptions A6(i)-(ii) are standard smoothness and domination

conditions imposed on the conditional distributions of the models, and assumption A6(iii) states

that at least one of the competing models, F2(·|·, θ†1), ..., Fn(·|·, θ†n), has to be nonnested with (and

non nesting) the benchmark.

Proposition 6: Let assumptions A1-A3 and A6 hold.18 Then:

max
k=2,...,n

∫

U

(
ZP,u(1, k)−

√
P

(
µ2

1(u)− µ2
k(u)

))
φU (u)du

d→ max
k=2,...,n

∫

U
Z1,k(u)φU (u)du,

where Z1,k(u) is a zero mean Gaussian process with covariance Ck(u, u′) equal to:

E




∞∑

j=−∞

((
1{ys+1≤ u} − F 1(u|Zs, θ†1)

)2
− µ2

1(u)
)((

1{ys+j+1≤ u′} − F 1(u
′|Zs+j ,θ†1)

)2
− µ2

1(u
′)
)



17We require that for j = 1, ..., pi,
�
E
�
∇θFi(u|Zt, θ†i

��
j
≤ Dt(u), with supt supu∈<E(Dt(u)2r) < ∞.

18Note that A2 should hold with qi = − ln fi, and A2(ii) should read as E(fi(yt+1|Zt, θi)) < (fi(yt+1|Zt, θ†i )), for

all θi 6= θ†i .
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+E




∞∑

j=−∞

((
1{ys+1≤ u} − F k(u|Zs,θ†k)

)2
− µ2

k(u)
)((

1{ys+j+1≤ u′} − F k(u
′|Zs+j ,θ†k)

)2
− µ2

k(u
′)
)



−2E




∞∑

j=−∞

((
1{ys+1≤ u} − F 1(u|Zs,θ†1)

)2
− µ2

1(u)
)((

1{ys+j+1≤ u′} − F k(u
′|Zs+j ,θ†k)

)2
− µ2

k(u
′)
)



+8Πm
θ†1

(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs, θ†1)∇θ1

ln f1(ys+j+1|Zs+j , θ†1)
′

 A(θ†1)mθ†1

(u′)

+8Πm
θ†k

(u)′A(θ†
k
)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs, θ†k)∇θk
ln fk(ys+j+1|Zs+j , θ†k)

′

A(θ†k)mθ†k

(u′)

−8Πm
θ†1

(u, )′A(θ†
1
)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs, θ†1)∇θk

ln fk(ys+j+1|Zs+j , θ†k)
′

A(θ†k)mθ†k

(u′)

−4Πm
θ†1

(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs, θ†1)

((
1{ys+j+1≤ u} − F 1(u|Zs+j ,θ†1)

)2
− µ2

1(u)
)



+4Πm
θ†1

(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs, θ†1)

((
1{ys+j+1≤ u} − F k(u|Zs+j ,θ†k)

)2
− µ2

k(u)
)



−4Πm
θ†k

(u)′A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs, θ†k)
′
((

1{ys+j+1≤ u} − F k(u|Zs+j ,θ†k)
)2
− µ2

k(u)
)



+4Πm
θ†k

(u)′A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs, θ†k)
′
((

1{ys+j+1≤ u} − F 1(u|Zs+j ,θ†1)
)2
− µ2

1(u)
)

(20)

with m
θ†i

(u)′= E
(
∇θi

Fi(u|Zt, θ†i )
′
(
1{yt+1≤ u} − Fi(u|Zt, θ†i )

))
and A(θ†i ) =

(
E

(
−∇2

θi
ln fi(yt+1|Zt, θ†i )

))−1
.

From this proposition, we see that when all competing models provide an approximation to the

true conditional distribution that is as (mean square) accurate as that provided by the bench-

mark (i.e. when
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, ∀k), then the limiting distribution is a zero

mean Gaussian process with a covariance kernel which is not nuisance parameters free. Ad-

ditionally, when all competitor models are worse than the benchmark, the statistic diverges to

minus infinity at rate
√

P . Finally, when only some competitor models are worse than the bench-

mark, the limiting distribution provides a conservative test, as ZP will always be smaller than
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maxk=2,...,n

∫
U

(
ZP,u(1, k)−√P

(
µ2

1(u)− µ2
k(u)

))
φ(u)du, asymptotically. Of course, when HA

holds, the statistic diverges to plus infinity at rate
√

P .

Now, define the bootstrap statistic as:19

Z∗P = max
k=2,...,n

∫

U
Z∗P,u(1, k)φ(u)du,

where

Z∗P,u(1, k) =
1√
P

T−1∑

t=R

(((
1{y∗t+1 ≤ u} − F1(u|Z∗,t, θ̂∗1,t)

)2
−

(
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2
)

−
((

1{y∗t+1 ≤ u} − Fk(u|Z∗,t, θ̂∗k,t)
)2
−

(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t)

)2
))

− 2
T

T−1∑
t=s

(
∇θ1F1(u|Zt, θ̂1,T )′

(
1{y∗t+1 ≤ u} − F1(u|Zt, θ̂1,T )

))′(
− 1

T

T−1∑
t=s

∇2
θ1

f1(yt|Zt−1, θ̂1,T )

)−1

× 1√
P

P−1∑

i=1

aR,i

(
∇θ1f1(yR+i|ZR+i−1, θ̂1,T )− 1

P

P∑

i=1

∇θ1f1(yR+i|ZR+i−1, θ̂1,T )

)

+
2
T

T∑
t=s

∇θk
Fk(u|Zt, θ̂k,T )

(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,T )

)′(
− 1

T

T−1∑
t=s

∇2
θk

fk(yt|Zt−1, θ̂k,T )

)−1

× 1√
P

P−1∑

i=1

aR,i

(
∇θk

fk(yR+i|ZR+i−1, θ̂k,T )− 1
P

P∑

i=1

∇θk
fk(yR+i|ZR+i−1, θ̂k,T )

)
. (21)

Proposition 7: Let assumptions A1-A3 and A6 hold. Also, assume that as P,R →∞, l1, l2 →∞,

and that l2
P 1/4 → 0 and l1

R1/4 → 0. Then, as P and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
R,P

(
max

k=2,...,n

∫

U
Z∗P,u(1, k)φ(u)du ≤ v

)
− P

(
max

k=2,...,n

∫

U
Zµ

P,u(1, k)φ(u)du ≤ v

)∣∣∣∣ > ε

)
→ 0,

where aR,i = 1
R+i + 1

R+i+1 + ... + 1
R+P−1 and Zµ

P,u(1, k) = ZP,u(1, k)−√P
(
µ2

1(u)− µ2
k(u)

)
.

The above result suggests proceeding as outlined in the reality check application discussed

above.

6 Monte Carlo

Proposition 1 establishes the first order validity of the recursive PEE bootstrap. In this section we

study its finite sample behavior via a small Monte Carlo experiment. In particular our objective is
19As in the previous two applications, y∗t and Z∗,t have been obtained via the resampling procedure described in

Section 2
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to answer the following two questions: (i) Does the inclusion of the adjustment term lead to (sub-

stantially) improved coverage probabilities? (ii) How does the recursive PEE bootstrap perform,

relative to the “full sample” standard block bootstrap?

Two data generating processes are specified, namely yt = c + ρyt−1 + εt and yt = c + ρ1yt−1 +

ρ2yt−1 + εt, with εt ∼ IN(0, 1), c = 0.1, ρ = {0.2, 0.4, 0.6, 0.8} and ρ1 = ρ2 = {0.1, 0.2, 0.3, 0.4}.
Given this setup, we proceed to estimate both AR(1) and AR(2) models for each of the two

alternative DGPs. Thus, in the present context, when we estimate (via OLS) an AR(1) (or an

AR(2)) model, θ̂i,t = (ĉi,t, ρ̂i,t)′ (or θ̂i,t = (ĉi,t, ρ̂1,i,t,ρ̂2,i,t)′), with i = 1, 2 denoting the estimate

models (AR(1) and AR(2), respectively), and θ†i = (c†i , ρ
†
i )
′ (or θ†i = (c†i , ρ

†
1,i, ρ

†
2,i)

′), where θ†i
denotes the probability limit of θ̂i,t. Needless to say, in the case of correct dynamic specification, θ†i
represents the parameters characterizing the conditional expectation, while in the case of dynamic

misspecification (e.g. the DGP is AR(2) and we estimate an AR(1)), θ†i represents pseudo true

values, which can be explicitly computed. We confine our attention on the slope parameters. For

notational simplicity, consider the case in which we estimate a AR(1) and the DGP is also AR(1),

so that we compute a P−sequence of estimators ρ̂t, bootstrap estimators ρ̂∗t , and we know that

ρ† = {0.2, 0.4, 0.6, 0.8}. In this case the bootstrap statistic with adjustment is given by:20

Ψ∗
1,R,P =

1√
P

P−1∑

t=R

(ρ̂∗t − ρ̂t) +

(
1
T

T∑

t=2

(yt−1 − y)2
)−1

× 1√
P

P−1∑

j=1

aR,j


êR+j (yR+j−1 − y)− 1

P

P−1∑

j=1

êR+j (yR+j−1 − y)


 ,

where êR+j = (yR+j − y)−ρ̂T (yR+j−1 − y) . Also, define the bootstrap statistic without adjustment

as Ψ∗∗
2,R,P = 1√

P

∑P−1
t=R (ρ̂∗t − ρ̂t) , and the (full sample) standard bootstrap statistic as Ψ∗∗∗

3,T =
√

T (ρ̂∗T − ρ̂T ) . Hereafter, let z∗α be the (1 − α) quantile of the distribution of Ψ∗
1,R,P , z∗∗α the

(1 − α) quantile of the distribution of Ψ∗∗
2,R,P and z∗∗∗α the (1 − α) quantile of the distribution of

Ψ∗∗∗
3,T . We now define 100(1 − α)%, equal-tailed, two-sided confidence intervals corresponding to

the recursive bootstrap with adjustment, the recursive bootstrap without adjustment and the full

sample, standard block bootstrap, that is

CI∗ :

{
1
P

P−1∑

t=R

ρ̂t −
z∗α/2√

P
,

1
P

P−1∑

t=R

ρ̂t +
z∗(1−α/2)√

P

}
(22)

20Note that bρ∗t is computed using the pseudo time series obtained by first resampling b1 blocks from the first R

observations and then concatenating b2 blocks resampled from the last P observations, as described in Section 2.
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CI∗∗ :

{
1
P

P−1∑

t=R

ρ̂t −
z∗∗α/2√

P
,

1
P

P−1∑

t=R

ρ̂t +
z∗∗(1−α/2)√

P

}
(23)

CI∗∗∗ :

{
ρ̂T −

z∗∗∗α/2√
T

, ρ̂T +
z∗∗∗(1−α/2)√

T

}
(24)

The coverage probabilities for CI∗, CI∗∗, CI∗∗∗ are then obtained by computing the proportion

of times, across simulation replications, for which ρ† falls into the respective interval. By comparing

the coverage probabilities for CI∗ and CI∗∗ we have a direct measure of the impact of the adjustment

term. Broadly speaking, if the difference between the actual and nominal coverage is smaller for

CI∗ than for CI∗∗, then it is definitely worthwhile to construct boostrap critical values based on

the recursive bootstrap with adjustment. The coverage probabilities for CI∗ and CI∗∗∗ are useful

in the sense that their comparison tells us whether the recursive PEE bootstrap provides critical

values for the statistic 1√
P

∑P−1
t=R (ρ̂t − ρ†) which are as reliable as those provided by the standard

block bootstrap for the statistic
√

T
(
ρ̂T − ρ†

)
. Note that we compute the coverage probability for

CI∗∗∗ using T observations, this is done purposely to give an advantage to the standard block

bootstrap.

