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Abstract

This paper analyzes the change over time in the distribution of households’ in-
come and financial wealth in Great Britain. Empirical analysis based on the British
Family Resources Survey data from the period 1996-2001 examines whether the se-
quence of these distribution is structurally stable in the sense related to Malinvaud
(1993). In order to do this, we look for the local time-invariance of a distribution
derived after applying simple transformations like scaling or standardizing to the
original distribution. In our study we make use of adaptive bandwidth univari-
ate and bivariate kernel density estimation to identify the changes in shapes of
the aforementioned distributions and to perform a nonparametric density time-
invariance test as proposed by Li (1996). Our main result is that accounting only
for the changes in the vector of means of the original distribution is not sufficient to
obtain the desired local time-invariance. In fact, this can be achieved by account-
ing for changes in the vector of means and dispersion parameters of the original
distribution.
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1 Introduction

The notion of structural stability can be found in many fields of economic research.

However, its definition turns out to be different for different fields of research. From

the econometric point of view, for example, one could regard a postulated model to be

structurally stable, if no structural breaks occur in the sense that parameter values are

assumed to be constant over time, see e.g. Chow (1983) or Hansen (1992). A slightly

different definition is used in game theory, where a game is considered to satisfy the

property of structural stability, if small perturbations of the payoff matrix do not alter

the qualitative nature of the outcome, see e.g. Palis and Smale (1970). In this paper,

however, we will confine ourselves to the notion of structural stability in the context of

aggregation theory.

The concept of structural stability has been present in aggregation theory since the

paper of Malinvaud (1956,1993).2 Unlike many macroeconomic models that linked ag-

gregate response to aggregate explantory variables, Malinvaud’s idea was to model ag-

gregates in terms of the entire distributions of individual variables and charasteristics.

These distributions were assumed to have a certain parametric form (structure), e.g. the

log-normal distribution. In modeling changes in these distributions, he used an empirical

fact that the structure of these distributions does not change over time and all changes in

them can be captured by changes in only few of their parameters. It is this phenomenon

which Malinvaud refers to as structural stability. Interestingly, this empirical regularity

has been noticed not later than in the 19th century for the case of income distributions

by Pareto (1896-1897).

In fact, the concept of structural stability as stated by Malinvaud (1993) applies only

to distributions which are characterized by their parametric form. However, if one does

not want to impose any assumptions on the parametric form of the analyzed distribu-

tions, one has to find a nonparametric counterpart of Malinvaud’s idea. Indeed, this has

been done by Hildenbrand and Kneip (1999). Their version of structural stability of a

sequence of distributions states that by applying some simple transformations to these

distributions the local time-invariance of the sequence of transformed distributions can

be achieved. The simplest of these tranformations are centering, scaling or standardizing.

To be more specific, for a univariate distribution the (mean-) scaling or centering trans-

formation employs only one parameter - namely the mean - whereas the standardization

demands an additional parameter - the standard deviation. The local time-invariance

holds if the period-to-period changes in the sequence of transformed distributions can be

regarded as statistically insignificant. Therefore, if a transformed distribution turns out

to be locally time-invariant, the complicated evolution of the original distribution can

2To be more precise, Malinvaud (1993) was in the main the English translation of his paper in French
from 1956.
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be captured completely by the changes in the parameters used for the transformation.

Consequently, one can distinguish several versions of structural stability depending on

the strictness of this assumption, e.g. the time-invariance of a standardized distribution

is a weaker assumption than the corresponding assumption for the centered or relative

distribution.

