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1 Introduction

Everyone who watches children growing up will attest that imitation is a

main source of learning. And introspection shows that imitation plays a

large role also for the learning behavior of adults, in particular when faced

with unfamiliar environments. While social scientists and psychologists have

long recognized the importance of imitation (see Ash, 1952, for an early

example), imitation has only recently moved into the focus of economists.

Important theoretical advances have been made by Vega�Redondo (1997)

and Schlag (1998 and 1999). Both approaches are based on the idea that in-

dividuals who face repeated choice problems will imitate others who obtained

high payoffs in previous rounds. But despite this basic similarity, the two

theories imply markedly different predictions when applied to speciÞc games.

For example, for games with a Cournot structure, Schlag�s model predicts

Cournot�Nash equilibrium play,1 while Vega�Redondo�s model predicts the

Walrasian outcome.2 The latter prediction is also obtained by Selten and

Ostmann�s (2001) notion of an �imitation equilibrium�.

The current paper makes two main contributions. First, we introduce a

generalized theoretical approach to imitation, which enables us to analyze

why the models of Vega�Redondo (1997) and Schlag (1998, 1999) come to

such different predictions. We show that the difference between the two

models is due to different informational assumptions rather than different

learning or adjustment rules. It is more important whom one imitates than

how one imitates. In particular, if one imitates one�s own opponents, out-

comes become very competitive. If, on the other hand, one imitates other

players who face the same problem as oneself but play against different op-

ponents, then Nash equilibrium play is obtained.

The second objective of our paper is to present rigorous experimental

tests of the different imitation models. We chose to study imitation in a

1Cournot�Nash is also predicted by imitation models in large population settings as
studied by Björnerstedt and Weibull (1996).

2Variants of Vega�Redondo�s model in which players have more than one period mem-
ory produce different results as shown by Alos�Ferrer (2001) and Bergin and Bernhardt
(2001).
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normal form game with the payoff structure of a simple discrete Cournot

game. This has the advantage that the theoretical predictions of the various

imitation models are very distinct. Both traditional benchmark outcomes

of oligopoly models (Cournot�Nash equilibrium and Bertrand equilibrium)

are supported by at least one imitation model. Also, the games are easy

to implement in an experiment, and we have a good understanding of how

Cournot markets operate in laboratory environments under different circum-

stances.3

Despite being inherently �behavioral�, there have been few experiments

of imitation models. In particular, Schlag�s imitation model has not been

experimentally tested at all, while the models of Vega�Redondo and Selten

and Ostmann have been subject to isolated experiments. Huck, Normann,

and Oechssler (1999, 2000) and Offerman, Potters, and Sonnemans (2002)

experimentally support Vega-Redondo�s model. Also, Abbink and Brandts

(2002) provide data that are well-organized by a model closely related to

Vega-Redondo�s. Finally, Selten and Apesteguia (2002) Þnd some experi-

mental support for Selten and Ostmann�s (2001) static model of imitation.

The experimental design of the current paper has the advantage that it

allows to test all the above mentioned theories in one uniÞed frame. Subjects

interact in groups. In one treatment (called GROUP) they can only observe

the performance of their opponents with whom they play in the same group.

In a second treatment (ROLE), they can only observe the performance of

subjects who are in the same role but play in a different group. Finally,

there is a �FULL information� treatment in which subjects can observe all

of the above.

In our data, all qualitative predictions of the generalized imitation model

are conÞrmed, both, at the aggregate and the individual level. SpeciÞcally,

average outputs are ranked according to the theoretical predictions and sig-

niÞcantly so. In particular, in line with Vega�Redondo, the treatment in

which opponents can be observed is the most competitive. The treatment

in which only subjects in other groups can be observed is roughly in line

3See e.g. Plott (1989), Holt (1995), and Huck, Normann, and Oechssler (2003) for
surveys.
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with the Cournot�Nash equilibrium prediction and is the least competitive.

Intermediate outcomes result if subjects have access to both types of infor-

mation.

On the individual level we Þnd that, much in line with Schlag�s model,

the likelihood of imitation increases in the difference between the highest

payoff observed and the own payoff. Imitation is not unconditional. More-

over, we Þnd that imitation is more pronounced when subjects observe others

with whom they directly compete�rather than others who have the same

role but play in different groups. The reason for this is still an open question.