All bootstrap empirical distributions are based on 200 bootstrap replications, and all tabulated

results are based on 500 Monte Carlo simulations. In addition, samples of T = {600,1200,2400}
observations are used, and the number of estimators constructed in the context of the PEE recursive

scheme bootstrap is P = 0.5T , with the first estimator constructed using T − P observations, the

second with T −P + 1 observations, etc. The nominal coverage probability, across all experiments,

is set equal to 0.95. We have tried a variety of values of α in the construction of the confidence

intervals. However, as the results are qualitatively the same, we report results only for α = 0.05.

Our findings are reported in Tables 1-4, and are organized as follows. The second column lists

the bootstrap used to mimic the distribution of PEE associated with either the AR(1) autoregres-

sive parameter (denoted ρ̂ in the tables) or the autoregressive parameters from the AR(2) model

(denoted ρ̂1 and ρ̂2 in the table). Entries corresponding to rec correspond to coverage probabilities

associated with CI∗. Entries corresponding to full are the rejection probabilities associated with

CI∗∗∗. Tables 1-4 is broken into two panels, depending upon whether data were generated according

to an AR(1) process (Panel A) or an AR(2) process (Panel B), and the autoregressive parameters

of the DGPs are given in the header line for each panel. In addition, block lengths used are denoted
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by the various values of l1 = l2.21 In Tables 5 and 6, results are gathered for the recursive PEE

bootstrap with no adjustment terms, so that entries denote the coverage probabilities associated

with CI∗∗.

Turning now to the results, a number of clear-cut conclusions emerge. First, inspection of

Tables 1-4 suggests that the recursive PEE bootstrap (rec) performs approximately as well as

the standard full sample block bootstrap (full). As expected, both types of bootstraps have good

coverage when the autoregressive parameters in the models are smaller, with performance worsening

as these parameters increase from 0.2 to 0.8 in the AR(1) case (see Panel A of Tables 1-4) and

from 0.1 to 0.4 in the AR(2) case (see Panel B of the same tables). In addition, performance

improvement is rather similar across the two bootstraps when the sample size is increased. These

findings suggest that the recursive PEE bootstrap can be applied with the same level of confidence

as the standard block bootstrap within the context of full sample estimation. Second, when ρ†2 = 0,

which is the case in Panel A of Tables 1-4, as the true DGP in these cases is an AR(1) process,

coverage is often better than in the case in which we estimate an AR(2). Interestingly, the converse

does not always hold. In particular, when the true DGP is an AR(2) and an AR(1) is estimated

then coverage associated with ρ̂ is often as good as that associated with ρ̂1 and ρ̂2, and is often

better than that associated with ρ̂2. This is perhaps surprising, given that we always set ρ1 = ρ2,

and suggests a complicated interaction between parsimony and model specification. Third, notice

in Tables 1 that the best coverage usually occurs with rec for block lengths around one half as

long as for full. This is not surprising, given that P = 0.5T , so that, at least loosely speaking,

samples used in the construction of rec are around 1/2 as long as those used in the full, so that the

relative length of the blocks is the same. However, notice that this finding does not hold up when

the autoregressive parameters are increased (see Tables 2-4), and in particular when ρ is largest

(Table 4), in this case both the full and the rec bootstraps prefer the longest block that we tried.

Finally, upon comparison of the results reported in Tables 5 and 6 with the rec bootstrap results

from Tables 1-4, it is clear that there is everywhere an improvement in coverage when the PEE

recursive scheme bootstrap is constructed with the adjustment term.
21As P = R = 0.5T, we use the same block length when resampling from the first R observations and from the last

P observations.
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7 Concluding Remarks

In this paper we have introduced a parameter estimation error (PEE) bootstrap for recursive es-

timation schemes (named the recursive PEE bootstrap) and have shown its first order validity,

that is its ability of mimicing the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, where R denotes the

length of the estimation period, P the number of recursively estimated parameters, θ̂t is a recursive

m−estimator constructed using the first t observations, and θ† is its probability limit. In recursive

estimation schemes, earlier observations are used more frequently than temporally subsequent ob-

servations. This introduces a bias to the usual block bootstrap, as under standard resampling with

replacement schemes, any block from the original sample has the same probability of being selected.

We circumvent this problem by first forming bootstrap samples as follows. Resample R observa-

tions from the initial R sample observations, and then concatenate onto this vector an additional P

resampled observations from the remaining sample. Thereafter, construct 1√
P

∑T−1
t=R

(
θ̂∗t − θ̂t

)
and

add an adjustment term in order to ensure that the distribution of the sum of both components is

the same as the distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, conditional on the sample, and for all samples

except a set of probability measure approaching zero. The recursive PEE bootstrap can be used

to provide valid critical values in a variety of interesting testing contexts, and three such leading

applications are developed. The first is a generalization of the reality check test of White (2000)

that allows for non vanishing parameter estimation error. The second is an out-of-sample version

of the integrated conditional moment (ICM) test of Bierens (1982,1990) and Bierens and Ploberger

(1997) which provides out of sample tests consistent against generic (nonlinear) alternatives. Fi-

nally, the third is a procedure assessing the relative out-of-sample predictive accuracy of multiple

conditional distribution models. This procedure is based on an extension of the Andrews (1997)

conditional Kolmogorov test. Finally, the finite sample behavior of the recursive PEE bootstrap has

been analyzed via a small Monte Carlo study, from which two main findings emerge. First, across

different DGPs and sample sizes, the recursive PEE bootstrap is overall as reliable as the standard

(full sample) block bootstrap. Second, across all experiments, the recursive PEE bootstrap ensures

a much better coverage than the corresponding bootstrap procedure which neglects the adjustment

term.
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8 Appendix

The proof of Theorem 1 requires the following three lemmas. As the statement below holds for

i = 1, ..., n and the proof is the same regardless which model we consider, for notational simplicity

we drop the subscript i. Also, for notational simplicity, in the sequel we set l1 = l2 = l.

Lemma A1: Let A1-A3 hold. If as R →∞ and P →∞, l →∞, l/R → 0 and l/P → 0, then (i)

supt≥R

∣∣∣θ̂∗t − θ̂t

∣∣∣ = oP ∗(1), Pr−P, and (ii) supt≥R

∣∣∣θ̂∗t − θ†
∣∣∣ = oP ∗(1), Pr−P.

Lemma A2: Let A1-A3 hold. If as R → ∞ and P → ∞, l → ∞, l/R4 → 0 and l/P 4 → 0, then

supt≥R tϑ
∣∣∣(θ̂∗t − θ†)

∣∣∣ = oP ∗(1), Pr−P, for all ϑ < 0.5.

Lemma A3: Let A1-A3 hold. If as R →∞ and P →∞, l →∞, l/R4 → 0 and l/P 4 → 0, then if

P/R → π > 0, then

V ar∗


 1√

P

T−1∑

t=R

1
t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ†)
)

 = 2ΠC00, Pr−P,

where C00 =
∑∞

j=−∞E
((∇θq(y1+s, Z

s, θ†)
) (∇θq(y1+s+j , Z

s+j , θ†)
)′) and Π = 1− π−1 ln(1 + π).

Proof of Lemma A1: (i) We need to extend the consistency results for bootstrap m−estimators

of Goncalves and White (2002b, Theorem 2.1), to the case of recursive m−estimators. Recalling

that for t ≥ R,

θ̂t = arg min
θ∈Θ

1
t

t∑

j=s

q(yj , Z
j−1, θ) and θ̂∗t = arg min

θ∈Θ

1
t

t∑

j=s

q(y∗j , Z
∗,j−1, θ),

and given that the argmin is a measurable function, and because of the unique identifiability

conditions in A2(ii), it suffices to show that

sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=s

(
q(y∗j , Z

∗,j−1, θ)− q(yj , Z
j−1, θ)

)
∣∣∣∣∣∣
= oP ∗(1), Pr−P.

Hereafter, for notational simplicity let q(y∗j , Z
∗,j−1, θ) = q∗j (θ) and q(yj , Z

j−1, θ) = qj(θ), and let

µ = E(qj(θ)), ∀θ ∈ Θ. Now,

sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=s

(
q∗j (θ)− qj(θ)

)
∣∣∣∣∣∣
≤ sup

t≥R
sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=s

(
q∗j (θ)− E∗ (

q∗j (θ)
))

∣∣∣∣∣∣
(25)

+ sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=s

(qj(θ)− µ)

∣∣∣∣∣∣
+ sup

t≥R
sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=s

(
E∗ (

q∗j (θ)
)− µ

)
∣∣∣∣∣∣
. (26)
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Now, recalling that R = b1l and P = b2l, let t = (b1 + k)l for any generic k = 1, ..., b2,

1
t

t∑

j=s

E∗(q∗j (θ)) =
1

(b1 + k)l

R∑

j=s

E∗(q∗j (θ)) +
1

(b1 + k)l

R+kl∑

j=R+1

E∗(q∗j (θ)) + O

(
l

R

)
, Pr−P,

uniformly in θ, as under A3, P and R grow at the same rate, as the sample size increases. Now,

1
t

R∑

j=s

E∗(q∗j (θ)) =
b1

t

(
qs+1(θ) + ... + ql+s(θ)

R− l + 1
+

q2+s(θ) + ... + ql+1+s(θ)
R− l + 1

+...+
qR−l+1(θ) + ... + qR(θ)

R− l + 1

)

=
b1

b1 + k

1
R

R∑

j=1

qj(θ) + O

(
l

R

)
, Pr−P,

and

1
t

R+kl∑

j=R+1

E∗(q∗j (θ)) =
k

t

(
qR+1(θ) + ... + qR+l(θ)

P − l + 1
+ ... +

qR+P−l+1(θ) + ... + qR+P−1(θ)
P − l + 1

)

=
k

k + b1

1
P

R+P∑

j=R+1

qj(θ) + O

(
l

R

)
, Pr−P.

Thus

1
t

t∑

j=1

E∗(q∗j (θ)) =
b1

(b1 + k)
1
R

R∑

j=1

qj(θ) +
k

(b1 + k)
1
P

R+P∑

j=R+1

qj(θ) + O

(
l

R

)
, Pr−P,

and so the second term on the right hand side of (26), by the uniform strong law of large number

approaches zero in probability. Analogously, the first term on the right hand side of (26), by the

uniform strong law of large number is oP (1). As for the first term on the RHS of (25), it is majorized

by:

sup
θ∈Θ

∣∣∣∣∣∣
1
b1

b1∑

j=s

(
Uj(θ)−E∗(Uj(θ))

l

)∣∣∣∣∣∣
+ sup

k≥1
sup
θ∈Θ

∣∣∣∣∣∣
k

b1 + k

1
k

k∑

j=s

(
Uj(θ)− E∗(Uj(θ))

l

)∣∣∣∣∣∣
, (27)

where for j = s−1, ..., R−l, Ui are independent discrete uniform taking value (qj+1(θ)+...+qj+l(θ))

with probability 1/(R − l + 1), and for j = R, ..., R + P − l, Ui are independent discrete uniform

taking value (qj+1+R(θ) + ... + qj+l+R(θ)) with probability 1/(P − l + 1). By the uniform law of

large numbers for asymptotically independent and homogeneous observations, the sum of the two

term in (27) approaches zero in P ∗−probability.