The most important implication of structural stability is the possibility to predict

the shape of the future distributions easily. Indeed, if structural stability holds, the

original distribution in period t+ 1 is completely determined by the original distribution

in period t and the parameters, like the mean or the variance, which have been used for

transformation, in period t + 1. As a consequence, the very complex modeling of the

short-run evolution of this distribution can be reduced to the modeling of changes in

the parameters. Therefore, one can make use of structural stability in density forecast-

ing, because if structural stability holds, it suffices to forecast these parameter, which

is typically done within the framework of time-series analysis. Interestingly, despite the

arising new possibilities of modeling aggregate behavior on the basis of structural sta-

bility, one can hardly find applications of this concept in the literature. In the world of

representative agents, researchers seem to have overlooked the potentialities of the use

of structural stability, as already claimed by Schumpeter (1951):

”Few if any economists seem to have realized the possibilities that such invariants
hold out for the future of our science... nobody seems to have realized that the hunt
for, and the interpretation of, invariants of this type might lay the foundations of
an entirely novel type of theory”

Indeed, to the author’s knowledge, there is only one theory that models aggrega-

tion under structural stability. In order to model a relative change in an aggregate in

a economy, Hildenbrand and Kneip (1999 and 2004) propose an approach based on the

evolution over time of distributions of observed and unobserved explanatory variables.

Surprisingly, even in the empirical literature the explicit verification of structural sta-

bility is very seldom. For example, the evolution of individual or cross-country relative

income distribution has been studied extensively in the economic literature. Empirical

work on this topic, e.g. Cowell, Jenkins and Litchfield (1996) or Quah (1997), however,

was targeted mainly at the aspect of changing inequality and convergence of these distri-

butions.3 Indeed, we are aware of only two groups of researchers that paid attention to

the empirical aspect of structural stability of the distribution of households’ income. In

3The mentioned papers apply kernel density estimation and are therefore not the typical ones in the
empirical literature on convergence and changing inequality of the income distribution. Usually, the
analysis of this issues is based solely on the study of the changes in the characteristic parameters of
this distribution, like the Gini-coefficient, variance of log-income, Atkinson (1970) indices or the mean-
median ratio. One example of papers following this approach is Gottschalk and Smeeding (2001) that
contains an international comparison of the income inequality and its changes over time.
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Hildenbrand, Kneip and Utikal (1999), graphical analysis of the evolution of relative and

standardized income distribution for Great Britain is presented. It turns out that simple

transformations of this distribution like scaling or standardizing can remove a huge part

of its variation over the years. Pittau and Zelli (2002 and 2004) analyse trends in income

distribution in Italy both graphically and by means of a statistical test and show that

the distribution of relative incomes is local time-invariant for many periods.

The aforementioned empirical studies concerned only univariate distributions. How-

ever, in his formulation of structural stability, Malinvaud mentions the multivariate joint

distribution of individual exogeneous variables. This motivates our paper, which extends

the empirical study of Hildenbrand, Kneip and Utikal (1999) on income distribution in

two aspects. Firstly, we incorporate an additional variable, namely wealth of a house-

hold. Consequently, in this paper we will study the short-run dynamics of the joint

distribution of households’ income and wealth. In particular, we will try to find local in-

variances in this distribution after exposing it to scaling or standardizing trasformations.

Secondly, to endorse graphical arguments and to check if the observed changes over time

in these distribution are statistically significant, a nonparametric time-invariance test as

suggested by Li (1996) is performed.

The remainder of this paper is organized as follows. We give a motivation for the

study of the joint distribution of income and wealth and its evolution in Section 2. A

brief description of one particular application of the model from Hildenbrand and Kneip

(2004) with emphasis on the hypothesis of structural stability is given. In Section 3

we present the data from the Family Resources Survey used in our empirical analysis

and report some descriptive statistics of the underlying population of British households.

Furthermore, we illustrate the econometric methods employed in this paper to analyze

the short-run dynamics of distributions. Finally, we look for a transformation of the

original distribution that is sufficient to yield the local time-invariance of the resulting

distribution in Section 4.

2 A motivating example: aggregation of households’

consumption expenditure

The aim of the aggregation model in Hildenbrand and Kneip (2004) is to explain the rel-

ative change in an aggregate over time. The starting point of this model is the behavioral

relation of the microunit, which links explanatory variables to the individual response

variable. The modeling occurs, inter alia, in terms of changes in the distribution of ob-

servable and unobservable individual exogeneous variables across the whole population.