All these results are obtained from studying choice data. Subjects do

imitate and they do it in speciÞc ways. Whether or not subjects are aware of

this, is a different issue on which we shed some light by analyzing replies to

a post�experimental questionnaire. Interestingly, many replies quite clearly

reveal that subjects know what they are doing. Many also perceive them-

selves as imitating.

The remainder of the paper is organized as follows. Section 2 introduces

the games and the experimental details. In Section 3 we review the imita-

tion models, introduce a general framework, and derive theoretical results.

In Section 4 the experimental results are reported and, Þnally, Section 5

concludes. Most proofs are collected in Appendix A. The instructions for

the experiment are shown in Appendix B.

2 Experimental design and procedures

In our experiments subjects repeatedly play simple 3�player normal form

games, with a payoff structure that is derived from a symmetric Cournot

game. All players have Þve pure strategies with identical labels, a, b, c, d,

and e. Subjects are, however, not told anything about the game�s payoff

function apart from the fact that their payoff deterministically depends on

their own choice and the choices of two others, and that the payoff function

is the same throughout all the experiment (see the translated instructions

in Appendix B).

Interaction in the experiment takes place in populations of nine sub-
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jects. Each subject has a role and belongs to a group. There are three roles,

labelled X,Y, and Z, Þlled by three subjects each. Roles are allocated ran-

domly at the beginning of the experiment and then kept Þxed for the entire

session. Sessions last for 60 periods. In each period, subjects are randomly

matched into three groups, such that always one X�player is matched with

one of the Y �players and one of the Z�players.4 While subjects know that

they are randomly matched each period, they are not told with whom they

are matched and there are no subject-speciÞc labels. In each experimental

session, two independent populations of nine subjects participate to increase

anonymity. After each period, subjects learn their own payoff. Additional

feedback information depends on the treatment.

There are three treatments altogether. It is convenient to introduce some

notation before describing them. Let player (i, j)t be the player who has role

i ∈ {X,Y,Z} in group j ∈ {1, 2, 3} at time t, and let sji (t) be that player�s
strategy and πji (t) his payoff in t.

Treatment ROLE In treatment ROLE player (i, j)t can observe, after

each period t, sji (t) and π
j
i (t) for all j. That is, a player is informed of

the actions and payoffs of players who have the same role as himself

but play in different groups.

Treatment GROUP In treatment GROUP player (i, j)t can observe, af-

ter each period t, sji (t) and π
j
i (t) for all i. That is, a player is informed

of the actions and payoffs of players in his own group.

Treatment FULL In treatment FULL player (i, j)t can observe all the

information given in treatments ROLE and GROUP.5 6

4One might wonder why we introduce roles to study behavior in a symmetric game.
The answer is twofold. First, this allows us to disentangle the effects of imitation rules and
information. Second, we will be able to use the identical setup for studying asymmetric
games in follow-up projects.

5Notice that �FULL� does not imply that players observe everything that happened in
the last period. In particular, player (i, j)t cannot observe the choice and payoff of player
(h, k)t when h 6= i and k 6= j.

6Additionally, subjects can observe the average payoffs of the set of all nine players,
i.e., they observe 1

9

P
i

P
j π

j
i (t). The reason for this is that we plan to study in future

work theories based on aspiration levels for which we would like to use FULL as a base
treatment.
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Table 1: Payoff table

action combination of other players in group
aa ab ac ad ae bb bc bd be cc cd ce dd de ee

a 1200 1140 1000 880 800 1080 940 820 740 800 680 600 560 480 400

b 1311 1242 1081 943 851 1173 1012 874 782 851 713 621 575 483 391

c 1500 1410 1200 1020 900 1320 1110 930 810 900 720 600 540 420 300

d 1584 1476 1224 1008 864 1368 1116 900 756 864 648 504 432 288 144

e 1600 1480 1200 960 800 1360 1080 840 680 800 560 400 320 160 0

Note: The order in which the actions of the other group members is displayed does

not matter.

