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Abstract: 

 

The paper derives production functions designed to model the evolution of service industries. 
The derivation is based on specifying the output elasticities of the factors according to 
differential equations and asymptotic technological boundary conditions in factor space. The 
derived functional forms incorporate labor, capital, energy, and technological parameters, 
whose time changes model innovation and structural change. The model is applied to the 
evolution of the German market-determined services 1960-1989. 
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1   Introduction 

The economic importance of service production increases. Recent economic growth in 

the industrialized countries has been largely based on expanding service sectors. This 

trend is likely to continue. Service growth is expected to provide a major source of 

employment. On the other hand, the largest potentials of automation are identified in 

trade, banking, insurance, and public administration. For instance, Thome (1997) 

estimates 6.7 million potential job losses in Germany by the diffusion of state-of-the-art 

IT-technology in the mentioned service industries.  

In view of these and related issues, this paper develops production functions designed 

to model production and technological change in service industries. The methodo-

logical approach has been applied previously to derive production functions modeling 

industrial evolution (Kümmel et al. 1985, 2002). The approach takes into account the 

production factor energy, which enables to incorporate potential progress of 

automation, i.e. the substitution of labor by energy and (increasingly information 

processing) capital, in the production function. In addition, technological change is 

modelled via capital-related efficiency parameters. 

Within the conventional production function approach, technological progress is 

exogenous and the production factor energy, if taken into account as a factor, is 

attributed minor importance. Regarding the minor technological importance of energy in 

production theory, it is noteworthy to recall the historical development of the 

neoclassical model. When the concept of marginal utility was introduced in the 19th 

century, the primary focus was on a theory of value, price, and exchange. One started 

with a ‘model of pure exchange’ of goods, without considering their production. When 

the marginal-utility concept was extended to apply to production, however, this implied 

the technological assumption of sufficient factor-input substitutability such that, at given 

factor prices, the cost-minimizing production optimum lies in the interior –and not on 
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the boundary– of the region in factor space accessible to the production system 

according to the state of technology (at a given point in time). With this technological 

assumption of an interior optimum in factor space, marginal factor productivities equal 

factor prices, and, in the resulting production model, the output elasticities of the factors 

equal their cost shares. It is however not a-priori obvious, whether the assumption of 

sufficient factor-input substitutability and interior production optima is justified 

empirically. Alternatively, one might expect that routine labor can be substituted by 

energy and capital only to the extent to which technological progress removes techno-

logical restrictions and makes the corresponding factor combinations accessible. 

In the industrialized countries the factor cost shares are typically 0.7 (labor), 0.25 

(capital) and 0.05 (energy). With these shares as technological factor-input weights 

neither the recessions during the energy crises in the 1970s, nor long-term economic 

growth can be explained. Large residuals remain. They are associated with a time-

dependent multiplier in the aggregate production function and interpreted as the effects 

of “technical progress“ (Solow, 1957). In most cases the residual plays a more 

important role than the explanatory factors, which, according to Gahlen (1972), makes 

the neoclassical theory of production tautological. Solow (1994, p. 48) comments: “This 

... has led to a criticism of the neoclassical model: it is a theory of growth that leaves 

the main factor in economic growth unexplained''.  

Motivated by the Solow residual, ‘new’ growth theories emerged since Romer (1986) and 

Lukas (1988). Their key feature is to drop the assumption of diminishing returns to capital 

by introducing knowledge and human capital, arguing for positive spillovers of knowledge. 

Along this line, many important contributions have been made, e.g. by endogenizing R&D-

activity, the process of innovation, monopolistic competition, or international trade (see, 

e.g., Grossman and Helpman, 1989; Agion and Howitt, 1992; Romer, 1994). While these 

and related contributions have offered new theoretical arguments, they have, however, 
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lead to only limited empirically-based insights, because a commonly accepted definition 

and measurement prescription of knowledge and human capital is still out of sight. For 

instance, Howard Pack (1994, p. 55) concludes: “But have the recent theoretical 

insights succeeded in providing a better guide to explaining the actual growth 

experience? This is doubtful.” 