In particular, which is very important for our further analysis and corresponds to the

idea of Malinvaud (1993), the joint distribution of all observable micro-specific variables
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across the whole population is assumed to be structurally stable.

As already mentioned in the Introduction, one application of the model stated in

Hildenbrand and Kneip (2004) is aggregate consumption expenditure. For this specific

case, the whole population in period t - denoted by Ht - consists of households h, who

have to decide about the level of their consumption expenditure. Therefore, their be-

havioral relation links following explanatory variables: income, wealth, prices, interest

rates, preference parameters of the utility function, expectational variables like expected

future income, life expectancy etc. to the response variable, which is in this case the

consumption expenditure of a household. The consumption theoretical application pre-

sented in Hildenbrand and Kneip (2004) treats only two of the variables mentioned above

as observable4 and micro-specific. These two variables are the household’s income and

wealth denoted by yh
1 and yh

2 , respectively and are captured in the vector of observable

micro-specific variables of household h, which is denoted by yh. Consequently, for this

particular application of the model, the joint distribution of income and wealth across

the whole population, denoted by distr(y |Ht), is assumed to evolve in the structurally

stable way. Hildenbrand and Kneip (2004) state this assumption in terms of the the

standardized distribution, i.e.,

Hypothesis: Structural stability of distr(y |Ht)

The standardized joint distribution of log-income and log-wealth across the whole pop-

ulation5 changes sufficiently slowly over time in the sense that this distribution can be

considered as approximately equal for two periods that are close to each other.

In the empirical part of this paper, we will study the evolution of the relative and

standardized joint distribution of log-income and log-wealth. Therefore, the empirial

results can be used to verify the hypothesis of structural stability of the joint distribution

of log-income and log-wealth as formulated above by Hildenbrand and Kneip (2004).

3 Data treatment and methodology

Our empirical analysis is based on cross-sectional data from the British Family Resources

Survey (henceforth refered to as FRS). This survey was started in 1992 by order of the

Department of Social Security. For each individual in the household it not only collects

information on income, savings and financial assets, but also on the socio-economic and

4The main criterion to consider a variable to be observable is the availability of the data on this
variable. It is often the case that even if the variable is observable in reality, e.g. some aspects of
wealth, households are either not asked for or they just do not know its exact value.

5For the precise definition of the standardized joint distribution of log-income and log-wealth, see
Section 4.2.
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demographic variables like age or employment status of each household’s member. Each

year about 25,000 households are interviewed. The information gained by this survey is

mainly used by non-governmental organizations to simulate and analyze the response of

the population to new policy measures. Furthermore, basically due to the large sample

sizes, the FRS data is gaining popularity in empirical research being a reliable basis for

studies on dynamics of income and wealth, see e.g. Piachaud and Sutherland (2002) or

Ginn and Arber (2000).

The variables used for the search for the structural stability are income and financial

wealth. Unfortunately, due to inconsistency problems in the definitions of these two

variables, the time horizon for the analysis had to be reduced to six years, i.e. 1996-

2001. As we look for local and not global time-invariance of the distribution, the span

of only six years data is adequate for analysis.

The income variable used in this paper is household’s weekly disposable non-property

income, which is defined as the intrahousehold sum of total net earnings from all sources

(excluding property income), net pensions and various state transfers like benefit income,

income in kind etc. As far as financial wealth is concerned, balances from following

accounts are included: current accounts, savings accounts, gilts, trusts, stocks, shares,

national saving certificates, save-as-you-earn contributions, yearly plans, premium bonds,

pensioner guaranteed income bonds, etc., whereas life insurance is not included. The

value of household’s financial wealth is obtained in the following way. At the beginning

of the interview about household’s wealth, the head of family is asked whether its total

amount of capital is between £1500 and £20000. Should it lie within this interval,

further questions regarding the composition and amount of financial wealth are asked.

Otherwise, the amount of capital is approximated by dividing the yearly investment

income from aforementioned accounts by the corresponding interest rates.

