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Abstract

The recent introduction of the realized variance measure defined
as the sum of the squared intra-daily returns stamped on some high
frequency basis has spurred the research in the field of volatility mod-
eling and forecasting into new directions. First, the realized variance
is a much better estimate of the latent volatility than the sum of the
weighted daily squared returns. As such it is better suited for com-
paring the out-of-sample performances of competing volatility models.
Additionally, it can enter as a parameter in these models proving bet-
ter information than the daily returns commonly used in the standard
volatility models. These two innovations have been utilized in several
recent papers. We extend this line of research by estimating and com-
paring a wide class of volatility models for the DAX index futures that
use the realized variance or the daily returns. To give a new view of
the question whether time series volatility models or implied volatility
have better predictive power we estimate a model which incorporates
both the historical realized variance and the historical implied volatil-
ity. Our results suggest that using realized variance leads to superior
performance compared to the previous approaches. Also, the inclusion
of the implied volatility produces a slight improvement.

JEL classification: C22; G10
Keywords: Forecasting; High-Frequency Data; Volatility

∗The author is grateful to Erik Theissen for providing helpful comments. Deutsche
Börse AG generously supplied the data used in this paper.

†Correspondence address: BWL I, Adenauerallee 24-42, D-53113 Bonn, Germany. Tel.:
+49 228 73 92 22, E-mail address: zdravetz.lazarov@wiwi.uni-bonn.de .

1



1 Introduction

Modeling and forecasting volatility has been of significant interest in the field
of financial econometrics. Having proper volatility measures and predictions
is crucial in the area of risk management (i.e. computing Value-at-Risk) as
well as in option pricing and trading. In addition to its practical importance,
volatility modeling poses some important theoretical challenges. A general
problem that concerns every study of the volatility is that it is inherently
unobservable. This rises the need for models that give an exact ex-post es-
timate of the volatility. Another big area of research is the relation between
the option implied volatility and the future volatility. There is largely a
disagreement whether historical time series models for volatility or volatility
inferred from option prices is better suited for prediction purposes.
The workhorse of the financial econometrics for modeling volatility is still the
daily GARCH model. Although many different modifications of the original
specification have been introduced, various studies have shown that they
provide only a marginal improvement over the standard and mostly used
GARCH(1,1) model. GARCH-type of models for the first time provided an
ex-post estimate of the volatility in a way that captures successfully the long
memory observed in the daily squared returns. In these types of models, the
change in the volatility from day to day is inferred using the information
in the daily squared returns, which are computed from the closing price of
the current day and the closing price of the previous day. Andersen and
Bollerslev (1998) criticized this approach, since it ignores the information
contained in the intra-daily price movements. They propose a new measure
for the daily volatility called the realized variance which is a sum of the intra-
daily squared returns computed on a fixed high-frequency basis. In Andersen
at al. (2002) it is shown that under very general conditions this measure is
an unbiased and efficient estimate of the variance of the daily returns. The
authors further claim that the noisiness in the realized variance of the ma-
jor foreign exchange rates computed at a 5-minutes frequency is so low that
it essentially can be used as an error-free measure for both theoretical and
practical purposes.
Another important issue concerning volatility is forecasting. Most of the re-
search in that direction compares the performance of the volatility time series
models and the implied volatility. Modern literature on that topic started
with the seminal paper by Canina and Figlewski (1993). The authors con-
sider the S&P 100 index options market. They regress a measure for the
future volatility defined as a weighted sum of the squared returns on the
current implied volatility and find little relation between the two variables as
indicated by the very low R2’s of the regressions. In addition, when a measure

2



for the historical volatility is added as a regressor then the implied volatil-
ity becomes statistically insignificant. In a study using similar methodology
Jorion (1995) looks at the market for options in several major currencies.
He finds that implied volatility does have relation to the future volatility
which is statistically and economically significant even after including the
historical volatility in the regression equation. Similar results are reported
by Lamourex and Lastrapes (1993) using data on individual equity options.
Day and Lewis compare the daily GARCH model and the daily GARCH
model with the implied volatility as an exogenous regressor. They find that
S&P 100 options implied volatilities do provide information incremental to
the historical volatility.
Fleming (1998) and Christensen and Prabhala (1998) criticize the above
mentioned studies for using overlapping observations, which induces auto-
correlation in the residuals thus leading to inefficient coefficient estimates
and possible spurious results. Fleming (1998) constructs a GMM estimator
that explicitly accounts for the overlap in the observations while Christensen
and Prabhala (1998) use non-overlapping observations in their estimations.
Contrary to the previous studies which favor the historical volatility, these
authors find that historical volatility does add much incremental information
besides that provided by the implied volatility.
Most of these papers use a weighted sum of squared returns as a measure for
the ex-post volatility. This measure, however could be quite noisy especially
at short horizons. Other studies employ an ex-post estimate of the volatil-
ity produced by a parametric model such as GARCH. This approach could
induce a serious bias since it favors the model which is used to calculate the
estimate for the latent volatility. A few recent papers employ the realized
variance measure by Andersen and Bollerslev (1998) instead. For example,
Andersen at al. (2002) consider the volatility of the Japanese Yen versus
US Dollar and the Deutsche Mark versus US Dollar exchange rates. The
authors use an autoregressive fractionally integrated moving average process
(ARFIMA) for modeling realized variance. They find that the predictive
ability of this model is much better than the predictive ability of the daily
GARCH(1,1) model. The authors do not consider the implied volatility.
In another paper, Li (2002) compares the implied volatilities and AFRIMA
model for the realized variance and finds that historical realized variance does
add incremental information besides that provided by the implied volatil-
ity. Pong at al.(2002) compare the predictive properties of a short memory
(ARMA) model for the realized variance, a long memory (ARFIMA) model
for the realized variance and the implied volatility. These authors find that
the ARMA model has similar forecasting power as the more complicated
ARFIMA model. In addition, the time series models which use historical
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data perform better than the implied volatility over short horizons (one day
and one week). Over longer horizons (one month and three months) the
implied volatility seems to be a better predictor. Martens and Zein (2002)
look at the volatility of three separate asset classes: equity, foreign exchange
and commodities. They find that in the markets for S&P 500, YEN/USD
and Light,Sweet Crude Oil futures time series models for realized variance
provide similar and sometimes better forecasts than the implied volatility.
The research so far indicates that there is still largely a confusion about the
best way to model and predict volatility. The point of most disagreement is
the comparison between the forecasting abilities of the time series models and
the implied volatilities. Different studies favor either one of the approaches.
However, almost all of them invariably neglect the possibility that the im-
plied volatility incorporates a risk-premium. This may bias any predictions
based solely on the implied volatility. In order to account for the volatility
risk-premium, a model that incorporates both the historical and the implied
volatility is required.
The big discrepancy in the conclusions about the performance of the different
volatility models requires new studies which correct for the previous draw-
backs. More specifically, the realized variance should be used as a parameter
in the time series volatility models. It is much more efficient estimator of the
latent volatility than the daily squared returns which enter as parameters in
popular volatility models like the daily GARCH model. It also should be
used as a benchmark to which the models’ performances are compared in-
stead of the widespread practice of using a weighted sum of squared returns
or an ex-post GARCH estimate.
Taking all these comments into account we estimate and compare the in-
and out-of-sample performances of several volatility models. We focus on
the DAX index futures market. This is one the most liquid derivatives mar-
kets in the world and the computation of the realized variance measure of
Andersen and Bollerslev (1998) is relatively free from market microstructure
biases. In addition, there is an active market for DAX options that allows for
a robust calculation of the volatility smile, which is of utmost importance for
models that utilize the market expectations for the future volatility extracted
from option prices.
The first model we consider is the daily GARCH(1,1) model. Additionally,
an extension of the daily GARCH(1,1) with the implied volatility is included
to correct for the inability of the daily GARCH models to capture abrupt
changes in the market conditions. The GARCH-type of models have been
initially proposed as a way to account for the high persistence in the squared
daily returns. Later, the same specification as the standard GARCH specifi-
cation has been proposed by Engle and Russell (1998) as a means to model
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the durations between transactions, which show a high degree of persistence
like the squared daily returns. In a similar spirit, we consider a GARCH
model for the realized variance, which to our knowledge has not been done
in the literature. A extension of this model with the implied volatilty is also
included. Next, we consider an autoregressive fractionally integrated mov-
ing average (ARFIMA) model for the realized variance. A couple of recent
papers compare the predictions of the ARFIMA model for the realized vari-
ance to the predictions obtained from the implied volatility (see Li (2002),
Martens and Zein (2002) and Pong at al. (2002)). Instead of comparing
both approaches, we investigate the improvement of the forecasts from the
ARFIMA model that can be obtained by adding the implied volatility into
the model. Finally, we consider an ad-hoc linear regression model, which
is defined simply by regressing the realized variance over the corresponding
forecasting horizon on the lagged value of the implied volatility.
Our results confirm that the daily GARCH model has significantly worse
performance than the models based on the realized variance. Adding the
implied volatility changes the output of the model quite a lot. Indeed, the
extended daily GARCH model has better forecasting power than the two
GARCH models for the realized variance. This is a bit surprising, since the
realized variance does not enter as a parameter in this model and at the
same time it gives better predictions than the GARCH models based on the
realized variance. The GARCH model for the realized variance seems to be
well-specified but as we have already mentioned it has worse predictive per-
formance than the daily GARCH model extended with the implied volatility.
The inclusion of the implied volatility changes little the output of the model.
The ARFIMA model produces better forecasts than the previous models.
The extension of this model with the implied volatility improves slightly its
performance. The ad-hoc regression model produces unexpectedly good fore-
casts which are comparable to those of the extended ARFIMA model and
at longer forecasting horizons are even better. This is an interesting finding
which questions the benefits of using complicated models for forecasting the
volatility of the DAX index. More research is needed to see if this holds for
other markets.
The wide class of the considered models encompasses the use of the realized
variance in time series models, modeling the long term memory of volatil-
ity and the simultaneous use of the implied and historical volatilities. This
allows to access the importance of these factors for modeling and forecast-
ing purposes. Overall, it seems that in order to produce good forecasts it
is important to have a variable which reacts rapidly to changes in market
conditions. Our results indicate that the realized and implied volatility al-
most equally well serve this purpose. Since implied volatility contains a
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risk-premium it can not be used directly as a predictor. The extended daily
GARCH model which fits the implied volatility to the daily squared returns
produces better forecasts than the GARCH model for the realized variance.
Also, the ad-hoc regression model produces comparable or better forecasts
than the complicated ARFIMA model. Note that for estimating the param-
eters of this model both the realized and the implied volatility are needed (to
account for the volatility risk-premium), but the predictions are made solely
on the basis of the implied volatility. This shows that the realized variance
contains little incremental information to the implied volatility with regard
to the future volatility, but it is possibly needed to infer the volatility risk-
premium. On the other hand, adding the implied volatility to the models
that utilize realized variance shows little change in their performances.
The rest of the paper is organized as follows. Section 2 contains description
of the intra-daily futures data as well as the calculation of the realized vari-
ance. Section 3 discusses the algorithm for the calculation of the volatility
smile. Section 4 discusses the econometric and economic issues in estimating
the relation between the future volatility and the current implied volatil-
ity. Section 5 compares the in-sample models’ performances while Section 6
compares their out-of-sample predictions over forecasting horizons of lengths
between one and ten days. Section 7 summarizes the results and concludes.
Before proceeding further we would like to make the following editorial re-
mark. In the literature ’volatility’ traditionally refers to the standard de-
viation of the returns of a particular asset. However, in a lot of papers the
authors implicitly refer to volatility as a measure for the variance instead. In
this paper we are concerned with the modeling and predicting the variance
of the returns of the DAX index futures. To avoid misunderstanding, we will
use the term variance most of the time and the term volatility only in cases
when this does not rise confusion.