The present paper follows a complementary approach, keeping the conventional notion 

of physical capital and the assumption of diminishing returns. The approach takes into 

account the production factor energy in the production function, which enables to 

explicitly include production possibilities associated with increasing automation.  

In fact, the issue of automation, and, more general, engineering foundations in 

production theory, although apparently crucial (as such and in view of the potentialities 

of and limits to technological progress), are virtually absent in the literature on the level 

of macro-economic production functions. As Dorfman, Samuelson, and Solow (1958, 

p. 131) remark, “...there seems to have been a misunderstanding somewhere because 

the technologists do not take responsibility for production functions either. They regard 

the production function as an economist’s concept, and, as a matter of history, nearly 

all the production functions that have actually been derived are the work of economists 

rather than of engineers“. Admittedly, some work on engineering production functions 

has been done, meanwhile. This work, however, focuses rather on specific industrial 

production processes than on the macro-level. To give an example, Gow (2002) 

derives production functions depending on capital, labor, energy, and specific material 

inputs for olefin alkylation processes in refinery engineering, taking into account 

thermodynamic laws and process constitutive equations1. From this perspective, the 

present paper, which has its roots in the work of Kümmel (1980, 1982), tries to 

                                                 

1 E.g., kinetic rate or stoichiometric relations. 
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contribute to bridging the gap between thermodynamics and engineering on the one 

hand and macro-economic production functions on the other.2 Whereas the (macro-) 

production functions of Kümmel et al. (1985) focus on industrial production, the present 

paper proposes new functional forms designed to model the evolution of service 

industries. 

The commonly used macro-economic production functions, apart from general 

convexity requirements, do not exploit any specific technological a-priori information. 

Translog functions, as second-order Taylor expansions of any (log-linear) functional 

form, are as such general and flexible – but the resulting relatively large number of their 

free parameters reduces their explanatory power from a statistical perspective. In view 

of the principle trade-off between generality and flexibility on the one hand and 

explanatory power on the other, it would be desirable to reduce the degrees of freedom 

of production functions not only through general convexity requirements, but by 

imposing specific technological boundary conditions, while introducing parameters with 

a well defined physical/technological interpretation. This is the strategy of the present 

paper. It derives energy-dependent production functions by specifying technological 

boundary conditions for the elasticities of production, and then obtains production 

functions by integration. This way, Section 2 derives production functions for service 

industries. Section 3 provides a numerical example by applying the model to the 

market-determined services in Germany for the period 1960-1989. Section 4 provides a 

summary and conclusions.  

                                                 

2 “The need to reintegrate the natural sciences with economics” is discussed by Hall et al. (2001). 
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2  Deriving production functions from technological boundary conditions 

In modelling the evolution of production systems we start from the following total time-

derivative of a production function q(k,l,e,t): 
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Here q, k, l, and e are appropriate measures of value-added, capital, labor, and energy, 

respectively. Taking into account the production factor energy is necessary, if production 

functions are to have a physically sound interpretation. Energy is measured in energetic 

units, e.g. petajoule per year, labor in hours worked per year. Ideally, one would like to 

measure capital by the amount of work performance and information processing that 

capital is able to deliver when fully activated by energy and labor. Likewise, the output 

might be measured by the work performance and information processing necessary for 

its generation. The detailed, quantitative technological definitions of capital and output 

are given in (Kümmel, 1980, 1982). Since, however, the corresponding physical 

measurements are not available empirically, proportionality between them and the 

constant currency data is assumed. In Eq. (1), all quantities are normalized to their 

absolute values Q0, K0, L0, E0 in a base year ´0´, i.e., q=Q/Q0, k=K/K0, l=L/L0, e=E/E0. We 

include an explicit time-dependence of q to model structural change and innovation, e.g. 

improvements of organisational and energy conversion efficiencies, see below.  