(ii) Immediate as,

sup
t≥R

∣∣∣θ̂∗t − θ†
∣∣∣ ≤ sup

t≥R

∣∣∣θ̂∗t − θ̂t

∣∣∣ + sup
t≥R

∣∣∣θ̂t − θ†
∣∣∣ ,
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and the first term is o∗P (1), Pr−P by part (i), while the second term is o(1) Pr−P .

Proof of Lemma A2: First note that,

tϑ
(
θ̂∗t − θ†

)
=


1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ
∗
t )



−1 

 1
t1−ϑ

t∑

j=s

∇θq(y∗j , Z
∗,j−1, θ†)


 ,

with θ
∗
t ∈ (θ̂∗t , θ†). Hereafter, for notational simplicity let ∇2

θq(y
∗
j , Z

∗,j−1, θ) = ∇2q∗j (θ),

∇2
θq(yj , Z

j−1, θ) = ∇2qj(θ), and let B† =
(
E

(−∇2
θqt(θ†)

))−1
,

sup
t≥R

∣∣∣∣∣∣
1
t

t∑

j=s

(
∇2q∗j (θ

∗
t )−B†−1

)
∣∣∣∣∣∣
≤ sup

t≥R

∣∣∣∣∣∣
1
t

t∑

j=s

(
∇2q∗j (θ

∗
t )− E∗

(
∇2q∗j (θ

∗
t )

))
∣∣∣∣∣∣

(28)

+ sup
t≥R

∣∣∣∣∣∣
1
t

t∑

j=s

(
∇2qj(θt)−B†−1

)
∣∣∣∣∣∣
+ sup

t≥R

∣∣∣∣∣∣
1
t

t∑

j=s

(
∇2qj(θt)−E∗

(
∇2q∗j (θ

∗
t )

))
∣∣∣∣∣∣
, (29)

as θ
∗
t ∈ (θ̂∗t , θ†) and θt ∈ (θ̂t, θ

†), given Lemma A1, supt≥R

∣∣∣θ∗t − θt

∣∣∣ = oP ∗(1) Pr−P, thus the right

hand side of (28) and the sum of the two term in (29) are oP ∗(1) Pr−P, by the same argument

used in the proof of Lemma A1. Given A3(ii), it follows immediately that

sup
t≥R

∣∣∣∣∣∣


1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ
∗
t )



−1

−B†

∣∣∣∣∣∣
= oP ∗(1), Pr−P. (30)

Let nt = (2t log log t)1/2, and let ∇θq(y∗j , Z
∗,j−1, θ) = h∗j (θ), and ∇θq(yj , Z

j−1, θ) = hj(θ),

sup
t≥R

∣∣∣∣∣∣
1
nt

t∑

j=s

h∗j (θ
†)

∣∣∣∣∣∣
≤ sup

t≥R

∣∣∣∣∣∣
1
nt

t∑

j=s

(
h∗j (θ

†)− E∗
(
h∗j (θ

†)
))

∣∣∣∣∣∣
+ sup

t≥R

∣∣∣∣∣∣
1
nt

t∑

j=2

E∗
(
h∗j (θ

†)
)
∣∣∣∣∣∣
,

(31)

and noting that, by the same argument as in the proof of Lemma A1, up to a term of order

O(l/P 1/2), Pr−P,

sup
t≥R

∣∣∣∣∣∣
1
nt

t∑

j=s

E∗
(
h∗j (θ

†)
)
∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1√

2R log log R

R∑

j=s

hj(θ†)

∣∣∣∣∣∣

+sup
k≥1

∣∣∣∣∣∣
1√

2kl log log(kl)

R+kl∑

j=R

hj(θ†)

∣∣∣∣∣∣
, (32)

and both the terms on the RHS of (32) are O(1), a.s.−P, as, given A1 and A3 each component of

both terms satisfies the conditions for the functional law of the iterated logarithm (e.g. Theorem

2 in Eberlain (1986)).
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It remains to show that the first term on the RHS of (31) is OP ∗(1), Pr−P. To further simplify

the notation, we denote h∗j (θ
†) and hj(θ†) as h∗j and hj , respectively. First, recalling that, except

for an overlapping of at most s observations, all blocks are independent each other, conditionally

on the sample,

V ar∗
(

1√
T

T−1∑
t=s

h∗t

)
= V ar∗

(
1√
T

R∑
t=s

h∗t

)
+ V ar∗

(
1√
T

R+P−1∑

t=R+1

h∗t

)
+ O

(
l

T 1/2

)
, Pr−P

= V ar∗


 1√

T

b1∑

i=1

l∑

j=1

hIR
i +j


 + V ar∗


 1√

T

b2∑

i=1

l∑

j=1

hIP
i +j


 + O

(
l

T 1/2

)
, Pr−P,

= E∗


R

T

1
R

b1∑

i=1

l∑

j=1

l∑

k=1

hIR
i +jhIR

i +k


 + E∗


P

T

1
P

b2∑

i=1

l∑

j=1

l∑

k=1

hIP
i +jhIP

i +k


 + O

(
l

T 1/2

)
, Pr−P,(33)

where for i = 1, ..., b1 IR
i are independent discrete uniform on s, ..., R − l, while for i = 1, ..., b2 IP

i

are independent discrete uniform on R, R + 1, ..., R + P − l, thus after few simple manipulations,

the equality on (33) can be rewritten as

R

T

1
R

R−l∑

k=l

l∑

j=−l

hkh
′
k+j +

P

T

1
P

R+P−l∑

k=R+l

l∑

j=−l

hkh
′
k+j + O

(
l

T 1/2

)
, Pr−P, (34)

also given A(1) and A(3) and the growth conditions on the parameter l, the sum of the first to two

terms in (34), up to term approaching zero Pr−P, is equal to C00, and so

V ∗ = limT→∞ V ar∗
(

1√
T

∑T
t=1 h∗j (θ

†)
)

is O(1), Pr−P. Now,

sup
t≥R

∥∥∥∥∥∥
V ∗−1/2 1

nt

t∑

j=s

(h∗j − E∗(h∗j ))

∥∥∥∥∥∥
≤

∥∥∥∥∥V ∗−1/2 1√
2b1 log log b1

b1∑

i=1

(
Ui − E∗(Ui)

l

)∥∥∥∥∥

+sup
k≥1

∥∥∥∥∥V ∗−1/2 1√
2k log log b1

b1∑

i=1

(
Ui − E∗(Ui)

l

)∥∥∥∥∥ , (35)

where for i = s, ..., R− l, Ui is independent discrete uniform taking value (hi+1(θ) + ... + hi+l(θ))

with probability 1/(R − l + 1), and for i = R, ..., R + P − l, Ui is independent discrete uniform

taking value (hi+1+R(θ)+ ...+hi+l+R(θ)) with probability 1/(P − l+1). Therefore the assumptions

of Theorem 1 in Eberlain (1986) are satisfied and so the right hand side of (35) is O∗
a.s.(1) Pr−P,

thus supt≥R

∣∣∣ 1
bt

∑t
j=s

(
h∗j (θ

†)−E∗
(
h∗j (θ

†)
))∣∣∣ is also O∗

a.s.(1) Pr−P. Recalling (30), the desired

statement then follows.
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Proof of Lemma A3:

As in the proof of Lemma A2, let ∇θq(y∗j , Z
∗,j−1, θ) = h∗j (θ), and ∇θq(yj , Z

j−1, θ) = hj(θ), also

let ∇θq(y∗j , Z
∗,j−1, θ†) = h∗j , and ∇θq(yj , Z

j−1, θ†) = hj . Along the lines of West (1996, proof of

Lemma A5),

1√
P

T−1∑

t=R

1
t

t∑

j=s

h∗j =
aR,0√

P

R∑

j=s

h∗j +
1√
P

(aR,1h
∗
R+1 + ... + aR,P−1h

∗
R+P−1) + oP ∗(1), Pr−P

(36)

where aR,i = (R + i)−1 + ... + (R + P − 1)−1, for 0 ≤ i < P − 1.22 Thus,

V ar∗


 1√

P

T−1∑

t=R

1
t

t∑

j=1

h∗j


 =

R

P
V ar∗


aR,0

1√
R

R∑

j=1

h∗j




+
1
P

V ar∗




P−1∑

j=1

aR,jh
∗
R+j


 +

1
P

Cov∗


aR,0

R∑

j=1

h∗j ,
P−1∑

j=1

aR,jh
∗
R+j




Given that any of the last b2 blocks can be correlated with any of the first b1 blocks for at most s

observations, s finite, up to a term approaching zero conditionally on the sample, the covariance

term is equal to zero. Now, for t = s, ...R, E∗ (h∗t ) = R−1
∑R

t=s ht + O(l/P ) = hR + O(l/P ), thus

up to a term of order O(l/R1/2),

V ar∗


aR,0

1√
R

R∑

j=1

h∗j


 = a2

R,0V ar∗
(

1√
R

b1∑

k=1

l∑

i=1

hIk+i

)

= a2
R,0E

∗
(

1
R

b1∑

k=1

l∑

i=1

l∑

k=1

(hIk+i − hR)(hIk+j − hR)′
)

= a2
R,0


 1

R

R−l∑

t=l

l∑

j=−l

(ht − hR)(ht+j − hR)′


 + O(l/R1/2) Pr−P.

So,

R

P
V ar∗


aR,0

1√
R

R∑

j=1

h∗j




=
Ra2

R,0

P

l∑

j=−l

γj+
Ra2

R,0

P


 1

R

R−l∑

t=l

l∑

j=−l

((ht − hR)(ht+j − hR)′ − γj)


+O

(
l2

R

)
, (37)

22The oP∗(1), Pr−P term on the RHS of (36) comes from the fact that the summation run from j = s instead of

j = 1.
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where γj = Cov(h1, h1+j). By West (1996, proof of Lemma A5), it follows that
Ra2

R,0

P

∑l
j=−l γj →

π−1 ln2(1+π)C00, while the second term on the RHS above goes to zero Pr−P (see e.g. Theorem 2

in Newey and West (1987)). Now, for j = 1, ..., P, E∗(aR,jh
∗
R+j) = aR,jP

−1
∑P−1

j=1 hR+j +O(l/P ) =

aR,jhP + O(l/P ), thus up to a term of order O(l/P 1/2) Pr−P,

V ar∗


 1√

P

P−1∑

j=1

aR,jh
∗
R+j


 = V ar∗

(
1√
P

b2∑

k=1

l∑

i=1

aR,((k−1)l+i)hR+Ik+i

)

=
1
P

E∗




b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)(hR+Ik+i − hP )(hR+Ik+j − hP )′




=
1
P

b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)E
∗ (

(hR+Ik+i − hP )(hR+Ik+j − hP )′
)

=
1
P

b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)

(
1
P

P−l∑

t=l

(hR+t+i − hP )(hR+t+j − hP )′
)

+ O(l/P 1/2) Pr−P

=
1
P

b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)γi−j

+
1
P

b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)

(
1
P

P−l∑

t=l

(
(hR+t+i − hP )(hR+t+j − hP )′ − γi−j

)
)

+O(l/P 1/2) Pr−P (38)

We need to show that the last term on the last equality in (38) is o(1) Pr−P. First note that it is

majorized by ∣∣∣∣∣∣
b2

P

l∑

i=1

l∑

j=1

(
1
P

P−l∑

t=l

(
(hR+t+i − hP )(hR+t+j − hP )′ − γi−j

)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
1
P

P−l∑

t=l

l∑

j=−l

(
(hR+t − hP )(hR+t+j − hP )′ − γj

)
∣∣∣∣∣∣
+ O(l/P 1/2) Pr−P (39)

The first term on the RHS of (39) goes to zero in probability, by the same argument as in Lemma

2 in Corradi (1999)23. As for the first term on the RHS of the last equality in (38),

1
P

b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)γi−j =
1
P

P−l∑

t=l

l∑

j=−l

aR,taR,t+jγj + O(l/P 1/2) Pr−P

23The domination condition here are weaker than those in Lemma 2 in Corradi (1999) as we require only convergence

to zero in probability and not almot surely.
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=
1
P

P−l∑

t=l

a2
R,t

l∑

j=−l

γj +
1
P

P−l∑

t=l

l∑

j=−l

(aR,taR,t+j − a2
R,t)γj + O(l/P 1/2) Pr−P

By the same argument as in Lemma A5 in West (1996), the second term on the RHS above

approaches zero, while

1
P

P−l∑

t=l

a2
R,t

l∑

j=−l

γj →
(
2[1− π−1 ln(1 + π)]− π−1 ln2(1 + π)

)
C00.