2 The Futures Data Description and the Com-

putation of the Realized Variance.

We use data provided by Deutsche Bourse on all transactions on the DAX
futures and options traded on the electronic trading platform Eurex for the
period 4 January 1999 to 31 July 2002 which consists of totally 908 trading
days. During that period of time trading started at 8:50 a.m. However, the
closing hours have been changed three times. Between 4 January 1999 and
17 September 1999 trading ended at 17:00 p.m., between 18 September 1999
and 1 July 2000 trading ended at 17:30 p.m. and for the rest of the sample
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the trading ended at 20:00 p.m.
At each point of time there exist three futures contracts with maturities
within the cycle March, June, September, December. Contracts expire on
the third Friday of the maturity month if that is an exchange trading day,
otherwise, on the exchange trading day immediately prior to that Friday.
For the purpose of the computation of the realized variance we use the first
to maturity contract, since it is the most liquid and its price follows closely
the value of the DAX index. The only exception occurs on the expiration
day of the contract when it is traded till 13:00 p.m. In this case we switch
to the second-to-maturity futures.
Realized variance measure is the sum of the intra-daily squared returns
stamped at some fixed high-frequency. The choice of the frequency is dic-
tated by achieving a balance between measuring the volatility with as little
noise as possible on one hand and avoiding market microstructure effects on
the other hand. Different studies use returns stamped at intervals of sizes
ranging from 5-minutes to 30-minutes. Given the high liquidity of the DAX
futures, we use 5-minutes returns. This is also the preferred time interval in
the studies for the foreign exchange market.
For each five minute interval we compute the corresponding return as the
log-ratio of the value of the last transaction that falls into the interval versus
the value of the first transaction that falls into the interval. The realized
variance is computed by the formula

RV 2
t =

l(t)∑
t=4

r2
i,t + r∗2t ,

where ri,t , i = 1, ..., l (t) are the corresponding 5-minutes returns on the
t−th trading day. We skip the first three 5-minutes intervals(the first 15
minutes of trading) for the following reason. The trading day begins with a
pre-opening period when the opening price for the contract is determined.
During this period, market participants enter quotes and orders until a time
determined by the exchange. After that, a matching of the maximal possible
number of quotes and orders is done and an opening price for the contract is
determined. This trading mechanism causes sometimes lack of transactions
in the very beginning of the trading day which may last up to a quarter of
an hour. Overnight volatility is accounted by the term r∗2t which the squared
overnight return measured as the log-ratio of the value of the first transaction
that falls into the fourth trading interval on the t + 1−th trading day versus
the value of the last transaction on the t−th trading day.
After computing the realized variance in the above way we discard from the
sample two trading days, namely 11 September 2001 and 20 November 2001.

7



On both days the variance is unrealistically high and this could distort the
econometric analysis. In the former case the realized variance is extremely
high and the inclusion of this single observation changes the summary statis-
tics significantly. Since this observation is an outlier caused by non-economic
reasons we exclude it to prevent potential bises that could arise when com-
paring the performance of the different volatility models.
Table 1 presents summary statistics for the realized variance and the squared
daily returns measured as the log-ratio of the daily closing prices. Addition-
ally, analogous statistics for the implied variance of the nearest to maturity
at-the-money option with time to expiration at least seven days are also pre-
sented. As it can be seen the autocorrelation of the realized variance is much
higher than that of the squared returns. It also follows a nice monotoni-
cally decreasing pattern versus the erratic behavior of the squared returns
autocorrelation. The standard deviation of the realized variance is about
three times smaller than the standard deviation of the squared returns. This
preliminary evidence gives a good indication that the realized variance is a
much less noisy measure of the latent variance than the squared returns. Note
that the realized variance and the implied variance have similar descriptive
statistics.

3 The Options Data Description and the Com-

putation of the Volatility Smile.

We use data on the DAX index options to compute the at-the-money vari-
ance and the full volatility smile for near maturity options. This information
is used later as a parameter in different volatility models. The data spans
all transactions on the DAX options traded on Eurex for the same period as
in the case of the futures data. Again we discard two days from the sample,
namely 11 September 2001 and 20 November 2001. Trading on the DAX
index options ended at the same time as the trading on the DAX futures.
However, the trading started ten minutes later at 9:00 a.m.. All options are
European style and the underlying is the DAX index. At each point of time
there exist contracts with 8 different maturities. For the purpose of this pa-
per we use only the first two nearest to maturity sets of options. They have
expiration dates falling on the third Friday (or on the last exchange trading
day before if any of these days is a holiday) of the first two successive months.
For each trading day we compute the volatility smile implied by nearest to
maturity option set if it expires at least seven days from the current day, oth-
erwise we use the second to maturity option set. This is done because very
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short to maturity options have implied volatilities that are very sensitive to
changes in the price of the underlying and the computation of the volatility
smile for such options is rather unstable.
The estimation of the implied volatilities closely follows Hafner and Wallmeier
(2000). We partite each trading day into five-minutes intervals. Option prices
are matched with the prices of the nearest to maturity futures if the corre-
sponding transactions on the both instruments fall into the same five-minutes
interval. We infer the implied index value in the corresponding five-minute
interval by the forward-futures parity using the linearly interpolated LIBOR
rate that matches the futures maturity. Note that the DAX index is a ”total
return” index, i.e. it measures the performance of the dividends as well the
share returns so the dividend rate is not used in this computation. From
the matched option and index prices, the implied volatility is calculated by
inverting the Black-Scholes formula. Finally, the volatility smile is computed
by fitting a smooth piecewise quadratic function that best matches the com-
puted implied volatilities using the least squares criterion. More precisely,
the volatility smile is assumed to have the functional form

IV (m) = α0 + α1m + α2m
2 + D

(
β0 + β1m + β2m

2
)
,

where:

D =

{
0, if m ≤ 1
1, if m > 1.

We additionally assume that the two segments of the function join at at-the-
money point m = 1 and that the function IV (m) is differentiable. At the
end the shape of the volatility smile reduces to:

IV (m) = α∗0 + α∗1m + α∗2m
2 + α∗3D

(
1 + 2 ·m + m2

)
.

4 The Relation between the Implied Vari-

ance and the Latent Variance

A natural candidate for a variable that predicts the future variance is the op-
tion implied variance. Intuitively, it could provide a better forecast than the
historical time series models since option implied variance is observable and
reflects the market expectations for the future variance. However, there are
a number of important issues that arise when one uses the implied variance
for predictive purposes. The first group of problems concerns the potential
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biases in the econometric estimation of the relation between the implied vari-
ance and the future variance. The second group of problems is related to the
extraction of the market expectations for the future variance from option
prices. In this section we will give a short discussion of these issues and the
ways to deal with them. This will be important later when specifying and
evaluating the forecasting performance of the different volatility models.

4.1 Econometric Problems Associated with Estimat-
ing the Relation between the Implied and Statis-
tical Variance.

Most of the studies that test the predictive ability of the option implied
variances usually employ a regression of the form

σ2
t,T = α + β · σ2

t,T (bs) + εt,T , (1)

where σ2
T,t (bs) is the implied variance at time t of the at-the-money option

with maturity at time T . The dependent variable σ2
t,T is an ex-post estimate

of the variance over the interval [t, T ]. The first hypothesis that is tested is
whether the implied variance is an unbiased predictor of the future variance,
i.e. whether α = 0 and β = 1. This is the so called expectation hypothesis.
The second hypothesis that is widely tested is the informational efficiency
hypothesis Jorion (1995). It is an encompassing regression which adds a
measure for the historical variance σ2

t (hs) as an additional regressor:

σ2
T,t = α + β · σ2

t (bs) + γ · σ2
t (hs) + εt,T . (2)

If the implied variance incorporates all available information at the current
moment, it could be expected that the coefficient in front of the historical
variance σ2

t (hs) is not significantly different from zero.
One econometric problem with this regression approach is that most of these
tests are performed using overlapping observations, which induces autocor-
relation in the residuals εt,T . While this does not change the point estimates,
it could bias the standard errors. Fleming (1998) and Christensen and Prab-
hala (1998) argue that the use of overlapping data favors the historical vari-
ance σ2

t (hs). These authors point out that this could explain the results of
Canina and Figlewski (1993) which show that after including σ2

t (hs) in the
regression (1) the coefficient in front of the implied variance becomes not
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significantly different from zero in the new regression (2). Fleming (1998)
proposes an instrumental variables solution to this problem and finds that
implied variance is an efficient albeit biased estimator of the future variance,
which is also informationally efficient. Similar results are reported by Chris-
tensen and Prabhala (1998) which use non-overlapping data to avoid this
bias. Note that we find that the use of overlapping observations produces
similar results as the use of non-overlapping observations when performing
regressions of the type (1). A possible explanation for this result is that we
employ the realized variance as the ex-post variance estimate σ2

t,T instead of
a weighted sum of squared returns as Fleming (1998) and Christensen and
Prabhala (1998).
Another problem that has received little attention in the literature with the
exception of the recent paper by Chernov (2002) is the following. The ex-post
estimate of the variance σ2

t,T which is usually a weighted sum of the squared
daily returns equals the latent variance plus a noise term. If that noise term
is correlated with any of the regressors in (1) or (2), this would lead to bi-
ased estimates for the coefficients. Chernov (2002) claims that this problem
is much more serious than the problem of using overlapping observations. He
proposes the use of instrumental variables to alleviate this bias. In his paper
he employs a weighted sum of the squared returns as an ex-post measure for
the variance σ2

t,T and uses its lagged values as instruments. Another way to
avoid potential biases of that type is to use a less noisy estimate of the latent
variance such as the realized variance. As we mentioned before this has been
done in the recent studies by Andersen at al. (2002), Li (2002), Pong at
al. (2002) and Martens and Zein (2002). In this paper we also exclusively
employ the realized variance as an ex-post variance measure.

