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Abstract

In this paper we propose and estimate an econometric model for
the distribution of trading activity across options written on the DAX
index. The model is based on the observation that in this market op-
tions with strike prices ending on 000, 200, 400, 600 and 800 (the class
of 200-strike options) are more traded than options with strike prices
ending on 100, 300, 500, 700 and 900 (the class of 100-strike con-
tracts). We assume that market participants who would like to trade
a continuum of contracts have to choose between the options listed
by the exchange. When they have to choose between two neighboring
200- and 100-strike contracts, they prefer the 200-strike contract if the
degree of substitution between these two options is high. We derive
an equation which links the trading volumes of the 200- and 100-strike
options and the degree of substitution between them. This equation
has convenient analytical properties and can be readily estimated from
the data. The estimation results confirm the hypothesised effect of the
degree of substitution on the distribution of trading between 200- and
100-strike contracts. Additionally, we are able to derive some quanti-
tative estimates of the percentage of trades attracted to the 200-strike
contracts.
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1 Introduction

According to most derivative pricing models, any option can be replicated
with a trading strategy that involves the underlying instrument and a few
liquid options. However, in organized derivative exchanges there are usu-
ally many listed call and put options written on the same underlying asset.
What are the reasons for the existence of so many different contracts and
how is the trading distributed among them? Surprisingly, this question has
received little if any attention in the theoretical literature about derivative
instruments, which is concerned mainly with pricing issues rather than with
the determinants of trading.
Ross (1976) discusses the importance of options as instruments which com-
plete the market. His results are further refined by Green and Jarrow(1987)
and Nachman (1988). These papers provide the rationale for the existence
of the myriad of derivatives contracts in the market, but they say nothing
about the demand and trading in such instruments. Leland (1980) and Bren-
nan and Solanki (1981) show that differences in agents’ utility functions can
lead to buying or selling options by some of the market participants. Franke,
Stapleton, and Subrahmanyam (1998) prove that demand for options can
arise even if market agents have homogenous utility functions, given that a
non-hedgeable background risk is present in the economy. While these pa-
pers provide insight into the characteristics of the market participants who
are trading options, they do not say anything about the actual amount of
trading in options.
To our knowledge, the only piece of research that deals explicitly with the
demand for options is the recent paper by Judd and Dietmar (2003). The
goal of this paper is to give a theoretical explanation for the observed ro-
bust pattern of the open interest which peaks for the at-the-money option
and gradually dissipates for in- and out-of-the money contracts. The authors
look at the shape of the open interest of different options with the same time
to maturity. They work in a simple equilibrium setting with two trading
periods, one asset and a finite number of options written on that asset. In
their paper, the demand for options arises through the skew-preference of the
agents, which are defined via the third derivative of their utility functions.
The authors derive approximate analytical solutions for the open interest
across options with different strike prices and identical time to maturity.
Their results show that the shape of the open interest as a function of the
strike price is very sensitive to the distributional assumptions about the pro-
cess for the underlying and to the choice of the strike price structure. Only in
some special cases is possible to obtain the robust inverted U-shape pattern
observed in the market. The authors point out that their main contribution
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is to show the limitations of the risk-sharing arguments in explaining the
actual demand for options.
In this paper we provide some empirical insight into the determinants of
option demand reflected by the trading in options. We do this by focusing
on a special phenomenon observed for the DAX index options traded on the
EUREX derivatives exchange. In this market options are issued with strike
prices falling on a prespecified grid set. Listed contracts with time to ma-
turity exceeding one year have strike prices ending on 000, 200, 400, 600, or
800. We call this type of contracts the class of 200-strike options. Options
with time to maturity between six months and one year are either 200-strike
options or have strike prices ending on 100, 300, 500, 700, or 900. The latter
type of contracts we call the class of 100-strike options. For maturities less
than six months there exist 200- and 100-strike options as well as options
with strike prices ending on 50 which we refer to as the class of 50-strike op-
tions. Inspection of the historical data shows that 200-strike and 100-strike
are much more traded than the 50-strike options. Additionally, the compar-
ison of the trading activity between the 200- and 100-strike options reveals
that 200-strike options are more traded than the 100-strike options, although
the differences in trading volumes is not that big as in the previous case.
What are the reasons for the irregular distribution of the trading activity
across options differing only in the last three digits of their strike prices?
One explanation can be found in the sequential nature of introducing new
contracts. 200-strike options are introduced first and consequently they have
accumulated greater open interest than options belonging to the other two
classes. Correspondingly, the 100-strike options are introduced earlier than
the 50-strike options and therefore, have accumulated greater open interest
than the 50-strike options. Since the open interest is a good indicator for the
future trading on a contract, this could explain the differences in the trading
volumes among the three types of options. Additionally, the strike prices of
the more liquid contracts could serve as focal points where traders coordinate
trades to achieve greater liquidity. Koch and Lazarov (2003) further hypoth-
esize that given the established attractiveness of 200- vs 100-strike options
and the attractiveness of 100- vs 50-strike options, the distribution of trading
activity among different contracts is determined by the degree of substitution
between them. For example, if two neighboring 200- and a 100-strike options
are good substitutes, then the trading will concentrate on the 200-strike con-
tract, which has already been established as a focal point and generally has
greater liquidity. Overall, when the degree of substitution between options
is high, it can be expected that the more attractive contracts will witness
higher trading volume since the traders will coordinate their trades on them.
Thus, the degree of concentration of trading on the more attractive options
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will depend on the degree of substitution between options.
To test this hypothesis, Koch and Lazarov(2003) define a measure of clus-
tering of trading activity between two neighboring options as the log ratio
of their trading volumes measured by the number of transactions. They
regress this measure on a set of variables that correspond to various factors
which determine the degree of substitution. The regression results as well
as various robustness checks support the hypothesized relation between the
irregular distribution in trading and the degree of substitution.
In the current paper we formulate and estimate an econometric model for
the distribution of the trading of trading activity across options with dif-
ferent strike prices. This extends the results of Koch and Lazarov(2003) in
two main directions. First, we perform more formal and complete analysis
which models the trading across all options simultaneously. This avoids the
drawback of the simple regression approach which focus separately on the
pairs of neighboring options without taking into account the impact of the
remaining options. Second, in our setting it is possible to get quantitative
estimates for the percentage of the trades that are attracted to 200-strike
options from their 100-strike neighbors. Getting such quantitative estimate
might be important for the design of derivatives markets. Organized options
exchanges make their profits from collecting fees from every traded contract
and therefore they are interested in maximizing the overall trading volume.
Virtually in all derivatives markets, options are introduced with strike prices
equally distant to each other, such that this grid size is fixed by the ex-
changes rules and is not changed. However, as the market conditions change
the initially chosen grid size might not serve optimally the exchanges profit
maximizing goals. Intuitively, if the degree of substitution between options
increases significantly, there will be too many contracts which are good sub-
stitutes. The trading will dissipate among different options, which could
result in low liquidity and consequently, decreased trading. Alternatively, if
the degree of substitution between options decreases significantly, there will
be too few contracts available, and some traders will not be able to find a
suitable options to trade. This could again result in decreased trading.
In our model we consider only the 200-strike and 100-strike options. The
50-strike options have very low liquidity and additionally including them in
the model will lead to unnecessary complications.1 The starting point of
the model is the observation that investors may want to trade options with
strike prices that are not available. More specifically, we assume that for