As the first term on the RHS of (37) converges to π−1 ln2(1 + π)C00 (see West (1996), p.1082), the

desired outcome then follows.

Proof of Theorem 1:

1
P 1/2

T−1∑

t=R

(
θ̂∗t − θ̂t

)
=

1
P 1/2

T−1∑

t=R

(
θ̂∗t − θ†

)
− 1

P 1/2

T−1∑

t=R

(
θ̂t − θ†

)

=
1

P 1/2

T−1∑

t=R


−1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ
∗
t )



−1 

1
t

t∑

j=s

∇θq(y∗j , Z
∗,j−1, θ†)




− 1
P 1/2

T−1∑

t=R


−1

t

t∑

j=s

∇2
θq(yj , Z

j−1, θt)



−1 

1
t

t∑

j=s

∇θq(yj , Z
j−1, θ†)


 , (40)

where θ
∗
t ∈

(
θ̂∗t , θ†

)
and θt ∈

(
θ̂t, θ

†
)

.

Given Lemma A1 and A2 and given A1-A3,

sup
t≥R





1

t

t∑

j=s

∇θq(y∗j , Z
∗,j−1, θ

∗
t )



−1

−

1

t

t∑

j=s

∇θq(yj , Z
j−1, θt)



−1

 = o∗P (1), Pr−P,

and also

sup
t≥R





−1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ
∗
t )



−1

−B†


 = o∗P (1), Pr−P, (41)

so the RHS of (40) can be written as:

1
P 1/2

T−1∑

t=R

B†


1

t

t∑

j=s

∇θq(y∗j , Z
∗,j−1, θ†)− 1

t

t∑

j=s

∇θq(yj , Z
j−1, θ†)


 + o∗P (1), Pr−P

= B† 1
P 1/2

T−1∑

t=R


1

t

t∑

j=s

h∗j −
1
t

t∑

j=s

ht


 + o∗P (1), Pr−P, (42)
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by letting ∇θq(y∗j , Z
∗,j−1, θ†) = h∗t , ∇θq(yj , Z

j−1, θ†) = ht. Recalling that aR,s = (R + s)−1 + ... +

(R+P−1), 0 ≤ s ≤ P−1, and that for t = 1, ...R, E∗ (h∗t ) = R−1
∑R

t=1 ht+O(l/P ) = hR+O(l/P ),

and for j = 1, ..., P, E∗(aR,jh
∗
R+j) = aR,jP

−1
∑P−1

j=1 hR+j + O(l/P ) = aR,jhP + O(l/P ), the RHS

of (42) writes as,

B†aR,0
1√
P

R∑

t=1

(h∗t − ht) + B† 1√
P

P−1∑

i=1

aR,i(h∗R+i − hP )

−B† 1√
P

P−1∑

i=1

aR,i(hR+i − hP ) + o∗P (1), Pr−P. (43)

The sum of the first two terms in (43) satisfies a central limit theorem for mixing triangular arrays

(Wooldridge and White (1988)) and, by Lemma A3, has asymptotic variance equal to 2ΠC00,

which is the same as the asymptotic variance of P−1/2
∑T−1

t=R (θ̂t − θ†t ) (see Lemma A5, in West

(1996)), conditionally on the samples and for all samples but a subset of measure approaching zero.

Therefore, it suffices to show that the the last term on the RHS of (3), i.e. the adjustment term,

is equal to B† 1√
P

∑P−1
i=1 aR,i(hR+i − hP ), up to a term vanishing asymptotically. Given A1 and

A2,
(
− 1

T

∑T−1
t=s ∇2

θi
qi(yt, Z

t−1, θ̂T )
)−1

− B† = o(1) Pr−P (i.e. oP (1)), where θ̂T is the estimator

constructed using all T observations.

Now let hR+i(θ̂T ) = ∇θq(yR+i, Z
R+i−1, θ̂T ), and hP (θ̂T ) = P−1

∑P
i=1∇θq(yR+i, Z

R+i−1, θ̂T ), and

let ∇2hR+i(θ̂T ) = ∇2
θq(yR+i, Z

R+i−1, θ̂T ). Now,

B† 1√
P

P−1∑

i=1

aR,i

((
hR+i(θ̂T )− hP (θ̂T )

)
− (

hR+i − hP

))

= B† 1
P

P−1∑

i=1

aR,i

(
∇2hR+i(θT )−∇2hP (θT )

)√
P

(
θ̂T − θ†

)
= o(1), Pr−P, (44)

as
√

P
(
θ̂T − θ†0

)
= O(1) Pr−P, and by the uniform law of large numbers for mixing triangular

arrays, 1
P

∑P−1
i=1 aR,i

(
∇2hR+i(θT )−∇2hP (θT )

)
= o(1) Pr−P. The desired result then follows.
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Proof of Proposition 2: Via a mean value expansion, and given A1,A2

SP (1, k) =
1

P 1/2

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1))

=
1

P 1/2

T−1∑

t=R

(g(u1,t+1)− g(uk,t+1))

+
1
P

T−1∑

t=R

g′(u1,t+1)∇θ1κ1(Zt, θ1,t)P 1/2
(
θ̂1,t − θ†1

)

− 1
P

T−1∑

t=R

g′(uk,t+1)∇θk
κk(Zt, θk,t)P 1/2

(
θ̂k,t − θ†k

)

=
1

P 1/2

T−1∑

t=R

(g(u1,t+1)− g(uk,t+1))

+µ1
1

P 1/2

T−1∑

t=R

(
θ̂1,t − θ†1

)
− µk

1
P 1/2

T−1∑

t=R

(
θ̂k,t − θ†k

)
+ oP (1),

where µ1 = E
(
g′(u1,t+1)∇θ1κ1(Zt, θ†1)

)
, and µk is defined analogously. Now, when all competitors

have the same predictive accuracy as the benchmark model, by the same argument as in Theorem

4.1 in West (1996),

(SP (1, 2), ..., SP (1, n)) d→ N(0, V ),

where V is a n × n matrix with i, j element vi,j = Sgigj + 2ΠCii + 2ΠCjj − 2ΠCij , where Cij =
∑∞

j=−∞E

((
∇θqi(y1+s, Z

s, θ†i )
)(
∇θqj(y1+s+j , Z

s+j , θ†j)
)′)

, Π = 1− π−1 ln(1 + π). The distribu-

tion of SP then follows straightforwardly from the continuous mapping theorem.

Proof of Proposition 3: For brevity, we just analyze model 1.

1
P 1/2

T−1∑

t=R

(
g(û∗1,t+1)− g(û1,t+1)

)
=

1
P 1/2

T−1∑

t=R

(
g(u∗1,t+1)− g(u1,t+1)

)

+
1

P 1/2

T−1∑

t=R

(
∇θ1g(u∗1,t+1)

(
θ̂∗1,t − θ†1

)
−∇θ1g(u1,t+1)

(
θ̂1,t − θ†1

))
, (45)

where u∗1,t+1 = yt+1 − κ1(Z∗,t, θ
∗
1,t), u1,t+1 = yt+1 − κ1(Zt, θ1,t), θ

∗
1,t ∈ (θ̂∗1,t, θ

†
1) and θ1,t ∈ (θ̂1,t, θ

†
1).

As an almost straightforward consequence of Theorem 3.5 in Kunsch (1989), the first term on the

RHS of (45) has the same limiting distribution as P−1/2
∑T−1

t=R (g(u1,t+1)− E(g(u1,t+1))) . As for
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the second line in (45), it writes as:

1
P 1/2

T−1∑

t=R

∇θ1g(u∗1,t+1)
(
θ̂∗1,t − θ̂1,t

)
− 1

P 1/2

T−1∑

t=R

(∇θ1g(u∗1,t+1)−∇θ1g(u1,t+1)
) (

θ̂1,t − θ†1
)

=
1

P 1/2

T−1∑

t=R

∇θ1g(u∗1,t+1)
(
θ̂∗1,t − θ̂1,t

)
+ o∗P (1), Pr−P

= µ1B
†
1

1
P 1/2

T−1∑

t=R

(
h∗1,t − h1,t

)
+ o∗P (1), Pr−P, (46)

where h∗1,t+1 = ∇θ1q1(y∗t+1, Z
∗,t, θ†1), h1,t+1 = ∇θ1q1(yt+1, Z

t, θ†1). Also, the last line in (46) writes

as:

µ1B
†
1

(
a2

R,0

1
P 1/2

R∑

t=1

(
h∗1,t − h1,t

)
+

1
P 1/2

P−1∑

i=1

aR,i

(
h∗1,R+i − h1,P

)
)

−µ1B
†
1

1
P 1/2

P−1∑

i=1

aR,i

(
h1,R+i − h1,P

)
+ o∗P (1), Pr−P, (47)

where h1,P is the sample average of h1,t computed over the last P observations. Given Lemma A3,

by the same argument used in the proof of Theorem 1, the first line in (47) has the same limiting

distribution as 1
P 1/2

∑T−1
t=R

(
θ̂1,t − θ†1

)
, conditional on sample. Therefore we need to show that the

correction term for model 1 (i.e. second and third, fourth line on the RHS of (8)) offsets the second

line in (47), up to a o(1) Pr−P term. Let h1,t+1

(
θ̂1,T

)
= ∇θ1q1(yt+1, Z

t, θ̂1,T ) and h1,P

(
θ̂1,T

)
is

the sample average of h1,t+1

(
θ̂1,T

)
, over the last P observations. Now, by the uniform law of large

numbers

1
T

T−1∑
t=s

∇θ1g(u∗1,t+1)

(
1
T

T−1∑
t=s

∇2
θ1

q1(y∗t , Z
∗,t−1, θ̂1,T )

)−1

− µ1B
†
1 = o∗P (1), Pr−P.