Rearranging (1) yields the following growth equation (2) that relates the (infinitesimal) 

relative change of the normalized output, dq/q, to the relative changes of the 

normalized factor inputs, dk/k, dl/l, de/e:  
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where α≡(k/q)/(∂q/∂k), β≡(l/q)/(∂q/∂l), and γ≡(e/q)/(∂q/∂e) are the output elasticities of 

capital, labor, and energy, and C≡(t/q)(∂q/∂t)(dt/t) represents the explicit time-dependence 

of the production function. 

As long as the explicit time-dependence vanishes, i.e.,  

)3(,0=C  

capital, labor, and energy are, by definition, all factors of production, and technical 

causality in their work performance and information processing uniquely determines the 

output q. The mathematical consequences are that, given Eq. (3), the functions α(k,l,e), 

β(k,l,e), and γ(k,l,e) must satisfy the integrability conditions of Eq. (2) (see below) and 

the integral, i.e. the production function, exhibits constant returns to scale,  

)4(.1=++ γβα  

A non-vanishing C, on the other hand, will be associated with the time-dependence of 

the technological parameters to be introduced on the way of deriving the production 

function. Through changes of these parameters, one component of technical progress 

is modelled. The other component of progress, the one based on increasing 

automation, i.e. the substitution of labor by energy-driven (and increasingly information 

processing) capital, will be explicitly incorporated into the energy-dependent functional 

form. Note that energy-dependent production functions are not necessarily confined to 

the mapping of a set of production possibilities at a given point in time, but may 

incorporate potential future production possibilities as a result of automation-based 

technical progress.  

The integrability conditions of the production function, i.e. the requirement that the 

second-order mixed derivatives of q with respect to capital, labor, and energy have to 

be equal, result in a set of three (cyclically symmetric) coupled partial differential 
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equations for α, β, and γ : k∂β/∂k=l∂α/∂l,  l∂γ/∂l=e∂β/∂e,  k∂γ/∂k=e∂α/∂e.  Due to the 

constant returns to scale, Eq. (4), one of the three elasticities can be eliminated. If one 

eliminates β, the resulting set of differential equations reads:3 
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The most general solutions of (5) and (6) are α=f(l/k, e/k) and γ=g(l/k, e/k), i.e., the 

elasticities may be arbitrary differentiable functions f and g of the factor ratios. 

Additionally, they have to satisfy the coupling equation (7). The boundary conditions 

which determine the solutions of this system of partial differential equations 

unequivocally would require the knowledge of α on a surface and γ on a curve in kle-

space (Smirnow, 1962; Kümmel, 1980). Although it is practically impossible to obtain 

such knowledge, this insight accorded from the theory of partial differential equations 

provides the key to incorporating specific technological information into the production 

function. The idea is to replace the “real” boundary conditions –which would determine 

the “true“ production function– by approximate or asymptotic technological boundary 

conditions, specify the elasticities of production correspondingly, and then obtain the 

production function by integration.  

Technological boundary conditions of service production 

The factor-dependence of the output elasticity of capital can be specified using the law 

of diminishing returns to capital (Kümmel, 1980): We take into account that capital 

                                                 

3 In Kümmel (1980) γ is eliminated, resulting in a corresponding set of equations for α and β. 
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growth contributes to output growth, as labor and energy, which handle and activate 

capital, grow correspondingly; without any labor and energy (i.e., at zero capacity 

utilization) capital cannot be productive. This is reflected by the following asymptotic 

technological boundary condition on the output elasticity of capital, α : 

)8(.0lim
0/,0/

→
→→

α
kekl

 

The simplest possible ansatz for α  as function of factor ratios, as required by (5), and 

satisfying (8), is 

)9(,0 k
ela +

=α  

where the parameter a0 measures (half of) the output elasticity of capital in the base 

year (when k=l=e=1) and has to be determined empirically. The additive combination of 

l/k and e/k in (9) reflects the substitutability of labor-handled by energy-driven capital in 

the course of automation-increasing technological progress. This way, the ansatz for 

capital’s elasticity of production (eq. (9)) specifies, what Binswanger and Ledergerber 

(1974, p. 107) expressed qualitatively as follows: “energy substitutes for and comple-

ments labor, while enhancing capital’s productive capacity”. 