1We discuss in Section 4 that the existence of 50-strike options does not impact the
derivation of our model under some mild assumptions. For comparison of the trading on
50-strike options versus the trading on 200- and 100-strike options, see Koch and Lazarov
(2003).
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each pair of two neighboring 200-strike and 100-strike options some traders
would like to execute transactions on contracts with strike prices which fall
between the two strike prices of these options. These kind of investors are
faced with a choice between the two available contracts. Additionally, we as-
sume that there exists a function with values between zero and unity, which
determines how the trades are distributed between the two options. This
function gives what percentage of the trades are executed on the 200-strike
option and what percentage of the trades are executed on the 100-strike op-
tion. When it equals unity, all investors trade the 200-strike option and when
it equals zero, all investors trade the 100-strike option instead. This function
reflects the degree of substitution between the neighboring options. When it
has value one, this can be interpreted as the case of a perfect substitution
between the neighboring 200-strike and 100-strike options, and in this case
all corresponding trades are executed on the more attractive 200-strike con-
tract. Note that we do not restrict the function to take always values greater
than one half, which is equivalent of assuming that the 200-contract always
attracts more volume. The reason is that sometimes a 100-strike option can
have open interest which is much greater than that of its 200-strike neighbor,
and correspondingly the 100-strike option may witness more trades. Since
the ratio of the open interests of the two neighboring options enters as a
parameter in the function, it will drive the function’s value below one half.
Using these substitution functions, we can express the trading volume of each
option as a function of the degree of substitution and the number of trades
that market participants would like to execute on options with strike prices
between the strike prices of the two neighboring contracts of the option. All
such expression can be combined into one equation which links the trading
volumes of 200-strike and 100-strike options and the degree of substitution
between them. This equation has convenient analytical properties and can
be estimated from the data. The estimation results confirm the hypothesis
for the impact of the degree of substitution on the distribution of trading
activity and allows us to quantitatively gauge the shift in trading activity to
the more attractive 200-strike.
The rest of the paper is organized as follows. Section 2 gives a short overview
of the DAX index options market. In Section 3 summary statistics and re-
gression analysis for the distribution of trading across options with different
strike prices are presented . Formal derivation of the model for the distri-
bution of trading between 200- and 100-strike options is given in Section 4.
The econometric estimation of this model is presented in Section 5. The last
section of the paper summarizes the results and concludes.
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2 Overview of the DAX Index Options Mar-

ket

Dax index options are traded on the electronic trading platform EUREX and
are all European style and cash settled on the DAX 30 stock index. On every
business day options with eight different maturity dates (classes) are avail-
able. All options expire on the third Friday of the corresponding maturity
month, and if this is a holiday, on the last prior trading day. Options be-
longing to the first three maturity classes expiry in the first three succeeding
months. Contract belonging to maturity classes four, five, and six expiry in
the succeeding three expiration months in the cycle (March, June, September
and December). Maturity classes seven and eight comprise the succeeding
two expiration months in the cycle (June, December).
The exchange introduces options with strike prices that are 50, 100 or 200
points apart. According to the exchange rules, options with time to matu-
rity more than 12 months are all 200-strike options. Contracts with time to
maturity between 6 months and 12 months are either 200-strike or 100-strike
options. Finally, for maturities less than 6 months, a full menu of 50-strike,
100-strike and 200-strike options exists. The exchange continuously main-
tains a sufficient number of available contracts around the at-the-money point
at each point of time. The minium number of options in each maturity class
ranges from five for maturities greater than 6 months and nine for maturities
shorter than 6 months. New options series are introduced if the closing level
of the DAX index exceeded (dropped below) the average of the third and the
second highest (lowest) existing strike prices on the two preceding trading
days.

3 Preliminary Characterization of the Distri-

bution of Trading Activity Across 200- and

100-strike Options

Detailed summary statistics for the clustering of trading across 200-strike,
100-strike and 50-strike options are presented in Koch and Lazarov (2003).
Since we are dealing with the phenomenon of trade clustering from a differ-
ent angle than Koch and Lazarov(2003), we will give a new set of summary
statistics which are more relevant to our approach of modelling the observed
irregular distribution of trading. The data that is used for all estimations
spans all transactions on DAX index options for the period 4 January 1999
to 31 July 2002, which makes a total of 908 trading days. We consider only
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the options in the first four maturity classes. For higher maturity classes,
the liquidity is insignificant and additionally, it is not possible to get reliable
estimates of the options’ deltas, which are used further in the paper.
Assume a trading day and a maturity class. Denote the strike price of the
nearest to the at-the-money point out-of-the money call/put option by s2

0.
Let s2

−1,s
2
−2,...,s

2
−6 are the next six out-of-the money 200-strike call/put op-

tion strikes and s1
−1,s

1
−2,...,s

1
−6 are the next six out-of-the money 100-strike

call/put option strikes. In a similar way, we denote the strike prices of the
corresponding in-the-money 200-strike and 100-strike contracts by s2

1,s
2
2,...,s

2
6

and s1
1,s

1
2,...,s

1
6. Tables 1 and 2 show the average number of trades on the

call and put options with strike prices s2
−k, s

2
0, s

2
k, s

1
−k, s

1
k , k = 1, ..., 6 for each

maturity class. It can be seen that for most pairs of neighboring 200-strike
and 100-strike options, the 200-strike options have higher average trading
volume. This pattern is much more pronounced for the out-of-the-money op-
tions, where there are only two exceptions in the first maturity class for the
call options and one exception in the first maturity class for the put options.
For in-the-money options there are a few exceptions for pairs near to the
at-the-money point in the first and the second maturity class, respectively.
Note that each 200-strike option has two 100-strike neighbors, one of which
is closer to the at-the-money point. Since option liquidity decreases with
moneyness, the 100-strike contract can have a larger volume because of this
liquidity advantage.2 In all of the cases where a 100-strike option has average
trading volume higher than that of its 200-strike neighbor, the 100-strike op-
tion is closer to the at-the-money point. Tables 3 and 4 show that the open
interest exhibits a similar pattern of clustering. In contrast to the case of
the trading volume, the average open interest on each 200-strike contract is
always higher than the open interest of its neighboring 100-strike contracts.
We also perform a formal test to see if after accounting for the factors that
affect option liquidity such as moneyness, time to maturity and open inter-
est, the 200-strike contracts still witness higher trading. For each option we
regress the number of transactions on that contract on the following variables

tran = α+β1 · ttm+β2 · ttm2 +β3 ·mon+β4 ·mon2 +β5 ·open+β6 ·dum+ε,

where ttm and mon are the time to maturity and the absolute moneyness
of the option.3 Squared terms ttm2 and mon2 are included to account for

2In Section 5 we further comment on the cases when a 200-strike option attracts less
trading than its 100-strike neighbor.

3Absolute option moneyness is defined as mon = |absK/F − 1| where K is the options
strike and F is the futures price of the index.
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possible non-linear effects. The regressor open is the open interest from the
previous trading day. Finally, the dummy variable dum takes on value one if
the corresponding option is a 200-strike contract and zero otherwise. From
the Tables 1 and 2 is clear that there is a significant difference between the
trading in out-of-the money and in-the-money options. Therefore, we run
separate regressions for out-of-the-money and in-the-money contracts. Ad-
ditionally, we distinguish between the four maturity classes. Tables 5 and
6 present the linear regression results. Note that the regressions R2’s are
higher for the out-of-the-money contracts than for in-the-money contracts.
Additionally, they decrease with the maturity class. The coefficients on the
regressors ttm and mon are as to be expected: the trading volume decreases
with moneyness and time to maturity. Furthermore, the trading volume is
positively related to the previous days open interest. The dummy variable
dum which indicates if the corresponding option is a 200-strike contract is
always significant for out-of-the money options.
The regression results show that the trading on out-of-the-money options
can be much better explained than the trading on in-the-money options in-
dicated by the higher values of R2. Additionally, the in-the-money contracts
are much less traded than their out-of-the-money counterparts. This is not
surprising since one of the main reason for trading on options is that they
provide leverage and the degree of leverage decreases with moneyness. The
degree of which the 200-strike contracts are more traded than 100-strike con-
tracts also seem to depend on moneyness. For out of-the-money options
the dummy coefficient β6 is always positive and significant, and also greater
than the corresponding coefficient for the in-the-money options. On the other
hand, the dummy coefficient for in-the-money options is most of the time not
significant, and for the call options in the first maturity class is even nega-
tive and significant at the 10% percent level. Overall, it seems that there is a
difference in the options trading patterns depending whether they are in- or
out-of-the money. The trading on in-the-money options is less intensive and
noisier and the concentration of trading on the 200-strike contracts is much
less pronounced and most of the time insignificant. We further take this
observations into account when we discuss the formulation and estimation of
the econometric model for the distribution of trading activity in Sections 5
and 6.