Also, by the same argument used in the proof of Theorem 1, it follows that,

1
P 1/2

P−1∑

i=1

aR,i

(
h1,R+i − h1,P

)− 1
P 1/2

P−1∑

i=1

aR,i

(
h1,R+i

(
θ̂1,T

)
− h1,P

(
θ̂1,T

))
= o(1), Pr−P.

Proof of Proposition 4: From Theorem 1 in Corradi and Swanson (2002).

Proof of Proposition 5: Recall that g = q1, also let u∗1,t+1 = y∗t+1 −
(

1 y∗t
)
θ
∗
1,t, where

θ
∗
1,t ∈

(
θ̂∗1,t, θ

†
1

)
, and θ̂∗1,t is defined in (15). Then,

1
P 1/2

T−1∑

t=R

(
g′(û∗1,t+1)w(Z∗,t, γ)− g′(û1,t+1)w(Zt, γ)

)
=

1
P 1/2

T−1∑

t=R

(
g′(u∗1,t+1)w(Z∗,t, γ)− g′(u1,t+1)g(Zt, γ)

)
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+
1

P 1/2

T−1∑

t=R

(∇θ1g
′(u∗1,t+1)

)′
w(Z∗,t, γ)

(
θ̂∗1,t − θ†1

)
− 1

P 1/2

T−1∑

t=R

(∇θ1g
′(u1,t+1)

)′
w(Zt, γ)

(
θ̂1,t − θ†1

)

=
1

P 1/2

T−1∑

t=R

(
g′(u∗1,t+1)w(Z∗,t, γ)− g′(u1,t+1)w(Zt, γ)

)
+

1
P 1/2

T−1∑

t=R

(∇θ1g
′(u∗1,t+1)

)′
w(Z∗,t, γ)

(
θ̂∗1,t − θ̂1,t

)

+
1

P 1/2

T−1∑

t=R

((∇θ1g
′(u∗1,t+1)

)′
w(Z∗,t, γ)− (∇θ1g

′(u1,t+1)
)′

w(Zt, γ)
)(

θ̂1,t − θ†1
)

, (48)

the last term in (48) is o∗P (1) Pr−P, as given A3, supt≥R P 1/2
(
θ̂1,t − θ†1

)
= OP (1), and

sup
θ1∈Θ1

1
P

T−1∑

t=R

((∇θ1g
′(u∗1,t+1(θ1))

)′
w(Z∗,t, γ)− (∇θ1g

′(u1,t+1(θ1))
)′

w(Zt, γ)
)

= oP ∗(1), Pr−P,

where u∗1,t+1(θ1) = y∗t+1 −
(

1 y∗t
)
θ1, and u1,t+1(θ1) = yt+1 −

(
1 yt

)
θ1. Now, pointwise in

γ, the first term on the RHS of the last equality in (48), has the same limiting distribution

as 1
P 1/2

∑T−1
t=R

(
g′(u1,t+1)w(Zt, γ)−E

(
g′(u1,t+1)w(Zt, γ)

))
. Stochastic equicontinuity on Γ can be

shown along the lines of Theorem 2 in Corradi and Swanson (2002). Therefore, under H0, any con-

tinuous functional over Γ of 1
P 1/2

∑T−1
t=R

(
g′(u∗1,t+1)w(Z∗,t, γ)− g′(u1,t+1)w(Zt, γ)

)
has the same lim-

iting distribution of the same functional of 1
P 1/2

∑T−1
t=R

(
g′(u1,t+1)w(Zt, γ)− E

(
g′(u1,t+1)w(Zt, γ)

))
,

conditional on the sample and for all samples but a subset of measure approaching zero. By the

same argument used in the proof of Proposition 3, the last term on the RHS of the last equality in

(48) is o∗P (1) Pr−P. It now remains to consider the second term on the RHS of the last equality in

(48). Hereafter, let ∇θ1gP = P−1
∑P−1

i=1 ∇θ1g(u1,j), and µγ = E
(∇θ1g

′(u1,t+1)w(Zt, γ)
)
. Recalling

that q1 = g, by the same argument used above, it writes as,

µ′γ
1

P 1/2

T−1∑

t=R





−1

t

t∑

j=s

∇2
θ1

g(u∗1,j)



−1 

1
t

t∑

j=s

∇θ1g(u∗1,j)




−

−1

t

t∑

j=s

∇2
θ1

g(u1,j)



−1 

1
t

t∑

j=s

∇θ1g(u1,j)





 + o∗P (1), Pr−P

= µ′γB† 1
P 1/2

T−1∑

t=R


1

t

t∑

j=s

(∇θ1g(u∗1,j)−∇θ1g(u1,j)
)

 + o∗P (1), Pr−P

= µ′γB† aR,0

P 1/2

R∑
t=s

(∇θ1g(u∗1,j)−∇θ1g(u1,j)
)

+ µ′γB† 1
P 1/2

P−1∑

i=1

aR,i

(∇θ1g(u∗1,R+i)−∇θ1gP

)

−µ′γB† 1
P 1/2

P−1∑

i=1

aR,i

(∇θ1g(u1,R+i)−∇θ1gP

)
+ o∗P (1), Pr−P.
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Now, by the same argument as in the proof of Theorem 1, the sum of the first two terms on the

RHS of the last equality, mimic the contribution of parameter estimation error, while the last term

is offset by the adjustment term. The desired outcome then follows.

Proof of Proposition 6: This proof requires just a small modification to the proof of Theorem

1 in Corradi and Swanson (2003b). In fact, the only difference is that in the current context

parameters are estimated recursively. Also, recall that parameters are estimated by QMLE (using

the density associated with the candidate conditional model), so that qi = − ln fi, i = 1, ..., n with

fi being the density associated with Fi. Let µ2
i (u) = E

((
1{yt+1 ≤ u} − Fi(u|Zt, θ†i )

)2
)

= E
((

1{yt+1 ≤ u} − F0(u|Zt, θ0)
)2

)
+ E

((
F0(u|Zt, θ0)− Fi(u|Zt, θ†i )

)2
)

. Thus,

ZP,u(1, k) =
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2
−

(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t)

)2
)

=
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2
− µ2

1(u)
)

− 1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t)

)2
− µ2

k(u)
)

+
√

P (µ2
1(u)− µ2

k(u))

=
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

)2
− µ2

1(u)
)
− 1√

P

T−1∑
t=s

((
1{yt+1 ≤ u} − Fk(u|Zt, θ†k)

)2
− µ2

k(u)
)

− 2
P

T−1∑

t=R

∇θ1F1(u|Zt, θ1,t)′
(
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

)√
P

(
θ̂1,t − θ†1

)

+
2
P

T−1∑

t=R

∇θk
Fk(u|Zt, θk,t)′

(
1{yt+1 ≤ u} − Fk(u|Zt, θ†k)

)√
P

(
θ̂k,t − θ†k

)

+
√

P (µ2
1(u)− µ2

k(u)) + oP (1) (49)

where θi,t ∈ (θ̂i,t, θ
†
i ), i = 1, ..., n, and where the oP (1) term holds uniformly in u ∈ U. Now, given

A1,A2 and A6, by the uniform law of large numbers for β−mixing processes,

sup
θi∈Θi

∣∣∣∣∣
1
P

T−1∑

t=R

∇θiFi(u|Zt, θi)′
(
1{yt+1 ≤ u} − Fi(u|Zt, θi)

)− µθi

∣∣∣∣∣ = oP (1).
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Now,

1√
P

T−1∑

t=R

(
θ̂i,t − θ†i

)
=

1√
P

T−1∑

t=R


−1

t

t∑

j=s

∇2
θi

ln fi(yj |Zj−1, θ†i )



−1 

−1
t

t∑

j=s

∇θi ln fi(yj |Zj−1, θ†i )




= B†
i

1√
P

T−1∑

t=R


−1

t

t∑

j=s

∇θi
ln fi(yj |Zj−1, θ†i )


 + oP (1),

where B†
i =

(
E

(
−∇2

θi
ln fi(yt+1|Zt, θ†i )

))−1
and µθi

= E
(∇θi

Fi(u|Zt, θi)′
(
1{yt+1 ≤ u} − Fi(u|Zt, θi)

))
.

For any given u, u′ convergence in distribution to a normal with the same covariance as in the state-

ment of the theorem follows by the same argument as in Proposition 6 and by the Cramer Wold

device. Finally stochastic equicontinuity in u follows by the same argument as in the proof of

Theorem 1 in Corradi and Swanson (2003b). Convergence of finite dimension distribution and

stochastic equicontinuity ensure weak convergence to a process on U.

Proof of Proposition 7: As for the first two lines on the RHS of the bootstrap statistic, equation

(21):

1√
P

T−1∑

t=R

(((
1{y∗t+1 ≤ u} − F1(u|Z∗,t, θ̂∗1,t)

)2
−

(
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2
)

−
((

1{y∗t+1 ≤ u} − Fk(u|Z∗,t, θ̂∗k,t)
)2
−

(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t)

)2
))

=
1√
P

T−1∑

t=R

((((
1{y∗t+1 ≤ u} − F1(u|Z∗,t, θ†1)

)
−∇θ1F1(u|Z∗,t, θ∗1,t)

(
θ̂∗1,t − θ†1

))2

−
((

1{yt+1 ≤ u} − F1(u|Zt, θ†1)
)
−∇θ1F1(u|Zt, θ1,t)

(
θ̂1,t − θ†1

))2
)

−
(((

1{y∗t+1 ≤ u} − Fk(u|Z∗,t, θ†k)
)
−∇θk

Fk(u|Z∗,t, θ∗k,t)
(
θ̂∗k,t − θ†k

))2

−
((

1{yt+1 ≤ u} − Fk(u|Zt, θ†k)
)
−∇θk

Fk(u|Zt, θk,t)
(
θ̂k,t − θ†k

))2
))

, (50)

where θ
∗
i,t ∈

(
θ̂∗i,t, θ

†
i

)
, θi,t ∈

(
θ̂i,t, θ

†
i

)
. Now, by a similar argument as that used in the proof of
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Theorem 2 in Corradi and Swanson (2003b), (50) writes as:

1√
P

T−1∑

t=R

(
F 2

1 (u|Z∗,t, θ†1)− F 2
1 (u|Zt, θ†1)

)

− 2√
P

T−1∑

t=R

(
F1(u|Z∗,t, θ†1)1{y∗t+1 ≤ u} − F1(u|Zt, θ†1)1{yt+1 ≤ u}

)

− 2
P

T−1∑

t=R

((
1{y∗t+1 ≤ u} − F1(u|Z∗,t, θ†1)

)
∇θ1F1(u|Z∗,t, θ∗1,t)

′
)√

P
(
θ̂∗1,t − θ†1

)

+
2
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

)
∇θ1F1(u|Zt, θ1,t)′

)√
P

(
θ̂1,t − θ†1

)

− 1√
P

T−1∑
t=s

(
F 2

k (u|Z∗,t, θ†k)− F 2
k (u|Zt, θ†k)

)

+
2√
P

T−1∑

t=R

(
Fk(u|Z∗,t, θ†k)1{y∗t+1 ≤ u} − Fk(u|Zt, θ†k)1{yt+1 ≤ u}

)

+
2
P

T−1∑

t=R

((
1{y∗t+1 ≤ u} − Fk(u|Z∗,t, θ†k)

)
∇θk

Fk(u|Z∗,t, θ∗k,t)
′
)√

P
(
θ̂∗k,t − θ†k

)

− 2
P

T−1∑

t=R

((
1{yt+1 ≤ u} − Fk(u|Zt, θ†k)

)
∇θk

Fk(u|Zt, θk,t)′
)√

P
(
θ̂k,t − θ†k

)
+ oP ∗(1), Pr−P,(51)

As shown in the proof of Theorem 2 in Corradi and Swanson (2003b), 1√
T

∑T
t=s

(
F 2

i (u|Z∗t, θ†i )− F 2
i (u|Zt, θ†i )

)

has the same limiting distribution as 1√
P

∑T−1
t=R

(
F 2

i (u|Zt, θ†i )− E
(
F 2

i (u|Zt, θ†1)
))

, as a process

over U, and 1√
P

∑T−1
t=R

(
Fi(u|Z∗,t, θ†i )1{y∗t+1 ≤ u} − Fi(u|Zt, θ†i )1{yt+1 ≤ u}

)
has the same limiting

distribution as 1√
P

∑T−1
t=s

(
Fi(u|Zt, θ†i )1{yt+1 ≤ u} − E

(
Fi(u|Zt, θ†i )1{yt+1 ≤ u}

))
, as a process

over U.

