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1 Introduction

Substantial research interest has focused on controlling for unobserved heterogeneity in
panel models. Recent work by Park and Simar and Park, Sickles, and Simar (1994, 1998,
2003, 2005) has focused on semi-parametric efficient panel data estimators for the standard
fixed and random effects models with various specifications, including autoregressive errors
and dynamic models. As the specifications of unobserved heterogeneity become more and
more general, in particular allowing for temporal variation in the unobserved effects, and
as trend stationarity of individual cross-sections comes under closer scrutiny, the proper
specification of time effects becomes no less important than the specification of a difference
or trend stationary time series (Nelson and Plosser, 1982; Maddala and Kim, 1998; Kao and
Chiang, 2000; Baltagi, Egger, and Pfaffermayr, 2003; Mark and Sul, 2003, Chang, 2004).

In this paper, we extend the random and fixed effects model in such a way that we do
not impose any explicit restrictions on the temporal pattern of individual effects. They are
considered as random functions of time, representing a sample of smooth individual time
trends. A detailed modelling and analysis of the general structure of these trends is the
central point of our methodology. This goal is particularly important in our application to
stochastic frontier analysis, where individual effects allow to access time-varying technical
efficiencies of banks in the U. S. banking system.

The basic qualitative assumption is a fairly smooth, slowly varying local behavior of
trends, although they may possess pronounced temporal patterns on the long-run. We for-
malize this idea and show that our model can be used for virtually any pattern of temporal
and cross-sectional changes in unobserved heterogeneity (time trends) and allows for the
possibility that parameter heterogeneity is due to variables other than the constant term.
This generality is accomplished by approximating the effect terms nonparametrically. The
approach is based on a factor model, where time-varying individual effects are represented
by linear combinations of a small number of unknown basis functions, with coefficients
varying across cross-sectional units. Fixed effects, basis functions and corresponding coeffi-
cients are estimated from the data using methods related to principal component analysis
coupled with smoothing spline techniques. Asymptotic distributions of the new estimators
are derived, and rank tests are applied to determine the dimensionality of the factor model.
Furthermore, goodness-of-fit tests of pre-specified parametric models are elaborated. Simu-
lation experiments indicate that in finite samples our method works much better than other
well known time-varying effects estimators. As an illustration, the effects are interpreted in
the context of a stochastic frontier production function (Aigner, Lovell, and Schmidt, 1977)
and our method is applied to the analysis of time-varying technical efficiency in the U.S.
banking industry.

Factor models related to our setup have already been extensively studied in the econo-
metric literature. Among others, important contributions are given by the work of Forni
and Lippi (1997), Forni and Reichlin (1998), Stock and Watson (2002), Forni et al. (2000),
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Barnanke and Bovin (2000), or Bai and Ng (2002). Bai (2003, 2005) provides a general
inferential theory. Ahn, Lee, and Schmidt (2005) give a generalization of Bai’s methodol-
ogy. Our approach is more general, fully integrating panel and factor models. It allows us
to simultaneously estimate fixed effects, common factors (basis functions), and individual
factor scores under a wide variety of conditions, including the possible existence of dynamic
effects and/or correlations between individual effects and explanatory variables. Different
from existing work the asymptotic theory also covers situations where dynamic effects follow
non-stationary time series models, as for example random walks.

Another related branch of research is given by the statistical literature on ”functional
data analysis” which deals with the analysis of multiple smooth curves. For an overview
one may consult the book by Ramsay and Silverman (1997). Although most of the work
in this direction is descriptive, explicit factor models and corresponding inferential results
based on ”functional principal component analysis” are given, for example, by Kneip (1994),
Ferré (1995), or Kneip and Utikal (2001) for different applications. An essential feature of
our approach, taken from this literature, is the use of nonparametric smoothing techniques
as an inherent part of the estimation procedure. The asymptotic theory of Section 2.2
indicates that econometric factor models in other contexts may also profit from incorpo-
rating smoothing procedures, since compared to standard results one may then achieve
dramatically improved rates of convergence when estimating common factors.

The remainder of the paper is organized as follows. Section 2 introduces our new estima-
tor for arbitrary time-varying effects, derives its asymptotic distribution, and provides other
analytical results for optimal choice for the number of principal components and smoothing
parameters. The finite sample performance of our new estimator is evaluated using Monte
Carlo simulations in section 3. In section 4 we use the new estimator to analyze the tech-
nical efficiency of banks in the U. S. banking system. Concluding remarks follow in section
5. The mathematical proofs are collected in the Appendix.

2 Model and main results

Panel studies in econometrics provide data from a sample of individual units where each
unit is observed repeatedly over time (or age, etc.). Statistical analysis then usually aims
to model the variation of some response variable Y . In addition to its dependence on some
vector of explanatory variables X ∈ IRp, the variability of Y between different individual
units is of primary interest.

We will assume panel data based on a balanced design with T equally spaced repeated
measurements per individual. The resulting observations of n individuals can then be
represented in the form (Yit,Xit), t = 1, . . . T , i = 1, . . . , n, where the index i denotes
individual units (e.g. firms, households, etc.) and the index t denotes time periods.
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We consider the model

Yit =

pX
j=1

βjXitj + ui(t) + �it, i = 1, . . . , n, t = 1, . . . , T (1)

Although we consider non-constant individual effects, we will assume that ui(t) is varying
”slowly” with t, and that u1, . . . , un therefore can be considered as a sample of smooth
random functions. A precise discussion of the role of smoothness of u will be given in
Subsection 2.2. It must be emphasized that identifiability of (1) requires that all variables
Xitj , j = 1, . . . , p possess a considerable variation over t. Additional variables, like e.g.
socioeconomic attributes, which characterize individuals but do not change over time may be
analyzed in a second step by studying possible effects on the structure of the corresponding
functions ui.

Based on (1), the coefficients β as well as the functions ui can be estimated by semi-
parametric techniques. Indeed, in Subsection 2.1 this will be done by using partial spline
estimation. However, a completely nonparametric analysis of the individual effects ui(t)
possess a relatively poor degree of accuracy. Furthermore, economic interpretation and a
further analysis of effects of socioeconomic characteristics is difficult.

In order to deal with (1) it thus makes sense to try to represent the functions ui in a
more convenient form which can be estimated more efficiently, is easier to interpret, and at
the same time does not impose a severe restriction.

Our approach is motivated by ideas from (functional) principal component analysis lead-
ing to factor models studied in the statistical and econometric literature [see, e.g. Ramsay
and Silverman, 1997, or Bai (2003)]. In our context we consider a version based on the
vectors of functional values at the observed time points. Let w(t) = 1

n

P
i ui(t) denote the

sample average function. It is then assumed that for some fixed L ∈ {0, 1, 2, . . . } there exist
some basis functions (common factors) g1, . . . , gL such that

vi(t) := ui(t)− w(t) =
LX
r=1

θirgr(t). (2)

Together with (1) this leads to the model

Yit =

pX
j=1

βjXitj +w(t) +
LX
r=1

θirgr(t) + �it, i = 1, . . . , n, t = 1, . . . , T (3)

The dimension L as well as g1, . . . , gL and the coefficients (scores) θir are unknown and
have to be determined from the data. Obviously, different from traditional factor models as
analyzed by Bai (2003), (3) additionally incorporates a fixed effect term. This is similar to
the approach by Ahn et al. (2005). Note that by (2) only the linear factor space spanned
by g1, . . . , gL is identified but not the particular basis. We will thus additionally assume
that
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(a) 1
n

P
i θ
2
i1 ≥ 1

n

P
i θ
2
i2 ≥ · · · ≥ 1

n

P
i θ
2
iL > 0

(b) 1
n

P
i θirθis = 0 for r 6= s.

(c) 1
T

PT
t=1 gr(t)

2 = 1 and
PT

t=1 gr(t)gs(t) = 0 for all r, s ∈ {1, . . . , L}, r 6= s.

Conditions (a) - (c) do not impose any restrictions, and they introduce a suitable nor-
malization which ensures identifiability of the components up to sign changes (instead of
θir, gr one may also use −θir,−gr). Note that (a) - (c) lead to orthogonal vectors gr as
well as empirically uncorrelated coefficients θir. This ensures that all components can be
interpreted separately, since they vary orthogonally to each other, a property which may be
very helpful in practice when analyzing and interpreting these components.

It is important to consider (2) more closely. Obviously, gr denote general functional com-
ponents (common factors) whose structure provides general information about the common
functional structure of the sample {vi} = {ui − w}. It will be shown in Section 3 that
w and g1, . . . , gL can be estimated more efficiently than the individual random functions
ui. Individual differences are captured by the coefficients θir and standard methods can be
applied in order to study the effects of additional explanatory variables, like socioeconomic
characteristics, on the distribution of these coefficients.

Note that if individual effects are constant then (2) is satisfied with L = 1 and g1(t) ≡ 1.
If instead, as proposed by Cornwell, Schmidt, and Sickles (1990), the ui can be modelled
by quadratic polynomials then L = 3 and g1, g2, g3 correspond to a polynomial basis. To
give another example, assume that ui(t) = ϑirt, where rt is a realization of a random walk.
Then, L = 1, w(t) = ϑ̄irt, gr(t) = rt√

T
and θ1i =

√
T (ϑi − ϑ̄i). Indeed, the general model

(2) does not impose any strong restriction on the structure of the functions vi. It is only
assumed that for some L relation (2) holds for a ”best” possible choice of basis function gr
which are not a priori known but are to be estimated from the data.