4.2 Problems Associated with Inferring the Market
Expectations for the Future Variance from the Op-
tion Prices.

At-the-money implied variance is widely used as an estimate of the future
variance. It is computed by inverting the Black-Scholes formula which as-
sumes that the underlying process follows a geometric Brownian motion with
constant volatility. This is a clear inconsistency since if the variance were
constant there would not be a need to predict it. In practice the inverting of
the Black-Scholes formula is used by the market participants as a transforma-
tion of the option prices to the implied volatilities, which are easier to work
with. It has been a consensus among traders and academics for many years,
without any theoretical justification, that the implied variance(volatility) of
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the most actively traded at-the-money option is the best market estimate of
the future variance(standard deviation). In their seminal paper, Hull and
White (1987) for the first time derive a theoretical relationship between the
at-the-money variance and the future variance. The authors introduce a
stochastic volatility model of the form

∂St

St

= µt∂t + σt∂W 1
t , (3)

∂σ2
t

σ2
t

= λ∂t + σ2∂W 2
t , ∂W 1

t ∂W 2
t = 0, (4)

where the variance of the underlying asset is a stochastic variable and fol-
lows a geometric Brownian motion. This model is capable of generating the
volatility smile pattern observed in options markets. In that setting Hull and
White show that the prices of the plain vanilla options can be expressed as an
expectation of the Black-Scholes formula evaluated at the average integrated
variance subject to the risk-neutral measure. More specifically

HW
(
St, K, T, σ2

t

)
= EQ

[
BS

(
St, K, T, V 2

t,T

)]
, (5)

where HW (St, K, T, σ2
t ) and BS

(
St, K, T, V 2

t,T

)
are the Hull-White and the

Black-Scholes option prices, respectively. Here St is the spot price of the
underlying, K is the option strike price, T is the time to maturity and σ2

t is
the spot variance. The term V 2

t,T represents the average integrated variance
(quadratic variation) over the interval [t, T ] :

V 2
t,T =

1

T − t

T∫

t

σ2
s∂s. (6)

Since the Black-Scholes formula is approximately linear in variance for at-the-
money options, it follows that for strike prices K near the at-the-money point

HW
(
St, K, T, σ2

t

)
= EQ

[
BS

(
St, K, T, V 2

t,T

)]
≈ BS

(
St, K, T,EQ

[
V 2

t,T

])
,

(7)

i.e. the implied variance of the at-the-money options is approximately equal
to the average future expected variance:
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σ2
t,T (bs) ≈ 1

T − t
EQ




T∫

t

σ2
s∂s


 . (8)

If we additionally set the market price of the volatility risk to zero, then the
risk-neutral measure in the expectation (8) will coincide with the statistical
measure. This immediately implies a relation of the type given by the re-
gression (1).
Note that to justify the regression equation (1) two strong assumptions are
needed, namely that the variance follows a geometric Brownian motion, it is
uncorrelated with the underlying and the market price for volatility risk is
zero. If one of these two conditions is violated, there is no theoretical reason
to expect that the implied at-the-money variance is an unbiased predictor of
the future variance. In fact, in options markets for each strike price we ob-
serve a different value for the implied variance, and in principle each of these
values could serve as an estimate for the future variance. In Appendix A we
provide a model-free estimate of the future variance implied by the prices of
the full spectrum of plain vanilla options having the same expiration date
under some relatively weak assumptions. More specifically, at each moment
t we derive the mathematical expectation iv2

t,T of the average quadratic vari-
ation given by the left hand side of (8) from the prices of the plain vanilla
options with maturity at T .
It is instructive to compare the implied at-the-money variance σ2

t,T (bs) to
the model-free estimation of the future variance iv2

t,T . For each day in the
sample we calculate the value of iv2

t,T from the nearest to maturity options
with time to expiration at least seven days, using the volatility smile whose
computation is described in Section 3. When regressing ivt,T on σ2

t,T (bs) it
turns out that both variables are very closely related to each other:

ivt,T = 1.83E − 05
(1.12E − 06)∗∗∗

+ 1.013
(0.005)∗∗∗

·σ2
t,T (bs)+εt. R2 = 0.97

N = 906.
(9)

The R2 is very high and the slope coefficient is close to unity. To get a
better picture for the economic significance of the bias induced by the in-
tercept in (9), we rescale both variables as the yearly standard deviation
(volatility) and run the regression (9) again which yields:
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√
ivt · 365 = 0.016

(0.001)∗∗∗
+ 0.991

(0.005)∗∗∗
·
√

σ2
t (bs) · 365+εt, R2 = 0.97

N = 906.
(10)

Again the slope coefficient is quite close to one. The intercept shows that the
implied yearly at-the-money volatility underestimates the model-independent
estimate

√
ivt · 365 by 1.6 volatility points on average. Of course this bias

may not only be due to the inefficiency of σ2
t,T (bs) as a predictor of the fu-

ture variance, but also due to inaccuracies in the computation of iv2
t,T . The

calculation of iv2
t,T is done using the prices of both in- and out-of-the money

options, which have higher bid-ask spreads than the at-the-money option.
This makes the room for errors in the calculation of iv2

t,T significantly higher
than in the calculation of σ2

t,T (bs). Nevertheless both variables are very
closely related to each other up to a constant term. Since the models we
consider are invariant to a linear transformation of the implied variance, in
what follows we use only the at-the-money implied variance. It has already
been widely used in the literature and also allows for more straightforward
and error-free calculation.
Another problem which arises when comparing the latent statistical variance
to the implied variance is that every estimation for the future variance in-
ferred from option prices incorporates a risk premium. Unless the market
price for the variance risk is zero, any regression of the from (1) will be bi-
ased i.e it will give estimates for which α 6= 0 and β 6= 1. This possibility
is almost always neglected in the literature. Unfortunately, the only way to
gauge the impact of the variance risk premium is to specify a parametric
model. To show how a non-zero risk premium can affect the regression (1),
we will give a short example using the well-known Heston model. The price
dynamics of the underlying instrument and its variance under the statistical
measure P in the Heston model are given by:

∂St

St

= µt∂t + σt∂W 1
t , (11)

∂σ2
t =

(
θ − kσ2

t

)
∂t + σ

√
σ2

t ∂W 2
t , ∂W 1

t ∂W 2
t = ρ. (12)

The market price of the variance risk is proportional to the spot volatility
Λt = ϕ·

√
σ2

t . Under the risk-neutral measure the dynamics of the variance
is given by:

∂σ2
t =

(
θ − (k + ϕ) σ2

t

)
∂t + σ

√
σ2

t ∂W 2
t . (13)
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Using well-known facts for the mean-reverting processes (12) and (13), the

expectations EP

[
T∫
t

σ2
s∂s

]
and EQ

[
T∫
t

σ2
s∂s

]
can be readily calculated:

EP




T∫

t

σ2
s∂s


 = αt,T + βt,T EQ




T∫

t

σ2
s∂s


 + γt,T σ2

t . (14)

The coefficients αt,T ,βt,T and γt,T depend only on t and T and the parame-
ters in variance specifications (12) and (13). The last expression implies a
regression of the form (1) with α 6= 0 and β 6= 1 plus an additional regres-
sor for the spot variance. From this example, it is clear that tests of the
predictive ability of the implied variance using regressions of the type (1)
could be misleading. The existence of a variance risk-premium could make
the relation between the implied and statistical variance more complicated
than that implied by the regression (1) with the conditions α = 0 and β = 1.
Chernov (2002) finds that by estimating a regression of the form (1) with the
spot variance as an additional regressor as postulated by the relation (14) and
taking into account the possibility for non-zero intercept and slope coefficient
different from unity, the expectation hypothesis for the implied variance can
not be rejected. Motivated by this result, in Section 6 we employ a regression
model suggested by the relation (14) for predictive purposes. However, in
contrast to the findings obtained by Chernov (2002), the coefficient in front
of the spot variance turns out to be insignificant.

5 In-Sample Modeling of the DAX Volatility

Before proceeding to the issue of forecasting, it is important to have a good
picture of the ex-post estimates of the variance produced by different volatil-
ity models. This will serve as an additional guide in evaluating their out-of-
sample forecasting abilities.
In this section we consider the in-sample performances of several models. It
turns out that the estimates produced by the standard daily GARCH model
differ significantly from the models which use the realized variance or the
implied variance. This difference is due to use of the daily squared returns
in the daily GARCH model which contain a lot of noise and are not able
to capture abrupt changes in the market volatility. This is also confirmed
by the worse out-of-sample performance of this model reported in the next
section.
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5.1 The Daily GARCH Model and the Daily GARCH
Model Enhanced with the Implied Variance

The daily GARCH model is still the most widely used volatility model. It
allows to infer the latent variance from the squared daily returns. The stan-
dard GARCH(1,1) model specifies the variance of the daily returns σt as
a predictable process determined by a linear combination of the previous
squared returns r2

t−1 and the previous conditional variances σ2
t−1:

rt = εt · σt, εt are i.i.d, (15)

σ2
t = α + β · r2

t−1 + γ · σ2
t−1. (16)

This specification is able to account for the long term autocorrelation of the
squared daily returns, which is captured by the lagged conditional variance
value σ2

t−1 in (16). The current changes in the variance are accounted by the
lagged value of the squared daily return r2

t−1.
The use only of daily data has drawn some criticism since it contains a lot of
noise and the changes in the market conditions are inefficiently incorporated.
One way to alleviate this problem is to include exogenous variables in (16).
A good candidate for such variable is the at-the-money implied variance.
As we have already commented, it is widely thought to reflect the market
expectations for the future variance by aggregating all currently available
information. Additionally, our results in the previous section show that it
is very closely related to the model independent prediction iv2

t,T for the fu-
ture variance. The idea of using the implied variance is utilized by Day and
Lewis (1992). The authors look at the information content of the implied
variance relative to the information contained in the squared daily returns by
including it as an exogenous variable in the GARCH and EGARCH models.
Overall, they find that including the at-the-money implied variance improves
the models’ performances.
We also carry out similar analysis to that of Day and Lewis (1992). In Table
2 are shown the estimation results for the GARCH(1,1) model as well as
for the GARCH(1,1) model enhanced with the implied variance σ2

t−1 (bs) of
the nearest to maturity at-the-money option with time to expiration at least
seven days. Apparently, the inclusion of σ2

t−1 (bs) as an exogenous variable
in (16) appears to capture the long-term memory property of the variance,
since the coefficients in front of the conditional lagged variance σ2

t−1 are not
significantly different from zero. The coefficient in front of the lagged values
of the squared daily return is significant and negative. This possibly indicates
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that the implied variance contains a risk-premium which is proportional to
the level of the latent variance.
To compare the output gv2

t of the daily GARCH model and the output
gv (bs)2

t of the extended daily GARCH model we regress gv2
t on gv (bs)2

t :

gvt = 7.71E − 05
(7.76E − 06)∗∗∗

+ 0.754
(0.035)∗∗∗

·gv (bs)2
t +εt, R2 = 0.50

N = 905.
(17)

The slope coefficient is significantly below one and the intercept is signifi-
cantly different from zero. The R2 of the regression is also relatively low.
Thus, adding the implied variance as an exogenous regressor in the daily
GARCH specification changes the estimation output significantly.