The payoff function is based on a linear Cournot market with inverse

demand, p = 120 − X, and zero costs. The strategies a, b, c, d, and e cor-
respond to the output quantities 20, 23, 30, 36, and 40, respectively. That

is, a corresponds to the symmetric joint proÞt maximizing output, c to the

Cournot output, and e to the symmetric Walrasian output. The payoff ta-

ble (unknown to subjects) is displayed in Table 1. Subjects are told that

the experimental payoffs are converted to Euros using an exchange rate of

3000:1.7

The computerized experiments8 were carried out in June 2002 in the

Laboratory for Experimental Research in Economics in Bonn. Subjects

were recruited via posters on campus. For each treatment we carried out

three sessions � each with two independent populations of nine subjects,

which gives us six independent observations per treatment. Accordingly, the

total number of subjects was 162 (= 9× 6× 3). The experiments lasted on
average 70 minutes, and average payments were 15.25 Euros.9

After the 60 rounds subjects were presented with a questionnaire in

which they were asked for their major Þeld of study and for the motivation

of their decisions.
7In the Þrst session of treatment FULL we used an exchange rate of 4000:1.
8The program was written with z�tree of Fischbacher (1999).
9At the time of the experiment one Euro was worth about one US dollar.
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3 Imitation theories

In this section we will establish theoretical predictions for various imitation

models in the context of our experimental design. Recall that the treatments

vary with respect to the information subjects receive about actions and/or

payoffs in the previous round. We refer to the set of individuals whose

actions and payoffs can be observed by individual (i, j)t, as (i, j)t�s reference

group, R(i, j)t. Individual (i, j)t�s set of observed actions includes all actions

played by someone in his reference group and is denoted by

O(i, j)t := {skh(t)|(h, k)t ∈ R(i, j)t}.

Notice that (i, j)t ∈ R(i, j)t and s
j
i (t) ∈ O(i, j)t in all our experimental

treatments.

Following Schlag (1999) we call a behavioral rule imitating if it prescribes

for each individual to choose an observed action from the previous round.

A noisy imitating rule is a rule that is imitating with probability 1− ε and
allows for mistakes with probability ε > 0. (In case of a mistake any other

action is chosen with positive probability.) A behavioral rule with inertia

allows an individual to change his action only with probability π ∈ (0, 1) in
each round. In the following we shall Þrst characterize different imitation

rules according to their properties without noise or inertia. Predictions for

the Cournot game will then be derived by adding noise and inertia.

A popular and plausible rule is �imitate the best� (see e.g. Vega�

Redondo, 1997) which simply prescribes to choose the strategy that in the

previous period performed best among the observed actions. In our setting

it is possible that an action yields different payoffs in different groups. This

implies that it is a priori not clear how an agent should evaluate the ac-

tions he observes. An evaluation rule assigns a value to each action in a

player�s set of observed actions O(i, j)t. When an action yields the same

payoff everywhere in his reference group, there is no ambiguity and the ac-

tion is evaluated with this observed payoff.10 When different payoffs occur

for the same action, various rules might be applied. Below we will focus on

10This is always the case in treatment GROUP.
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two evaluation rules that appear particularly natural in a simple imitation

setting with boundedly rational agents: the max rule where each strategy

is evaluated according to the highest payoff it received, and the average rule

where each strategy is evaluated according to the average payoff observed

in the reference group. Of course, other rules, such as a �pessimistic� min

rule, might also have some good justiÞcation. Nevertheless, we shall follow

the previous literature and focus on the max and the average rules.11

DeÞnition 1 An imitating rule is called �imitate the best� if it satisÞes the

property that (without noise and inertia) an agent switches to a new action

if and only if this action has been played by an agent in his reference group

in the previous round, and was evaluated as at least as good as that of any

other action played in his reference group. When several actions satisfy this,

any of those is chosen with positive probability.

� �Imitate the best� combined with the average rule is called �imitate the
best average� (IBA).

� �Imitate the best� combined with the max rule is called �imitate the
best max� (IBM).