Our estimation procedure will be based on the fact that under the above normalization
g1, g2, . . . are to be obtained as (functional) principal components of the sample
v1 = (v1(1), . . . , v1(T ))

0, . . . , vn = (vn(1), . . . , vn(T ))0. More precisely, let

Σn,T =
1

n

X
i

vivi
0 (4)

denote the empirical covariance matrix of v1, . . . , vn (recall that
P

i vi = 0). We use λ1 ≥
λ2 ≥ · · · ≥ λT as well as γ1, γ2, . . . , γT to denote the resulting eigenvalues and orthonormal
eigenvectors of Σn,T . Some simple algebra [compare, e.g., with Rao (1954)] then shows that

gr(t) =
√
T · γrt for all r = 1, . . . , t = 1, . . . , T, (5)

θir =
1

T

X
t

vi(t)gr(t) for all r = 1, 2, . . . , i = 1, . . . , n, (6)

λr =
T

n

X
i

θ2ir for all r = 1, 2, . . . (7)
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Furthermore, for all l = 1, 2, . . .

TX
r=l+1

λr =
X
i,t

(vi(t)−
lX

r=1

θirgr(t))
2 = min

g̃1,...,g̃l

X
i

min
ϑi1,...,ϑil

X
t

(vi(t)−
lX

r=1

ϑirg̃r(t))
2 (8)

One can infer from relation (8) that vi ≈
Pl

r=1 θirgr(t) provides the best possible approx-
imation of the functions vi in terms of an l-dimensional linear model. Model (2) holds for
some dimension L if and only if rank(Σn,T ) = L.

Obviously, Σn,T and, hence, also the components gr depend on the given values of n
and T . A difference to usual factor models as considered by Bai (2003) or Ahn et al.
(2005) consists in the fact that common factors are normalized with respect to sample in-
stead of population characteristics. The latter may be achieved by replacing sample averages
1
n

P
i θ
2
ir,

1
n

P
i θirθis by population means E(θ

2
ir),E(θirθis) in (a) and (b). However, estima-

tion procedures necessarily rely on sample characteristics and, as will be seen in Subsection
2.2, our theoretical setup also covers situations where E(θ2ir)→∞ as T →∞. Furthermore,
the real object of interest in model (2) is the factor space spanned by g1, . . . , gL and not the
particular basis. As soon as it is possible to estimate very accurately one particular basis
of the factor space, we in turn have a very precise description of this space. In this sense
conditions (a) - (c) define a specific set of orthogonal basis functions which can be esti-
mated with a particularly high degree of accuracy (see Subsection 2.2). Of course, suitable
rotations of estimated common factors may be applied in subsequent analysis.

2.1 Estimation

In practice, v1, . . . , vn are unknown and all components of model (3) thus have to be esti-
mated from the data. The idea of our estimation procedure is easily described: In a first
step partial spline methods as introduced by Speckman (1988) are used to determine esti-
mates β̂j and v̂i. The mean function w is estimated nonparametrically, and then estimates
ĝr are determined from the empirical covariance matrix Σ̂n,T of v̂1, . . . , v̂n.

Let us first introduce some additional notations. Let Ȳt = 1
n

P
i Yit, Ȳ = (Ȳ1, . . . , ȲT )

0,
Yi = (Yi1 . . . , YiT )

0 and �i = (�i1, . . . , �iT ). Furthermore, let Xij = (Xi1j , . . . ,XiTj)
0, X̄tj =

1
n

P
iXitj , and X̄j = (X̄1j , . . . , X̄Tj)

0. We will use Xi and X̄ to denote the T × p matrices
with elements Xitj and X̄tj .

Step 1: Determine estimates β̂1, . . . , β̂p and v̂i(t) by minimizing

X
i

1

T

X
t

(Yit − Ȳt −
pX

j=1

βj(Xitj − X̄tj)− vi(t))
2

+
X
i

κ
1

T

Z T

1
(v
(m)
i (s))2ds (9)
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over all m-times continuously differentiable functions v1, . . . , vn on [1, T ]. Here, κ > 0 is a
preselected smoothing parameter and v

(m)
i denotes the m-th derivative of vi.

Spline theory implies that any solution v̂i, i = 1, . . . , n of (9) possess an expansion
v̂i(t) =

P
j ζ̂jizj(t) in terms of a natural spline basis z1, . . . , zT of order 2m (for a discussion

of natural splines and definitions of possible basis functions see, for example, Eubank, 1988).
In practice, one will often choose m = 2 which leads to cubic smoothing splines.

If Z and A denote T × T matrices with elements {zj(t)}j,t=1,...,T and
{R T1 z

(m)
j (s)z

(m)
k (s)ds}j,k=1,...,T , the above minimization problem can be reformulated in

matrix notation: Determine β̂ = (β̂1, . . . , β̂p)
0 and ζ̂i = (ζ̂1i, . . . , ζ̂Ti)

0 by minimizingX
i

¡kYi − Ȳ − (Xi − X̄)β − Zζik2 + κζ 0iAζi
¢
, (10)

where k · k denotes the usual Euclidean norm in IRT , kak = √a0a.
Note that Z is a regular T × T matrix. It is then easily seen that with

Zκ = Z(Z 0Z + κA)−1Z 0 =
¡
I − κ(Z 0)−1AZ−1

¢−1
the solutions are given by

β̂ =

ÃX
i

(Xi − X̄)0(I −Zκ)(Xi − X̄)

!−1X
i

(Xi − X̄)0(I −Zκ)(Yi − Ȳ ) (11)

as well as
ζ̂i = (Z

0Z + κA)−1Z 0(Yi − Ȳ − (Xi − X̄)β̂).

Therefore,
v̂i = Zζ̂i = Zκ(Yi − Ȳ − (Xi − X̄)β̂) (12)

estimates vi = (vi(1), . . . , vi(T ))0.

Note that Zκ is a positive semi-definite, symmetric matrix. All eigenvalues of Zκ take
values between 0 and 1. Moreover, tr(Z2κ) ≤ tr(Zκ) ≤ T .

Remarks: An obvious problem is the choice of κ. A straightforward approach then is to
use (generalized) cross-validation procedures in order to estimate an optimal smoothing
parameter κ̂opt. Note, however, that the goal is not to obtain optimal estimates of the
vi(t) but to approximate the functions gr in (2). Estimating g in the subsequent steps of
the algorithm involves a specific way of averaging over individual data which substantially
reduces variability. In order to reduce bias, a small degree of undersmoothing, i.e. choosing
κ < κ̂opt, will usually be advantageous. A possible approach to directly estimate the best
possible smoothing parameter for estimating common factors will be discussed at the end
of Subsection 2.2.
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Our setup is based on assuming a balanced design. However, in practice one will often
have to deal with the situation that there are missing observations for some individuals.
In principle, the above estimation procedure can easily be adapted to this case. If for an
individual k observations are missing, then only the remaining T−k are used for minimizing
(9). Estimates of v̂i(t) at all t = 1, . . . , T are then obtained by spline interpolation.

Step 2: Estimate w = (w(1), . . . , w(T ))0 by by minimizing

1

T

X
t

Ȳt −
pX

j=1

β̂jX̄tj − w(t)

2 + κ∗
1

T

Z T

1
(w(m)(s))2ds.

In principle, a smoothing parameter κ∗ 6= κ may be chosen in this step.

Step 3: Determine the empirical covariance matrix Σ̂n,T of
v̂1 = (v̂1(1), v̂1(2), . . . , v̂1(T ))

0, . . . , v̂n = (v̂n(1), v̂n(2), . . . , v̂n(T ))0 by

Σ̂n,T =
1

n

X
i

v̂iv̂
0
i

and calculate its eigenvalues λ̂1 ≥ λ̂2 ≥ . . . λ̂T and the corresponding eigenvectors γ̂1, γ̂2, . . . , γ̂T .

Step 4: Set ĝr(t) =
√
T · γ̂rt, r = 1, 2, . . . , L, t = 1, . . . , T , and for all i = 1, . . . , n

determine θ̂1i, . . . , θ̂Li by minimizing

X
t

(Yit − Ȳt − (Xi − X̄)β̂ −
LX
r=1

ϑriĝr(t))
2 (13)

with respect to ϑ1i, . . . , ϑLi.
Remark: In principle, it is possible to iterate this procedure. In addition to estimating

θri, (13) might also be used to obtain updated least squares estimates β̂
(1)
. These new

estimates of β might in turn be plugged into Step 2 and 4 to determine new approximations
ĝ
(1)
r , etc. Such iterations may possess the potential to enhance efficiency of estimates. A
precise analysis is, however, not in the scope of the present paper, and our theoretical results
will only refer to Step 1 - 4 as described above.

2.2 Asymptotic Theory

We now consider properties of our estimators. We assume an i.i.d. sample of individual units
and analyze the asymptotic behavior as n, T →∞. The smoothing parameter κ ≡ κ(n, T )

may either remain fixed or may increase with n, T . Model (2) is assumed to possess a fixed
dimension L for all n, T . The following assumptions then provide the basis of our analysis.
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We will write λmin(A) and λmax(A) to denote the minimal and maximal eigenvalues of a
symmetric matrix A, and gr will be used to represent the vector (gr(1), . . . , gr(T ))0.