Whereas in manufacturing a state of total automation can be, at least in principle, 

considered technologically feasible, in service production, by its very nature, the 

potentials of automation are much more limited. However, it is still possible to substitute 

routine labor by energy and (increasingly information-processing) capital. In fact, in the 

medium term most substitution of labor by computer-based information processing is 

expected in trade, banking, insurance, and public administration (Thome, 1997). Therefore, 

it is plausible to assume that in service production a state of maximum automation is 

possible. We incorporate the corresponding production possibilities in the production 

function by employing the law of diminishing returns: It is assumed that the approach 
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towards the state of maximum automation in service production is associated with 

decreasing returns to energy utilization; in the limiting state the increase of output due 

to (additional) energy input vanishes. Introducing the demands of energy em and capital 

km in the state of maximum automation, this imposes the following asymptotic boundary 

condition on the elasticity of production of energy, γ : 

)10(.0lim
,

→
→→

γ
mm kkee

 

The simplest ansatz for the elasticity of energy as function of the factor ratios, 

satisfying the boundary condition (10) and the differential equation (7), which couples it 

to the elasticity of capital, Eq. (9), is:  

)11(,0 
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where we have introduced the technological parameter cm as a measure of the energy 

demand of the capital stock, such that cm≡em/km. 

Inserting these elasticities of production, (9) and (11), together with β=1-α-γ from (4), 

into the growth equation (2), while observing C=0, and integrating with the integration 

constant q0, yields the service production function qS1:  
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A non-zero C in Eq. (2) makes the technology parameters cm, a0, and q0 time-

dependent.  

The above procedure of deriving production functions by specifying factor-

dependences of output elasticities subject to a set of partial differential equations and 
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asymptotic technological boundary conditions in factor space may be employed to 

derive further new functional forms. We give one more example.  

In order to emphasize the labor-dependence of service production, one may introduce 

another boundary condition on the output elasticity of capital, in addition to those given 

above: 

)13(.0lim
0/

→
→

α
kl

 

The simplest output elasticities, which satisfy both the system of partial differential 

equations (5)-(7) and the boundary conditions (8), (10), and (13), are 
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Inserting (14)-(16) into Eq. (2), observing (3), and integrating yields the service 

production function qS2 of the form 
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Again, a non-zero C in Eq. (2) makes the technology parameters cm, a0, and q0 time-

dependent.  

It is important to note that the elasticities of production must be non-negative in order to 

make economically sense. In this way, limits to factor-input substitutability are taken into 

account. The requirement of a positive γ (in (11) or (16)) implies that one cannot feed more 

energy into the machines and electric devices of the capital stock than they can receive 



 

 13

according to their technical design. The requirement of non-negative α, β, and γ imposes 

restrictions on the admissible factor quotients in the elasticities of production and the 

production functions. 

3  Numerical example 

In order to illustrate the principle working of the derived functional forms, the service 

production function qS1 of Eq. (12) is applied to the evolution of the German sector 

“market-determined services” 1960-1989. The result of fitting qS1 to the empirical time-

series of capital, labor, energy, and output is depicted in Fig. 1. The numerical values 

of the three technology parameters for the periods until 1977 and after 1978 have been 

determined by non-linear OLS subject to the constraints of non-negative elasticities of 

production, using the Levenberg-Marquardt method (Press et al., 1992).  

For the parameters and their standard errors we find: q0=0.96 (0.01), a0=0.36 (0.04), 

cm=1.37 (0.28) for the period 1960-1977, and q0=0.62 (0.14), a0=0.71 (0.08), cm=0.84 

(0.20) between 1978 and 1989.4 The increase of the capital efficiency parameter a0 

and the decrease of the energy demand parameter cm reflect significant innovation 

during the considered three decades. The reduced cm results from investments into 

more energy-efficient technology in response to the oil-price shocks in the 1970s. 