5.2 Realized Variance and the GARCH-RV Model

In this section we propose an autoregressive conditional model for the real-
ized variance which is analogous to the standard daily GARCH model and
the Autoregressive Conditional Duration (ACD) model of Engle and Russell
(1998). This model allows for a convenient and parsimonious way to capture
the long-term memory observed in the realized variance series.
The model starts with specifying the joint density of the realized variances
RV 2

1 ,....,RV 2
n as a function p (x1, ..., xn; ϑ) depending on a set of parameters

ϑ . This density function can be written as a product of the successive con-
ditional densities:

p (x1, ..., xn; θ) =
n∏

t=1

p (xt|xt−1..., x1; ϑ) . (18)

The idea is, as in Engle and Russell (1998) to specify the functional form
of the conditional densities directly such that the long path-dependency of
the realized variance is captured. More specifically, it is assumed that there
exist a function ht which depends only on the information available up to

the moment t− 1 such that the scaled realized variances
RV 2

t

ht
are identically

and independently distributed. In that way the value of ht summarizes the
information contained in the previous movements of the realized variance.
The function ht is set to the conditional expectation of RV 2

t at the moment
t− 1:

ht = Et−1

[
RV 2

t

]
, (19)
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with the functional form

ht = α + β ·RV 2
t−1 + γ · ht−1. (20)

We call this specification the GARCH-RV(1,1) model. It is analogous to the
GARCH(1,1) model and the ACD(1,1) model of Engle and Russell (1998).
All three models have the same likelihood function. One can add more lagged
values in (20) of both the realized variance and the conditional realized vari-
ance but the estimation of this extended specification shows that there is no
difference in the performance as in the case of the daily GARCH model. The
variable ht can be interpreted as the one step ahead prediction of the real-
ized variance. Another alternative, if we assume that the realized variance
is not an error-free estimate of the latent variance, is to assume that ht is
the ex-post value of the latent variance at time t as in the standard GARCH
specification.
Table 2 presents the estimation results for the GARCH-RV model and Ta-

ble 3 shows some summary statistics for the scaled realized variances
RV 2

t

ht
.

The null hypothesis that the mean value of
RV 2

t

ht
is one can not be rejected.

Also, the lagged autocorrelations of the scaled variances are not significantly
different from zero. Overall, it seems that the GARCH-RV is successful in
capturing the long-memory property of the realized variances.
It is interesting to compare the conditional expected values ht and the real-
ized variances RV 2

t by running the following regression:

RV 2
t = 1.44E − 05

(1.91E − 05)
+ 0.966

(0.088)∗∗∗
· ht + εt, R2 = 0.40

N = 906.
(21)

The intercept is not significantly different from zero and the slope of the
regression is close to unity, which confirms that the GARCH-RV model is
correctly specified. Although the expected value of the realized variance and
its conditional expectation are close to each other, the difference between
their values is economically significant as indicated by the 40 percent value
of R2. Additionally, the expected conditional realized variance is much more
persistent and has smaller standard deviations than the realized variance.
In that respect conditional realized variance is more similar to the daily
GARCH(1,1) variance and the implied variance.
We also estimate the GARCH-RV model extended with the implied variance.
The estimation results in Table 2 show that although the coefficient in front
of the lagged implied variance is significant the log-likelihood function in-
creases negligible compared to the GARCH-RV model. Thus, it seems that
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the realized variance is successful in capturing similar effects that are cap-
tured by the implied variance. This results is in contrast with the significant
increase of the likelihood function when adding the implied variance as a
exogenous regressor in the daily GARCH model.
Finally, it is interesting to compare the in-sample outputs of the models con-
sidered in this section. Table 4 presents the regression estimations derived by
regressing the estimates of the latent variance of each of the models on the
variance estimates of the remaining models. As it can be seen, regressions in
which the daily GARCH variance is either a dependent variable or a regres-
sor have the lowest R2’s and the slope coefficients are markedly lower than
one. The GARCH-RV and the extended GARCH-RV models produce similar
outputs as indicated by the high R2’s and the slope coefficients close to one
in the corresponding regressions. Table 4 also shows that the extended daily
GARCH model have closer behavior to the two GARCH-RV models than to
the daily GARCH model.
The difference in the in-sample performance of the daily GARCH model to
the performances of the other models, as well as its lowest likelihood value
suggests the importance of using the realized variance and the implied vari-
ance. The results in the next section confirm this intuition.

6 Evaluating the Forecasting Performance

One of the major challenges in testing the predictive ability of the volatil-
ity models is that the forecasted variable is unobservable. In practice the
predicted value of the variance is compared to an ex-post estimate not to
the exact value. Previous studies usually use an ex-post model-dependent
estimate of the latent variance as a benchmark for very short forecasting
horizons such as one day. This practice clearly could induce a bias since it is
possible that it favors the out-of-sample performance of the model which is
used to produce the ex-post variance values. For longer forecasting horizons
a weighted sum of the squared daily returns is mostly used. While this gives
a model-free benchmark value, it could be a quite noisy measure. To avoid
these drawbacks, we employ the realized variance as a benchmark to compare
the out-of-sample performances of the different models. It has the advantage
that it is model-free and contains little noise.
First, we consider a one-day forecasting horizon. The models we compare
include the daily GARCH model, the daily GARCH model enhanced with
the implied variance, the GARCH-RV model, the GARCH-RV model en-
hanced with the implied variance. Additionally, we consider two autoregres-
sive fractionally integrated moving average (ARFIMA) models. Fractional
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integration approach has been shown to be useful in modelling the long-term
memory of variety of economic time series, including the realized variance.
We estimate and produce forecasts for the ARFIMA model for the realized
variance as well as an extended version of the model with the implied vari-
ance. Finally, an ad-hoc regression for the implied variance is estimated and
used for out-of-sample predictions.
Next, we consider forecasting horizons with lengths between two and ten
days. The models we compare are as before with the exception of the ex-
tended daily GARCH and the extended GARCH-RV models. The reason is
that more than one day predictions in these two models require specifying the
dynamics and forecasting of the implied variance. On the other hand, multi-
step predictions in the extended ARFIMA model are easier to implement as
explained further in the paper.

6.1 One-day Forecasting Horizon

The approach used to produce out-of-sample predictions is to estimate the
corresponding model up to day t and on that basis to form an out-of-sample
prediction for the day t + 1. To obtain precise estimation of the models’ pa-
rameters we make predictions only for the days t+1 ≥ 401, which guarantees
at least 400 in-sample observations. The quality of the forecasts is measured
by the Heteroscedascity-consistent Mean Square Error defined as:

HRMSE =

√√√√ 1

n− k + 1

n∑

t=k

(
1− Forecastt−1,t

RVt

)2

, (22)

where Forecastt−1,t is the variance forecast on day t − 1 for the day t and
[k, n] is the interval used for predictions. In our case k = 401 and n = 906.
The HMSRE measure is a modification of the standard RMSE measure with
the additional advantage that it provides robustness to serial correlation in
the residuals. It has been used in the context of evaluating volatility models
by Andersen and Lange (1999) and Martin and Zein (2002). Another popular
approach to evaluate the forecasting performance is to regress the realized
variance on its predicted value

RVt = α + β · Forecastt−1,t + εt (23)

and then to compare the R2’s produced by the forecasts of the different mod-
els. One should be careful however, since the high persistence of the realized
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variance and the forecasted values Forecastt−1,t could result in a spurious
explanatory power. We use this regression approach here merely as a robust-
ness check of the model evaluation given by the criterion (22). It turns out
that both criteria (22) and (23) give similar results.
We have already considered the daily GARCH and the GARCH-RV models
as well as their extended versions in Section 5.1. Motivated by the discus-
sion in Section 4.2, an ad-hoc linear regression is also used for predictions.
Forecasts are made in the following way. The estimates of the coefficients ᾱ,
β̄ and γ̄ of the regression

RV 2
k = ᾱ + β̄ · σ2

k−1 (bs) + γ̄ ·RV 2
k−1 + εk (24)

are obtained using the observations k = 2, ..., t. Here RV 2
k−1 serves as a proxy

for the spot variance on day k − 1. The one day prediction of RV 2
t+1 on day

t is given by ᾱ + β̄ · σ2
t (bs) + γ̄ ·RV 2

t . It turns out that in all estimations for
t + 1 = 401, ..., 906, the coefficient γ̄ is never significant and by that reason
the predictive regression (24) is estimated without the regressor RV 2

k−1.
The last model we consider is the Autoregressive Fractionally Integrated
Moving Average (ARFIMA) model for the realized variance. A process
yt is said to be an ARFIMA(d, p, q) if the fractionally integrated process
(1− L)d yt , 0 ≤ d ≤ 1 is a stationary ARMA (p, q) process. The fractionally
integrating operator (1− L)d is defined as:

(1− L)d = 1 + d1L
1 + d2L

2 + ..., (25)

where the coefficients dk are given by the formula:

dk =
d (d− 1) ... (d− k + 1)

k!
. (26)

The decomposition (25) is an exact analogue of the binomial decomposition
(1− x)d = 1 + d1x