Assumptions

1) For some fixed L ∈ IN there exists an L-dimensional subspace LT of IRT such that
vi ∈ LT a.e. for all sufficiently large T . Furthermore, LT is independent of Xit.

2) There exists a monotonically increasing function c(T ) of T such that as n, T →∞

- E( 1T
PT

t=1 vi(t)
2) = O(c(T )), E( 1T

PT
t=1w(t)

2) = O(c(T )),

- 1
n

P
i θ
2
ir = OP (c(T )), 1

n

P
i θ
4
ir = OP (c(T )

2),

- ( 1n
P

i θ
2
ir)
−1 = OP (

1
c(T )), | 1n

P
i θ
2
ir − 1

n

P
i θ
2
is|−1 = OP (

1
c(T ))

hold for all r, s = 1, . . . , L, r 6= s, j = 1, . . . , p .

3) As n, T → ∞ the smoothing parameters κ ≡ κn,T > 0, κ∗ ≡ κ∗n,T > 0 are non-
decreasing functions of n, T . Smoothness of vi, w and selection of smoothing parame-
ters κ ≡ κn,T , κ

∗ ≡ κ∗n,T are such that the smoothing biases

bw(n, T ) =
p
T−1Ek(I −Zκ)wk2), bv(n, T ) =

p
T−1E(k(I −Zκ)vik2)

satisfy

bv(n, T ) = O(1),
bv(n, t)

c(T )1/2
= o(1), bw(n, T ) = O(1),

bw(n, t)

c(T )1/2
= o(1)

as n, T →∞. Furthermore, tr(Z2κ)→∞ as n, T →∞.

4)
E( 1

T
T
t=1 X̄

2
it,j)

E( 1
T

T
t=1 w(t)

2)
= O(1), and there exists a monotonically increasing function d(T ) ≤

c(T ) of T with d(T ) = o(T ) such that as n, T →∞ E( 1T
PT

t=1X
2
it,j) = O(d(T )) holds

for all j = 1, . . . , p as n, T →∞. Furthermore,

λmax

Ã
[
X
i

(Xi − X̄)0(I −Zκ)(Xi − X̄)]−1
!
= Op(

1

nT
) (14)

and there exists a fixed constant D <∞ such that for all j = 1, . . . , p and all vectors
a ∈ RT

a0(I −Zκ) ·E
¡
(Xij − X̄)(Xij − X̄)0

¢
(I −Zκ)a ≤ D · k(I −Zκ)ak2. (15)

holds for all sufficiently large n, T .
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5) The error terms �it are i.i.d. with E(�it) = 0, var(�it) = σ2 > 0, and E(�8it) < ∞.
Moreover, �it is independent from vi(s) and Xis,j for all t, s, j.

Subsequent theoretical results rely on asymptotic arguments based on Assumptions 1) -5 ).
It is therefore important to understand these assumptions correctly.

First note that Assumptions 1) and 2) formalize our model introduced in the proceeding
sections. Different from existing literature on factor models E( 1T

PT
t=1 vi(t)

2) is allowed to
increase with T . The growth rate is given by c(T ).

Assumption 3) quantifies our requirement of ”smooth functions” vi. Spline theory pro-
vides a basis to understand the impact of this assumption (see, for example, de Boor 1978,
or Eubank 1988). We will concentrate on cubic smoothing splines (m = 2). Let ṽi(t) denote
the corresponding natural spline interpolant of vi(1), . . . , vi(T ), i.e. ṽi is a natural spline
function with knots at 1, . . . , T and ṽi(t) = vi(t) for t = 1, . . . , T . By definition, the vec-
tor (I − Zκ)vi is obtained by evaluating the function v minimizing 1

T

P
t(vi(t) − v(t))2 +

κ 1T
R T
1 |v00(t)|2dt at t = 1, . . . , T . Consequently, 1T k(I −Zκ)vik2 ≤ κ 1T

R T
1 |ṽ00i (t)|2dt.

When analyzing properties of Zκ it turns out that all eigenvalues are between 0 and
1, and for any fixed κ, tr(Z2κ) ≤ T and tr(I − Zκ) = O(T ) as T → ∞. Our setup is
slightly different from usual spline theory which considers smoothing over a fixed (non-
increasing) interval. But we have zj(t) = z∗j (t/T ), where z1, . . . , zT is the natural spline
basis used to construct our estimator in Section 2.1, while z∗1, . . . , z∗T is a basis for all natural
splines defined on [0, 1] with knots 1/T, 2/T, . . . , 1. Obviously, z00j = z∗00j /T 2. Defining

the matrices Z∗ and A∗ = {R 11/T z∗(m)j (s)z
∗(m)
k (s)ds}j,k=1,...,T similar to Z, A in Section

2.1, some straightforward arguments show that Zκ = (I − κ(Z 0)−1AZ−1)−1 = (I − κ
T 4
T ·

(Z∗0)−1A∗(Z∗)−1)−1. The structure of the eigenvalues of T · (Z∗0)−1A∗(Z∗)−1 is well-known
(see, for example, Utreras, 1983) and can be used to show the existence of a constant
0 < q <∞ such that tr(Z2κ) ≤ q· T

κ1/4
. In a simple regression model of the form yi = vi(t)+�it

the average variance of the resulting estimator will be of order σ2tr(Z2κ)/T . As will be seen
in the proof of Theorem 1 below, this generalizes to the variance of the estimators v̂i to be
obtained in the context of our model. These arguments show that for all n, T

1

T
k(I −Zκ)vik2 ≤ κ

1

T

Z T

1

|ṽ00i (t)|2dt, tr(Z2κ) =≤ q · T

κ1/4
,
1

T

X
t

Var�(v̂i(t)) = OP (
σ2tr(Z2κ)

T
)

(16)

where Var� denotes conditional variance given vi, Xit. Similar relations can, of course, be
obtained with respect to w.

Note that it is only required that the above assumptions hold as ”n, T → ∞”. Of
course, n → ∞ will correspond to drawing more and more individuals at random, but
different asymptotic setups may be used to describe the situation as ”T →∞”. The point
is that any asymptotic theory aims to provide first order approximations of a complex finite
sample behavior. In practice, one has always to consider the question which asymptotic

10



setup is best suited to approximate the respective finite sample situation. In this paper we
will mainly concentrate on the following Situation 1, which formalizes smoothness in the
most stringent way.
Situation 1. In the context of nonparametric regression the usual asymptotic setup

consists in assuming that the distance between adjacent observational points tends to zero.
In other words, in this setup, instead of adding new equidistant periods, the time interval in
which observations are taken is held fixed but the distance between observations is reduced.
For example, for a fixed number of years, T will increase if instead of yearly data we
consider monthly or even daily observations. This will clearly be the only natural asymptotic
setup in an application, where t does not represent chronological time, but, for example,
measurements at different ages of individuals.

Formally this setup can be described as follows. For each individual there are data from
T equidistant observations in a fixed time interval. There exists a smooth function µ as well
as i.i.d. smooth functions ν1, . . . , ν on L2[0, 1] such that µi(

t
T ) = w(t) and νi(

t
T ) = vi(t)

for t = 1, . . . , T . Smoothness then naturally translates into the assumption that µ as and
ν1, . . . , ν are a.s. twice continuously differentiable with E(

R 1
0 ν

00
i (t)

2dt) <∞.
In this case we, of course, obtain 1

T

P
t vi(t) = O(1), 1T

P
tw(t) = O(1) as T → ∞

and, hence, Assumptions 2) and 3) refer to a constant function c(T ) = 1. Moreover,
v00i (t) =

1
T 2
ν00i (t), and κ 1T

R T
1 |ṽ00i (t)|2dt ≤ κ 1T

R T
1 |v00i (t)|2dt = κ 1

T 4

R 1
0 |ν 00i (t)|2dt.

From (16) we can infer that an optimal smoothing parameter for estimating vi then sat-
isfies κ

T 4
= κT ∼ T−4/5, which means that the smoothing parameter κ in (9) has to increase

rapidly as T → ∞. Similar results are to be obtained with respect to w. Assumption 3)
then holds with

bv(n, T )
2 = E(

1

T
k(I −Zκ)vik2) = O(T−4/5), tr(Z2κ)/T = O(T−4/5). (17)

Similar rates of convergence then can also be derived for bw(n, T ). It will be seen from the
results of Theorem 1, that undersmoothing, i.e. choosing a smaller smoothing parameter
than the individually optimal one, leads to still better rates of convergence for our estimates
of gr. Also note that in order to satisfy Assumption 4) we implicitly assume that Xitj are
generated by non-smooth stochastic processes. This is a natural condition, since due to the
error terms �it also the time path of our dependent variable Yit is non-smooth.