Although, in our illustrative example, the time-dependence of these parameters is 

modeled in the simplest possible way, i.e. by a one-year pulse between 1977 and 

                                                 

4 Like the Deutsche Bundesbank (Federal Reserve Bank of Germany, 1996) in its macro-econometric 

multi-country model, we present here the standard econometric quality measures, namely the coefficients 

of determination, R2, and Durbin Watson coefficients of autocorrelation, dw. We find R2=0.989, dw=0.89 

for the period until 1977 and R2=0.871, dw=0.46 after 1978. The positive autocorrelations are due to the 

necessarily approximate character of the boundary conditions on the elasticities of production, and thus, of 

the production function. When estimating the German GDP 1974-1995, using a CD function of capital and 

labor with cost share weighting and exponential time-dependence, the econometricians of the Deutsche 

Bundesbank (1996, p. 47) obtain R2=0.97 and dw=0.24. 
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1978, the growth of service production over three decades, including the recession 

during the energy crisis 1973-75, is reproduced with only minor residuals.5 Thus, it 

seems that the capital and energy-based progress of electronic information processing 

in the service industries, e.g. in trade, banking, and insurance industries, is modelled 

satisfactorily by the derived functional form. 

Computation of production elasticities by inserting the factor inputs into the corres-

ponding equations using the relevant technological parameters before and after 

1977/78 results in the following time-averaged elasticities of production for capital, 

labor, and energy: α =0.54, β =0.31, γ =0.15 until 1977, and α =0.53, β =0.26, γ =0.21 

after 1978.  

Although we do not want to claim too much from our simple numerical example, the results 

indicate that the elasticities of production of capital and energy significantly exceed their 

cost shares, whereas for labor the opposite holds. These discrepancies induce techno-

logical progress towards the observed direction of substituting expensive routine labor by 

energy and (increasingly information processing) capital. As a number of recent studies6 

have shown, a similar disequilibrium prevails in industrial production. Given the observed 

factor prices, the production systems appear to be operating in boundary –and not interior– 

cost minima in factor space, where the boundaries, at a given point in time, are established 

                                                 

5 Of course, innovations and structural change penetrate the market gradually, which might favor a model 

with continuous time-dependent parameters. However, there is the unavoidable trade-off between 

increases in model flexibility (with a necessarily increased number of fit parameters) on the one hand and 

the associated loss of explanatory power from a statistical perspective on the other. In view of the 

indicated statistical quality measures, our approach of dividing the considered three decades into two 

characteristic periods before and after the energy crisis seems to provide a reasonable approximation in 

modelling innovation and structural change in the considered service industries. 

6 Ayres (2001), Ayres and Warr (2001), Beaudreau (1998), Hall et al. (2001), Kümmel et al. (1985, 2000, 

2002), Lindenberger (2000), and Lindenberger et al. (2001). 
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by the state of technology in information processing and automation, and prevent the 

systems from sliding at once into the absolute cost minimum with considerably lower labor 

input.  

4   Summary and conclusions 

This paper proposed production functions designed to model the evolution of service 

industries. The method of their derivation, which may be utilized to deduce further new 

functional forms, is based on specifying the output elasticities of labor, capital, and 

energy according to a set of differential equations, and subject to asymptotic 

technological boundary conditions in factor space. These boundary conditions allow to 

incorporate potential technological change and progress of automation, where routine-

labor is substituted by energy and (increasingly information processing) capital, in the 

production function. In view of the diffusion of IT-technology, this is especially important 

in the traditional service industries like trade, banking, insurance, or public 

administration. The corresponding production possibilities are explicitly incorporated in 

the derived functional forms.  