Schlag (1998) shows in the context of a decision problem in which agents

can observe one other participant that �imitate the best� and many other

plausible rules do not satisfy certain optimality conditions. Instead, Schlag

(1998) advocates the �Proportional Imitation Rule� which prescribes to im-

itate an action with a probability proportional to the (positive part of the)

payoff difference between that action�s payoff from last period and the own

payoff from last period. If the observed action yielded a lower payoff, it is

never imitated.

The extension of this analysis to the case of agents observing two or

more actions is not straightforward. Schlag (1999) considers the case of two

observations and singles out two rules that are both �optimal� according

to a number of plausible criteria, the �double imitation� rule (DI) and the

11For �imitate the best average�, see, e.g., Ellison and Fudenberg (1995) and Schlag
(1999). For �imitate the best max�, see Selten and Ostmann (2001).
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�sequential proportional observation� rule (SPOR). In both cases, Schlag

assumes that strategies are evaluated with the average rule. Specifying the

two rules in more detail is beyond the scope of this study since our data do

not allow to check more than some general properties of classes of rules to

which DI and SPOR belong.

Schlag (1999, Remark 2) shows that with two observations both, DI and

SPOR, satisfy the following properties:

(i) They are imitating rules.

(ii) The probability of imitating another action increases with that action�s

previous payoff and decreases with the payoff the (potential) imitator

achieved himself.

(iii) If all actions in O(i, j)t are distinct, the more successful actions are

imitated with higher probability.

Furthermore, it can be shown that DI satisÞes the following plausible

properties.

(iv) Never switch to an action with an average payoff lower than the average

payoff of the own action.

(v) Imitate the action with the highest average payoff in the sample with

strictly positive probability (unless one already plays an action with

the best average payoff).

(vi) Never switch to an action with average payoff below the average payoff

in the sample.

Property (iv) shows that DI belongs to the large class of imitating rules

that use the average evaluation rule and can be described as �imitate only

if better�. Combined with property (v) �imitate the best with positive

probability� this is all we need for deriving the theoretical properties of DI

and similar rules in the context of our experiment.
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DeÞnition 2 An imitating rule is called a �weakly imitate the best average�

rule (WIBA) if it satisÞes (without noise and inertia) properties (iv) and

(v).

If we modify Properties (iv) and (v) to allow for the max rule, we obtain

(iv0) Never switch to an action with a maximal payoff lower than the max-
imal payoff of the own action.

(v0) Imitate the action with the highest maximal payoff in the sample with
strictly positive probability (unless one already plays an action with

the highest maximal payoff).

DeÞnition 3 An imitating rule is called a �weakly imitate the best max�

rule (WIBM) if it satisÞes (without noise and inertia) properties (iv�) and

(v�).

While IBA (�imitate the best average�) as well as DI (double imitation)

belong to the class of WIBA (�weakly imitate the best average�) rules, IBM

belongs to WIBM. The rule SPOR does not belong to either class of rules

since it violates (iv) and (iv�).

Before we proceed with deriving theoretical predictions, we need to in-

troduce some further notation. The imitation dynamics induce a Markov

chain on a Þnite state space Ω. A state ω ∈ Ω is characterized by three strat-
egy proÞles, one for each group, i.e., by a collection ((s11, s

1
2, s

1
3), (s

2
1, s

2
2, s

2
3),

(s31, s
3
2, s

3
3)). Notice that there is no need to refer to speciÞc individuals in

the deÞnition of a state, i.e., here sji (without the time index) refers to the

strategy used by whoever has role i and happens to be in group j.

We shall refer to uniform states as states where s = sji = skh for all

i, j, h, k and denote a uniform state by ωs, s ∈ {a, b, c, d, e}. Two uniform
states will be of particular interest. The state in which everybody plays the

Cournot Nash strategy c, to which we will refer as the Cournot state ωc;

and the state in which everybody plays the Walrasian strategy e, to which

we shall refer as the Walrasian state ωe.

9



To analyze the properties of the Markov processes induced by the various

imitation rules discussed above, we shall now add (vanishing) noise and

inertia. That is, whenever we refer in the following to some rule as, for

example �imitate the best�, we shall imply that agents are subject to, both,

inertia and (vanishing) noise. States that are in the support of the limit

invariant distribution of the process (for ε → 0) are called stochastically

stable. The (graph theoretic) methods for analyzing stochastic stability

(pioneered in economics by Canning, 1992, Kandori, Mailath, and Rob,

1993, and Young, 1993) are, by now, standard (see e.g. Fudenberg and

Levine, 1998, and Young, 1998, for text book treatments).