8



4 Factors that Determine the Degree of Sub-

stitution Between Options with Neighbor-

ing Strike Prices

Our hypothesis is that when the degree of substitution between the neigh-
boring 200- and 100-strike options is high the trading shifts to the more
attractive 200-strike contract. As in Koch and Lazarov(2003), we consider
the following six factors that determine the degree of substitution between
neighboring options:

Level of the DAX Index

When the level of the DAX index goes up, the 100 point difference between
two neighboring 200-strike and 100-strike options relative to the index level
decreases and therefore becomes less economically significant. The smaller
the relative distance between two options is, the greater the degree of sub-
stitution between them. Hence, the 200-strike options should attract more
trading volume when the index is high. Similar argument is used by Harris
(1991) to justify the relation between the price clustering and the level of
stock prices in the US equity market.

Time to Maturity and Volatility of Index Returns

Many investors in options markets are directional traders who pursue buy
and hold strategies, i.e. they close their positions near maturity or exer-
cise options. These traders are interested in forecasting the index level at
or near maturity. The accuracy with which traders can predict the final
index level decreases with increasing time to maturity and/or volatility. If
investors’ predictions are less precise, then a fixed difference of 100 points
between strike prices of neighboring 200-strike and 100-strike contracts will
be less important to them, and correspondingly the degree of substitution
will increase. This argument is analogous to that of Ball,Torus, and Tschoegl
(1985) for the case of price clustering in the gold futures market. The authors
argue that traders choose their desired price grid depending on the degree of
how accurately they can forecast the future gold price. Harris (1991) applies
the same argument in analyzing the price clustering in the US equity market.

Options’ deltas

Delta, or the first derivative of the option Black-Scholes price with respect
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to the underlying, is the most important and most often used risk measure.
Many market participants, especially market makers, try to keep the overall
delta of their portfolios close to zero. For that kind of investors, two options
with similar delta values are close substitutes.
A natural way to account for the impact of the option’s delta on the degree
of substitution is to compute the absolute delta difference of each pair of
neighboring options. However, for the sake of simplicity we use one measure
for the difference in deltas for all pairs of neighboring 200-strike and 100-
strike options with the same time to maturity. Visual inspection of the data
shows that the delta of the DAX index options is approximately a linear
function of the strike price after accounting for the volatility smile. That
is, the absolute difference in deltas of neighboring 200- and 100-strike op-
tions is relatively stable across all pairs of options. Taking into account this
observation, we compute the first derivative of the at-the-money delta with
respect to the strike price and use this value to summarize the absolute delta
differences across all option pairs. In principle, in our model it is possible to
account for the delta differences in each individual pair of neighboring 200-
and 100-strike contracts. However this leads to unnecessary complications in
the econometric estimation, while little is gained in terms of precision.

Options’ Moneyness

In options markets trading tends to concentrate near to the at-the-money
point and it decreases for options further in- or out-of-the-money. It can
be expected that the attractiveness of 200-strike options increases with the
absolute moneyness, since traders strive to coordinate trades on the more
attractive 200-strike contract in order to generate liquidity.

Options’ Open Interest

Open interest reflects the potential liquidity of an option. When two neigh-
boring 200-strike and 100-strike options do not differ much into the previous
factors then the traders will prefer the one with the higher open interest,
which in most of cases the 200-strike contract. Note that sometimes a 100-
strike option may have significantly higher open interest then its 200-strike
neighbor, which could lead to higher trading on it than on the 200-strike
contract.
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5 An Econometric Model for the Distribu-

tion of the Trading Activity across Strike

Prices

In this section we give description of the model that is used to characterize
how the trading is distributed across options with the same time to matu-
rity. Any such model should take into account that options’ trading volumes
are interdependent. Intuitively, the trading on the at-the-money option is
related to the trading of its two neighboring in- and out-the-money options.
The trading on these two contracts is at the same time related to the trading
on their neighbors and so on. The approach of comparing only the trading
on individual pairs of options with next to each other strike prices could po-
tentiality lead to biases since it does not take into account the impact of the
neighboring contracts.
We propose a way to simultaneously model the distribution of trading across
all options belonging to the same maturity class. The starting point is the
observation that only a discrete set of strike prices are available and the mar-
ket participants who would potentially like to trade a continuum of options
are faced with the decision of choosing among a limited number of contracts.
To state these ideas formally, we assume a trading day and a particular ma-
turity class. For simplicity, we assume that there exists a listed 200-strike
option which is exactly at-the-money with strike price s2

0. Additionally, we
assume that there exists a continuous band of n alternating 100- and 200-
strike out-of-the-money options which spread around the at-the-money point
s2
0. Denote the strike prices of these contracts by s1

−1, s
2
−1, s

1
−2, s

2
−2, ..., s

1
−n, s2

−n

where s1
i , i = 1, ...n, are 100-strike options and s2

i , i = 1, ...n, are 200-strike
options, respectively. All neighboring options are 100 points apart. Simi-
larly, we assume that there exists a continuous band of n alternating 100-
and 200-strike in-the-money options with strike prices s1

1, s
2
1, s

1
2, s

2
2, ..., s

1
n, s

2
n.

The total number of the considered options is 4n + 1.
First, we deal only with the in-the-the money contracts. We assume that in
each of the intervals determined by the strikes prices of the pairs of neighbor-
ing options [s1

i ; s
2
i ] , i ∈ 1, n and

[
s2

i ; s
1
i+1

]
, i ∈ 0, n− 1, the traders would like

to execute m2i and m2i+1 trades4, respectively on options with strike prices
that fall in these intervals. Market participants are faced with the decision
to choose between options with strike prices s1

i and s2
i in the first case, and

4Note that in our case m2i and m2i+1 represent the number of transactions. One
can use the total volume (the total number of the traded contracts) instead. We prefer
the number of transactions since it is much less noisier than the total volume. Another
alternative is discussed at the end of the section.
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between options with strike prices s2
i and s1

i+1 in the second case.
To model how traders form their decisions we assume that there exist func-
tions s2i (·) ∈ [0; 1] , i = 1, .., n, such that in the interval [s1

i ; s
2
i ] , s2i (·) · m2i of

the m2i trades are executed on the contract with strike s2
i and the remaining

(1− s2i (·)) ·m2i trades are executed on the contract with strike s1
i . Similarly,

we assume that here exist functions s2i+1 (·) ∈ [0; 1] , i = 0, .., n− 1 such that
in the interval

[
s2

i ; s
1
i+1

]
, s2i+1 (·) · m2i+1 of the m2i+1 trades are executed on

the contract with strike s2
i and the remaining (1− s2i+1 (·)) · m2i+1 trades are

executed on the contract with strike s1
i+1. The functions s2i (·) and s2i+1 (·)

depend on the degree of substitution between the two options in the cor-
responding pair. Accordingly, the parameters that enter in these functions
account for the impact of the factors discussed in Section 3. Our assumption
is that when the degree of substitution is high, then the 200-strike options
attract higher volume and in our setting the functions s2i (·) and s2i+1 (·) will
take on higher values. If s2i+1 (·) ≥ 1

2
and/or s2i (·) ≥ 1

2
, then the corre-

sponding 200-strike contract attracts greater volume. Note that we do not
restrict s2i (·) and s2i+1 (·) to have values always greater than 1

2
. Sometimes

the 100-strike option may have much greater open interest than its 200-strike
neighbor and correspondingly attract greater trading. Since we later specify
these functions to depend on the ratio of the open interests of the two cor-
responding contracts this could drive the value of s2i (·) or s2i+1 (·) below 1

2
.