From a practical point of view it is important to interpret this asymptotic setup in an
appropriate manner. Construction of spline smoothers implies that the value of the integral
1
T

R T
1 |ṽ00i (t)|2dt in (16) is of the same order of magnitude as the average squared second

differences 1T
P

t(vi(t+1)−2vi(t)+vi(t−1))2 Therefore, for a given finite sample theoretical
results based on the above setup will provide a reasonable first order approximation if it can
be assumed that the functions vi are smooth enough such that 1T

P
t(vi(t+1)−2vi(t)+vi(t−

1))2 is smaller than the error variance σ2. In this case a fairly large smoothing parameter κ
will still result in a small bias while at the same time the average variance of the estimator

11



will be smaller than σ2 (due to tr(Z2κ)¿ T ).
Situation 2. Smoothness can also be formalized in a setup which corresponds to

the usual time series asymptotics. Indeed, w(t), vi(t) may be generated by I(1) or I(2)
processes. In this case the asymptotic setup of Situation 1 may not be appropriate, since
1
T

P
t(vi(t+1)−2vi(t)+vi(t−1))2 may possibly be of the same or larger order of magnitude

as σ2. However, reasonable convergence results can still be established due to the fact that
1
T

P
t(vi(t+1)−2vi(t)+vi(t−1))2 is of a smaller stochastic order of magnitude as 1T

P
t vi(t)

2.
Let us consider the example of a random walk. Assume that for some fixed r1 ∈ IR

ui(t) = w(t) + vi(t) = ϑirt, with rt+1 = rt + δt,

where δ1, δ2, . . . are i.i.d with E(δt) = 0, var(δt) = σ2δ , and δt is independent of ϑi, �it.
Our model then holds with L = 1, w(t) = ϑ̄irt, gr(t) = rt√

T
and θ1i =

√
T (ϑi − ϑ̄i).

Since 1
T

PT
t=1E(ϑ

2
i r
2
t ) = O(T ), Assumptions 2) and 3) are then satisfied with c(T ) = T .

On the other hand, averages of squared first or second differences (rt+1− rt)
2 or (rt+2−

2rt + rt−1)2 are bounded in probability which implies that for a cubic spline interpolant
r̃(t) of rt we obtain E( 1T

R T
1 |r̃00(t)|2dt) = O(1) as T → ∞. It is then easy to show that an

optimal smoothing parameter may be chosen as a constant (independent of n and T ) such
that

bv(n, T ) = E(
1

T
k(I −Zκ)vik) = O(1), tr(Z2κ)/T = O(1). (18)

This, of course implies that there is convergence when considering the difference vi − Zκvi
relative to the size of vi:

1

c(T )
E(k(I −Zκ)vik2) = O(1/T )

Assumption 4) contains regularity conditions which imposes a restriction on the design
matrix. It essentially requires that the time paths {Xitj − X̄ij}t are “less smooth” than
those of {vi(t)}t. In particular, stationary processes generate non-smooth time parts.

When considering the simplest case p = 1, Assumption 4) is, for example, fulfilled if
the individual processes {Xit}t are independent realizations of some ARMA(q1, q2) process.
Then E((Xi−X̄)(Xi−X̄)0) corresponds to the autocovariance matrix of this ARMA process,
and (14) as well as (15) follow from the well-known structure of such autocovariance matri-
ces.

Assumption 4) also holds if {Xit}t are generated by ARMA(q1, q2) with individually
different parameters. For example assume thatXit = X̃it+δi, where {X̃it}t are independent
realizations of an MA(q) process and δi are independent, zero mean random variables with
variance ∆2. Then

E
¡
(Xij − X̄)(Xij − X̄)0

¢
= Γ+∆2 · 110,

12



where Γ is the autocovariance matrix of the underlyingMA(q) process. Since by assumption
Zκ1 = 1 for 1 = (1, 1, . . . , 1)0 we arrive at

(I −Zκ)E
¡
(Xij − X̄)(Xij − X̄)0

¢
(I −Zκ) = (I −Zκ)Γ(I −Zκ).

The maximal eigenvalue of Γ remains bounded as T →∞, and relations (14) as well as (15)
are an immediate consequence of the structure of Zκ.

We are now ready to state our main theorem. A proof can be found in the appendix.
We will use the notation “E�” to denote conditional expectation given vi and Xi, i =
1, . . . n. Moreover, X̃i = Xi − X̄, and we will say that vi and Xi are Zκ-uncorrelated, if
E(vi|(I − Zκ)Xi) = 0 as well as E(vi(s)vi(t)|(I − Zκ)Xi) = E(vi(s)vi(t)) for all, s, t. Zκ-
uncorrelatedness is weaker than assuming that Xi and vi are uncorrelated. In the above
MA(q)-example Xi and vi are correlated if δi and vi are correlated. At the same time vi and
Xi are necessarily Zκ-uncorrelated. Additionally note that eigenvectors are only unique up
to sign changes. In the following we will always assume that the right ”versions” are used.
This will go without saying.

Theorem 1. Under Assumptions 1) - 5) we obtain as n, T →∞

(a) kβ −E�(β̂)k = OP (bβ(n, T )), where

bβ(n, T ) :=


OP (

bv(n,T ))√
Tn

) if Xi and vi are Zκ-uncorrelated,

OP (
bv(n,T ))√

T
) else,

and V
−1/2
n,T (β̂ −E�(β̂)) ∼ N(0, I), where

Vn,T = σ2

ÃX
i

X̃ 0
i(I −Zκ)X̃i

!−1ÃX
i

X̃ 0
i(I −Zκ)2X̃i

!ÃX
i

X̃ 0
i(I − Zκ)X̃i

!−1
= OP

µ
1

nT

¶
.

(b) 1√
Tc(T )

kw − ŵk = OP

Ã
bw(n,T )

c(T )1/2
+ bβ(n, t)) +

r
tr(Z2

κ∗ )
nTc(T )

!
.

(c) For all r = 1, . . . , L

T−1/2kgr − ĝrk = OP

Ã
bv(n, T )

c(T )1/2
+

1

T 2c(T )2
+

s
tr(Z2κ)
nTc(T )

!
.

Furthermore, if bv(n,T )2

Tc(T )2 +
1

T 3c(T )3 + Td(t)bβ(n, T )
2 = o(

p
tr(Z2κ)/n) then

T−1kgr − ĝr + Sr(Σn,T −ZκΣn,TZκ)grk2 − σ2 λrn tr(ZκS
2
rZκ)

σ2 λrn
p
2tr((ZκS2rZκ)2)

→d N(0, 1) (19)
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with Sr =
P

s 6=r
1

λs−λrPs, where Ps denotes the T × T projection matrix projecting
into the eigenspace corresponding to the eigenvalue λs of Σn,T .

(d) For all r = 1, . . . , L

|θ̂ri − θri| = OP

µ
bv(n, T )

2

c(T )
+ d(T )bβ(n, T ) +

tr(Z2κ)
nT

+
1√
T

¶
.

Furthermore, if bv(n,T )2

c(T )1/2
+ d(T )1/2(bβ(n, T ) +

1√
nT
) + 1

T2c(T )3/2
= o(T−1/2), then

√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)

0 →d N(0, σ
2I).

(e) If additionally tr(Z2κ)/n→ 0 as well as Td(T )bβ(n, T )2+
d(T )
n + 1

Tc(T ) = o
³p

tr(Z2κ)/n
´
,

then
n
PT

r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)

σ2
q
2n · tr((ZκP̂LZκ)2)

→d N(0, 1),

where P̂L = I −PL
r=1 γ̂rγ̂

0
r.

Let us interpret the results on estimating gr in terms of the two situations analyzed
above. Recall that c(T ) = 1 (and d(T ) = 1) in Situation 1. The optimal smoothing
parameter to obtain best possible estimates of the individual functions vi(t) is of order
κ
T 4 = κT ∼ T−4/5. Then bv(n, T ) = OP (T

−2/5), and Theorem 1c) shows that T−1/2kgr− ĝrk
possesses the same rate of convergence. However, different from individual estimates of vi
variance of the estimated functional components ĝr decrease as n increases. An improvement
can thus be obtained by undersmoothing. If n = o(T 4) and T = o(n4), then n−4/5κT may
be used instead of κT . This yields bv(n, T ) = OP ((nT )

−2/5), tr(Z2κ) = O(nT )1/5)), as well
as T−1/2kgr − ĝrk = OP ((nT )

−2/5). Also note that in this situation (nT )−2/5 = o(T−1/2),
(nT )−2/5 = o(n−1/2), and the additional requirements ensuring the distributional results in
Theorem 1c) - 1e) are necessarily fulfilled. Moreover, kβ − β̂k = OP (1/

√
nT ).

One might compare these results with the general theory of existing econometric factor
models as derived by Bai (2003). If T is not too small compared to n, Bai’s results imply
that in his context the rate of convergence of estimated factors is n−1/2 instead of (nT )−2/5

as obtain for our method. One must, however, be careful when interpreting this difference.
Our results crucially depend on the data-dependent normalization of g1, g2, . . . given by
(a) - (c) above, while in standard factor models normalization usually refers to population
characteristics. If for example, the sample means in (a) - (c) were replaced by their pop-
ulation analogues, then even in our context only a rate of convergence n−1/2 of ĝr to this
”re-normalized” factors could be achieved, since at best 1

n

P
i θ
2
ir is only a

√
n-consistent

estimator of E(θ2ir) (in Situation 1 this will usually be the case). But recall that factor
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spaces are identical, and in order to characterize this space as precisely as possible, one
should definitely look for the ”best estimable” orthogonal basis. Therefore, a crucial point
is that standard factor approaches (not applying smoothing techniques) will always lead to
T−1/2kgr− ĝrk = OP (n

−1/2), even if gr is defined according to our particular normalization
(a) - (c). Smoothing here dramatically improves upon the rate of convergence.