It is a well known empirical fact that the distributions of income and wealth are

heavy-tailed and right skewed. The analysis of the time-invariance of a distribution is

much simpler if it is symmetric, because such a distribution can be easier characterized

by its moments like mean, variance etc. Furthermore, at the outset of our empirical

study, the large changes in the distributions of income and wealth can be noticeably

reduced by using logarithmic transformation. Therefore, for the analysis in this paper

we use the log-values of income and financial wealth. The desired effect achieved by the

logarithmic transformation can be seen in Figure 1, where the kernel density estimatesof

the distributions of income and log-income for years 1996-2001 are plotted.

However, the verification of the hypothesis of structural stability of the joint distri-

bution of log-income and log-wealth creates the following problem. Typically, not all

households hold financial assets. Because of the use of log-values of income and wealth,

the joint distribution distr(y |Ht) is defined only for strict positive values of y. This forces

us to conduct a separate analysis for group 1, denoted by H1
t containing all households
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Figure 1: Kernel density estimator of income and log-income distributions for 1996-2001.

in the population Ht with positive wealth6 and group 0, which contains the remaining

households in the population and is denoted by H0
t . Interestingly, the relative size of

H1
t , i.e. H1

t /Ht, indicates a falling trend but does not change much over time. The de-

scriptive statistics for the whole population Ht and the coefficient of correlation between

log-income and log-wealth across H1
t are given in Table 1.

year group size mean log-income mean corr.
H0

t H1
t H1

t /Ht H0
t H1

t log-wealth

1996 9401 16019 63.01% 4.832 (0.587) 5.230 (0.716) 7.979 (1.671) 0.105
1997 8911 14387 61.75% 4.870 (0.596) 5.255 (0.725) 7.848 (1.658) 0.075
1998 8816 13951 60.65% 4.884 (0.591) 5.270 (0.733) 7.848 (1.649) 0.097
1999 9895 14929 60.13% 4.929 (0.589) 5.288 (0.737) 7.899 (1.689) 0.079
2000 9763 13813 58.58% 5.061 (0.674) 5.243 (0.720) 7.914 (1.677) 0.065
2001 10196 14931 59.42% 5.014 (0.630) 5.367 (0.716) 7.805 (1.606) 0.067

Table 1: Descriptive statistics and the coefficient of correlation between log-income and log-
wealth across H1

t . Terms in parentheses are standard deviations of log-values.

As far as econometric methods applied in this paper are concerned, all distributions

6We treat all household with the capital amount of less than £100 (in prices of 1988) as if they
had no wealth. This is motivated by the fact that for each household that claims its financial wealth
to be less than £1500, the value of financial wealth is approximated by the division of household’s
yearly investment income by the interest rate. The breaking point of £100 corresponds to the negligible
household’s weekly investment income of £0.10 if one assumes that the interest rate is at 5%.
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have been estimated nonparametrically using the adaptive bandwidth kernel density

estimator with the Gaussian kernel function. This method has been described extensively

in the literature. Therefore, for a detailed presentation of this method, we refer to

Silverman (1986).

Once densities are estimated, an important question arises, whether the observed

changes over time in the estimates are statistically significant. In order to answer

this question, we apply a nonparametric test of closeness between two distribution

functions as proposed by Li (1996). Given the observations7 X = (X1, . . . , Xn) and

Y = (Y1, . . . , Yn) drawn from the corresponding unknown density functions fX and fY

the test is based on the integrated squared difference between fX and fY denoted by I

and defined by

I =

∫
[fX(t)− fY (t)]2dt =

∫
[f 2

X(t) + f 2
Y (t)− 2fX(t)fY (t)]dt

=

∫
fX(t)dFX(t) +

∫
fY (t)dFY (t)− 2

∫
fY (t)dFX(t).

In our paper the densities fX and fY correspond to the distributions from different

time periods, e.g. fX and fY are the relative log-income distributions in period t and

t + 1 respectively. The feasible estimator of I, denoted by In, can be obtained, if one

substitutes the density functions fX and fY by their kernel estimates f̂X and f̂Y , i.e.,

f̂X(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
and f̂Y (x) =

1

nh

n∑
i=1

K

(
x− Yi

h

)
.