Finally, it is assumed that there is no demand for options with strike prices
greater than s2

n. 5

From the last assumption, the trading volume of the 200-strike option with
strike price s2

n can be readily computed as:

v2
n = s2n (·) m2n. (1)

The trading volumes of the intermediate 200-strike in-the money options are
given by

v2
i = s2i (·) m2i + s2i+1 (·) m2i+1, i = 1, .., n− 1, (2)

i.e. the option s2
i attracts s2i (·) m2i trades from the interval [s1

i ; s
2
i ] and

s2i+1 (·) m2i+1 trades from the interval
[
s2

i ; s
1
i+1

]
. Similarly, the trading vol-

umes of intermediate 100-strike options are given by

5Although this assumption can be relaxed, there is no need to do that, since for the
value of n which we consider (n = 6), the liquidity of the option with strike price s2

n is
negligible.
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v1
i = (1− s2i−1 (·)) m2i−1 + (1− s2i (·)) m2i, i = 1, ..., n, (3)

i.e. the option s2
i−1 attracts s2i−1 (·) m2i−1 trades from the interval

[
s2

i−1; s
1
i

]
and s2i (·) m2i trades from the interval [s1

i ; s
2
i ]. By substituting i = n into

(3), it follows that

v1
n = (1− s2n−1 (·)) m2n−1 + (1− s2n (·)) m2n, (4)

and by combining (1) and (4) we get:

m2n−1 =
1

(1− s2n−1 (·))v
1
n −

1

(1− s2n−1 (·)) ·
(1− s2n (·))

s2n (·) v2
n. (5)

We can continue going backwards using the relationship

v2
n−1 = s2n−2 (·) m2n−2 + s2n−1 (·) m2n−1, (6)

which is derived from expression (2) by setting i = n− 1. Using (5) we get:

m2n−2 =
1

s2n−2 (·)v
2
n−1 −

1

s2n−2 (·) ·
s2n−1 (·)

(1− s2n−1 (·))v
1
n

+
1

s2n−2 (·) ·
s2n−1 (·)

(1− s2n−1 (·)) ·
(1− s2n (·))

s2n (·) v2
n. (7)

Continuing in a similar fashion and alternating between expressions (2) and
(3) it follows that:

m1 =
1

1− s1 (·) ·
(

n∑
j=1

v1
j

2j−1∏

k=2

(
sk(·)

1− sk(·)

)(−1)k−1

−
n∑

j=1

v2
j

2j∏

k=2

(
sk(·)

1− sk(·)

)(−1)k−1)
. (8)

We make similar assumptions for out-of-the-money options and in an analo-
gous way the following equation is derived as:
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m−1 =
1

1− s−1 (·) ·
(

n∑
j=1

v1
−j

2j−1∏

k=2

(
s−k(·)

1− s−k(·)

)(−1)k−1

−
n∑

j=1

v2
−j

2j∏

k=2

(
s−k(·)

1− s−k(·)

)(−1)k−1)
. (9)

The trading volume of the at-the-money option is given by v2
0 = s−1 (·) m−1+

s1 (·) m1. Combining the expressions (8) and (9), yields:

v2
0 =

n∑
j=1

v1
j

2j−1∏

k=1

(
sk(·)

1− sk(·)

)(−1)k−1

−
n∑

j=1

v2
j

2j∏

k=1

(
sk(·)

1− sk(·)

)(−1)k−1

(10)

+
n∑

j=1

v1
−j

2j−1∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

−
n∑

j=1

v2
−j

2j∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

.

After rearranging the terms we get:

n∑
j=2

v2
−j

2j∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

+ v2
0 +

n∑
j=2

v2
j

2j∏

k=1

(
sk(·)

1− sk(·)

)(−1)k−1

=

n∑
j=1

v1
−j

2j−1∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

+
n∑

j=1

v1
j

2j−1∏

k=1

(
sk(·)

1− sk(·)

)(−1)k−1

. (11)

The last expression links the degree of substitution between 200- and 100-
strike options and their trading volumes. The left side is a weighted sum of
the trading volumes of the 200-strike options and the right side is a weighted
sum of the 100-strike options. Intuitively, the weights on the 100-strike op-
tions should be greater than the weights on the 200-strike options in order
for the two sums to be equal. In the next section we discuss how to specify
the functions s±k(·) in way that allows the estimation of an equation of the
type (11) from the data.
From the summary statistics for the number of trades on options with differ-
ent moneyness and maturity, it is clear that out-of-the money contracts are
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much more traded than in-the-money contracts for both call and put options.
This is not surprising since one of the main reason for trading on options is
that they provide leverage and the degree of leverage decreases with mon-
eyness. We can reasonably expect that there will be some differences in the
distribution of the trading activity across the out-of-the-money and in-the-
money contracts. Our model can be modified to account for such differences
by separately modelling the trading in these two classes of options by making
the additional assumption that s1 (·) m1 = s−1 (·) m−1. The last expression
simply means that the number trades that are attracted to the at-the-money
200-strike option from the in-the-money 100-strike option next to it equals
the number trades that are attracted to the at-the-money 200-strike option
from the out-the-money 100-strike option next to it. This seems a reasonable
assumption, since intuitively around the at-the-money point the impact of
factors that determine the distribution of option trading such as time to ma-
turity, moneyness and open interest is minimized. Taking this into account,
we can separate the modelling of the distribution of trading activity of in-
and out-of-the-money options. The expression v2

0 = s−1 (·) m−1 + s1 (·) m1

can be rewritten as:

v2
0 = 2 · s1 (·) m1. (12)

By substituting (8) into (12) it follows that:

1

2
v2

0 +
n∑

j=1

v2
j

2j∏

k=1

(
sk(·)

1− sk(·)

)(−1)k−1

=
n∑

j=1

v1
j

2j−1∏

k=1

(
sk(·)

1− sk(·)

)(−1)k−1

. (13)

Similarly, from the assumption v2
0 = 2 · s−1 (·) m−1, we can derive the fol-

lowing expression for out-of-the money options:

1

2
v2

0 +
n∑

j=1

v2
−j

2j∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

=
n∑

j=1

v1
−j

2j−1∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

.

(14)
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5.1 Remarks

In the DAX index options market besides 200- and 100-strike options there
exist 50-strike options with strike prices mixed in between the strike prices
of 200- and 100-strike options. In our analysis so far we have ignored this
fact. Although the trading on 50-strike options is negligible compared to
the trading on 200- and 100-strike options it still can have an impact on
any econometric inference based on (13), (14) or (11). If a 50-strike con-
tract is present between two neighboring 200-strike and 100-strike options,
then it could attract trading volume, which otherwise would go to either the
200-strike or to the 100-strike option. However, we argue that this is not
crucial for the way the distribution of trading activity between 200- and 100-
strike options is modeled. For example, let consider a pair of 200-strike and
100-strike options which has a 50-strike option in between. We assume that
traders want to execute m∗ trades on these three contracts in a two-stage pro-
cess. First, depending on the degree of substitution, part of the trades go to
the 50-strike option and the remaining trades are executed on the 200-strike
or on the 100-strike option. As before, let a function s∗ (·) ∈ [0; 1] which
increases with the degree of substitution determines that (1− s∗ (·)) ·m∗ of
these m∗ trades are executed on the 50-strike contract. In the second step,
the remaining m = s∗ (·) m∗ trades are distributed between the 200-strike and
the 100-strike option, respectively. Now, as in our model, we assume that
there exists a function s (·) ∈ [0; 1] depending on the degree of substitution
which determines that s (·) · m of these m trades are executed on the 200-
strike contract and the remaining (1− s (·)) ·m trades are executed on the
100-strike contract. The function s (·) and the variable m are analogous to
the functions si (·) and the variables mi, respectively. In that way modelling
the distribution of trades between 100-strike and 200-strike options can be
considered separately from modelling the distribution of the trades between
50-strike and 200/100-strike options. Correspondingly, the derivation of the
expressions (13), (14) and (11) is unaffected by the existence of the 50-strike
options.
The summary statistics in Section 3 show that sometimes for a pair of neigh-
boring 200- and 100-strike options, the 100-strike contract has higher average
trading volume than the 200-strike contract. In all such cases the 200-strike
option is further from the at-the-money point than the 100-strike option. Our
model allows such cases to happen even though the corresponding 200-strike
contract colud be more attractive than its neighbor. For example, consider
two neighboring in-the-money contracts s1

i and s2
i . In our setting the trading

volumes of these two contracts are given by:
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v2
i = s2i (·) m2i + s2i+1 (·) m2i+1

v1
i = (1− s2i−1 (·)) m2i−1 + (1− s2i (·)) m2i.