In Situation 2 consider the random walk example discussed above. Note that this sit-
uation does not fit into the framework of traditional econometric factor models. Addition-
ally assume that as for ARMA(p, q)-processes Xit satisfies Assumption 4 with d(T ) = 1.
Then, c(T ) = T and a constant, non-increasing smoothing parameter κ provides best
possible estimates of individual functions. Then bv(n,T )

c(T )1/2
= O(T−1/2), and consequently

T−1/2kgr − ĝrk = OP (T
−1/2). The additional requirements ensuring the distributional

results in Theorem 1c) - 1e) hold if vi and Xi are Zκ-uncorrelated. In order to avoid
further complications in the presentation of results, the effect of undersmoothing is not
covered by the theorem. Formally, in the case of a random walk undersmoothing will
mean to use a sequence of smoothing parameters with κ → 0 as n, T → ∞, which is
not compatible with Assumption 2. For example, let κ ∼ n−τ for some τ > 0 with
T 1/2n−τ → ∞. Then bv(n, T ) = O(n−τ ). It follows from the results of Utreras (1983)
that we still have tr(Z2κ) = O(T ), but tr((I − Zκ)) = O(κT ). On the right hand side
of condition (14) in Assumption 4 O(1/(nT ) has to be replaced by O((1/(κnT ). Theo-
retical analysis of this setup may follow the lines of the proof of Theorem 1, but some
of the arguments have to be adapted to the modified structure of Zκ. It may then be

shown that T−1/2kgr − ĝrk = OP (
n−τ
T1/2

+ 1
T
√
n
+
q

1
nT ) if vi and Xi are Zκ-uncorrelated,

and T−1/2kgr − ĝrk = OP (
n−τ
T 1/2

+ 1
T +

q
1
nT ), else. In both cases the rate of convergence

is n−τT−1/2 = o(T−1/2), which shows that undersmoothing may be beneficial even in this
situation.

Remark: The question arises whether it is possible to determine the best smoothing
parameter for estimating g1, g2, . . . directly from the data. A straightforward approach
consists in a ”leave-one-individual-out” cross-validation. For a fixed L and i = 1, . . . , n let
β̂−i and ĝr,−i denote the respective estimates of β and gr obtained from the data (Ykj ,Xkj),
k = 1, . . . , i − 1, i + 1, . . . , n, j = 1, . . . , T . These estimates β̂−i as well as ĝr,−i depend on
κ, and one may approximate an optimal smoothing parameter by minimizing

X
i

X
t

(Yit − Ȳt − (Xi − X̄)β̂−i −
LX
r=1

θ̂riĝr,−i(t))2

over κ. It seems to be reasonable to expect that this approach works under fairly general
conditions, although a precise theoretical analysis is not in the scope of the present paper.
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2.3 Dimensionality and model tests

Theorem 1(e) may be used to estimate the dimension L. A prerequisite is of course the
availability of a reasonable estimator of σ2. We propose to use

σ̂2 :=
1

(n− 1) · tr(I −Zκ)2

X
i

k(I −Zκ)(Yi − Ȳ − (Xi − X̄)β̂)k2. (20)

We then use the following procedure to determine an estimate L̂ of L:
First select an α > 0 (e.g., α = 1%). For l = 1, 2, . . . determine

∆(l) :=
n
PT

r=l+1 λ̂r − (n− 1)σ̂2 · tr(ZκP̂lZκ)

σ̂2
q
2n · tr((ZκP̂lZκ)2)

. (21)

Choose L̂ as the smallest l = 1, 2, . . . such that

∆(l) ≤ z1−α,

where z1−α is the 1− α quantile of a standard normal distribution.

The following theorem provides a theoretical justification of this procedure. A proof is
given in the appendix.
Theorem 2. In addition to the assumptions of Theorem 1 assume that tr(Z2κ)/n→ 0 as

well as Td(T )bβ(n, T )2 +
d(T )
n + 1

Tc(T ) = o
³p

tr(Z2κ)/n
´
. Then,

lim inf
n,T→∞

P(L̂ = L) ≥ 1− α.

Based on the above theoretical results, our methodology allows to test the validity of a
standard panel model Yit = β0 +

Pp
j=1 βjXitj + θ1i + �it with constant individual effects.

In this case, if θ1i possesses finite second and fourth moments, then assumptions 1 -2)
are fulfilled with L = 1, c(T ) = 1, g1(t) ≡ 1, vi(t) ≡ θ1i · 1, and w(t) ≡ β0. Spline
smoothing of constant functions does not produce any bias, and for any reasonable choice
of smoothing parameters Assumption 3) holds with bv(n, T ) = bw(n, T ) = 0 If Xit and �it
satisfy Assumption 4 and 5, one may invoke Theorem 1. We then obtain bβ(n, T ) = 0.
The additional requirements ensuring the distributional results in Theorem 1c) - 1e) and
Theorem 2 are automatically satisfied in this situation provided that n = o(T 2).

Therefore, a test of the null-hypothesis H0 : vi(t) ≡ θ1i · 1 (constant individual effects)
may proceed as follows:

1) In order to quantify possibly time-varying effects vi(t) under the alternative, choose
some reasonable smoothing parameters and determine nonparametric estimates v̂i, ŵ
as proposed by the general estimation procedure of Section 3. Then compute a di-
mension estimate L̂ using the method explained above. By Theorem 2, the hypothesis
of constant individual effects has to be rejected if L̂ > 1.
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2) Even if L̂ = 1, the null-model additionally requires that g1(t) ≡ 1. This structural
assumption implies that g1 = 1, 1 = (1, . . . , 1)0, and Σn,T = ZκΣn,TZκ. A test may
be based on relation (19). Note that H0 leads to S1 =

1
−λ1 (I − 1

T 11
0). Hence, (19)

simplifies to

T−1k1− ĝ1k2 − σ2 1
λ1n

tr(Zκ(I − 1
T 11

0)Zκ)

σ2 1
λ1n

q
2tr((Zκ(I − 1

T 11
0)Zκ)2)

→d N(0, 1)

Under the null-model estimates θ̂1i, β̂j and σ̂
2 can simply be obtained by least squares.

If H0 is true, λ̂1 = T
n

Pn
j=1 θ̂

2
1i then yields a consistent estimate of λ1 with λ̂1 = λ1(1+

OP (
1√
nT
)). A sensible test statistics is then given by Z =

T−1k1−ĝ1k2−σ̂2 1
λ̂1n

tr(Zκ(I− 1
T
110)Zκ)

σ̂2 1

λ̂1n
2tr((Zκ(I− 1

T
110)Zκ)2)

,

which is asymptotically standard normal under H0. The null-hypothesis is rejected if
Z is too large.

A similar approach may be used to test more complex parametric models of the form
vi(t) =

PL
j=1 ϑriψr(t) for some pre-specified basis functions ψr. A first step then consists in

using our methodology to conduct a dimension test. If the estimated dimension turns out to
be appropriate, then the assumed structure of the basis functions may be tested by plugging
in estimates of the unknown quantities λr,Σn,T and Sr in (19). Consistent estimates under
the null-model may be determined from least squares estimates of the model coefficients.

3 Simulations

In this section, we investigate the finite sample performances of the new estimator described
in Section 2 (hereafter we will call it KSS estimator) through Monte Carlo experiments. A
competing time-varying individual effects estimator is based on the Cornwell, Schmidt, and
Sickles fixed effects estimator (CSSW, 1990). The CSSW estimator allows for an arbitrary
polynomial in time (usually truncated at powers larger than two) with different parameters
for each firm. We also consider the classical time-invariant fixed and the random effects
estimators (Baltagi, 2005). These estimators have been used extensively in the productivity
literature which interprets time varying firm effects (time trends) as technical efficiencies.

We consider the panel data model (1):

Yit =

pX
j=1

βjXitj + ui(t) + �it

We simulate samples of size n = 30, 100, 300 with T = 12, 30 in a model with p = 2

regressors. The error process �it is drawn randomly from i.i.d. N(0, 1). The values of true
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β are set equal to (0.5, 0.5). In each Monte Carlo sample, the regressors are generated
according to a bivariate VAR model as in Park, Sickles, and Simar (2003,2005):

Xit = RXi,t−1 + ηit, where ηit ∼ N(0, I2), (22)

and

R =

Ã
0.4 0.05

0.05 0.4

!
.

To initialize the simulation, we choose Xi1 ∼ N(0, (I2 − R2)−1) and generate the samples
using (22) for t ≥ 2. Then, the obtained values of Xit are shifted around three different
means to obtain three balanced groups of firms from small to large. We fix each group
at µ1 = (5, 5)0, µ2 = (7.5, 7.5)0, and µ3 = (10, 10)0. The idea is to generate a reasonable
cloud of points for X. In all of our data generating processes (DGP’s) we set the mean
function w(t) = 0. Thus in equation (2) above ui(t) = vi(t) and the model considered in
our experiments becomes:

Yit =

pX
j=1

βjXitj + vi(t) + �it

We generate time-varying individual effects in the following ways:

DGP1 : vi(t) = θi0 + θi1
t

T
+ θi2

µ
t

T

¶2
DGP2 : vi(t) = φirt

DGP3 : vi(t) = υi1g1t + υi2g2t

DGP4 : vi(t) = ξi

where θij (j = 0, 1, 2) ∼ i.i.d.N(0, 0.52), rt+1 = rt + δt, φi, δt, υij(j = 1, 2) ∼ i.i.d.N(0, 1),

g1t = sin(πt/4) and g2t = cos(πt/4). Even thought there is no correlation between the effects
and regressors in DGP1 the fixed effects treatment (CSSW) is used in the experiments.
DGP2 is the random walk process. DGP3 is considered to model effects with large temporal
variations. DGP4 is the usual constant effects model with symmetric effects. Thus, we
may consider DGP3 and DGP4 as two extreme cases among the possible functional forms
of time varying individual effects.