For sake of simplicity we just analyze the parameter estimation error component of model 1.
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Now, by a similar argument as that used in the proof of Proposition 3,

− 2
P

T−1∑

t=R

((
1{y∗t+1 ≤ u} − F1(u|Z∗,t, θ†1)

)
∇θ1F1(u|Z∗,t, θ∗1,t)

′
)√

P
(
θ̂∗1,t − θ†1

)

+
2
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

)
∇θ1F1(u|Zt, θ1,t)′

)√
P

(
θ̂1,t − θ†1

)

= −2µ
θ†1

A(θ†1)
√

P
(
θ̂∗1,t − θ̂1,t

)
+ o∗p(1), Pr−P

= −2µ
θ†1

A(θ†1)
1√
P

T−1∑

t=R


1

t

t∑

j=s

(
ln f1(y∗j |Z∗,j−1, θ†1)− ln f1(yj |Zj−1, θ†1)

)

 + o∗p(1), Pr−P,(52)

where m
θ†1

(u)′= E
(
∇θ1F1(u|Zt, θ†1)

′
(
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

))
and A(θ†1) =

(
E

(
−∇2

θ1
f1(yt+1|Zt, θ†1)

))−1
.

Let h∗1,t+1 = ∇θ1 ln f1(y∗t+1|Z∗,t, θ†1), h1,t+1 = ∇θ1 ln f1(yt+1|Zt, θ†1). Also, the last line in (52)

writes as:

−2µ
θ†1

A(θ†1)

(
a2

R,0

1
P 1/2

T−1∑

t=R

(
h∗1,t − h1,t

)
+

1
P 1/2

P−1∑

i=1

aR,i

(
h∗1,R+i − h1,P

)
)

+2µ
θ†1

A(θ†1)
1

P 1/2

P−1∑

i=1

aR,i

(
h1,R+i − h1,P

)
+ o∗P (1), Pr−P.

The desired outcome then follows by the same argument as in the proof of Theorem 1 and of

Proposition 3.
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Künsch H.R., (1989), The Jackknife and the Bootstrap for General Stationary Observations, Annals
of Statistics, 17, 1217-1241.

Linton, O., E. Maasoumi and Y.J. Whang, (2003), Consistent Testing for Stochastic Dominance
Under General Sampling Schemes, Manuscript, LSE, Southern Methodist University and Ewha
University.

McCracken, M.W., (1999), Asymptotics for Out of Sample Tests of Causality, Working Paper,
Louisiana State University.

Newey, W.K. and K.D. West, (1987), A Simple Positive-Definite Heteroskedasticity and Autocor-
relation Consistent Covariance Matrix, Econometrica, 55, 703-708.

Politis, D.N. and J.P. Romano, (1994), The Stationary Bootstrap, Journal of the American Statis-
tical Association, 89, 1303-1313.

Politis, D.N., J.P. Romano and M. Wolf, (1999), Subsampling, Springer and Verlag, New York.

Stinchcombe, M.B. and H. White, (1998), Consistent Specification Testing with Nuisance Param-
eters Present Only Under the Alternative, Econometric Theory, 14, 3, 295-325.

Swanson, N.R. and H. White, (1997), A Model Selection Approach to Real-Time Macroeconomic
Forecasting using Linear Models and Artificial Neural Networks, Review of Economics and Statis-
tics, 79, 540-550.

Weiss, A., (1996) Estimating Time Series Models Using the Relevant Cost Function, Journal of
Applied Econometrics, 11, 539-560.

West, K., (1996), Asymptotic Inference About Predictive Ability, Econometrica, 64, 1067-1084.

White, H., (2000), A Reality Check for Data Snooping, Econometrica, 68, 1097-1126.

Wooldridge, J.M. and H. White, (1988), Some Invariance Principles and Central Limit Theorems
for Dependent and Heterogeneous Processes, Econometric Theory, 4, 210-230.

Zellner, A., (1986), Bayesian Estimation and Prediction Using Asymmetric Loss Function, Journal
of the American Statistical Association, 81, 446-451.

45



Table 1: Finite Sample Properites of the Bootstrap for Parameter Estimation Error: Recursive
Scheme with Adjustment Terms versus Full Sample Scheme: Part I(∗)

Panel A: DGP is an AR(1) Process - ρ = 0.2
smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
600 rec ρ̂ 0.732 0.800 0.896 0.870 0.912 0.904 0.894 0.870 0.864 0.844

ρ̂1 0.730 0.812 0.904 0.890 0.910 0.898 0.900 0.884 0.878 0.850
ρ̂2 0.898 0.898 0.908 0.916 0.938 0.910 0.896 0.908 0.862 0.856

full ρ̂ 0.655 0.875 0.870 0.850 0.890 0.905 0.900 0.940 0.895 0.915
ρ̂1 0.665 0.875 0.865 0.880 0.885 0.920 0.900 0.925 0.895 0.900
ρ̂2 0.865 0.905 0.905 0.940 0.910 0.940 0.920 0.935 0.885 0.890

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.612 0.868 0.902 0.900 0.924 0.926 0.908 0.880 0.904 0.882

ρ̂1 0.624 0.874 0.900 0.904 0.934 0.918 0.900 0.896 0.914 0.890
ρ̂2 0.874 0.924 0.924 0.918 0.918 0.888 0.940 0.912 0.884 0.866

full ρ̂ 0.560 0.855 0.925 0.930 0.905 0.910 0.940 0.905 0.915 0.885
ρ̂1 0.595 0.880 0.920 0.915 0.925 0.925 0.940 0.900 0.915 0.885
ρ̂2 0.880 0.910 0.915 0.930 0.915 0.880 0.925 0.925 0.925 0.910

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.436 0.780 0.898 0.934 0.928 0.920 0.914 0.910 0.934 0.888

ρ̂1 0.452 0.796 0.908 0.934 0.924 0.920 0.918 0.920 0.928 0.888
ρ̂2 0.890 0.904 0.930 0.932 0.914 0.924 0.930 0.938 0.892 0.894

full ρ̂ 0.315 0.820 0.890 0.920 0.930 0.930 0.930 0.950 0.930 0.880
ρ̂1 0.350 0.815 0.880 0.940 0.930 0.930 0.935 0.935 0.940 0.900
ρ̂2 0.890 0.920 0.955 0.925 0.935 0.955 0.935 0.950 0.925 0.935

Panel B: DGP is an AR(2) Process - ρ1 = ρ2 = 0.1
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 rec ρ̂ 0.828 0.850 0.898 0.892 0.910 0.894 0.894 0.864 0.868 0.834
ρ̂1 0.862 0.872 0.914 0.902 0.924 0.908 0.912 0.878 0.880 0.834
ρ̂2 0.832 0.886 0.900 0.920 0.912 0.896 0.904 0.890 0.886 0.840

full ρ̂ 0.805 0.830 0.900 0.860 0.910 0.875 0.910 0.920 0.870 0.900
ρ̂1 0.825 0.865 0.905 0.885 0.930 0.880 0.950 0.925 0.885 0.920
ρ̂2 0.835 0.860 0.905 0.870 0.920 0.895 0.925 0.875 0.905 0.935

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.794 0.892 0.916 0.918 0.914 0.906 0.914 0.898 0.886 0.872

ρ̂1 0.816 0.906 0.928 0.926 0.912 0.912 0.916 0.900 0.896 0.882
ρ̂2 0.786 0.912 0.920 0.940 0.932 0.902 0.930 0.892 0.912 0.856

full ρ̂ 0.750 0.875 0.915 0.890 0.910 0.905 0.925 0.920 0.885 0.870
ρ̂1 0.765 0.890 0.925 0.895 0.915 0.920 0.925 0.920 0.880 0.865
ρ̂2 0.815 0.905 0.895 0.910 0.880 0.925 0.905 0.935 0.905 0.940

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.702 0.882 0.894 0.938 0.914 0.936 0.910 0.920 0.922 0.896

ρ̂1 0.734 0.892 0.898 0.936 0.912 0.942 0.912 0.920 0.926 0.902
ρ̂2 0.738 0.890 0.916 0.940 0.912 0.910 0.938 0.906 0.904 0.916

full ρ̂ 0.650 0.795 0.885 0.905 0.905 0.930 0.940 0.915 0.915 0.885
ρ̂1 0.690 0.825 0.910 0.905 0.915 0.925 0.945 0.925 0.920 0.890
ρ̂2 0.695 0.900 0.945 0.950 0.930 0.935 0.910 0.925 0.905 0.905

(∗) Notes: The second column lists the bootstrap used to examine parameter estimation error (PEE) associated
with either an AR(1) autoregressive parameter (ρ̂) or two autoregressive parameters from an AR(2) model (ρ̂1 and
ρ̂2). Entries corresponding to rec correspond to coverage probabilities based on the recursive PEE bootstrap with
adjustment terms, in the context of a recursive estimation scheme, so that in our framework they denote the proportion
of times that the (pseudo) true parameter ρ falls into CI∗∗, with α equal to 0.05. Results based on different values of
α are available upon request. In the context of the recursive scheme, P recursive estimators are constructed, where
P=0.5T and T is the full sample, set at either 600, 1200, or 2400 observations. Entries corresponding to full are
coverage probabilities for the case where no recursive estimation is carried out, the entire sample is used for one time
estimation of the parameters, and the standard block bootstrap is used to mimic the distribution of PEE. Data are
generated according to either an AR(1) process (Panel A) or an AR(2) process (Panel B), and the autoregressive
parameters of the DGPs are given in the header line for each panel. Block lengths used are denoted by the various
values of l. In all experiments, 500 Monte Carlo iterations were carried out (see above for further details).
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Table 2: Finite Sample Properites of the Bootstrap for Parameter Estimation Error: Recursive
Scheme with Adjustment Terms versus Full Sample Scheme: Part II(∗)

Panel A: DGP is an AR(1) Process - ρ = 0.4
smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
600 rec ρ̂ 0.340 0.590 0.830 0.815 0.815 0.880 0.855 0.840 0.870 0.840