In the following we will state a number of propositions that show how

the long-run predictions of the imitation rules we consider depend on the

underlying informational structures. We begin by stating results for WIBA

and WIBM. It will turn out that WIBA and WIBM rules lead to identi-

cal predictions if agents either observe other agents in their group or other

agents in the same role. They differ if agents can observe both as in treat-

ment FULL. Finally, we will analyze SPOR rules and show that they yield

the same long-run predictions regardless of the treatment.

Our Þrst proposition concerns WIBA and WIBM rules in treatment

GROUP.

Proposition 1 If agents follow either a WIBA (�weakly imitate the best

average�) or a WIBM (�weakly imitate the best max�) rule and if the refer-

ence group is as in treatment GROUP, the Walrasian state ωe is the unique

stochastically stable state.

Proof see Appendix A.

The intuition for this result is similar to the intuition in Vega-Redondo�s

original treatment of the imitate the best rule. In any given group, the

agent with the highest output obtains the highest proÞt as long as prices

are positive. This induces a push toward more competitive outcomes.12

12Introducing constant positive marginal cost does not change the result. If price is
below marginal cost, the agent with the lowest output is imitated which again pushes the
process towards the Walrasian state.
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Let us now turn to treatment ROLE where (h, k)t ∈ R(i, j)t if and

only if h = i. We will see that the change of the informational structure

has dramatic consequences. If agents can only observe others who are in

the same role as they themselves but play in different groups, the unique

stochastically stable outcome under a WIBA rule and a WIBM rule is the

Cournot�Nash equilibrium outcome.

Proposition 2 If agents follow a WIBA or a WIBM rule and if the ref-

erence group is as in treatment ROLE, the Cournot state ωc is the unique

stochastically stable state.

Proof see Appendix A.

The intuition for Proposition 2 is that any deviation from the Cournot

Nash equilibrium play lowers the deviator�s absolute payoff. Agents in the

same role will observe this but will not imitate because they earn more using

the equilibrium strategy. On the other hand, one can construct sequences of

one-shot mutations that lead into the Cournot state from any other state.

Turning to treatment FULL one might expect that its richer informa-

tional structure (where agents have the combined information of treatments

GROUP and ROLE) causes some tension between the Walrasian and the

Cournot outcome. It turns out that this intuition is correct. In fact, with

a WIBA rule there are two stochastically stable states in treatment FULL,

the Cournot state (where everybody plays c), and the state where everybody

plays d.

Proposition 3 If agents follow a WIBA rule and if the reference group is

as in treatment FULL, then both, the Cournot state ωc and the state in

which everyone takes action d, ωd, are the stochastically stable states.

Proof see Appendix A.

Comparing a WIBA rule with a WIBM rule, one might say that agents

following WIBM are �more aggressive�. Hence, one might intuitively expect

that WIBM leads to higher quantities than WIBA. As the next proposition

11



shows this is true in the sense that, in addition to ωc and ωd, the Walrasian

state, ωe, is stochastically stable under WIBM.

Proposition 4 If agents follow a WIBM rule and if the reference group is

as in treatment FULL, then the Cournot state ωc, the state in which everyone

takes action d, ωd, and the Walrasian state ωe are the stochastically stable

states.

Proof see Appendix A.

In contrast to the previous studied rules, the SPOR rule of Schlag (1999)

also allows to imitate actions that do worse than the current action one

is using. This has the consequence that, in the framework of stochastic

stability, any uniform state can be a long run outcome of the process.

Proposition 5 If agents follow a SPOR rule, all uniform states are stochas-

tically stable regardless of their reference group.