Since the demand for options decreases with the absolute moneyness we can
expect that m2i−1 > m2i > m2i+1. The difference v2

i − v1
i equals:

v2
i − v1

i = (2 · s2i (·)− 1) m2i + s2i+1 (·) m2i+1 − (1− s2i−1 (·)) m2i−1.

Even though the 200-strike contract s2
i might be more attractive than its

100-strike neighbor s1
i (i.e. s2i (·) ≥ 1

2
), it is still possible that v2

i − v1
i < 0 if

the value of m2i−1 is sufficiently larger than that of m2i and m2i+1.
Another important point is which measures for the trading activity vj

i , i =
−n, ..., n , j = 1, 2 to use. Popular choices are the total volume (the total
number of all traded contracts) and the number of transactions. These two
measures are widely used in the research for markets in primary securities
such as equities, bonds and so on. However, options are artificial financial in-
struments and they allow for constructing measures of trading activity which
are better suited for our purposes.
Ideally, in our model the variables vj

i should reflect the trading generated
by market participants which seek to take new short or long positions. The
number of transactions as well as the total volume reflect in addition the
trading by market participants which exit their short or long positions for
various reasons such as portfolio rebalancing, profit taking or terminating a
losing position. This kind of trading is unrelated to the degree of substitu-
tion between options. In principle, we can infer the number of the newly
introduced positions, either short or long and use this measure for the vari-
ables vj

i . This can be done in the following way. At the beginning of each
trading day the total number of short and long positions on a particular op-
tion is given by two times the open interest from the previous trading day
2 · p−1. Remember that for each open option contract there exist one mar-
ket participants that holds a long position in this contract and another one
that holds a short position. During the day there are four different trades
that are executed: trades to close an existing short position, trades to close
an existing long position, trades to open a new short position, and trades
to open a new long position (by trade her we assume the act of taking or
exiting a single short/long position). Let denote the number of such trades
as cs, cl, ns and nl, respectively. Note that 2 · vol = cs + cl + ns + nl, where
vol is the total number of traded contracts during the day. The value of
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ns + nl gives the number of the newly introduced short and long positions.
During the trading day each closed short or long position decreases the value
of two times the open interest from the previous day 2 · p−1 by one, and each
new short or long position increases the value of 2 · p−1 by one. That is,
two times the open interest at the end of the trading day 2 · p is given by
2 ·p = 2 ·p−1−cs−cl+ns+nl. From expression 2 ·vol = cs+cl+ns+nl and
the last expression it follows that ns + nl = p+ vol− p−1. Thus, the number
of the newly introduced short/long positions on a given trading day equals
the open interest plus the volume on that trading day minus the previous
day open interest.
Unfortunately, this measure cannot be computed for the DAX index options
due to the way in which the exchange calculates the open interest. Accord-
ing to the EUREX rules at the end of the trading day only the open and
closed positions of market-makers are matched, while the positions of the
other market participants are left unmatched in the calculation of the open
interest. This makes the reported open interest a distorted measure of the
real one. The calculation of the number of the newly introduced positions
in the above way results in negative numbers in a lot of cases. We use the
number of trades as a measure of the trading activity instead which is less
volatile than the total volume.

6 Estimation of the Model

In this section we discuss how to estimate an equation of type (14). In
practice, we restrict our attention to a model for the distribution of trading
activity among out-of-the-money options specified by (14). The full model
(11) for the trading across all options is not estimated, because of the signif-
icantly lower volume on in-the-money options, which could introduce bias.
First, it should be noted that an exact relationship between the trading vol-
umes on the 200- and 100-strike options of the type (14) can never hold in
practice. To introduce a noise factor in (14) we assume that the trading
volume on the options is observed with noise: v∗ki = vk

i + εk
i , where the error

terms εk
i have zero mean value and additionally are uncorrelated with the

substitution factors discussed in Section 4. This noise in observed trading
volumes could be due to various reasons such as portfolio rebalancing, profit
taking or loss cutting.
Second, given the relatively complicated general form of the expression (14)
convenient but economically meaningful specifications for the function s−k(·)
must be specified which allow for parsimonious econometric estimation. We
introduce such specifications in the following way. Set:
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γ−k (·) = log
s−k(·)

1− s−k(·)
. (15)

The function log x
1−x

is a monotonically increasing transformation of the in-
terval (0; 1) into the interval (−∞,∞). Instead of working with the functions
s−k(·) we will be using γ−k (·) . Since the new functions are monotone trans-
formations of s−k(·), the qualitative impact of the functions’ parameters is
preserved. It follows that:

m∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

= exp

(
m∑

k=1

(−1)k−1 · γ−k (·)
)

. (16)

We set γ−k (·) to be linear functions of parameters that account for the fac-
tors which determine the degree of substitution between options discussed in
Section 4. More specifically, we assume that:

γ−k (·) = α+β1ttm+β2sd+β3 · 1

Index
+β4 ·delta+β5 ·openk+β6 ·monk, (17)

where ttm is the time to maturity. The impact of market volatility on the
degree of substitution is represented by the GARCH(1,1) volatility estimate
sd. To account for the effect of the index level, the inverse of the index level

1
Index

is used. As discussed in Section 4, we include the parameter delta,
which is the derivative with respect to the strike price of the at-the-money
delta. The parameter openk equals log ((1 + o2) / (1 + o1)) where o2 is the
open interest from the previous trading day of the 200-strike contract in the
corresponding option pair, and o1 is the open interest from the previous trad-
ing day of the neighboring 100-strike contract. This parameter reflects the
irregular distribution of the trading on the two options caused by the open
interest. One is added to o1 and o2 to account for the cases when one of them
is zero. Finally, the parameter monk equals the moneyness of the option in
the corresponding option pair which is further way from the at-the-money
point. Note that all coefficient are expected to be positive, with the excep-
tion of β4.
Given the assumed functional form of γ−k (·) , the expression (14) can be
significantly simplified. Set
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γ (·) = α + β1ttm + β2sd + β3 · 1

Index
+ β4 · delta, (18)

and then the following conclusion is satisfied:

m∑

k=1

(−1)k−1 · γ−k (·) = (19)

m∑

k=1

(−1)k−1 · γ +
m∑

k=1

(−1)k−1 · β5 · openk +
m∑

k=1

(−1)k−1 · β6 ·monk.

It is obvious that:

m∑

k=1

(−1)k−1 · γ (·) =





0, if m is even

γ (·) if m is odd.
(20)

The parameter that accounts for the impact of the open interest openk is
defined as:

openk =





log
((

open
(
s2
−j

)
+ 1

)
/
(
open

(
s1
−j

)
+ 1

))
, if k = 2j

log
((

open
(
s2
−(j−1)

)
+ 1

)
/
(
open

(
s1
−j

)
+ 1

))
, if k = 2j − 1.

(21)

After a straightforward calculation, the sum
m∑

k=1

(−1)k−1 · openk reduces to:

m∑

k=1

(−1)k−1 · openk =

=





log
(
open ((s2

0) + 1) /
(
open

(
s2
−j

)
+ 1

))
, if m = 2j

log
(
open ((s2

0) + 1) /
(
open

(
s1
−j

)
+ 1

))
, if m = 2j − 1.

(22)
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The parameter that accounts for the impact of moneyness is given by monk =
k · 100

Index
and it follows that:

m∑

k=1

(−1)k−1 ·monk =




−j · 100

Index
, if m = 2j

+j · 100
Index

, if m = 2j − 1.
(23)

Now the sum (16) reduces to

m∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

= exp

(
m∑

k=1

(−1)k−1 · γ−k (·)
)

=

elog(open((s2
0)+1)/(open(s2

−j)+1))−j· 100
Index , (24)

when m = 2j, and it reduces to:

m∏

k=1

(
s−k(·)

1− s−k(·)

)(−1)k−1

= exp

(
m∑

k=1

(−1)k−1 · γ−k (·)
)

=

eγ(·)+log((open(s2
0)+1)/(open(s1

−j)+1))+j· 100
Index , (25)

when m = 2j − 1. After substituting (24) and (25) into (14), it follows
that:

1

2
v2

0 +
n∑

j=1

v2
−je

β5·log((open(s2
0)+1)/(open(s2

−j)+1))−β6·(j 100
Index) = (26)

exp (γ (·))
(

n∑
j=1

v1
−je

β5·log((open(s2
0)+1)/(open(s1

−j)+1))+β6(j· 100
Index)

)
.