The CSSW (within) fixed effects estimator is

βCSSW = (X 0MQX)
−1X 0MQy

where MQ = I −Q(Q0Q)−1Q0, Q = diag(Wi), i = 1, . . . , n, and Wit = [1, t, t
2]. A second-

order time polynomial is used to approximate vi(t) based on the CSSW (within) residuals.
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For the KSS estimator, cubic smoothing splines were used to approximate vi(t) in step
1, and the smoothing parameter κ was selected by using ‘leave-one-individual-out’ cross-
validation.1 The coefficient parameter β is updated using ĝr(t) obtained in step 4 of (13),

which is found to generate substantial efficiency gains. However, the updated estimates β̂
(1)

are not plugged into step 2 again because there is no efficiency gain observed for ĝr(t). Most
simulation experiments were repeated 1,000 times except the cases for n = 300 for which
500 replications were carried out. To measure the performances of the various estimators
of the effects, we used normalized mean squared error (MSE):

R(bv, v) = P
i,t (bvi(t)− vi(t))

2P
i,t v

2
i (t)

.

We now present the simulation results. Tables 1-4 present mean squared errors (MSE)
of coefficients2and effects for each DGP. Also, average optimal dimensions, L, chosen by
∆(l) criterion are reported in the last column of second panel in each table. We note that
the optimal dimension, L, is correctly chosen for the KSS estimator in all DGPs. Thus, we
can verify the validity of the dimension test ∆(l) discussed in Section 2.

For DGP1, the performances of the KSS estimator are better than those of the other
estimators by any standards. This is true even when the data is as small as n = 30 and
T = 12. In particular, the KSS estimator outperforms the other estimators in terms of MSE
of efficiency. Since the data are generated by DGP1, we may expect that CSS estimator
performs well. This is true for T = 30. However, if T is small (T = 12), the inefficient CSSW
estimator (effects and regressors are not correlated) is no better than the other estimators.
The performances of Within and GLS estimators generally get worse as T increases.

DGP2 is considered to see the performance of the estimators for arbitrary functional
form of individual effects. Hence, estimators based on relatively simple function of time
such as used in the CSS estimator is not sufficient for this type of DGP. However, the KSS
estimator does not impose any specific forms on the temporal pattern of effects, and thus it
can approximate any shape of time varying effects. We may then expect good performances
of the KSS estimator even in this situation, and the results confirm such belief. KSS
estimator dominantly outperforms the other estimators by any standards in the order of
three to ten times. It is particularly conspicuous in terms of MSE of effects and efficiencies.
CSSW performs reasonably well for effects, but it is no better than the others for other
criteria.

DGP3 generates effects with large temporal variations. As T increases, the variations
become large. The other estimators assume pre-specified and simple functional forms, thus
they are expected to perform less satisfactorily for this DGP. On the contrary, the KSS
estimator allows arbitrary functional forms as well as multiple individual effects. Hence, it

1We let κ = (1−p)/p and choose p among a selected grid of 9 equally spaced values between 0.1 and 0.9.
2The MSE of coefficients are scaled by 103.
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is expected to perform well even under this DGP. Indeed, the results show that the KSS
estimator performs very well, especially for large T , with correct number of L chosen. On
the other hand, the other estimators suffer from severe distortions in the estimates of the
effects, although coefficient estimates look reasonably good.

DGP4 represents the reverse situation so that there is no temporal variation in the
effects. Thus, the Within and GLS estimators work very well. Now, our primary question
is what are the performances of KSS estimator in this situation. As seen in Table 4 its
performance is fairly good and comparable to those of the Within and GLS estimators.
Therefore, the KSS estimator may be safely used even when temporal variation is not
noticeable.

In sum, simulations show that the KSS estimator is safely applicable regardless of the
assumption on the temporal patterns of effects, and may therefore be preferred to other
existing estimators in these types of empirical settings, among potentially many others. On
the other hand, either if constant effects are assumed when true effects are time-variant,
or if the temporal patterns of effects are misspecified, parameter estimates as well as effect
estimates become severely biased. In these cases, large T increases the bias, and large n
does not help solve the problem.

4 Efficiency Analysis of Banking Industry

4.1 Empirical Model

We next compare the various estimators in an empirical illustration of efficiency changes in
the US banking industry after a series of deregulatory initiatives in the early 1980’s. We
model the multiple output/multiple input banking technology using the output distance
function (Adams, Berger, and Sickles, 1996). The output distance function, D(Y,X) ≤ 1,
provides a radial measure of technical efficiency by specifying the fraction of aggregated
outputs (Y ) produced by given aggregated inputs (X). An m-output, n-input deterministic
distance function can be approximated byQm

j Y
γj
jQn

k X
βk
k

≤ 1,

where the γ0js and the β
0
ks are weights describing the technology of a firm. If it is not possible

to increase the index of total output without either decreasing an output or increasing an
input, the firm is producing efficiently or the value of the distance function equals 1.

The Cobb-Douglas stochastic distance frontier that we utilize below in our empirical
illustration is derived by simply multiplying through by the denominator, approximating
the terms using natural logarithms of outputs and inputs, and adding a disturbance term
�it to account for statistical noise. We also specify a nonnegative stochastic term u∗i (t) for
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the firm specific level of radial technical inefficiency, with variations in time allowed. The
Cobb-Douglas stochastic distance frontier is thus

0 =
X
j

γj ln yj,it −
X

βk lnxk,it + u∗i (t) + �it.

Then, we normalize the outputs with respect to the first output and rearrange to get

ln yJ =
X
j

γj(− ln byj,it)−Xβk(− lnxk,it)− u∗i (t) + �it,

where yJ is the normalizing output and byj = yj/yJ , j = 1, . . . ,m, j 6= J. To streamline
notations, let Yit = ln yJ , Y ∗it = − ln byj,it, Xit = − lnxk,it, and ui(t) = −u∗i (t), in which case
we can write the stochastic distance frontier as

Yit = Y ∗0it γ +X 0
itβ + ui(t) + �it. (23)

This model can be viewed as a generic panel data model we introduced in equation (1)
above in which the effects are interpreted as time-varying firm efficiencies, and fits into the
class of frontier models developed and extended by Aigner, Lovell, and Schmidt (1977),
Meeusen and van den Broeck (1977), Schmidt and Sickles (1984), and Cornwell, Schmidt,
and Sickles (1990)3. Once the individual effects ui(t) are estimated, technical efficiency
for a particular firm at time t is calculated as TE = exp {ui(t)−maxj=1,...,N (ui(t))} for
the CSSW and the KSS estimators (Cornwell, Schmidt, and Sickles, 1990). Technical
efficiency is calculated similarly for the standard time-invariant fixed effects and random
effects estimators following Schmidt and Sickles (1984). We also consider the Battese and
Coelli (BC, 1992) estimator which is a likelihood-based random effects estimator wherein
the likelihood function is derived from a mixture of normal noise and an independent one-
sided efficiency error, usually specified as a half-normal. In the BC estimator, effect levels
are allowed to differ across cross-sectional units but their temporal pattern is fixed across
cross-sectional units and are specified as technical efficiencies ui(t) = − exp(−η(t − T ))ξi
where ξi are independent half normal random effects and η parameterizes the temporal
pattern in the firms’ efficiencies.

4.2 Data

We use panel data from 1984 through 1995 for U.S. commercial banks in limited branching
regulatory environment. The data are taken from the Report of Condition and Income
(Call Report) and the FDIC Summary of Deposits4. The data set include 667 banks or

3 In keeping with the stochastic frontier paradigm we allow the technical efficiency to be correlated po-
tentially distorted relative output allocations Y ∗it .

4For a more detailed discussion of data, see the Appendix in Jayasiriya (2000).
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8,004 total observations. Table 5 provides variables description and gives the means of the
samples.

The variables used to estimate the Cobb-Douglas stochastic distance frontier are Y =

ln(real estate loans); X = − ln(certificate of deposit), − ln(demand deposit), − ln(retail
time and savings deposit), − ln(labor), − ln(capital), and − ln(purchased funds); Y ∗ =
− ln(commercial and industrial loans/real estate loans), and − ln(installment loans/real
estate loans). For a complete discussion of the approach used in this paper, see Adams,
Berger, and Sickles (1999).

4.3 Empirical Results

The Hausman-Wu test, which tests the correlation assumptions for regressors and indi-
vidual effects, was performed. The test statistic is 203.58, and the null hypothesis of no
correlation is rejected at the 1% significance level. Thus there is strong evidence against the
exogeneity assumption underlying the random effects GLS estimator. Consequently, in the
following analysis we do not report the results from the random effects GLS estimator. The
assumption is also fatal to the consistency of the random effects BC estimator. However,
we will provide estimation results for the BC estimator as well to compare them with those
from the other estimators (Within, CSSW, and KSS) which are robust to the existence of
correlation between regressors and effects.