1 + d2x
2 + ..., x ∈ R. Intuitively, the parameter d captures

the long-term memory of the process in a way that the operator (1− L)d

reduces the long-path dependency of the series and the remaining short term
path-dependency in the transformed series (1− L)d yt is captured by the
ARMA specification. If d = 0 then yt is an ARMA process and if d = 1 then
yt is an ARIMA process.
As in the previous applications of the ARFIMA model to volatility modeling
( see Andersen at al. (2002), Li (2002), Pong at al. (2002) and Martens and
Zein (2002) ) we employ the log values of the realized variance yt = log rv2

t
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since they show more regular behavior than the realized variances. Indeed,
the unconditional distribution of the log realized variances is very close to
the normal one. We estimate the degree of fractional integration of the log
realized variance using the Robinson (1995) non-parametric approach. The
estimations give values which are close to 0.40. This is in line with the esti-
mations produced by Andersen at al. (2002) for the FX market. The result is
stable across sub-samples. In what follows we set the degree of fractional in-
tegration of the log realized variance to 0.40 in all of the further estimations.
It seems that most of the observed autocorrelation of log realized variance
log (rvt) is caused by the long memory of the process. After performing
the one parameter transformation (1− L)d log (rvt), which accounts for the
long-memory of the process, the resulting ARMA (p, q) model, that reflect
the short memory of the realized variance, has an R2 of only four percent.
Similar results are obtained by Andersen at al. (2002) for the major foreign
exchange rates.
The AFRIMA model as specified above uses only the historical log realized
variances as inputs. One may wish to include the historical implied variances
as additional parameters. The easiest way to do that is to assume that the
fractionally integrated process (1− L)d log (rvt) is an ARMA (p, q) with im-
plied variances as additional exogenous regressors. However, this assumption
is inconsistent with the methods for estimating the degree of fractional inte-
gration. Indeed, it turns out that the inclusion of the lagged values of the
implied variances into the ARMA specification for the fractionally integrated
log realized variances (1− L)d log (rvt) induces autocorrelation into the new
standardized residuals1.
To make the things self-consistent and correctly specified we use a two-step
estimation procedure. The idea is first to estimate an ARFIMA model for
the log realized variances and then check if there is some predictability in
the standardized residuals induced by the lagged values of the fractionally
integrated log implied variances. For a formal description of this approach,
see Appendix A.
Table 5 shows the forecasting performance of the models. Both HRMSE
and R2 criteria produce the same ranking. The only exception is the linear
regression model. It is ranked first according to the R2 criterion and third
according to the HRMSE criterion. This discrepancy could be explained by
the fact that this model is simply a regression fitted to the historical data so
it is not surprising that it produces good forecasting results based on the R2

criterion. As we mentioned, before the HRMSE criterion is used to rank the
models and R2 criterion serves merely as a robustness check.

1See Appendix A for more details on that point
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The best performing model is the ARFIMA model enhanced with the implied
variance. This suggests that both the historical and the implied variances
are important in predicting the future variance. The next best performing
model is the ARFIMA model. This confirms that the fractional integration
approach captures well the dynamics of the realized variance. Very close per-
formance in terms of HRMSE error has the ad-hoc linear regression. While
it is much easier to estimate than the ARFIMA model, it uses the implied
variance as an additional parameter. Surprisingly, the next best performing
model is the daily GARCH model extended with the implied variance. Note
that the realized variance does not enter as a parameter in this model and
at the same time it is capable of better predicting the realized variance than
the GARCH-RV and the extended GARCH-RV models. The superior per-
formance of the extended GARCH-RV model over the GARCH-RV model
suggests again the importance of the implied variance. Finally, the worst
performing model according to both HRMSE and R2 criteria is the daily
GARCH model. Its predictive power is significantly lower than that of the
other models.
A closer look at the regression estimates of the realized variance on its pre-
dicted values in Table 5 could provide us with some additional insights into
the models’ performances. First, note that all intercept coefficients are not
significantly different from zero. Second, the slope coefficients are gener-
ally close to unity, with the exception of the daily GARCH model and
both ARFIMA models. In the case of the daily GARCH model, this ef-
fect is due to its general inability to model the variance in- and out-of-
sample which has been already discussed. The high slope coefficients in
the regressions corresponding to the ARFIMA models can be explained by
the fact that these two models forecast the log values of the realized vari-
ance, which are later transformed to predictions for the realized variance
by taking an exponent. This leads to a bias of the following form. Sup-
pose that r̃vt,t+1 is the unbiased one-day ahead prediction of the log real-
ized variance log (rvt+1) produced by one of the two ARFIMA model, i.e.
log (rvt+1) = r̃vt,t+1 + εt+1, where E [εt+1|It] = 0. Here It is the information
available up to the day t. The value that is used as a one-day ahead forecast
is exp (r̃vt,t+1). On the other hand, the conditional expectation of rvt+1 is
given by E [rvt+1|It] = exp (r̃vt,t+1) · E [exp (εt+1) |It]. The two values dif-
fer from each other by a factor of E [exp (εt+1) |It]. Computing the correct
forecast requires the calculation of E [exp (εt+1) |It]. If we assume that the
residuals εt+1 are conditionally normally distributed with variance σ2

t+1 then
E [exp (εt+1) |It] = exp

(
1
2
σ2

t+1

)
. However, we find that the modeling of the

conditional variance of the residuals in our ARFIMA setting to be extremely
challenging. For that reason we take the exponent of the prediction of the
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log realized variance and use it as a forecast for the realized variance. To
our knowledge, none of the papers that uses ARFIMA type of modeling for
the realized variance mentions explicitly how the predictions of the realized
variance are formed from the predictions of the log realized variance. Our
guess is that this is done simply by taking the exponent as the approach
pursued here.

6.2 Two to Ten Days Forecasting Horizon

In this section we compare the models’ predictions for horizons with lengths
between two and ten days. For each forecasting horizon with length l =
2, ..., 10, we estimate the corresponding model up to day t and on that ba-
sis form a prediction of the realized variance over the next l days RV 2

t+1 +
... + RV 2

t+l , where t = 400, ..., 906 − l. As before, the different forecasts
are compared using the HRMSE criterion (22). Additionally, the R2 val-
ues from regressions of the type (23) are computed. Since previous authors
have noted that using overlapping observations could lead to biased results,
first we run the regressions (23) over l sets of non-overlapping observations
for each forecasting horizon with length l = 2, ..., 10. However, it turns out
that the coefficient estimates and R2 values do not differ much from those
computed using single regressions that span all available observations. For
that reason we report the estimates obtained by employing regressions of the
latter type.
The models we consider are as before with the exception of the extended daily
GARCH model and the extended GARCH-RV model. As we have already
mentioned, predictions for more then one day ahead in these models requires
specifying the dynamics of the implied variance. One the other hand multi-
step forecasts can be readily introduced in the extended ARFIMA framework
since the implied variance is an white noise when it is integrated at a level of
fractional integration d = 0.9. For a detailed description of the forecasting
in the extended ARFIMA model see Appendix B.
Table 6 presents the models’ performances in terms of the HRMSE and R2

criteria. First, notice that the daily GARCH model has significantly less pre-
dictive power than all of the other models. It has the worst performance over
all forecasting horizons according to both criteria. Although the GARCH-
RV model performs significantly better than the daily GARCH model, its
predictive abilities are also worse than that of the two ARFIMA models and
the linear regression model. The two ARFIMA models have similar perfor-
mances. However, the extended ARFIMA model always produces slightly
better or similar predictions according to both HRMSE and R2 criteria. Its
advantage over the ARFIMA model decreases with the length of the fore-
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casting horizon. The linear regression model shows similar although slightly
worse performance compared to the extended ARFIMA model for forecast-
ing horizons with length less than six days. For longer forecasting horizons
it becomes the best performing model with slightly better predictions than
the two ARFIMA models.
A look at the Table 7 reveals that regressing the realized variances on its
predicted values gives biased results for all models with the exception of the
GARCH-RV model. The daily GARCH model produces slope coefficients
significantly less then unity. In addition, the intercept coefficients are also
significantly different from zero for forecasting horizons greater than four
days. On the other hand, the GARCH-RV model has the smallest bias with
slope coefficients close to unity and intercept coefficients, which are always
insignificantly different from zero. As in the case of the one-day forecasting
horizon, the two ARFIMA models have slope coefficients rather bigger than
unity and often have intercept coefficients significantly different from zero.
We have already discussed that this is due to the use of the log value of the
realized variance in these models. The linear regression model has always
insignificant intercept coefficients and relatively close to unity slope coeffi-
cients which increase with the forecasting horizon.

7 Summary and Conclusion

In this paper we analyze the in- and out-of-sample performances of several
volatility models while accounting for some of the drawbacks in the previous
research. We find that the daily GARCH model has significantly worse per-
formance than the other models. In particular, it produces weaker forecasts
than the models using implied variance. This is in accord with the findings
of Christensen and Prabhala (1998), Fleming (1998), Jorion (1995), Day and
Lewis (1992) and Martens and Zein (2002), who consider several different
markets including the S&P 100 and S&P 500 index markets, the FX market,
and the Light,Sweet Crude Oil futures market. The daily GARCH model
also has a worse performance than the ARFIMA model for the realized vari-
ance which is consistent with Andersen et al. (2002) and Martens and Zein
(2002). Adding the implied variance as an exogenous regressor dramatically
improves the predictive ability of the daily GARCH model. We also consider
GARCH-type of modeling for the realized variance in the spirit of Engle and
Russell (1998) which to our knowledge has not been done in the literature.
Econometric tests show that the GARCH-RV model for the realized variance
is correctly specified and produces unbiased results. Adding the implied
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variance as an exogenous regressor in this model changes its output little in
contrast to the daily GARCH model. This again confirms that realized and
implied variance are superior to daily squared returns for modeling volatility.
Although the GARCH-RV model has better predictive power than the daily
GARCH model, it performs worse than the ARFIMA model and the ad-hoc
linear regression model.
Our analysis shows that fractionally integrating the log realized variance cap-
tures its path dependent properties surprisingly well since the ARMA model
for the fractionally integrated log realized variance has a very low R2. Sim-
ilar findings are obtained by Andersen et al. (2002). Additionally, it seems
that the ARFIMA model is also very suitable for modeling the log implied
variance, which integrates to white noise for a degree of fractional integra-
tion of 0.90. Although, as in the studies of Andersen et al. (2002), Li (2002)
and Martens and Zein (2002), we find that the ARFIMA model has a good
forecasting ability, it is nevertheless slightly improved by using the implied
variance as an additional parameter.
Our paper leads to two conclusions which enrich the current literature on
modeling and forecasting volatility. First, it seems that the implied and
the realized variance contain almost the same information with regard to
the future variance. On one hand, adding the implied variance to models
that employ the realized variance such as the GARCH-RV model and the
ARFIMA model changes their performances either insignificantly or very lit-
tle. On the other hand, models based on the implied variance perform almost
as good or slightly better than the models based on the realized variance.
Remember that the daily GARCH model extended with the implied vari-
ance performs better than the GARCH-RV model, and the realized variance
does not enter as a parameter in this model. The ad-hoc linear model per-
forms comparably to the ARFIMA model. Note that although this regression
model is estimated using both the implied and the realized variance, the pre-
dictions are made using only the implied variance. The estimation of this
model requires the use of the realized variance in order to account for the
volatility risk-premium. This results may help reconcile the current split in
the literature concerning the predictive properties of the volatility time series
models and the implied variance. It is possible that sometimes the implied
variance forecasts are worse than the historical time series forecasts, because
of the volatility premium. Therefore, to make predictions on the basis of the
implied variance, it should be fitted to the historical data in order to isolate
the impact of the volatility risk-premium.
Second, we show that the ad-hoc linear regression model has a surprisingly
good performance. This model is very easy to estimate, given that estimates
for the realized and implied variances are available. It produces forecasts
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which are comparable to the ARFIMA model extended with the implied
variance for forecasting horizons up to six days. For longer forecasting hori-
zons it gives the best forecasts. Given the simplicity of this model, it may
well be the preferred choice for performing specific practical tasks, such as
computing VaR. Future research is needed to see if these two conclusions
hold for other markets.
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A Appendix - Model-Free Estimation of the