Finally, by dividing both sides of (26) by eβ5·log(open(s2
0+1)) we get:
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1

2
v2

0e
−β5·log(open(s2

0)+1) +
n∑

j=1

v2
−je

−β5·log(open(s2
−j)+1)−β6(j· 100

Index) =

exp (γ (·)) ·
n∑

j=1

v1
−je

−β5·log(open(s1
−j)+1)+β6·(j· 100

Index). (27)

The last expression has a clear intuitive interpretation. The impact of the
time to maturity, volatility, index level and the absolute difference options’
deltas is the same for all contracts, which is reflected by the exponent of
a linear combination of these factors in front of the weighted sum of 100-
strike options in (27). Each option is weighted by an exponent of its money-
ness, such that 200-strike options have decreasing weights with moneyness,
and 100-strike options have increasing weights with moneyness. Finally, the
higher the open interest, the greater the future trading which is reflected by
the negative sign in fron of β5 for both 200- and 100-strike options. Since
the open interest is lower for 100-strike contracts, the weights on 100-strike
contracts given by the open interest will be higher than the corresponding
weights on 200-strike contracts.
To estimate the model we employ the data used to produce the preliminary
statistics in Section 3. That is, the data spans 908 trading days in the pe-
riod between 4 January 1999 and 31 July 2002. We consider only the first
four maturity classes where most of the liquidity is concentrated. Addition-
ally, options with time to maturity less than eight days are discarded form
the sample since it is not possible to get reliable estimates for the implied
volatilities and correspondingly, options’ deltas for very short-term to matu-
rity contracts. This leaves us with a total of 3304 observation. The equation
(27) is estimated with the Generalized Method of Moments. The set of instru-
ments spans the variables ttm, sd, 1

Index
and delta. Additionally, the trading

volumes v2
−j, j = 1, ..., 6, and open interests open

(
s2
−j

)
, j = 1, ..., 6, of the

200-strike options are included. The corresponding figures for the 100-strike
contracts are not used since they are highly correlated with their 200-strike
counterparts and their inclusion could lead to over-identification.
The estimation results are reported in Table 7. First, note that all signifi-
cant coefficients have the expected signs. For call options all coefficients are
significant with the exception of the moneyness coefficient. On the other
hand, for put options the coefficients for the time to maturity, volatility
and delta are not significant, while the coefficient for the moneyness is sig-
nificant. These results support the hypothesized relationship between the
degree of substitution and the distribution of trading activity. All significant
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variables seem to be also economically significant with the exception of the
delta variable for the call options. This impact of the delta difference can
be seen from the range of change of the variable β4 · delta in (18) given by
the interval [−0.139;−0.019] . For comparison, the variables β1ttm, β2sd,
and β3 · 1

Index
take values in the intervals [0.032; 0.744] , [0.498; 1.835] and

[−0.451;−1.762 ], respectively It
is interesting to evaluate the differences in trading activity across options
pairs with different moneyness and maturity. To give such statistics, we
compute the average values of the functions s−k, k = {1, ..., 12} which deter-
mine what percentage of the trades in the corresponding option pair goes to
the 200-strike option. Remember that we consider seven 200-strike and six
100-strike contracts, which account for exactly 12 option pairs and substitu-
tion functions s−k, k = {1, ..., 12}, associated with them. The values of s−k

are calculated from the values of γ−k using the relation

s−k =
exp (γ−k)

1 + exp (γ−k)
, (28)

which is derived from (15). Additionally, we distinguish between the four
maturity classes. The corresponding statistics are reported in Table 8. First,
note that the clustering of trading on the 200-strike contract increases with
maturity for both call and put options, such that for put options the speed
of the increase is greater. In the first three maturity classes, the clustering
is most of the time greater for the call options than for the put options, and
that situation reverses in the fourth maturity class.
Remember that the moneyness coefficient is not significant in the case of the
call options, and in Table 8 we can see that a lot of times for two neighbor-
ing option pairs, the clustering in the more out-of-the-money pair is smaller
than the clustering in its neighbor. However, a more careful look reveals
that in all such cases the nearest to the at-the-money point option pair has

odd number, i.e. the first pair consists of options with strikes
[
s2
−i; s

1
−(i+1)

]

for some i ∈ 0, .., 5, and the second pair consists of the options with the

strikes
[
s1
−(i+1); s

2
−(i+1)

]
. Note that in the first case the strike s1

−(i+1) is far-

ther out-of-the money than the strike s2
−i, and in the second case it is closer

to the at-the-money point than the strike s2
−(i+1). This subtle moneyness

effect could drive the clustering in the first option pair higher than that in
the second pair, although the first option pair is nearer to the at-the-money
point than the second one. The importance of this effect can be further seen
in the generally higher degree of clustering in option pairs with odd numbers
for both call and put options.
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The put options show a steady increase of clustering in options pairs with
moneyness, with two exceptions for the 12th option pair in the first and
the second maturity class. The results in Table 8 show that the 100-strike
contract in the first option pair attracts on average more trades than its
200-strike neighbor for the first three maturity classes. As we noted before,
the average clustering in put options is generally smaller than that in call
options. Additionally, it seems that clustering disappears for very near to
the at-the-money point put options. Finally, the statistics indicate that for
options pairs with higher moneyness and maturity, there is a significant shift
of trading to the more attractive 200-strike contract for both call and put
options. Further research is needed to evaluate the importance of this fact
for market design issues.

7 Conclusion

In this paper we propose and estimate an econometric model for the cross-
sectional distribution of trading activity in the DAX index options market.
The starting point of the model is the assumption that market participants
who would like to trade a continuum of contracts have to choose between
a limited number of listed options. The observed irregularity in trading of
the DAX index options gives us intuition how to model the trading deci-
sions of the market participants. Namely, in this market trading is higher for
contracts ending on 000, 200, 400, 600 and 800 (the class of 200-strike op-
tions) than for contracts with strike prices ending on 100, 300, 500, 700 and
900 (the class of 100-strike options). We propose the hypothesis that when
traders have to choose between two neighboring 200-strike and 100-strike op-
tions, they prefer the 200-strike contract if the degree of substitution between
these two options is high. This allows us to derive an equation which links the
trading and the degree of substitution between these two classes of options.
We use a set of variables which account for the options’ substitution, and
show that with this particular set of factors, the equation can be significantly
simplified. The newly derived equation has convenient analytical properties,
a clear intuitive interpretation and also can be readily estimated from the
data.
The estimation results confirm the hypothesized relation between the degree
of option substitution and the concentration of trading on the 200-strike con-
tracts. In that way we confirm the conclusions of Koch and Lazarov (2003),
who study this concentration of trading using linear regressions. Addition-
ally, we obtain some statistics for the percentage of the trades that are at-
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tracted to the 200-strike options across different maturities and strike prices.
Our results indicate that for options with higher maturities and moneyness,
there is a significant shift of trades to the 200-strike contracts. Further re-
search is needed to evaluate the importance of this fact for market design
issues.
To our knowledge no such model has been proposed in the literature. Note
that our framework is quite flexible and can be applied to model the distri-
bution of trading in markets, where there are many assets which are close
substitutes such as the LIBOR futures market. Finally, the phenomenon of
irregular trading is observed in many other options markets. It would be
interesting to see how our methodology fares in these cases. This is best left
for future research.
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7DEOH���
&DOO�2SWLRQV�6XPPDU\�6WDWLVWLFV�IRU�WKH�7UDGLQJ�9ROXPH�

 
 
 
 �����������������������������������������������������������������������������������������Option Moneyness 

Maturity Class 1 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 1.75 4.80 12.14 29.76 78.56 170.03 181.1 39.91 10.59 5.20 2.97 2.00 1.34 
100-strikes 0.88 3.42 10.89 34.70 96.67 182.70 ----- 79.41 12.78 3.97 1.66 0.90 0.57 