We test the dimensionality using ∆(l) test. The dimension L is chosen according to the
rule described in Section 2 with the maximum dimension set to 8. Using the 1% significance
level, the critical value is 2.33. With L = 7 the test statistic is 1.36 which is below the critical
value. The optimal choice of dimensionality is thus 75.

Table 6 presents parameter estimates from Within, BC, CSSW, and KSS6. Table 7
provides Spearman rank correlations among the estimators and shows relatively close cor-
respondences (ranging from 0.7667 to 0.9854) among the rankings of efficiencies based on
the different treatments of time-varying firm specific effects. Results for the respective esti-
mators do not indicate any significant scale economies. Ray returns to scale are estimated
to be 1.085, 1.045, 0.939, and 1.079 by Within, BC, CSSW, and KSS. Average technical
efficiencies for Within, BC, CSSW, and KSS are 0.4383, 0.5921, 0.6189, 0.6056. One may
expect that during the period of deregulation firms tend to become more efficient due to
increased competitive pressures in the industry. Figure 1 displays the temporal pattern of

5When we assume L = 1 and test the null hypothesis that the individual effect is constant, the test
statisitc Z is 165.02. Thus the null hypothesis of linear individual effect is strongly rejected.

6To calculate efficiency scores from the effects estimators, the effects estimates are trimmed at the top and
bottom 5% level (see Berger, 1993). This does not apply to the BC estimator because it directly calculates
efficiencies. For the time-varying effects estimators, the firms which enter the top and bottom 5% range of
effects in any time periods were excluded in calculating average efficiencies. Therefore, in this sense, it is
not fair to directly compare the efficiencies from the Within or BC estimators with those from the CSS and
KSS estimators.
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efficiency changes for time-variant efficiency estimators. We also construct an estimate of
efficiency change over the sample period based on a pooled estimator that combines esti-
mates from each of the time-varying measures. These results indicate a consensus growth
of about 0.8% per year in efficiency during the sample period. Were these rates of cost
diminution applied to the US banking industry the implied savings based on 1995 revenues
and costs (Klee and Natalucci, 2005) would be on the order of $30 billion-our estimated
measure of the benefits from deregulation of this key service industry.

5 Conclusion

In this paper we have introduced a new approach to estimating temporal heterogeneity
in panel data models. We estimate the effects using the procedure combining smoothing
spline techniques with principal component analysis. In this way, we can approximate
virtually any shapes of time-varying effects. As we have pointed out, these methods can be
transparently ported to the time series literature to address the issues of proper detrending
filters in time series models.

Simulation experiments show that previous estimators, which do not allow for general
temporal variations in effects terms or which misspecify the temporal pattern of variations,
may suffer from serious distortions. On the other hand, our new estimator performs very
well regardless of the assumption on the temporal pattern of individual effects. We have
used this estimator to analyze the technical efficiency of U.S. banks in the limited branching
regulatory environment for relatively small banks for the period of 1984-1995, and discovered
that the relatively small banks in ouyr sample have became more efficient over the years.
The implied savings to the banking industry by 1995 were all banks to have enjoyed a
similar efficiency gain as did our sample banks is on the order of $30b.
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6 Appendix: Mathematical Proofs

Proof of Theorem 1: It is easily seen that

β̂ = (
X
i

X̃ 0
i(I −Zκ)X̃i)

−1X
i

X̃ 0
i(I −Zκ)(Yi − Ȳ )

= β + (
X
i

X̃ 0
i(I −Zκ)X̃i)

−1X
i

X̃ 0
i(I −Zκ)vi

+(
X
i

X̃ 0
i(I −Zκ)X̃i)

−1X
i

X̃ 0
i(I −Zκ)(�i − �̂).

Consequently, E�(β̂) − β = (
P

i X̃
0
i(I − Zκ)X̃i)

−1P
i X̃

0
i(I − Zκ)vi. By Assumption 1)

there exists a fixed basis b1, . . . , bL of LT with 1
T kbrk2 = 1, r = 1, . . . , L, which can be

chosen independent of Xit. Therefore, vi =
PL

r=1 ϑirbr. Let Xij denote the T -vectors with
elements Xitj , t = 1, . . . , T . In the general case, the j = 1, . . . , p elements of the vectorsP

i X̃
0
i(I −Zκ)vi can thus be bounded by

|
X
i

X̃ 0
ij(I −Zκ)vi| ≤ n

LX
r=1

s
| 1
n

X
i

ϑ2ir| · |b0r(I −Zκ)(
1

n

X
i

X̃ijX̃ 0
ij)(I −Zκ)br|

= OP

µ
n

LX
r=1

q
E(ϑ2ir) · |b0r(I −Zκ)E(X̃ijX̃ 0

ij)(I −Zκ)br|
¶

But by Assumptions 2) - 4) we obtain

n
LX
r=1

q
E(ϑ2ir) · |b0r(I −Zκ)E(X̃ijX̃ 0

ij)(I −Zκ)br| ≤ n
LX
r=1

q
E(ϑ2ir) ·D · k(I −Zκ)brk2 = O(n

√
Tbv(n, T )).

Condition (14) of Assumption 4) then leads to kE�(β̂)− βk = OP ((
bv(n,T )

T 1/2
). On the other

hand, if vi and Xi are Zκ-uncorrelated, then

|
X
i

X̃ 0
ij(I −Zκ)vi| = OP

µq
n ·E(ϑ2ir)|b0r(I −Zκ)E(X̃ijX̃ 0

ij))(I −Zκ)br|
¶

= OP (
p
nT · bv(n, T )2)

and kE�(β̂) − βk = OP ((nT )
−1/2 · bv(n, T )). By Assumptions 4) and 5) the assertion on

β̂−E�(β̂) = (
P

i X̃
0
i(I−Zκ)X̃i)

−1P
i X̃

0
i(I −Zκ)(�i− �̄) = (

P
i X̃

0
i(I−Zκ)X̃i)

−1P
i X̃

0
i(I −

Zκ)�i follows from standard arguments.
Consider Assertion (b). Obviously,

w − ŵ = (I −Zκ∗)w −Zκ∗ �̄−Zκ∗X̄(β − β̂)

and T−1/2kZκ∗ �̄k = OP (
p
tr(Z2κ∗)/(nT )). The assertion then follows from Assumptions 2)

and 4) as well as from the above results on the convergence of kβ − β̂k.
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In order to prove Assertion (c) first note that

v̂i = vi + ri, with ri = −(I −Zκ)vi +Zκ(�i − �̄) +ZκX̃i(β − β̂).

Therefore,

Σ̂n,T = Σn,T +B, B =
1

n

X
i

(vir
0
i + riv

0
i + rir

0
i). (24)

Assertion (b) of Lemma A.1 of Kneip and Utikal (2001) implies that for all r = 1, . . . , L

γr − γ̂r = SrBγr +R, with kRk ≤ 6 supkak=1 a
0B0Ba

mins |λr − λs|2 (25)

and with Sr =
P

s 6=r
1

λs−λrPs, where Ps denotes the projection matrix projecting into the
eigenspace corresponding to the eigenvalue λs of Σn,T .

In order to evaluate the above expression we first have to analyze the stochastic order of
magnitude of the different elements of B. Consider the terms appearing in 1

n

P
i(vir

0
i+riv

0
i).

Using Assumptions 1) - 4) some straightforward arguments now lead to

sup
kak=1

k 1
n

X
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|v0ia|
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By similar arguments
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Similarly,
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For the leading terms appearing in 1
n

P
i rir

0
i we obtain
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X
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0
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Assumptions 1) and 2) additionally imply that 1
mins |λr−λs| = OP (

1
T ·c(T )). When combining

(25) with (26) - (34) we thus obtain
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Let us now consider the remainder term R in (25). Note that all eigenvalues of Zκ are
less or equal to 1, and thus supkak=1 a0Z4κa ≤ 1. Relations (26) - (34) then imply
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By (25), (35), (36) and (37) the asserted rate of convergence follows from
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Therefore, if bv(n,T )2
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The asserted asymptotic distribution then follows from standard arguments.

Let us switch to Assertion (d). Definition of θ̂ir as well as Assertions a) and c) imply that
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It remains to prove assertion (e). First note that
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λ̃r = O(Tc(T )), 1

mins |λ̃r−λ̃s| = OP (
1

T ·c(T )), kγr − γ̃rk = OP (
bv(n,T )

c(T )1/2
), and kγ̂r − γ̃rk =

OP

³
d(T )1/2bβ(n,T )

c(T )1/2
+ 1

T2c(T )2
+
q

tr(Z2κ)
nTc(T )

´
for all r, s = 1, . . . , L, r 6= s.