Proof Agents following SPOR imitate any strategy with positive proba-

bility except an action that yields 0, the absolutely worst payoff (see

Schlag, 1999). Thus, we observe a) that only uniform states are ab-

sorbing and b) that it is possible to move from any uniform state to

any other uniform state by just one mutation, which implies that all

uniform states are stochastically stable.¥

3.1 Imitation Equilibrium

We shall now review the recently introduced notion of an imitation equilib-

rium (IE) (Selten and Ostmann, 2001), and derive its predictions for our

treatments. Unlike the preceding models, imitation equilibrium is a static

equilibrium notion. Following Selten and Ostmann (2001) we will say that

player (i, j) has an imitation opportunity if there is an skh 6= sji , skh ∈ O(i, j),
such that the payoffs of player (h, k) are the highest in R(i, j) and there is

no player in R(i, j) playing sji with payoffs as high as (h, k).
13 A destination

13This requirement is the same as in IBM.
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is a state without imitation opportunities. An imitation path is a sequence

of states where the transition from one element of the sequence to the next

is deÞned by all players with imitation opportunities taking one of them.

The imitation path continues as long as there are imitation opportunities.

An imitation equilibrium is a destination that satisÞes that all imitation

paths generated by any deviation of any one player return to the original

state. Two classes of imitation paths generated by a deviation (henceforth

called deviation paths) that return to the original state are distinguished.

(i) Deviation paths with deviator involvement : the deviator himself takes

an imitation opportunity at least once and the deviation path returns to the

original state.

(ii)Deviation paths without deviator involvement : the destination reached

by a deviation path where the deviator never had an imitation opportunity

gives lower payoffs to the deviator than those at the original state, making

that the deviator returns to the original strategy. This creates an imitation

path that returns to the original state.

Proposition 6 Imitation equilibrium (IE) is characterized by the following.

(a) In Treatment GROUP the Walrasian state ωe is the unique IE.

(b) In Treatment ROLE the Cournot state ωc is the unique IE.

(c) In Treatment FULL ωc, ωd, and ωe are the only uniform IE.

Proof see Appendix A.

The proposition reveals remarkable similarities between Selten and Ost-

mann�s imitation equilibrium and the dynamic class of WIBM rules. In

fact, imitation equilibrium and the long-run predictions of WIBM coincide

perfectly for the current game.

3.2 Some qualitative hypotheses and simulations

Table 2 summarizes the theoretical results and indicates for each behavioral

rule considered above whether two easy-to-check properties are satisÞed with

respect to the evaluation rule used.
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Table 2: Summary of predictions

Imitation
Rule

never imitate

worse than own∗
never imitate

worse than avg.∗
long run
prediction∗∗

WIBA X �
ωe in GROUP
ωc in ROLE
ωc,ωd in FULL

DI X X as WIBA

IBA X X as WIBA

WIBM X �
ωe in GROUP
ωc in ROLE
ωc,ωd,ωe in FULL

IBM X � as WIBM

SPOR � � ωa,ωb,ωc,ωd,ωe

IE X � as WIBM
Note: A �X� indicates that the theory in question satisÞes the property given the
rule to evaluate payoffs. �−� indicates that the theory does not in general satisfy
this property. ∗ this prediction is without noise. ∗∗In all cases except IE this is the
set of stochastically stable outcomes.

All imitation rules, with the exception of SPOR, have in common that

they predict that agents should not switch to strategies that are evaluated

as worse than the strategy they currently employ. Moreover, it can be

shown that DI and IBA additionally satisfy the property that no strategy is

imitated that (on average) yielded a payoff below the population average.

With respect to outputs, all imitation rules, except SPOR, suggest that

outputs in treatment GROUP (where Walrasian levels are expected in the

long run) should be rather high, whereas in treatment ROLE a lower output

level, the Cournot outcome, is expected. Since treatment FULL provides

both kind of information, one might expect an intermediate outcome be-

tween GROUP and ROLE. This suggests the following qualitative hypoth-

esis about the ordering of output levels:

QH : ROLE ¹ FULL ¹ GROUP.

In order to address justiÞed concerns that stochastic stability analysis

may fail to yield reasonable predictions for an experiment with only 60
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rounds, we run simulations for the different treatments. In particular, we

simulate a population of 9 players over 60 rounds when each player behaves

according to the IBM rule (IBA yields almost identical results) given the ref-

erence group deÞned by the respective treatment. Since stochastic stability

analysis is often criticized for the assumption of vanishing noise, we include

in the simulation a substantial amount of noise. With probability 0.8 in

each round a player follows IBM. With probability 0.2 a player chooses ran-

domly one of the Þve actions with equal probability. For each treatment we

simulated 100 such populations with starting actions chosen from a uniform

distribution.