Future Variance

We will derive a model-independent estimate of the future variance from the
option prices under some relatively weak assumptions. This estimate repre-
sents the mathematical expectation of the quadratic variation of the variance
under the risk-neutral measure. To fix ideas, let Fs, t ≤ s ≤ T, be the price
of the futures contract with maturity at time T . We assume that the pro-
cess for the futures price is a continuous semi-martingale and a full spectrum
of plain vanilla options with maturity at time T exists. Additionally, the
interest rate is set to a constant equal to r. Let f be an arbitrary twice
differentiable function. From the Ito’s lemma it follows:

f (FT )− f (Ft) =

T∫

t

f
′
(Fs) ∂Fs +

T∫

t

F 2
s

2
f
′′
(Fs) σ2

s∂s. (27)

Under the risk-neutral measure Q the futures price process Fs is martingale,
so it follows:

EQ [f (FT )− f (Ft)] = EQ




T∫

t

f
′
(Fs) ∂Fs


 + EQ




T∫

t

F 2
s

2
f
′′
(Fs) σ2

s∂s




= EQ




T∫

t

F 2
s

2
f
′′
(Fs) σ2

s∂s


 . (28)

Neuberger (1990) first noticed that by setting f (Fs) = 2 · log (Fs) then
F 2

s

2
f
′′
(Fs) ≡ 1 and expectation in the right hand side of (28) equals the

expected future variance under the risk neutral measure. More specifically:

EQ




T∫

t

σ2
s∂s


 = 2 · EQ [log (FT )]− 2 · log (Ft) . (29)

Applying the forward-futures parity Ft = Ste
r(T−t)2 expression (29) can be

written as:

2Remember that the dividends are included in the calculation of the DAX index
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EQ




T∫

t

σ2
s∂s


 = 2 · er(T−t)E

Q [log (FT )]

er(T−t)
− 2 · log (St)− 2 · r (T − t) . (30)

Since FT ≡ ST it follows from the risk-neutral valuation principle that
EQ[log(FT )]

er(T−t) is the price of an European style contingent claim (the log-contract)
that pays the log value of the index at time T . Although this contract is not
available on the market, its price can be inferred from the prices of the traded
plain vanilla options. The classical result of Breeden and Litzenberger (1978)
(see also Green and Jarrow(1987)) establishes the following link between the
density p (S) of the risk-neutral distribution of ST at time T and the prices
C (St, K, T ) of call options with maturity at time T and strike prices K > 0:

p (S) = er(T−t)∂
2C (St, K, T )

∂2K
|K=S. (31)

The expressions (30) and (31) make possible the computation of the mar-

ket expectations for the future variance iv2
t,T = EQ

[
T∫
t

σ2
s∂s

]
under some

relatively weak assumptions when a full spectrum of vanilla option prices is
available.
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B Appendix - ARFIMA Model Enhanced with

the Implied Variance

One way to introduce the implied variance as an additional parameter in
the AFRIMA model for the realized variance is to consider a specifica-
tion of the following form. Let the log realized variance log(rvt) follow
an ARFIMA (d, p, q) process. Set ỹt = (1− L)d log (rvt). Then ỹt is an
ARMA (p, q) process that has the autoregressive specification:

ỹt = α + β1ỹt−1 + ... + βpỹt−p + ut. (32)

We can add additional regressors σ̃2
t−1 (bs) , ..., σ̃2

t−m (bs) into (32) which ac-
count for the impact of the implied variance:

ỹt = α + β1ỹt−1 + ... + βpỹt−p + γ1σ̃
2
t−1 (bs) + ... + γmσ̃2

t−m (bs) + ut (33)

Additionally, let the MA part of the process ỹt is given by:

ut = β∗1ut−1 + ... + β∗qut−q + εt. (34)

By assumption, the residuals εt are uncorrelated with their lagged values and
also uncorrelated with the lagged values of the dependent variable :

E
[
εt|ỹt−1, ..., ỹ1, σ̃

2
t−1 (bs) , ..., σ̃2

1 (bs) , εt−1, ..., ε1

]
= 0. (35)

To keep the model consistent with the use of the integrated series of the
log realized variance, the parameters in the model that account for the im-
plied variance are the lagged values of the integrated log implied variance
log

(
σ2

t−i (bs)
)
, i = 1, 2, ... . Indeed, it turns out that the log implied variance

is fractionally integrated with the degree of fractional integration d = 0.90.
The series σ̃2

t (bs) = (1− L)d∗ log (σ2
t (bs)) , d∗ = 0.90 is white noise. From

(33) it follows that each residual ut−j can be expressed as:

ut−j = ỹt−j −
(

α +

p∑
i=1

βiỹt−i−j +
m∑

i=1

γiσ̃
2
t−i−j (bs)

)
, (36)

for j = 1, 2, .... After substituting the last expression in (34), it follows :
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ut =

q∑

k=1

β∗k

(
ỹt−k −

(
α +

p∑
i=1

βiỹt−i−k +
m∑

i=1

γiσ̃
2
t−i−k (bs)

))
+ εt (37)

=

q∑

k=1

β∗k ỹt−k − α

q∑

k=1

β∗k −
q∑

k=1

p∑
i=1

β∗kβiỹt−i−k −
q∑

k=1

m∑
i=1

β∗kγiσ̃
2
t−i−k (bs) + εt.

Finally, the equation (33) can be written as:

ỹt = α +

p∑
i=1

βiỹt−i +
m∑

i=1

γiσ̃
2
t−i (bs) +

q∑

k=1

β∗k ỹt−k − α

q∑

k=1

β∗k (38)

−
q∑

k=1

p∑
i=1

β∗kβiỹt−i−k −
q∑

k=1

m∑
i=1

β∗kγiσ̃
2
t−i−k (bs) + εt.

The last equation can be estimated as an non-linear regression using OLS.
The condition (35) guarantees that the regression is correctly specified. Note
that this approach is inconsistent with the methods for estimating the de-
gree of fractional integration which usually assume that the process ỹt =
(1− L)d log (rvt) is an ARMA (p, q) process without the additional regres-
sors σ̃2

t−1 (bs) , ..., σ̃2
t−m (bs) in the autoregressive specification.

Another way of introducing implied variances which is used in the paper is
the following. Consider the standard ARFIMA (d, p, q)model:

ỹt = (1− L)d log (rvt) (39)

ỹt = α + β1ỹt−1 + ... + βpỹt−p + ut (40)

ut = β∗1ut−1 + ... + β∗qut−q + εt (41)

E [εt|ỹt−1, ..., ỹ1, εt−1, ..., ε1] = 0. (42)

The assumption (42) states that the residuals εt are not predictable when con-
ditioned on the past information set represented by { ỹt−1, ỹt−1, ..., ỹ1, εt−1, ...,
ε1}. However, they still can be predictable if they are conditioned on the past
values of the implied variances. A simple way to introduce such predictability
is to assume that the residuals εt can be represented as a linear combination
of the lagged values of the fractionally integrated log implied variance plus a
noise term

εt = π + δ1σ̃
2
t−1 (bs) + ... + δmσ̃2

t−m (bs) + ωt (43)
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where the residuals ωt follow a MA process

ωt = δ∗1ωt−1 + ... + δ∗l ωt−l + ηt (44)

and new the residuals ηt are independent from the past values of the other
variables in the model:

E
[
ηt|ỹt−1, ..., ỹ1, σ̃

2
t−1 (bs) , ..., σ̃2

1 (bs) , ηt−1, ..., η1

]
= 0. (45)

As before, this model can be rewritten as a non-linear regression. From ex-
pression (40) it follows

ut−j = ỹt−j −
(

α +

p∑

k=1

βkỹt−k−j

)
(46)

for i = 1, 2, ....Combining (40) and (41) it follows:

ỹt = α + β1ỹt−1 + ... + βpỹt−p + β∗1ut−1 + ... + β∗qut−q + εt. (47)

Using (46), each of the residuals ut−1, ..., ut−q in (47) can be expressed as a
sum of the past values of the dependent variable ỹt :

ỹt = α +

p∑

k=1

βkỹt−k +

q∑
i=1

β∗i

(
ỹt−i −

(
α +

p∑

k=1

βkỹt−k−i

))
+ εt = (48)

= α +

p∑

k=1

βkỹt−k +

q∑
i=1

β∗i (ỹt−i − α)−
q∑

i=1

p∑

k=1

β∗i βkỹt−k−i + εt.

From the last expression follows

εt−n = ỹt−n−
(

α +

p∑

k=1

βkỹt−k−n +

q∑
i=1

β∗i (ỹt−i−n − α)−
q∑

i=1

p∑

k=1

β∗i βkỹt−k−i−n

)
,

(49)

for n = 1, 2, .... Similarly, the residuals ωt−1, ωt−2, ..., can be written as a lin-
ear combination of the past values of the dependent variable ỹt. From (43)
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it follows:

ωt−i = εt−i −
(

π −
m∑

k=1

δkσ̃
2
t−i−k (bs)

)
. (50)

Substituting this expression into (44) yields:

ωt−i =
l∑

i=1

δ∗i

(
εt−i −

(
π −

m∑

k=1

δkσ̃
2
t−i−k (bs)

))
+ ηt−i. (51)

The substitution of (49) into (51) will give a rather lengthy expression for
the residuals ωt−1, ωt−2, ..., as a linear combination of the past values of the
dependent variable ỹt plus the past values of the noise terms ηt−1,ηt−2,...,.
Now the model (39)-(45) can readily written as a nonlinear regression. From
(40)-(44) immediately follows:

ỹt = α + β1ỹt−1 + ... + βpỹt−p + ut =

α + β1ỹt−1 + ... + βpỹt−p + β∗1ut−1 + ... + β∗qut−q + εt =

α + β1ỹt−1 + ... + βpỹt−p + β∗1ut−1 + ... + β∗qut−q (52)

+π + δ1σ̃
2
t−1 (bs) + ... + δmσ̃2

t−m (bs) + ωt =

α+β1ỹt−1+...+βpỹt−p+β∗1ut−1+...+β∗qut−q+π+δ1σ̃
2
t−1 (bs)+...+δmσ̃2

t−m (bs)

+δ∗1ωt−1 + ... + δ∗l ωt−l + ηt.