Assertion (a) of Lemma A.1. of Kneip and Utikal (2001) implies that

TX
r=L+1

λ̂r = tr(PLB̃) +R∗, with R∗ ≤ 6L supkak=1 a
0B̃0B̃a

mins |λ̃r − λ̃s|
(40)

where PL = I −PL
r=1 γ̃rγ̃

0
r. Using again arguments similar to the proof of Assertion (c) it

is easily seen that

6L supkak=1 a0B̃0B̃a

mins |λ̃r − λ̃s|
= OP

µ
Td(T )bβ(n, T )

2 +
1

Tc(T )
+

tr(Z2κ)
n

¶
. (41)

On the other hand,

tr(PLB̃) = tr

Ã
1

n

X
i

PLZκX̃i(β − β̂)(β − β̂)0X̃ 0
iZκ

!
+ tr

Ã
PLZκ(

1

n

X
i

(�i − �̄)(�i − �̄)0)Zκ

!
(42)

Some straightforward computations lead to

E

Ã
tr(PLZκ(

1

n

X
i

(�i − �̄)(�i − �̄)0)Zκ)

!
= σ2(1− 1

n
)tr(ZκPLZκ),
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Ã
tr(PLZκ(
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X
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=
2σ4
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· tr((ZκP̂LZκ)

2) · (1 + oP (1)) = OP

µ
tr(Z4κ)

n

¶

Since tr( 1n
P

i PLZκX̃i(β− β̂)(β− β̂)0X̃ 0
iZκPL) = OP

³
Td(T )bβ(n, T )

2 + d(T )
n

´
and since by

assumption Td(T )bβ(n, T )
2 + d(T )

n = o
³p

tr(Z4κ)/n
´
one may invoke standard arguments

to show that Ph
r=L+1 λ̂r − σ2

¡
1− 1

n

¢
tr(ZκPLZκ)q

2σ4

n · tr((ZκPLZκ)2)
→d N(0, 1). (43)
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By (38), Relation (43) remains valid when PL is replaced by P̂L. This proves assertion (e).
¤

Proof of Theorem 2: It follows from arguments similar to those used in the proof of
Theorem 1 that

σ̂2 =
1

(n− 1) · tr((I −Zκ)2)

X
i

(�i − �̄)0(I −Zκ)
2(�i − �̄)

+
1
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X
i

v0i(I −Zκ)
2vi +OP
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nT

¶
.

Clearly,

E

Ã
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(n− 1) · tr((I −Zκ)2)

X
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2(�i − �̄)

!
= σ2

By Assumption 2) the well-known properties of Zκ imply 1/tr(I − Zκ) = OP (T
−1), and

therefore
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¶
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Consequently, with

0 ≤ Rn,T =
1

(n− 1) · tr((I −Zκ)2)

X
i

v0i(I −Zκ)
2vi = Op(bv(n, T )

2) (44)

we obtain
σ̂2 = σ2 +Rn,T + op (1) . (45)

Let us now consider the behavior of ∆(l) for l < L. We can immediately infer from (45)
that

∆(l) =

nPL
r=l+1 λ̂r − (n− 1)(σ2 +Rn,T ) · tr(Zκ(P̂l − P̂L)Zκ)− (n− 1)Rn,T · tr(ZκP̂lZκ)
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 (1 + oP (1)). (47)

By Assumption 2) and Theorem 1d) n
PL

r=l+1 λ̂r =
PL

r=l+1 T
P

i θ̂
2
ir is of order nTc(T ),

while (n−1)(σ2+Rn,T )·tr(Zκ(P̂l−P̂L)Zκ) = OP (n), (n−1)Rn,T ·tr(ZκP̂lZκ) = oP (nTc(T )),
andq
2nσ̂4 · tr((ZκP̂lZκ)2) = OP ((nT )

1/2). Consequently, the term on the right hand side of
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(46) increases as n, T →∞, while the first term in (47) is still bounded in probability. We
can thus infer that for l < L

P(∆(l) > z1−α)→ 1 and therefore P(L̂ 6= l)→ 1 (48)

as n, T →∞.
For l = L we obtain Since Rn,T ≥ 0 we can infer from Theorem 1(e) that

lim sup
n,T→∞

P(∆(L) ≥ z1−α) ≤ α. (49)

The assertion of the theorem now is an immediate consequence of (48) and (49). ¤
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Table 1. Monte Carlo Simulation Results for DGP1

MSE of Coefficients

N T Within GLS CSSW KSS
30 12 0.07258 0.06381 0.00867 0.00874

30 0.02832 0.02355 0.00240 0.00258

100 12 0.01862 0.01643 0.00266 0.00273
30 0.00678 0.00649 0.00073 0.00075

300 12 0.00610 0.00609 0.00086 0.00087
30 0.00210 0.00208 0.00023 0.00023

MSE of Effects

N T Within GLS CSSW KSS L

30 12 0.1770 0.1746 0.0091 0.0091 2.4070
30 0.1666 0.1663 0.0036 0.0043 2.8050

100 12 0.1285 0.1280 0.0072 0.0073 2.9688
30 0.1240 0.1240 0.0029 0.0030 3.0100

300 12 0.1025 0.1025 0.0059 0.0060 3.0040
30 0.1001 0.1001 0.0024 0.0025 3.0060
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Table 2. Monte Carlo Simulation Results for DGP2

MSE of Coefficients

N T Within GLS CSSW KSS
30 12 0.02414 0.02085 0.01370 0.00477

30 0.00699 0.00675 0.00662 0.00188

100 12 0.00974 0.00842 0.00488 0.00139
30 0.00201 0.00195 0.00193 0.00052

300 12 0.00341 0.00430 0.00169 0.00047
30 0.00071 0.00073 0.00063 0.00028

MSE of Effects

N T Within GLS CSSW KSS L

30 12 0.1655 0.1630 0.0601 0.0170 1.0050
30 0.0976 0.0975 0.0692 0.0100 1.0000

100 12 0.1544 0.1547 0.0491 0.0117 1.0000
30 0.0890 0.0890 0.0624 0.0072 1.0000

300 12 0.1480 0.1484 0.4500 0.0104 1.0000
30 0.0860 0.0861 0.0597 0.0065 1.0000
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Table 3. Monte Carlo Simulation Results for DGP3

MSE of Coefficients

N T Within GLS CSSW KSS
30 12 0.01346 0.00589 0.02166 0.00662

30 0.00464 0.00227 0.00598 0.00203

100 12 0.00465 0.00188 0.00708 0.00168
30 0.00153 0.00074 0.00193 0.00041

300 12 0.00148 0.00066 0.00241 0.00038
30 0.00049 0.00023 0.00062 0.00012

MSE of Effects

N T Within GLS CSSW KSS L

30 12 1.1064 1.0411 1.1410 0.3586 2.0184
30 1.0541 1.0318 1.1158 0.2213 1.9382

100 12 1.0517 1.0311 1.0276 0.2086 2.1727
30 1.0350 1.0285 1.0810 0.0879 2.0776

300 12 1.0398 1.0337 1.0144 0.1787 2.0859
30 1.0308 1.0287 1.0728 0.0727 2.0432
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Table 4. Monte Carlo Simulation Results for DGP4

MSE of Coefficients

N T Within GLS CSSW KSS
30 12 0.00544 0.00484 0.00841 0.00615

30 0.00188 0.00181 0.00221 0.00200

100 12 0.00176 0.00122 0.00262 0.00183
30 0.00061 0.00051 0.00073 0.00062

300 12 0.00056 0.00080 0.00086 0.00058
30 0.00020 0.00026 0.00024 0.00020

MSE of Effects

N T Within GLS CSSW KSS L

30 12 0.1213 0.1126 0.3387 0.1519 1.0320
30 0.0472 0.0462 0.1288 0.0638 1.0100

100 12 0.0929 0.0876 0.2706 0.1032 1.0430
30 0.0363 0.0354 0.1062 0.0414 1.0230

300 12 0.0795 0.0811 0.2366 0.0838 1.0280
30 0.0319 0.0323 0.0947 0.0339 1.0200
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Table 5.Summary Statistics for Small Banks

Variable Definition Mean
reln Log of real estate loans 8.559
ciln Log of commercial and industrial loans 7.338
inln Log of installment loans 7.632
CD Log of certificate of deposits 7.400
DD Log of demand deposits 7.875
OD Log of retail time and savings deposits 9.977
lab Log of labor 4.499
cap Log of capital 5.613
purf Log of purchased funds 10.079

Number of observations 8004

Table 6. Estimation Results for Small Banks

Within BC CSSW KSS
CD -0.0351 (0.0047) -0.0320 (0.0042) -0.0099 (0.0032) -0.0008 (0.0019)
DD -0.0904 (0.0160) -0.0351 (0.0135) -0.0813 (0.0138) -0.0410 (0.0109)
OD -0.1525 (0.0097) -0.1474 (0.0091) -0.1245 (0.0071) -0.0440 (0.0200)
lab -0.1786 (0.0171) -0.1557 (0.0142) -0.1508 (0.0146) -0.1254 (0.0093)
cap -0.0427 (0.0054) -0.0502 (0.0048) -0.0458 (0.0054) -0.0289 (0.0053)
purf -0.5855 (0.0215) -0.6243 (0.0169) -0.5263 (0.0195) -0.7598 (0.0268)
ciln 0.1603 (0.0045) 0.1601 (0.0042) 0.1470 (0.0037) 0.1202 (0.0031)
inln 0.3712 (0.0061) 0.3622 (0.0055) 0.3516 (0.0056) 0.3237 (0.0050)
time 0.0145 (0.0009) 0.0016 (0.0013) - -

Avg TE 0.4389 0.6011 0.6230 0.6056

Table 7. Spearman Rank Correlations of Efficiencies
Within BC CSSW KSS

Within 1.0000 . . .
BC 0.9854 1.0000 . .
CSSW 0.8743 0.8785 1.0000 .
KSS 0.7667 0.7937 0.8974 1.0000
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Figure 1. Temporal Patterns of Efficiencies
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