 
 
 

Maturity Class 2 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 2.86 7.39 16.44 31.89 53.27 57.69 41.66 12.48 3.71 1.85 0.96 0.64 0.38 
100-strikes 0.94 3.53 11.55 26.53 40.11 38.15 ----- 17.76 3.91 1.27 0.60 0.26 0.12 

������������������������������������������������������������������
 
 

Maturity Class 3 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 2.09 3.98 9.34 14.22 15.3 13.88 10.79 4.68 1.92 1.14 0.63 0.45 0.32 
100-strikes 0.83 1.79 4.21 7.46 8.53 7.40 ----- 4.64 1.08 0.46 0.22 0.15 0.10 

�
 
 

Maturity Class 4 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 6.03 8.71 11.28 13.67 13.07 11.8 9.46 4.35 2.05 1.11 0.88 0.50 0.50 
100-strikes 1.35 2.50 3.87 4.68 5.40 5.38 ----- 3.27 0.93 0.51 0.26 0.16 0.08 

�
 
 
 

�
�



7DEOH���
3XW�2SWLRQV�6XPPDU\�6WDWLVWLFV�IRU�WKH�7UDGLQJ�9ROXPH�

 
 
 
 �����������������������������������������������������������������������������������������Option Moneyness 

Maturity Class 1 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 4.37 9.87 20.23 37.11 65.91 119.83 200.18 92.72 21.19 8.42 4.51 2.75 4.37 
100-strikes 3.03 6.03 12.15 28.20 60.93 125.57 ----- 141.86 32.58 9.35 4.04 1.77 3.03 

 
 
 

Maturity Class 2 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 8.53 15.19 24.75 35.38 44.96 51.73 50.43 22.35 7.81 3.52 1.88 1.2 8.53 
100-strikes 3.30 6.21 13.57 22.95 29.76 34.55 ----- 28.35 9.06 3.38 1.55 0.83 3.3 

������������������������������������������������������������������
 
 

Maturity Class 3 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 4.84 7.58 11.04 13.76 15.25 15.82 13.49 6.55 2.6 1.42 0.82 0.55 0.30 
100-strikes 1.42 2.23 3.99 6.10 7.43 8.05 ----- 6.19 2.23 1.00 0.52 0.36 0.24 

�
 
 

Maturity Class 4 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 5.81 7.41 8.15 9.79 11.51 12.68 11.66 5.96 2.82 1.85 1.43 1.1 5.81 
100-strikes 1.04 1.85 3.11 3.98 5.17 5.82 ----- 4.52 1.94 0.96 0.54 0.37 1.04 

 
 
 
 

�
�



7DEOH���
&DOO�2SWLRQV�6XPPDU\�6WDWLVWLFV�IRU�WKH�2SHQ�,QWHUHVW�

 
 
 
                                                                                          Option Moneyness 

Maturity Class 1 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 7350 10213 12828 15955 19056 19511 15226 9531 6147 3995 2985 1970 1498 
100-strikes 3384 4973 7219 10565 13451 13116 ----- 8158 4401 2877 1566 833 618 

 
 
 

Maturity Class 2 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 6449 8066 10395 12576 14030 13773 10545 7475 4720 3023 2275 1396 1132 
100-strikes 1787 2557 4637 7105 8332 6849 ----- 4668 2813 1774 984 618 311 

������������������������������������������������������������������
 
 

Maturity Class 3 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 5399 6327 7944 8355 8267 7737 6611 5162 3768 2747 1995 1673 1412 
100-strikes 1456 2131 2783 3386 3585 3348 ----- 2614 1545 858 719 511 227 

�
 
 

Maturity Class 4 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 14071 16942 17679 18267 16687 15141 13655 10805 7697 5454 4047 3494 2113 
100-strikes 2634 3713 4043 4953 5426 5476 ----- 4097 2832 1961 1059 611 319 

 
 
 
 

�
�



7DEOH���
3XW�2SWLRQV�6XPPDU\�6WDWLVWLFV�IRU�WKH�2SHQ�,QWHUHVW�

 
 
 
 �����������������������������������������������������������������������������������������Option Moneyness 

Maturity Class 1 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 8116 11837 15876 18744 20447 21181 19208 14038 9706 6713 5212 4018 8116 
100-strikes 3355 5335 7478 10000 11738 12609 ----- 11511 7892 4893 3137 1726 3355 

 
 
 

Maturity Class 2 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 6555 9823 12377 14273 15502 14896 13146 9710 6746 4675 3440 2668 6555 
100-strikes 1995 3317 5535 7261 7830 7635 ----- 5975 4210 2775 1844 1147 1995 

������������������������������������������������������������������
 
 

Maturity Class 3 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 5211 6470 7117 8833 9918 9469 8141 6649 5271 4214 3455 2756 5211 
100-strikes 1194 1883 2744 3241 3591 3288 ----- 3039 2338 1916 1504 1312 1194 

�
 
 

Maturity Class 4 ��� ��� ��� ��� ��� ��� �� �� �� �� �� �� ��
200-strikes 11372 13436 15225 16651 18224 17994 16452 13981 11208 8938 7564 5992 11372 
100-strikes 1813 3066 4238 5528 5674 5351 ----- 4615 4301 3410 2382 1767 1813 

 
 



7DEOH���
/LQHDU�5HJUHVVLRQV�IRU�WKH�7UDGLQJ�9ROXPH�RI�WKH������YV�����VWULNH�&DOO�

2SWLRQV�
 

,Q�WKH�PRQH\�2SWLRQV�
 
                                 Maturity Class 

Variable �� �� �� ��
F� 37.024 

(3.234)*** 
28.624 

(3.289)*** 
3.846 

(3.195) 
6.129 

(0.777)*** 
�

WWP�
 

-0.646 
(0.313)** 

 
-0.780 

(0.143)*** 

 
-0.013 
(0.087) 

 
-0.065 

(0.011)*** 
�

WWPð�
 

0.009 
(0.008) 

 
0.007 

(0.002)*** 

 
-4.22E-05 
(5.88E-04) 

 
2.13E-04 

(4.12E-05)*** 
�

PRQ�
 

-251.234 
(10.874)*** 

 
-74.842 

(3.173)*** 

 
-22.557 

(1.218)*** 

 
-11.544 

(0.624)*** 
�

PRQð�
 

403.726 
(19.068)*** 

 
117.949 

(5.710)*** 

 
33.250 

(2.047)*** 

 
16.052 

(0.919)*** 
�

RSHQ�
 

0.002 
(1.52E-04)*** 

 
7.62E-04 

(6.32E-05)*** 

 
3.06E-04 

(2.63E-05)*** 

 
1.70E-04 

(1.23E-05)*** 
�

GXP�
 

-0.837 
(0.447)* 

 
0.174 

(0.146) 

 
0.407 

(0.069)*** 

 
0.335 

(1.23E-05)*** 
 

5ð�
�

�����
�

�����
 

�����
 

�����
 
 

2XW�RI�WKH�PRQH\�2SWLRQV�
�
                                  Maturity Class 

Variable �� �� �� ��
F� 121.533 

(7.613)*** 
131.962 

(11.344)*** 
57.566 

(9.948)*** 
26.677 

(3.353)*** 
�

WWP�
 

0.340 
(0.787) 

 
-3.491 

(0.499)*** 

 
-1.178 

(0.271)*** 

 
-0.261 

(0.048)*** 
�

WWPð�
 

-0.004 
(0.020) 

 
0.030 

(0.005)*** 

 
0.007 

(0.001)*** 

 
8.07E-04 

(1.69E-04)*** 
�

PRQ�
 

-701.818 
(17.723)*** 

 
-207.809 
(5.413)*** 

 
-51.730 

(1.614)*** 

 
-27.805 

(0.934)*** 
�

PRQð�
 

717.141 
(27.425)*** 

 
175.090 

(6.795)*** 

 
33.633 

(1.759)*** 

 
14.825 

(0.821)*** 
�

RSHQ�
 

0.002 
(1.52E-04)*** 

 
7.70E-04 

(4.34E-05)*** 

 
4.09E-04 

(2.10E-05)*** 

 
2.24E-04 

(1.16E-05)*** 
�

GXP�
 

3.983 
(0.963)*** 

 
3.540 

(0.442)*** 

 
2.165 

(0.222)*** 

 
2.356 

(0.162)*** 
 

5ð�
�

�����
�

�����
 

�����
 

�����
 
 
 