Using these estimates and replacing FX and FY by their empirical distribution functions,

one can write In = I1n + I2n, where

I1n =
2K(0)

nh
− 2

n2h

n∑
i=1

K

(
Xi − Yi

h

)
= c(n) +O(n−1)

and

I2n =
1

n2h

n∑
i=1

n∑
i6=j
j=1

[
K

(
Xi −Xj

h

)
+ K

(
Yi − Yj

h

)
−K

(
Yi −Xj

h

)
−K

(
Xi − Yj

h

)]
.

The test structure is as follows:

H0: fX(x) = fY (x) almost everywhere

H1: fX(x) 6= fY (x) for some x.

7For the sake of simplicity of the presentation, we assume the samples of observations on X and Y

to be of equal sizes and to be drawn from univariate densities fX and fY . However, the extension of
the test for the case of different sample sizes and multivariate distributions is easy. Furthermore, the
random variables X and Y need not to be independent in the sense that the possible dependence does
not change the asymptotic distribution of the test statistic.
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Under the null hypothesis of time-invariance and assuming that for h → 0 and nh →∞
Li (1996) has shown that Tn := nh1/2 In−c(n)

σ̂0
→d N(0, 1), where

σ̂0 =
2

n2h

n∑
i=1

n∑
j=1

[
K

(
Xi −Xj

h

)
+ K

(
Yi − Yj

h

)
+ 2K

(
Xi − Yj

h

)] [∫
K2(u)du

]
.

The asymptotic distribution of the test statistic T under the null hypothesis has a

slow rate of convergence to the the standard normal distribution. Therefore, we per-

form the bootstrap procedure to approximate the distribution of T . We repeat a fol-

lowing procedure 499 times: Out of the pooled sample {X1, . . . , Xn1 ; Y1, . . . , Yn2} =:

{Z1, . . . , Zn1+n2} two samples, {X∗
1 , . . . , X

∗
n1
} and {Y ∗

1 , . . . , Y ∗
n2
}, are randomly drawn

with replacement. Then, based on the new samples the test statistic T ∗
n,i is computed.

The empirical distribution of T under the null hypothesis is then estimated from the

sample {T ∗
n,1, . . . , T

∗
n,499}.

4 Empirical results

4.1 The evolution of the relative joint distribution of log-income

and log-wealth

The relative joint distribution of log-income and log-wealth across the population H1 in

period t is defined as the distribution of ŷh
t = (ŷh

t,1, ŷ
h
t,2) := (yh

t,1/mt,1, yh
t,2/mt,2), where

mt,1 and mt,2 denote the mean log-income and mean log-wealth across H1
t , respectively.

For the population H0 the relative joint distribution of log-income and log-wealth is just

the univariate distribution of relative log-income. By mean-scaling of the distribution,

the first step towards the local time-invariance is made in the sense that the mean of

the relative distribution is constant over time and equal to 1. Therefore, one can regard

the relative distribution as a detrended one in which only higher moments like variance,

skewness or kurtosis may change over time.8

4.1.1 Population H1

Figures 2 and 3 show the kernel density estimates of distr(ŷ |H1
1996) and the associated

density contours for years 1996 and 1997, repsectively. As one can see in Figure 3, the

density contours for these two years do not differ noticeable from each other. We have

observed this feature also for other years of the sample. This fact can be seen more clearly

on two dimensional graphs of marginal distributions of distr(ŷ |H1
t ), i.e. the relative log-

income distribution and relative log-wealth distribution across H1
t , which are presented

8Pittau and Zelli (2002 and 2003) use a different definition of the relative distribution, which is
derived by dividing all observations by the sample median and not the mean. Note, however, that in the
case of median-scaling, the mean of this type of relative distribution will be typically not time-invariant.
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in Figure 4. At first glance, one can notice the impact of the truncation point at the

value of £100 for wealth. Moreover, Figure 4 reveals that the marginal distributions of

distr(ŷ |H1) change slowly over time.

relative log-income

relative log-wealth
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Figure 2: Kernel density estimator of distr(ŷ |H1
1996).
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Figure 3: Density contours of distr(ŷ |H1
1996) (left) and distr(ŷ |H1

1997) (right).