Substitution of the expressions (46) and (51) in place of the terms ut−1, ...., ut−q

and ωt−1, ..., ωt−l , respectively in (52) finally reduces the model (39)-(45) to
a non-linear regression with the noise term ηt.
As it can be seen this model is analytically more elaborated than the first
ARFIMA model extended with the implied variances. In addition, it is con-
sistent with the methods for estimating the degree of fractional integration of
the log realized variance, while the former model is not. Besides this purely
theoretical objection for using the former model, estimation of this model
shows that after including the values of σ̃2

t−1 (bs) , ..., σ̃2
t−m (bs) into the au-

toregressive specification (33) for ỹt, the residuals εt in (34) are no longer
uncorrelated.
The model also allows a convenient two-step estimation. First, the degree
of fractional integration and the corresponding ARMA specification for the
integrated series are estimated. Then the fitted residuals ε̃t in (41) are re-
gressed on the lagged values of the integrated implied variance assuming
moving average error terms.
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C Appendix - Calculation of the Multi-Step

Predictions in the ARFIMA Model En-

hanced with the Implied Variance

In the extended ARFIMA model the multi-step predictions are recursively
computed in the following way. First the one-step prediction ỹt,t+1 of the
integrated log realized variance ỹt and the one-step prediction ωt,t+1 of the
residual ωt are calculated as follows. The formula (48) applied to ỹt+1 yields:

ỹt+1 = α +

p∑

k=1

βkỹt+1−k +

q∑
i=1

β∗i (ỹt+1−i − α)−
q∑

i=1

β∗i

p∑

k=1

βkỹt+1−k−i + εt+1.

(53)

Condition on the information set It available up to the day t the expectation
of ỹt+1 is given by

ỹt,t+1 = α+

p∑

k=1

βkỹt+1−k+

q∑
i=1

β∗i (ỹt+1−i − α)−
q∑

i=1

β∗i

p∑

k=1

βkỹt+1−k−i+E [εt+1|It]

(54)
From (43) it follows that

E [εt+1|It] = π + δ1σ̃
2
t (bs) + ... + δmσ̃2

t+1−m (bs) + E [ωt+1|It] (55)

The expectation ωt,t+1 = E [ωt+1|It] equals:

ωt,t+1 = δ∗1ωt + ... + δ∗l ωt+1−l. (56)

Finally, the past residuals ωt, ..., ωt+1−l can be readily computed from the
data available up to the day t. This concludes the computation of the one-
step predictions.
Now let ỹt,t+1, ..., ỹt,t+n and ωt,t+1, ..., ωt,t+n be the n−days ahead predictions
of ỹt and ωt, respectively. From (48) it follows:

ỹt+n+1 = α +

p∑

k=1

βkỹt+n+1−k +

q∑
i=1

β∗i (ỹt+n+1−i − α)

−
q∑

i=1

β∗i

p∑

k=1

βkỹt+n+1−k−i + εt+n+1. (57)
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The n + 1-day prediction ỹt,t+n+1 = E [ỹt,t+n+1|It] of ỹt is given by

ỹt,t+n+1 = α +

p∑

k=1

βkỹt,t+n+1−k +

q∑
i=1

β∗i (ỹt,t+n+1−i − α)

−
q∑

i=1

β∗i

p∑

k=1

βkỹt,t+n+1−k−i + E [εt+n+1|It] , (58)

where ỹt,t−v = ỹt−v if v ≥ 0. The expectation E [εt+n+1|It] equals:

E [εt+n+1|It] = π + δ1E
[
σ̃2

t+n+1−1 (bs) |It

]
+ ... + δmE

[
σ̃2

t+n+1−1−m (bs) |It

]

+E [ωt+n+1|It] . (59)

As we noted before, the series σ̃2
t (bs) is white noise, so the terms

E
[
σ̃2

t+n+1−1 (bs) |It

]
, ..., E

[
σ̃2

t+n+1−1−m (bs) |It

]
can be readily calculated as

follows:

E
[
σ̃2

v (bs) |It

]
=

{
0 ,if v ≥ t + 1
σ̃2

v ,if v ≤ t.
(60)

Finally, from (44) the prediction ωt,t+n+1 = E [ωt+n+1|It] for the residual
ωt+n+1 can be represented as a linear combination of the past predicted val-
ues: ωt,t+n+1 = δ∗1ωt,t+n + ... + δ∗l ωt,t+n−l. This concludes the calculation of
the n + 1−days ahead forecasts.
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9DULDQFH�

 
 
 

  
Realized 
Variance 
 

 
Squared 
Returns 

 
Implied 

Variance 

 
Mean 

 

 
2.67E-04 

 
2.84E-04 

 
1.90E-04 

 
Min 

 

 
3.76E-05 

 
0.000 

 
0.001 

 
Max 

 

 
3.78E-03 

 
0.015 

 
7.37E-05 

 
St.Dev. 

 

 
3.25E-04 

 
6.99E-04 

 
1-23E-04 

 
Autocorrelation at Different Lags1 

 
Lag 1 
 

 0.562  0.118  0.933 

Lag 2 
 

 0.486  0.256  0.891 

Lag 3 
 

 0.456  0.118  0.865 

Lag 4 
 

 0.432  0.098  0.827 

Lag 5 
 

 0.409  0.110  0.793 

Lag 6 
 

 0.382  0.193  0.758 

Lag 7 
 

 0.373  0.080  0.731 

Lag 8 
 

 0.387  0.274  0.692 

Lag 9 
 

 0.328  0.043  0.659 

Lag 10 
 

 0.320  0.096  0.628 

 
 
 
 
 
 
 

                                                 
1 The p-values for the corrsponding Ljung-Box Q-statistics are not reported since they show significance at a 
very high level (0.1%) for all three variables across all lags. 
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,Q�6DPSOH�(VWLPDWLRQ�RI�WKH�'LIIHUHQW�9RODWLOLW\�0RGHOV�

�
�
�

 Regressor Term 

Model C ARCH GARCH IV Log-likelihood 

 
Daily GARCH 

 
7.96E-06 

(3.61E-06)** 

 
0.092 

(0.029)*** 

 
0.881 

(0.032)*** 

 
----- 

 

 
2487.691 

  
Daily GARCH with IV 

 
-4.89E-05 

(2.63E-05)* 

 
-0.065 

(0.009)*** 

 
0.025 

(0.297) 

 
1.728 

(0.542)*** 

 
2520.289 

 
GARCH-RV 

 
9.05E-06 

(2.87E-06)*** 

 
0.287 

(0.039)*** 

 
0.676 

(0.041)*** 

 
----- 

 

 
2528.337 

 
GARCH-RV with IV 

 
-3.29E-06 
(4.11E-06) 

 
0.241 

(0.043)*** 

 
0.633 

(0.051)*** 

 
0.198 

(0.074)*** 

 
2528.407 
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1 The numbers in the brackets are the p-values for the corrsponding Ljung-Box Q-statistics. 

  
GARCH-RV 

 

 
GARCH-RV 

 with IV 
 

Mean 
 

 
1.014 

 
1.002 

 
Min 

 

 
0.103 

 
0.113 

 
Max 

 

 
8.046 

 
7.477 

 
St.Dev 

 

 
0.651 

 
0.618 

 
Autocorrelation at Different Lags1 

 
Lag 1 

 
 0.012 

(0.710) 
0.023 

(0.495) 
Lag2 

 
-0.040 

(0.456) 
-0.036 
(0.433) 

Lag 3 
 

-0.041 
(0.376) 

-0.034 
(0.441) 

Lag 4 
 

-0.026 
(0.444) 

-0.026 
(0.506) 

Lag 5 
 

 0.036 
(0.424) 

0.033 
(0.503) 

Lag 6 
 

-0.018 
(0.514) 

-0.017 
(0.595) 

Lag 7 
 

-0.036 
(0.493) 

-0.027 
(0.626) 

Lag 8 
 

 0.056 
(0.317) 

0.061 
(0.371) 

Lag 9 
 

 0.000 
(0.409) 

-0.001 
(0.468) 

Lag 10 
 

 0.033 
(0.413) 

0.035 
(0.459) 



 
 
 

7DEOH���
�

5HJUHVVLQJ�WKH�,Q�6DPSOH�2XWSXWV�RI�WKH�'LIIHUHQW�0RGHOV�RQ�HDFK�RWKHU�
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Model 
  

Daily GARCH 
 

 
Daily GARCH with IV 

 
GARCH-RV 

 
GARCH-RV with IV 

Model intercept slope R² intercept slope R² intercept slope R² intercept slope R² 
 

----- 
 

 
----- 

 
----- 

 
0.664 

(0.105)*** 

 
0.50 

 
3.72E-05 

(1.70E-05)** 

 
0.807 

(0.071)*** 

 
0.64 

 
4.86E-05 

(2.17E-05)** 

 
0.783 

(0.089)*** 

 
0.57 

 
7.71E-05 

(1.34E-05)*** 

 
0.754 

(0.058)*** 

 
0.50 

 
 

----- 

 
 

----- 

 
1.41E-05 

(9.17E-06) 

 
0.928 

(0.039)*** 

 
0.75 

 
-1.21E-05 

(7.15E-06)* 

 
1.045 

(0.030)*** 
 

 
0.89 

 
1.34E-05 

(1.61E-05)*** 

 
0.791 

(0.074)*** 

 
0.64 

 
0.803 

(0.448)*** 

 
0.76 

 
----- 

 

 
----- 

 
0.62 

 
1.17E-05 

(7.76E-06)** 

 
0.973 

(0.035)*** 

 
0.90 

 
Daily GARCH 
 
 
Daily GARCH with IV 

 
 
GARCH-RV 

 
 
GARCH-RV with IV 

 
8.45E-05 

(1.46E-05)*** 

 
0.727 

(0.068)*** 

 
0.56 

 
8.19E-05 

(2.65E-05)*** 
 
 

----- 
 
 

5.67E-05 
(1.06E-05)*** 

 
3.91E-05 

(6.90E-06)*** 

 
0.854 

(0.031) 

 
0.89 

 
1.64E-05 

(6.71E-06)** 

 
0.920 

(0.030)*** 

 
0.90 

 
----- 

 
----- 

 
----- 
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5HJUHVVLRQV�RI�WKH�5HDOL]HG�9DULDQFH�RQ�LWV�3UHGLFWHG�9DOXHV�DQG�WKH�+506(�HUURUV�
2QH�GD\�)RUHFDVWLQJ�+RUL]RQ�

�
�
�
�

 
 Model  
  

Daily GARCH 
 

Daily GARCH with IV 
 

GARCH-RV 
 

 
GARCH-RV with IV 

 
ARFIMA 

 
ARFIMA with IV 

 
Linear Regression 

Intercept 9.06E-05 
(5.79E-05) 