ρ̂1 0.420 0.635 0.850 0.825 0.860 0.905 0.890 0.870 0.905 0.870
ρ̂2 0.930 0.920 0.880 0.945 0.925 0.910 0.905 0.885 0.865 0.885

full ρ̂ 0.220 0.585 0.750 0.800 0.835 0.880 0.905 0.895 0.880 0.880
ρ̂1 0.330 0.610 0.770 0.850 0.820 0.900 0.900 0.910 0.905 0.890
ρ̂2 0.855 0.870 0.950 0.895 0.945 0.865 0.930 0.890 0.890 0.925

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.120 0.660 0.835 0.900 0.890 0.890 0.890 0.895 0.880 0.845

ρ̂1 0.195 0.720 0.845 0.910 0.895 0.890 0.910 0.910 0.900 0.860
ρ̂2 0.910 0.915 0.930 0.940 0.935 0.945 0.930 0.905 0.945 0.900

full ρ̂ 0.065 0.605 0.730 0.865 0.875 0.870 0.895 0.905 0.885 0.885
ρ̂1 0.120 0.660 0.785 0.880 0.885 0.880 0.910 0.910 0.905 0.900
ρ̂2 0.885 0.920 0.905 0.930 0.930 0.915 0.910 0.940 0.900 0.935

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.015 0.495 0.810 0.840 0.900 0.910 0.890 0.910 0.895 0.895

ρ̂1 0.030 0.605 0.825 0.860 0.925 0.915 0.880 0.900 0.925 0.900
ρ̂2 0.905 0.920 0.960 0.925 0.920 0.910 0.920 0.895 0.925 0.875

full ρ̂ 0.000 0.415 0.770 0.850 0.885 0.905 0.905 0.915 0.945 0.905
ρ̂1 0.010 0.485 0.820 0.900 0.890 0.900 0.915 0.935 0.935 0.915
ρ̂2 0.890 0.905 0.935 0.920 0.910 0.920 0.945 0.940 0.905 0.915

Panel B: DGP is an AR(2) Process ρ1 = ρ2 = 0.2
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 rec ρ̂ 0.710 0.825 0.895 0.885 0.915 0.870 0.885 0.845 0.885 0.845
ρ̂1 0.790 0.880 0.925 0.885 0.905 0.875 0.895 0.885 0.900 0.865
ρ̂2 0.745 0.815 0.880 0.845 0.885 0.895 0.890 0.880 0.870 0.845

full ρ̂ 0.540 0.805 0.840 0.890 0.875 0.910 0.900 0.870 0.905 0.885
ρ̂1 0.620 0.860 0.870 0.925 0.925 0.940 0.890 0.885 0.890 0.905
ρ̂2 0.690 0.840 0.895 0.865 0.890 0.910 0.890 0.905 0.930 0.900

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.530 0.790 0.880 0.905 0.900 0.880 0.935 0.895 0.940 0.900

ρ̂1 0.605 0.855 0.910 0.940 0.930 0.885 0.945 0.895 0.960 0.895
ρ̂2 0.660 0.860 0.880 0.910 0.910 0.915 0.905 0.875 0.925 0.870

full ρ̂ 0.400 0.815 0.870 0.900 0.880 0.925 0.920 0.895 0.905 0.860
ρ̂1 0.525 0.875 0.900 0.935 0.895 0.945 0.920 0.885 0.915 0.875
ρ̂2 0.590 0.820 0.860 0.925 0.895 0.890 0.930 0.930 0.915 0.925

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.300 0.775 0.875 0.915 0.920 0.925 0.920 0.925 0.890 0.890

ρ̂1 0.395 0.790 0.905 0.945 0.945 0.940 0.915 0.930 0.890 0.880
ρ̂2 0.430 0.810 0.925 0.860 0.925 0.920 0.905 0.895 0.930 0.915

full ρ̂ 0.285 0.720 0.885 0.930 0.935 0.920 0.935 0.935 0.905 0.870
ρ̂1 0.360 0.760 0.890 0.925 0.955 0.925 0.945 0.925 0.905 0.900
ρ̂2 0.310 0.775 0.860 0.915 0.920 0.910 0.875 0.895 0.945 0.925

(∗) Notes: See notes to Table 1.
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Table 3: Finite Sample Properites of the Bootstrap for Parameter Estimation Error: Recursive
Scheme with Adjustment Terms versus Full Sample Scheme: Part III(∗)

Panel A: DGP is an AR(1) Process - ρ = 0.6
smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
600 rec ρ̂ 0.945 0.730 0.385 0.360 0.290 0.150 0.180 0.145 0.140 0.150

ρ̂1 0.805 0.510 0.240 0.250 0.175 0.095 0.110 0.120 0.120 0.115
ρ̂2 0.130 0.070 0.110 0.065 0.115 0.085 0.075 0.110 0.110 0.130

full ρ̂ 0.945 0.815 0.435 0.355 0.290 0.225 0.175 0.160 0.120 0.155
ρ̂1 0.865 0.630 0.325 0.260 0.210 0.130 0.135 0.095 0.080 0.170
ρ̂2 0.060 0.070 0.060 0.055 0.105 0.075 0.075 0.075 0.115 0.090

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 1.000 0.630 0.350 0.290 0.195 0.235 0.150 0.120 0.130 0.095

ρ̂1 0.975 0.515 0.235 0.170 0.140 0.100 0.090 0.105 0.105 0.145
ρ̂2 0.085 0.055 0.075 0.050 0.075 0.085 0.065 0.075 0.085 0.125

full ρ̂ 1.000 0.675 0.405 0.310 0.240 0.195 0.155 0.150 0.110 0.135
ρ̂1 1.000 0.485 0.295 0.200 0.160 0.135 0.070 0.130 0.095 0.080
ρ̂2 0.085 0.060 0.055 0.045 0.085 0.090 0.050 0.075 0.095 0.100

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 1.000 0.880 0.440 0.245 0.185 0.115 0.145 0.105 0.090 0.095

ρ̂1 1.000 0.735 0.300 0.210 0.130 0.110 0.110 0.080 0.100 0.100
ρ̂2 0.070 0.035 0.060 0.105 0.095 0.070 0.090 0.075 0.105 0.105

full ρ̂ 1.000 0.920 0.495 0.320 0.220 0.190 0.145 0.105 0.135 0.140
ρ̂1 1.000 0.750 0.290 0.210 0.120 0.140 0.110 0.070 0.090 0.090
ρ̂2 0.080 0.050 0.060 0.100 0.060 0.065 0.090 0.065 0.120 0.080

Panel B: DGP is an AR(2) Process - ρ1 = ρ2 = 0.3
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 rec ρ̂ 0.580 0.350 0.225 0.165 0.170 0.140 0.155 0.160 0.130 0.165
ρ̂1 0.460 0.205 0.095 0.105 0.070 0.095 0.120 0.125 0.125 0.125
ρ̂2 0.310 0.220 0.150 0.105 0.105 0.100 0.080 0.115 0.095 0.145

full ρ̂ 0.640 0.450 0.225 0.180 0.145 0.160 0.195 0.135 0.120 0.105
ρ̂1 0.445 0.290 0.160 0.100 0.095 0.145 0.125 0.115 0.090 0.130
ρ̂2 0.420 0.295 0.200 0.120 0.130 0.090 0.090 0.080 0.110 0.155

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.785 0.345 0.110 0.145 0.145 0.150 0.115 0.130 0.130 0.120

ρ̂1 0.645 0.235 0.075 0.095 0.110 0.090 0.100 0.090 0.135 0.135
ρ̂2 0.605 0.195 0.090 0.100 0.100 0.130 0.130 0.090 0.095 0.125

full ρ̂ 0.870 0.270 0.180 0.160 0.145 0.085 0.095 0.080 0.130 0.090
ρ̂1 0.710 0.190 0.120 0.110 0.080 0.050 0.060 0.080 0.105 0.120
ρ̂2 0.620 0.235 0.140 0.100 0.110 0.070 0.095 0.065 0.080 0.150

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.950 0.370 0.225 0.175 0.095 0.130 0.130 0.075 0.080 0.145

ρ̂1 0.875 0.280 0.155 0.115 0.065 0.085 0.090 0.065 0.055 0.095
ρ̂2 0.880 0.310 0.110 0.065 0.085 0.125 0.020 0.070 0.095 0.115

full ρ̂ 0.970 0.435 0.180 0.130 0.105 0.130 0.070 0.055 0.085 0.115
ρ̂1 0.935 0.345 0.140 0.110 0.090 0.090 0.075 0.030 0.070 0.085
ρ̂2 0.925 0.365 0.170 0.120 0.095 0.060 0.120 0.050 0.050 0.100

(∗) Notes: See notes to Table 1.
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Table 4: Finite Sample Properites of the Bootstrap for Parameter Estimation Error: Recursive
Scheme with Adjustment Terms versus Full Sample Scheme: Part IV(∗)

Panel A: DGP is an AR(1) Process - ρ = 0.8
smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
600 rec ρ̂ 0.000 0.025 0.285 0.420 0.545 0.675 0.695 0.775 0.780 0.830

ρ̂1 0.095 0.345 0.710 0.765 0.800 0.895 0.860 0.850 0.870 0.855
ρ̂2 0.940 0.975 0.960 0.945 0.925 0.960 0.925 0.905 0.920 0.850

full ρ̂ 0.000 0.010 0.165 0.295 0.415 0.620 0.695 0.735 0.795 0.830
ρ̂1 0.040 0.240 0.615 0.685 0.815 0.835 0.895 0.900 0.880 0.880
ρ̂2 0.940 0.960 0.910 0.945 0.950 0.970 0.960 0.955 0.920 0.915

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.000 0.040 0.305 0.460 0.595 0.695 0.730 0.785 0.815 0.860

ρ̂1 0.000 0.405 0.635 0.770 0.770 0.875 0.885 0.905 0.885 0.885
ρ̂2 0.960 0.910 0.920 0.935 0.955 0.950 0.930 0.905 0.880 0.875

full ρ̂ 0.000 0.050 0.190 0.390 0.530 0.620 0.680 0.790 0.795 0.840
ρ̂1 0.000 0.325 0.630 0.735 0.795 0.845 0.855 0.900 0.915 0.925
ρ̂2 0.965 0.970 0.925 0.940 0.960 0.935 0.915 0.920 0.960 0.945

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.000 0.000 0.220 0.545 0.635 0.710 0.805 0.835 0.840 0.845

ρ̂1 0.000 0.175 0.615 0.800 0.825 0.885 0.935 0.905 0.900 0.910
ρ̂2 0.950 0.955 0.945 0.960 0.950 0.940 0.945 0.920 0.950 0.930

full ρ̂ 0.000 0.000 0.190 0.480 0.570 0.750 0.795 0.865 0.805 0.895
ρ̂1 0.000 0.085 0.515 0.755 0.830 0.890 0.930 0.920 0.885 0.930
ρ̂2 0.960 0.950 0.945 0.945 0.930 0.960 0.955 0.940 0.915 0.940

Panel B: DGP is an AR(2) Process - ρ1 = ρ2 = 0.4
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 rec ρ̂ 0.155 0.360 0.650 0.665 0.755 0.830 0.785 0.795 0.840 0.830
ρ̂1 0.580 0.695 0.855 0.840 0.895 0.920 0.865 0.865 0.875 0.890
ρ̂2 0.515 0.690 0.855 0.885 0.890 0.905 0.900 0.865 0.840 0.855

full ρ̂ 0.075 0.250 0.580 0.620 0.655 0.765 0.825 0.845 0.865 0.855
ρ̂1 0.395 0.645 0.845 0.850 0.895 0.905 0.875 0.920 0.900 0.905
ρ̂2 0.430 0.670 0.770 0.805 0.870 0.915 0.915 0.870 0.900 0.880