Figure 1 shows the average frequencies with which actions were chosen in

each round. The Walrasian prediction (ωe) for treatment GROUP is clearly

conÞrmed by the simulations. Apart from action e, all other actions survive

only due to the relatively high noise level. Convergence takes only about

10 periods. Likewise, in treatment FULL the prediction of IBM is fully

conÞrmed, only ωe, ωd, and ωc are played more often than the noise level

requires. In treatment ROLE, the predicted action c is also the modal and

median choice in the simulations. However, convergence is relatively slow.

The reason seems to be the following. In treatment ROLE the number of

absorbing states (of the unperturbed imitation process) is higher than in the

other treatments because besides uniform states, all states in which players

in a given role play the same action are absorbing (see the proof of Propo-

sition 2). A detailed look at the simulations reveals that indeed the process

often gets stuck in such states which of course slows down convergence.

Over all 60 periods, average outputs in the simulations were 30.3 for

ROLE, 33.63 for FULL, and 37.7 for GROUP, which conÞrms the ordering

in hypothesis QH.14 In the following sections, we shall test this hypothesis
against the aggregate results from the experiments.

14Recall that actions a, b, c, d, and e correspond to output quantities 20, 23, 30, and 40,
respectively.
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Figure 1: Time series of the simulated average frequencies of output levels
per treatment.
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4 Experimental results

We now turn to the experimental analysis of the generalized imitation frame-

work proposed above. We organize this section as follows. First, based on

the qualitative hypotheses QH derived above, we evaluate the data on the

aggregate level. This will give a Þrst idea of whether and how imitation

shapes subjects� behavior. We then turn our attention to the study of in-

dividual behavior. In Section 4.2.1 all imitation rules are evaluated with

respect to what they say about when not to imitate while in Sections 4.2.2

we analyze the issues of when and how to imitate. To evaluate rules that

make explicit statements about the probability of imitating a certain ac-

tion (like those of Schlag, 1998, 1999), we study in Section 4.3 a probit

model. Finally, we conclude this section by analyzing the post-experimental

questionnaires. This will provide additional insight whether subjects are

intentional imitators or whether it just looks as if they are.

4.1 Aggregate behavior

We begin by considering some summary statistics on the aggregate level.

Table 3 shows average outputs for all treatments, separately for the entire

sixty rounds of the experiment and the last thirty. Standard deviations of

the six observations per treatment are shown in parenthesis. The average

of individual variances over all 60 and the last 30 periods are also given in

Table 3.

Figure 2 shows average outputs per treatment in an average block time

series, organized in blocks of ten periods.

Both, Table 3 and Figure 2, clearly show that output levels are ordered

as predicted. In particular, outputs in ROLE are lower than in FULL, and

in FULL lower than in GROUP. The p�values for (two�sided) permuta-

tion tests (see, e.g., Siegel and Castellan, 1988) on the basis of the average

outputs per population are as follows:

ROLE ≺.008 FULL ≺.02 GROUP
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Table 3: Summary statistics

Treatment
GROUP FULL ROLE

avg. output1−60
32.96
(.825)

31.71
(.829)

30.32
(.452)

avg. output31−60
33.57
(.972)

32.31
(.881)

30.71
(.514)

avg. var.1−60 49.78 51.31 54.43
avg. var.31−60 43.00 49.07 53.02
Note: avg. outputs are calculated by using the output levels 20, 23, 30, 36, and 40.

Standard deviations of avg. output of the 6 independent observations per treatment

are given in parenthesis. avg.varτ−t is the average over individual variances in
output from round τ to t.
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Figure 2: Block time series of average outputs per treatment.
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This is exactly in line with the qualitative predictions derived in the pre-

vious section. We see that the type of feedback information available to

subjects has a statistically signiÞcant impact on behavior � lending strong

qualitative support to the generalized imitation model and stressing the im-

portance of informational conditions. The differences in average quantities

are less pronounced than predicted by theory though, which indicates that

other factors besides imitation play a role too.