5.21E-06 
(2.76E-05) 

2.44E-05 
(2.35E-05) 

2.14E-05 
(2.03E-05) 

-2.97E-05 
(2.14E-05) 

-4.87E-06 
(3.58E-05) 

-8.97E-06 
(2.22E-05) 

Slope 0.744 
(246)*** 

1.080 
(0.121)*** 

0.956 
(0.103)*** 

0.984 
(0.091)*** 

1.339 
(0.115)*** 

1.220 
(0.159)*** 

1.126 
(0.102) 

R² 0.25 0.48 0.44 0.47 0.48 0.48 0.51 
HRMSE 0.79 0.59 0.64 0.60 0.55 0.53 0.56 

�
�

 



�
7DEOH���

 
7KH�3UHGLFWLRQ�3HUIRUPDQFH�RI�WKH�'LIIHUHQW�9RODWLOLW\�0RGHOV�RYHU�7ZR�WR�7HQ�'D\V��

)RUHFDVWLQJ�+RUL]RQ��
�
�

 HRMSE Criterion 
Forecasting Horizon  

 2 3 4 5 6 7 8 9 10 
Daily GARCH 0.64 0.60 0.59 0.57 0.57 0.56 0.56 0.56 0.56 
GARCH-RV 0.52 0.49 0.47 0.47 0.47 0.47 0.47 0.46 0.46 
ARFIMA 0.39 0.37 0.36 0.36 ����� 0.36 0.37 0.37 0.38 
ARFIMA with IV ����� ����� ����� ����� ����� 0.36 0.36 0.37 0.38 
Linear 
Regression 

0.40 0.38 0.37 0.36 ����� ����� ����� ����� �����

 
 2R  Criterion 

Forecasting Horizon  
 2 3 4 5 6 7 8 9 10 

Daily GARCH 0.25 0.25� 0.25� 0.25� 0.25� 0.23� 0.22� 0.21� 0.20�
GARCH-RV 0.44� 0.47� 0.51� 0.52� 0.52� 0.51� 0.49� 0.46� 0.43�
ARFIMA 0.55� 0.58� 0.62� 0.63� 0.63� 0.61� 0.59� 0.56� 0.53�
ARFIMA with IV 0.56� ����� ����� ����� ����� ����� ����� ����� �����
Linear 
Regression 

����� ����� 0.63� 0.63� ����� ����� ����� ����� �����

 
*with bold are marked the models with the best performance for the corresponding forecasting horizon 
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5HJUHVVLRQV�RI�WKH��5HDOL]HG�9DULDQFH�RQ�LWV�3UHGLFWHG�9DOXHV��
�

Forecasting Horizon 
 2 days 3 days 4 days 5 days 6 days 

Model intercept slope R² intercept slope R² intercept slope R² intercept slope R² intercept slope R² 

2.13E-04 
(2.44-04) 

 
0.703 

(0.266

� � � �

 

 
0.25 

 
0.688 

(0.2634)*** 

 
0.25 

 
4.64E-04 

(2.44E-04)* 

 
0.677 

(0.265)*** 

 
0.25 

 
6.02E-04 

(2.98E-04)** 

 
0.664 

(0.261)*** 

 
0.25 

 
7.46E-04 

(3.47E-04)** 

 
0.650 

(0.254)*** 

 
0.24 

 
8.46E-05 

(6.32E-05

�

 

 
0.911 

(0.142

� � � �

 

 
0.44 

 
0.931 

(0.158)*** 

 
0.47 

 
1.19E-04 

(1.68E-04) 

 
0.975 

(0.187)*** 

 
0.51 

 
1.22E-04 

(2.55E-04) 

 
1.002 

(0.224)*** 
 

 
0.52 

 
1.69E-04 

(3.22E-04

�

 

 
0.991 

(0.235)*** 

 
0.52 

 
-7.76E-05 
(5.60E-05) 

 
1.410 

(0.152)*** 

 
0.55 

 
1.489 

(0.176)*** 

 
0.58 

 
-2.79E-04 

(1.39E-04)** 

 
1.600 

(0.194)*** 

 
0.62 

 
-4.50E-04 

(2.09E-04)** 

 
1.716 

(0.231)*** 

 
0.63 

 
-5.97E-04 

(2.86E-04)** 

 
1.781 

(0.262)*** 

 
0.63 

 
-4.20E-05 
(6.49E-05) 

 
1.315 

(0.153)*** 

 
0.56 

 
1.418 

(0.146)*** 

 
0.61 

 
-2.26E-04 

(1.20E-04)* 

 
1.509 

(0.161)*** 

 
0.64 

 
-3.45E-04 

(1.70E-04)** 

 
1.585 

(0.183)*** 

 
0.64 

 
-5.43E-04 

(2.51E-04)** 

 
1.700 

(0.225)*** 

 
0.64 

 
Daily GARCH 
 
 
GARCH-RV 

 
 
ARFIMA 

 
 
ARFIMA with IV 
 
Linear Regression 

 
-8.42E-06 
(4.59E-05) 

 
1.122 

(0.110

� � � �

 

 
0.58 

 
3.36E-04 

(1.82E-04)* 
 

1.17E-04 
(1.06E-04) 

 
 

-1.52E-04 
(9.66E-05) 

 
-1.21E-04 
(9.66E-05) 

 
-6.35E-06 
(7.04E-05) 

 
1.123 

(0.115) 

 
0.61 

 
-2.26E-05 
(9.47E-05) 

 
1.151 

(0.119)*** 

 
0.63 

 
-4.84E-05 
(1.28E-04) 

 
1.181 

(0.128)*** 

 
0.63 

 
-1.19E-04 
(1.87E-04) 

 
1.233 

(0.154)*** 

 
0.64 

�
�
�

Forecasting Horizon 
 7 days 8 days 9 days 10 days 

Model intercept slope R² intercept slope R² intercept slope R² intercept slope R² 

9.19E-04 
(3.81-04)** 

 
0.621 

(0.239

� � � �

 

 
0.23 

 
0.598 

(0.226)*** 

 
0.22 

 
1.268E-03 

(4.53E-04)*** 

 
0.580 

(0.218)*** 

 
0.21 

 
1.46E-03 

(4.92E-04)*** 

 
0.559 

(0.211)*** 

 
0.20 

 
2.47E-04 

(3.75E-04

�

 

 
0.965 

(0.234

� � � �

 

 
0.51 

 
0.934 

(0.230)*** 

 
0.49 

 
4.75E-04 

(4.66E-04) 

 
0.899 

(0.225)*** 

 
0.51 

 
6.222E-04 
(5.19E-04) 

 
0.866 

(0.225)*** 
 

 
0.43 

 
-6.95E-04 

(3.37E-04)** 

 
1.795 

(0.269)*** 

 
0.61 

 
1.804 

(0.274)*** 

 
0.59 

 
-8.51E-04 

(4.33E-04)** 

 
1.801 

(0.276)*** 

 
0.56 

 
-9.01E-04 

(4.77E-04)* 

 
1.791 

(0.276** 

 
0.53 

 
-6.78E-04 

(3.07E-04)** 

 
1.740 

(0.238)*** 

 
0.64 

 
1.760 

(0.246)*** 

 
0.62 

 
-8.80E-04 

(4.04E-04)** 

 
1.765 

(0.249*** 

 
0.60 

 
-9.47E-04 

(4.47E-04)** 

 
1.759 

(0.250)*** 

 
0.57 

 
Daily GARCH 
 
 
GARCH-RV 

 
 
ARFIMA 

 
 
ARFIMA with IV 
 
Linear Regression 

 
-1.32E-04 
(2.36E-04) 

 
1.235 

(0.167

� � � �

 

 
0.63 

 
1.10E-03 

(4.14E-04)*** 
 

3.46E-04 
(4.23E-04) 

 
 

-7.85E-04 
(3.87E-05)** 

 
-7.91E-04 

(3.58E-05)** 
 

-1.25E-04 
(2.76E-04) 

 
1.230 

(0.172) 

 
0.62 

 
-1.30E-04 
(3.10E-04) 

 
1.233 

(0.173)*** 

 
0.60 

 
-1.30E-05 
(3.47E-04) 

 
1.238 

(0.175)*** 

 
0.57 
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Forecasting Horizon 
 2 days 3 days 4 days 5 days 6 days 

Model intercept slope R² intercept slope R² intercept slope R² intercept slope R² intercept slope R² 

2.13E-04 
(2.44-04) 

 
0.703 

(0.266

� � � �
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0.688 

(0.2634)*** 
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4.64E-04 

(2.44E-04)* 

 
0.677 

(0.265)*** 
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6.02E-04 

(2.98E-04)** 

 
0.664 

(0.261)*** 
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7.46E-04 

(3.47E-04)** 

 
0.650 

(0.254)*** 

 
0.24 

 
8.46E-05 

(6.32E-05

�

 

 
0.911 

(0.142

� � � �

 

 
0.44 

 
0.931 

(0.158)*** 

 
0.47 

 
1.19E-04 

(1.68E-04) 

 
0.975 

(0.187)*** 

 
0.51 

 
1.22E-04 

(2.55E-04) 

 
1.002 

(0.224)*** 
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(3.22E-04

�
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(0.235)*** 

 
0.52 
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(5.60E-05) 

 
1.410 
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-4.20E-05 
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1.418 

(0.146)*** 

 
0.61 

 
-2.26E-04 

(1.20E-04)* 

 
1.509 

(0.161)*** 

 
0.64 

 
-3.45E-04 

(1.70E-04)** 

 
1.585 

(0.183)*** 

 
0.64 

 
-5.43E-04 

(2.51E-04)** 

 
1.700 

(0.225)*** 

 
0.64 

 
Daily GARCH 
 
 
GARCH-RV 

 
 
ARFIMA 

 
 
ARFIMA with IV 
 
Linear Regression 

 
-8.42E-06 
(4.59E-05) 

 
1.122 

(0.110

� � � �

 

 
0.58 

 
3.36E-04 

(1.82E-04)* 
 

1.17E-04 
(1.06E-04) 

 
 

-1.52E-04 
(9.66E-05) 

 
-1.21E-04 
(9.66E-05) 

 
-6.35E-06 
(7.04E-05) 

 
1.123 

(0.115) 

 
0.61 

 
-2.26E-05 
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1.151 
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0.63 
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(1.28E-04) 

 
1.181 

(0.128)*** 

 
0.63 

 
-1.19E-04 
(1.87E-04) 

 
1.233 

(0.154)*** 

 
0.64 

�
�
�

Forecasting Horizon 
 7 days 8 days 9 days 10 days 

Model intercept slope R² intercept slope R² intercept slope R² intercept slope R² 

9.19E-04 
(3.81-04)** 

 
0.621 

(0.239

� � � �
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0.598 
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