4.1.2 Population H0

The relative log-income distribution across H0, which is plotted in Figure 5, can be also

regarded as stable over time. However, a huge increase in the dispersion of the original

distribution in the year 2000 that can be seen in Table 1 is reflected in the estimate,

which is quite different from that for other years. As the mean-scaling transformation

does not account for changes in the dispersion, we can expect the changes during the

transitions 1999-2000 and 2000-2001 to be highly significant.
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Figure 5: Kernel density estimator of the relative log-income distribution across H0 for 1996-
2001.

4.1.3 Li Test results for the relative distributions

The question, if the observed year-to-year changes are significant or not, cannot be

answered without a proper statistical test. Therefore, in order to study the significance

of changes in the relative joint distribution of log-income and log-wealth over time, we
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Subpopulation H1 Subpopulation H0

transition T-stat empirical T-stat empirical

period p-value p-value

1996 vs. 1997 3.934 0 2.868 0.004

1997 vs. 1998 1.061 0.107∗ -1.054 0.807∗

1998 vs. 1999 3.173 0 -1.299 0.902∗

1999 vs. 2000 12.880 0 17.354 0

2000 vs. 2001 6.069 0 14.816 0
∗ – significant at the 5% level

Table 2: Li Test results for the distributions distr(ŷ |H1) and distr(ŷ |H0) for years 1996-2001.

apply the Li (1996) Test, which is described in detail in Appendix. The test results are

given in Table 2.

As one can see in Table 2, the null hypothesis of equality of distr(ŷ |H1
t ) and

distr(ŷ |H1
t+1) cannot be rejected for only one transition period, 1997-1998, which implies

that the evolution of distr(y |H1) is too complex to be captured by only one parameter.

As far as the distribution distr(ŷ1 |H0) is concerned, one cannot reject the null hypothe-

sis for only two transition periods, 1997-1998 and 1998-1999. This motivates the attempt

to incorporate further parameters that would account for changes in the dispersion of

the original distribution. The most intuitive candidates for this are the elements of the

covariance matrix of the original distribution. In the next subsection, we will study the

case of standardizing transformation as an example of such an extension.

4.2 The evolution of the standardized joint distribution of log-

income and log-wealth

The standardized joint distribution of log-income and log-wealth across H1 in period

t is defined as the distribution of ỹh
t := (yh

t − mt)Σ
−1/2, where mt denote the vector

of means of log-income and log-wealth and Σ is the covariance matrix of log-income

and log-wealth across H1
t . However, as one can see in Table 1, the correlation between

log-income and log-wealth across the population H1
t is very low. Therefore, one can

approximiate this distribution by applying to the original distribution – distr(y |H1
t )

– the simpler version of the standardization, so called coordinate-wise standardization.

The coordinate-wise standardized distribution of yh
t is then defined as the distribution of

(¯̃yt,1, ¯̃yt,2) :=
(

yt,1−mt,1

σt,1
, yt,2−mt,2

σt,2

)
, where σt,1 and σt,2 denote the standard deviations of

log-income and log-wealth, respectively and mt is the vector of corresponding means

across the population H1
t .
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We expect changes in the standardized distribution to be less significant as the corre-

sponding changes in the relative distribution. This is due to the fact that the standarizing

transformation (even the coordinate-wise) implies not only the time-invariance of the vec-

tor of means (equal to zero) of the transformed distribution, but also the time-invariance

of the variances (equal to one) of its marginal distributions.

4.2.1 Population H1

Kernel density estimates of distr(¯̃y |H1
1996) and the associated density contours for years

1996 and 1997 are presented in Figures 6 and 7, respectively. As in the case of the

relative distribution, the density contours for these years do not change much over time,

which also holds for other years. Marginal distributions of distr(¯̃y |H1
t ), i.e. the stan-

dardized log-income distribution and the standardized log-wealth distribution across H1
t

are presented in Figure 8 and reveal small variations in these distributions.

std log-income

std log-wealth
-2 -1.5 -1 -0.5  0  0.5  1  1.5  2 -2

-1
 0

 1
 2

 0

 0.05

 0.1

 0.15

 0.2

Figure 6: Kernel density estimator of distr(¯̃y |H1
1996).