 
 
 
 

 



7DEOH���
/LQHDU�5HJUHVVLRQV�IRU�WKH�7UDGLQJ�9ROXPH�RI�WKH������YV�����VWULNH�3XW�

2SWLRQV 
 

,Q�WKH�PRQH\�2SWLRQV�
 
                                 Maturity Class 

Variable �� �� �� ��
F� 33.080 

(3.631)*** 
54.605 

(5.278)*** 
27.701 

(4.050)*** 
18.790 

(1.933)*** 
�

WWP�
 

-0.514 
(0.3815) 

 
-1.814 

(0.231)*** 

 
-0.640 

(0.109)*** 

 
-0.238 

(0.027)*** 
�

WWPð�
 

0.010 
(0.010) 

 
0.017 

(0.002)*** 

 
0.004 

(7.23E-04)*** 

 
7.86E-04 

(9.24E-05)*** 
�

PRQ�
 

-180.780 
(8.361)*** 

 
-58.918 

(2.851)*** 

 
-17.050 

(1.003)*** 

 
-7.275 

(0.642)*** 
�

PRQð�
 

202.732 
(11.450)*** 

 
57.837 

(3.576)*** 

 
14.862 

(1.158)*** 

 
5.663 

(0.630)*** 
�

RSHQ�
 

0.001 
(8.35E-05)*** 

 
6.83E-04 

(4.94E-05)*** 

 
3.22E-04 

(2.15E-05)*** 

 
2.32E-04 

(1.50E-05)*** 
�

GXP�
 

-0.712 
(0.459) 

 
-0.0257 
(0.196) 

 
0.215 

(0.084)** 

 
0.138 

(0.063)** 
 

5ð�
�

�����
�

�����
 

�����
 

�����
 
 

2XW�RI�WKH�0RQH\�2SWLRQV�
 
                                  Maturity Class 

Variable �� �� �� ��
F� 144.547 

(5.748)*** 
117.120 

(9.254)*** 
48.428 

(10.853)*** 
22.890 

(3.353)*** 
�

WWP�
 

-0.490 
(0.582) 

 
-2.968 

(0.408)*** 

 
-0.923 

(0.292)*** 

 
-0.218 

(0.048)*** 
�

WWPð�
 

0.015 
(0.015) 

 
0.026 

(0.005)*** 

 
0.005 

(0.002)*** 

 
6.59E-04 

(1.71E-04)*** 
�

PRQ�
 

-962.026 
(17.400)*** 

 
-229.452 
(7.457)*** 

 
-45.870 

(2.928)*** 

 
-31.127 

(1.866)*** 
�

PRQð�
 

1328.134 
(31.206)*** 

 
256.626 

(12.320)*** 

 
32.329 

(4.650)*** 

 
26.684 

(0.821)*** 
�

RSHQ�
 

2.830E-04 
(6.79E-05)*** 

 
6.86E-04 

(3.95E-05)*** 

 
5.35E-04 

(3.22E-05)*** 

 
2.25E-04 

(1.37E-05)*** 
�

GXP�
 

13.979 
(0.851)*** 

 
7.290 

(0.401)*** 

 
3.712 

(0.214)*** 

 
2.873 

(0.182)*** 
 

5ð�
�

�����
�

�����
 

�����
 

�����
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�
�

*00�(VWLPDWLRQ�RI�WKH�(FRQRPHWULF�0RGHO�IRU�WKH�'LVWULEXWLRQ�RI�7UDGLQJ�
$FWLYLW\�

�
�
�

&DOO�2SWLRQV�
 
 
Variable 
 

 
c 

 
ttm 

 
sd 

 
1/Index 

 
delta 

 
open 

 
mon 

 
Coefficient1 
 
 

 
1.742 

(0.198)*** 
 

 
0.004 

(0.001)*** 

 
3.109 

(0.395)*** 

 
-14206.994 

(1678.114)*** 

 
-0.014 

(0.006)** 

 
0.391 

(0.074)*** 

 
1.858 

(1.921) 

number of observations: 3304 
 

�
3XW�2SWLRQV�

 
 
Variable 
 

 
c 

 
ttm 

 
sd 

 
1/Index 

 
delta 

 
open 

 
mon 

 
Coefficient1 
 

 
0.570 

(0.273)** 
 

 
-1.548e-05 
(9.468e-04) 

 
0.971 

(0.610) 

 
-5972.016 

(1888.939)*** 

 
1.7902e-04 
(4.821e-03) 

 
0.305 

(0.081)*** 

 
6.494 

(1.993)*** 

number of observations: 3304 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
1 All standard errors are adjusted for heteroscedasticity and autocorrelation using the Newey-West (1987) 
procedure  
 



 
 



7DEOH���
�

$YHUDJH�'LVWULVEXWLRQ�RI�7UDGLQJ�$FWLYLW\�DFURVV�1HLJKERULQJ�2SWLRQV�ZLWK�
'LIIHUHQW�0RQH\QHVV�DQG�0DWXULW\����

�
&DOO�2SWLRQV�

�
Option Pair Maturity 

Class 1 2 3 4 5 6 7 8 9 10 11 12 
 
1 
 

 
 

0.53 
 

 
 

0.54 

 
 

0.57 

 
 

0.55 

 
 

0.62 

 
 

0.58 

 
 

0.67 

 
 

0.60 

 
 

0.69 

 
 

0.62 

 
 

0.70 

 
 

0.62 

 
2 
 

 
 

0.58 

 
 

0.59 

 
 

0.62 

 
 

0.61 

 
 

0.67 

 
 

0.63 

 
 

0.72 

 
 

0.65 

 
 

0.72 

 
 

0.65 

 
 

0.71 

 
 

0.63 

 
3 
 

 
 

0.64 

 
 

0.64 

 
 

0.68 

 
 

0.68 

 
 

0.73 

 
 

0.70 

 
 

0.75 

 
 

0.66 

 
 

0.71 

 
 

0.65 

 
 

0.65 

 
 

0.66 

 
4 
 

 
 

0.73 

 
 

0.74 

 
 

0.76 

 
 

0.76 

 
 

0.79 

 
 

0.79 

 
 

0.81 

 
 

0.81 

 
 

0.83 

 
 

0.82 

 
 

0.84 

 
 

0.82 

�
�
�
�
�

3XW�2SWLRQV�
�
Option Pair Maturity 

Class 1 2 3 4 5 6 7 8 9 10 11 12 
 
1 

 
 

0.43 
 

 
 

0.51 

 
 

0.54 

 
 

0.59 

 
 

0.64 

 
 

0.67 

 
 

0.74 

 
 

0.76 

 
 

0.81 

 
 

0.82 

 
 

0.87 

 
 

0.86 

 
2 
 

 
 

0.44 

 
 

0.53 

 
 

0.54 

 
 

0.60 

 
 

0.64 

 
 

0.68 

 
 

0.74 

 
 

0.76 

 
 

0.82 

 
 

0.82 

 
 

0.88 

 
 

0.87 

 
3 
 

 
 

0.45 

 
 

0.56 

 
 

0.57 

 
 

0.61 

 
 

0.67 

 
 

0.70 

 
 

0.75 

 
 

0.77 

 
 

0.83 

 
 

0.82 

 
 

0.88 

 
 

0.87 

 
4 
 

 
 

0.52 

 
 

0.59 

 
 

0.60 

 
 

0.64 

 
 

0.68 

 
 

0.71 

 
 

0.75 

 
 

0.77 

 
 

0.82 

 
 

0.84 

 
 

0.88 

 
 

0.90 

�

                                                 
1 The numbers in the cells indicate what percentage of the trades are attracted to the 200-strike contract in the 
corresponding option pair. 