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 rec ρ̂ 0.035 0.520 0.670 0.755 0.800 0.810 0.810 0.905 0.865 0.840

ρ̂1 0.215 0.780 0.880 0.895 0.895 0.895 0.905 0.940 0.915 0.845
ρ̂2 0.220 0.775 0.830 0.830 0.915 0.930 0.890 0.875 0.910 0.860

full ρ̂ 0.015 0.410 0.635 0.735 0.820 0.820 0.850 0.860 0.885 0.875
ρ̂1 0.125 0.755 0.820 0.870 0.900 0.935 0.940 0.905 0.945 0.925
ρ̂2 0.110 0.665 0.810 0.870 0.885 0.915 0.895 0.890 0.905 0.930

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 rec ρ̂ 0.000 0.310 0.670 0.780 0.840 0.890 0.855 0.910 0.885 0.905

ρ̂1 0.025 0.645 0.860 0.870 0.885 0.950 0.890 0.925 0.935 0.920
ρ̂2 0.020 0.480 0.825 0.855 0.930 0.880 0.890 0.890 0.870 0.900

full ρ̂ 0.000 0.185 0.665 0.780 0.810 0.870 0.865 0.915 0.890 0.900
ρ̂1 0.010 0.520 0.850 0.875 0.915 0.860 0.900 0.945 0.915 0.940
ρ̂2 0.005 0.485 0.765 0.860 0.905 0.900 0.915 0.905 0.915 0.930

(∗) Notes: See notes to Table 1.
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Table 5: Finite Sample Properites of the Bootstrap for Parameter Estimation Error: Recursive
Scheme without Adjustment Terms: Part I(∗)

Panel A: DGP is an AR(1) Process - ρ = 0.2
smpl coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
600 ρ̂ 0.710 0.766 0.876 0.842 0.882 0.868 0.874 0.844 0.822 0.816

ρ̂1 0.710 0.784 0.894 0.860 0.882 0.882 0.872 0.852 0.832 0.818
ρ̂2 0.870 0.882 0.880 0.888 0.902 0.894 0.868 0.888 0.838 0.814

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.602 0.846 0.874 0.862 0.912 0.892 0.888 0.854 0.876 0.842

ρ̂1 0.636 0.860 0.880 0.862 0.918 0.896 0.886 0.880 0.876 0.854
ρ̂2 0.848 0.898 0.894 0.886 0.902 0.878 0.912 0.892 0.870 0.842

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.446 0.770 0.874 0.916 0.896 0.886 0.882 0.880 0.892 0.868

ρ̂1 0.456 0.768 0.884 0.916 0.906 0.890 0.890 0.890 0.898 0.854
ρ̂2 0.856 0.878 0.898 0.912 0.898 0.902 0.914 0.898 0.876 0.866

Panel B: DGP is an AR(2) Process - ρ1 = ρ2 = 0.1
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 ρ̂ 0.350 0.580 0.825 0.795 0.795 0.860 0.845 0.830 0.850 0.800
ρ̂1 0.435 0.610 0.830 0.815 0.835 0.885 0.870 0.835 0.880 0.815
ρ̂2 0.920 0.910 0.850 0.930 0.895 0.895 0.855 0.880 0.835 0.860

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.135 0.670 0.820 0.865 0.865 0.840 0.880 0.870 0.860 0.815

ρ̂1 0.200 0.720 0.845 0.900 0.875 0.880 0.895 0.885 0.885 0.840
ρ̂2 0.875 0.880 0.925 0.905 0.895 0.920 0.890 0.900 0.920 0.860

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.015 0.530 0.790 0.830 0.870 0.885 0.865 0.920 0.875 0.860

ρ̂1 0.040 0.615 0.810 0.830 0.910 0.875 0.875 0.890 0.875 0.860
ρ̂2 0.885 0.895 0.965 0.875 0.875 0.880 0.900 0.885 0.900 0.875

Panel C: DGP is an AR(1) Process - ρ = 0.4
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 ρ̂ 0.804 0.794 0.876 0.856 0.890 0.854 0.890 0.846 0.834 0.802
ρ̂1 0.838 0.838 0.886 0.868 0.894 0.876 0.890 0.864 0.842 0.806
ρ̂2 0.802 0.864 0.866 0.896 0.878 0.874 0.878 0.868 0.852 0.814

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.770 0.864 0.884 0.880 0.876 0.894 0.894 0.872 0.860 0.854

ρ̂1 0.802 0.882 0.894 0.900 0.888 0.898 0.894 0.868 0.866 0.866
ρ̂2 0.780 0.884 0.890 0.906 0.884 0.882 0.906 0.874 0.894 0.828

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.706 0.866 0.876 0.904 0.888 0.910 0.884 0.892 0.898 0.862

ρ̂1 0.726 0.870 0.872 0.898 0.890 0.910 0.892 0.878 0.904 0.868
ρ̂2 0.732 0.862 0.890 0.908 0.892 0.898 0.912 0.880 0.872 0.886

Panel D: DGP is an AR(2) Process - ρ1 = ρ2 = 0.2
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 ρ̂ 0.680 0.780 0.855 0.845 0.860 0.865 0.845 0.840 0.865 0.800
ρ̂1 0.765 0.850 0.890 0.890 0.875 0.880 0.880 0.845 0.875 0.825
ρ̂2 0.710 0.825 0.845 0.840 0.850 0.860 0.875 0.835 0.855 0.805

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.515 0.765 0.850 0.905 0.900 0.840 0.900 0.880 0.900 0.880

ρ̂1 0.605 0.820 0.900 0.910 0.925 0.870 0.915 0.900 0.935 0.850
ρ̂2 0.640 0.855 0.850 0.885 0.885 0.885 0.885 0.865 0.915 0.840

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.315 0.755 0.870 0.920 0.895 0.900 0.885 0.910 0.875 0.850

ρ̂1 0.400 0.780 0.895 0.905 0.885 0.925 0.875 0.925 0.880 0.840
ρ̂2 0.445 0.775 0.915 0.860 0.905 0.880 0.895 0.850 0.865 0.880

(∗) Notes: See notes to Table 1. Entries correspond to those reported in Table 1 under the rec bootstrap, except that no
adjustment term is included. See above for further details.
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Table 6: Finite Sample Properites of the Bootstrap for Parameter Estimation Error: Recursive
Scheme without Adjustment Terms: Part I(∗)

Panel A: DGP is an AR(1) Process - ρ = 0.6
smpl coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
600 ρ̂ 0.055 0.310 0.605 0.645 0.690 0.800 0.805 0.825 0.830 0.830

ρ̂1 0.190 0.505 0.720 0.730 0.800 0.875 0.860 0.840 0.850 0.830
ρ̂2 0.845 0.905 0.880 0.910 0.840 0.905 0.915 0.850 0.840 0.845

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.000 0.400 0.630 0.675 0.795 0.765 0.815 0.825 0.860 0.870

ρ̂1 0.045 0.505 0.750 0.795 0.855 0.840 0.890 0.870 0.865 0.840
ρ̂2 0.895 0.930 0.900 0.910 0.920 0.890 0.925 0.880 0.895 0.845

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.000 0.155 0.540 0.750 0.810 0.870 0.815 0.855 0.875 0.865

ρ̂1 0.000 0.290 0.670 0.770 0.875 0.855 0.865 0.865 0.890 0.860
ρ̂2 0.925 0.950 0.935 0.880 0.885 0.920 0.890 0.890 0.865 0.875

Panel B: DGP is an AR(2) Process - ρ1 = ρ2 = 0.3
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 ρ̂ 0.000 0.035 0.280 0.465 0.540 0.640 0.660 0.765 0.760 0.800
ρ̂1 0.100 0.365 0.675 0.755 0.815 0.890 0.850 0.840 0.850 0.780
ρ̂2 0.925 0.975 0.920 0.920 0.910 0.920 0.885 0.885 0.905 0.800

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.000 0.045 0.315 0.455 0.575 0.680 0.725 0.790 0.820 0.830

ρ̂1 0.000 0.405 0.620 0.755 0.775 0.860 0.860 0.870 0.870 0.870
ρ̂2 0.975 0.915 0.895 0.905 0.945 0.895 0.895 0.870 0.875 0.835

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.000 0.000 0.235 0.545 0.580 0.700 0.790 0.815 0.815 0.815

ρ̂1 0.000 0.190 0.610 0.775 0.805 0.865 0.905 0.855 0.890 0.900
ρ̂2 0.950 0.935 0.925 0.940 0.935 0.935 0.935 0.870 0.915 0.915

Panel C: DGP is an AR(1) Process - ρ = 0.8
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 ρ̂ 0.405 0.635 0.775 0.800 0.790 0.850 0.825 0.815 0.850 0.825
ρ̂1 0.535 0.760 0.885 0.855 0.885 0.895 0.855 0.870 0.840 0.840
ρ̂2 0.665 0.755 0.855 0.880 0.870 0.885 0.880 0.865 0.850 0.825

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.195 0.630 0.855 0.830 0.825 0.865 0.850 0.835 0.850 0.845

ρ̂1 0.345 0.750 0.885 0.895 0.855 0.880 0.865 0.905 0.835 0.835
ρ̂2 0.395 0.800 0.875 0.870 0.880 0.865 0.850 0.865 0.895 0.855

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.055 0.630 0.785 0.810 0.875 0.865 0.840 0.880 0.865 0.835

ρ̂1 0.145 0.720 0.820 0.835 0.915 0.885 0.855 0.890 0.920 0.855
ρ̂2 0.140 0.685 0.870 0.920 0.890 0.870 0.935 0.905 0.870 0.870

Panel D: DGP is an AR(2) Process - ρ1 = ρ2 = 0.4
l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60

600 ρ̂ 0.165 0.350 0.660 0.620 0.750 0.780 0.770 0.775 0.800 0.820
ρ̂1 0.570 0.695 0.840 0.830 0.870 0.885 0.845 0.835 0.835 0.865
ρ̂2 0.510 0.725 0.825 0.840 0.875 0.880 0.865 0.845 0.805 0.830

l = 4 l = 10 l = 15 l = 20 l = 25 l = 30 l = 40 l = 50 l = 60 l = 100
1200 ρ̂ 0.035 0.515 0.670 0.720 0.770 0.795 0.770 0.885 0.870 0.810

ρ̂1 0.215 0.775 0.855 0.870 0.880 0.875 0.880 0.925 0.895 0.815
ρ̂2 0.225 0.740 0.780 0.790 0.875 0.910 0.850 0.845 0.880 0.820

l = 4 l = 10 l = 20 l = 30 l = 40 l = 50 l = 60 l = 80 l = 100 l = 120
2400 ρ̂ 0.000 0.290 0.635 0.770 0.800 0.865 0.840 0.855 0.865 0.890

ρ̂1 0.030 0.665 0.815 0.850 0.850 0.920 0.875 0.880 0.920 0.890
ρ̂2 0.035 0.465 0.805 0.860 0.905 0.885 0.855 0.850 0.835 0.875

(∗) Notes: See notes to Table 5.
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