The methodology applied enables to introduce parameters with a well-defined 

physical/technological interpretation in the production function, e.g. the energy demand 

of the capital stock. Whereas in the conventional production function approach the 

accounting of technical progress requires the specification of a certain neutrality 

hypothesis (Hicks, Harrod, Solow, Sato-Beckmann neutral progress or other), 

functional forms containing technological parameters with a well-defined physical 

interpretation enable to analyse the actual direction of technological progress and 

change. Application of the model to the German market-determined services over three 

decades yields shifts of capital efficiency and energy demand parameters that indicate 

structural change and the market penetration of increasingly energy efficient 

technology in response to the energy price-hikes in the 1970s, a finding consistent with 



 

 16

the empirically well known massive investments in energy saving technology since the 

oil-price crises.  

The numerical results presented indicate that capital’s and energy’s output elasticities 

systematically exceed the respective factor cost shares, whereas labor’s elasticity is 

below its factor share. This mismatch, which was also found in a number of similar 

studies, reflects the replacement of expensive routine labor by energy-driven and 

increasingly information processing capital in the course of technological progress in 

the observed direction of increasing automation, while the Solow residual is mostly 

resolved. 
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Figure 1:   Top: Evolution of (normalized) gross value-added q=Q/Q1960 of German 

“market-determined services” 1960-1989: empirical values (dark squares) and 

theoretical values calculated with qS1 (light diamonds). Bottom: Evolution of the 

empirical (normalized) factor inputs of capital k=K/K1960, labor l=L/L1960, and (final) 

energy e=E/E1960.  
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Appendix: Data 

The considered German ‘market-determined services’ include banking and insurance, 

wholesale and retail, the labor-intensive building and construction industry, and ‘other 

services’ of the German National Accounts (VGR). Capital and output data are taken 

from VGR (1994) in constant prices of 1991, labor data from labor statistics in hours 

worked per year (IAB, 1988, 1996), and energy data from energy balances in petajoule 

consumed per year (VWEW, 1995). In the German energy balances, ‘market-

determined services’ are included in the category ‘small consumers’. The energy 

consumption of ‘market-determined services’ was approximated by assuming that its 

share developed like the value-added share within ‘small consumers’. The absolute 

quantities of capital, labor, energy, and output for market-determined services in the 

base year 1960 are given in Fig. 1. The numerical data underlying Fig. 1 is given in 

Tab. 1. 

Table 1: Normalized inputs of capital, labor, energy, and output (empirical and 
theoretical) underlying Fig. 1. 
 

year k l e q_emp q_theo
1960 1,000 1,000 1,000 1,000 0,957
1961 1,082 1,001 1,061 1,058 1,020
1962 1,171 0,999 1,279 1,108 1,102
1963 1,265 0,985 1,505 1,149 1,176
1964 1,364 1,004 1,475 1,250 1,241
1965 1,478 0,992 1,530 1,320 1,307
1966 1,599 0,988 1,566 1,366 1,372
1967 1,720 0,953 1,555 1,369 1,411
1968 1,824 0,940 1,682 1,414 1,467
1969 1,934 0,926 1,930 1,509 1,537
1970 2,057 0,921 1,973 1,574 1,589
1971 2,195 0,932 2,063 1,655 1,659
1972 2,342 0,925 2,250 1,758 1,730
1973 2,505 0,912 2,344 1,811 1,788
1974 2,675 0,882 2,153 1,781 1,789
1975 2,795 0,843 2,118 1,756 1,782
1976 2,908 0,857 2,279 1,840 1,850
1977 3,041 0,843 2,244 1,930 1,863
1978 3,195 0,848 2,400 2,015 1,969
1979 3,373 0,853 2,517 2,104 2,055
1980 3,575 0,865 2,270 2,144 2,119
1981 3,778 0,857 2,140 2,138 2,162
1982 3,963 0,856 1,994 2,125 2,184
1983 4,127 0,843 2,027 2,180 2,229
1984 4,308 0,846 2,133 2,250 2,307
1985 4,486 0,834 2,248 2,282 2,374
1986 4,659 0,838 2,379 2,376 2,455
1987 4,837 0,840 2,318 2,465 2,485
1988 5,026 0,861 2,273 2,595 2,532
1989 5,256 0,878 2,170 2,748 2,561  