4.2.2 Population H0

Figure 9 comprises the evidence for the strength of structural stability in showing how

even considerably different original distributions can be transformed to similar ones by

using only few parameters. The original distribution of log-income for the year 2000 dif-

fers much from that for other years, however, if one applies standardization, the resulting

distributions are very similar for all years. Note that this is in contrast to the case of

the corresponding relative distributions as shown in Figure 5.

4.2.3 Li Test results for the standardized distribution

The null hypothesis of equality of distr(¯̃y|H1
t ) and distr(¯̃y |H1

t+1) cannot be rejected for

all years within the time period 1996-2001. These results, given in Table 3, indicate the
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Figure 7: Density contours of distr(¯̃y |H1
1996) (left) and distr(¯̃y |H1

1997) (right).
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Figure 8: Kernel density estimator of the standardized log-income distribution and the stan-
dardized log-wealth distribution across H1 for 1996-2001.

possibility of capturing the evolution of the entire distribution distr(ˆ̃y |H1
t ) by only few

parameters, namely the means and the standard deviations. For the population H0 the

hypothesis of equality cannot be rejected at the 5% significance level for the transitions

1997-1998 and 1998-1999. More interestingly, one cannot reject the equality at the 1%

level for the transitions 1996-1997 and 1999-2000. The changes in the standardized

distribution of log-income turn out to be statistically significant only between 2000 and

2001.
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Figure 9: Kernel density estimator of the standardized log-income distribution across H0 for
1996-2001.

Subpopulation H1 Subpopulation H0

transition T-stat empirical T-stat empirical

period p-value p-value

1996 vs. 1997 0.182 0.392∗ 2.354 0.010∗∗

1997 vs. 1998 0.073 0.468∗ -1.372 0.912∗

1998 vs. 1999 0.062 0.457∗ -0.945 0.715∗

1999 vs. 2000 0.160 0.391∗ 2.004 0.017∗∗

2000 vs. 2001 0.199 0.344∗ 4.107 0
∗ – significant at the 5% level
∗∗ – significant at the 1% level

Table 3: Li Test results for the distributions distr(¯̃y |H1
t ) and distr(ỹ |H0

t ) for years 1996-2001.

5 Conclusions

The main aim of this paper was to examine the short-run dynamics of the joint distri-

bution of income and wealth of British households on the basis of the Family Resources

Survey 1996-2001. The focal point of our analysis is the property of structural stability

of this distribution, a notion that was formulated firstly by Malinvaud (1956,1993) for

distributions of a certain parametric form and was reformulated for the nonparametric

case by Hildenbrand and Kneip (1999). In this paper, we want to avoid any assumptions

14



on the shape of this distribution and we follow the latter approach. According to this

concept, if a sequence of distributions can be exposed to a simple transformation in that

manner that the sequence of the transformed distributions is locally time-invariant, then

the sequence of original distribution is said to be structurally stable. In our search for a

simple transformation of a original distribution, i.e. the joint distribution of income and

wealth, that yields local time-invariance of the transformed distribution we analyzed two

transformations. The first one, mean-scaling, which could control for the changes over

time in mean income and mean wealth and resulted in the relative joint distribution of

income and wealth, was not sufficient to support the hypothesis of structural stability.

However, after applying the standardizing transformation, which accounted for changes

in means and dispersion of the original distribution we obtained a sequence of distri-

bution that was local time-invariant, i.e. the period-to-period changes in this sequence

were statistically insignificant. This fact empirically supports the hypothesis of struc-

tural stability of the joint distribution of income and wealth providing a justification for

using this hypothesis in theoretical aggregation models such as the model in Hildenbrand

and Kneip (2004).
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