Also, Table 3 and Figure 2 indicate that there is an increasing trend in

output. The Spearman rank order correlation coefficients between the time

series of the average output levels and time are positive in all treatments,

and signiÞcant at the 0.01 level (two-sided) in GROUP (rs = 0.49) and

FULL (rs = 0.62), but not signiÞcant in ROLE (rs = 0.23).

For now, we summarize our main Þnding in

Result 1 Outputs are ordered as predicted by hypothesis QH and signiÞcantly

so.

Given the usual noise in experimental data from human subjects, Result

1 seems quite remarkable. However, before drawing more deÞnite conclu-

sions about the viability of imitation it is necessary to analyze individual

adjustments which we shall do in the following section.

4.2 Individual Behavior

A proper experimental test of imitation theories needs to consider individual

data. Thus, in this section we evaluate the success of the imitation models

by computing compliance rates of individual adjustment behavior with the

predictions of the respective models. We do this in two ways. We begin by

considering negative predictions, i.e. predictions about when not to imitate.

In Subsection 4.2.2 we then consider positive predictions for IBA and IBM,

i.e., predictions about when to imitate.

4.2.1 When not to imitate

The predictions of all imitation rules with regard to when not to imitate

are summarized in Table 2. WIBA, WIBM, and IE predict that one should
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Table 4: Compliance with qualitative predictions

Never Imitate Worse than...
Own Average

GROUP ROLE FULL GROUP ROLE FULL
WIBA, DI 90.2% 83.9% 83.6% � � �
WIBM, IE 90.2% 84.5% 83.8% � � �
DI, IBA � � � 94.3% 91.6% 86.4%

not imitate an action with payoffs evaluated as lower than those of the

own action. We refer to this prediction as �never imitate worse than own�.

WIBA rules predict not to imitate an action that on average gave lower

payoffs than the average payoffs of the own action. Similarly, WIBM rules

and IE predict not to imitate an action whose maximum payoffs are lower

than the maximum payoffs of the own action.

Furthermore, DI and IBA also predict not to imitate an action whose

average payoffs are below the average payoffs in the sample. This implies

that in treatment GROUP (ROLE) players should not imitate an action

with average payoffs below the average payoffs who are in the same group

(have the same role), while in treatment FULL players should not imitate an

action with payoffs below the average payoffs of the set of all nine players.15

We refer to this prediction as �never imitate worse than average�.

Table 4 summarizes the average rates of compliance with respect to

�never imitate worse than own� and �never imitate worse than average�

for each of the relevant treatments. The compliance rates are rather high

in all cases but particularly high for treatment GROUP. Note also that the

compliance rates for �never imitate worse than average� are even higher

than those for �never imitate worse than own�, which gives some support

for DI and IBA.

Figure 3 shows the distribution of participants on the basis of their com-

pliance rates with the predictions of when not to imitate. As can be seen,

the large majority of subjects show compliance rates higher than 80%. In

fact, more than 30% of subjects show rates of compliance of 90% or higher.

15Recall that this information was provided in FULL (see Footnote 6).
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Figure 3: Distribution of participants on the basis of their compliance rates with
the predictions of: A) never imitate worse than own (average rule); B) never imitate

worse than own (max rule); and C) never imitate worse than average.

The predictive value of the max rule and the average rule in �never imitate

worse than own� are not signiÞcantly different.

In order to have a meaningful measure of success for evaluating the

performance of the imitation rules, we need a method that contrasts the

observed compliance rates with those that would obtain if there were no

relation between behavior and imitation. We use the following method. We

randomly simulate the behavior of 100 populations of nine players for 60

periods, and calculate the success of the hypotheses relative to this simu-

lated data. In order to give random behavior the best shot, we take the

experimentally observed frequencies from the experiment as the theoretical

distribution from which random behavior is generated.

The average rates of compliance (and standard deviations) pooling the

data in GROUP, ROLE, and FULL for �never imitate worse than own�

according to the average rule are .739 (.023); for �never imitate worse than

own� according to the max rule they are .739 (.024); and for �never imitate

worse than average� they are .848 (.014). The permutation test shows that

the compliance rates from Table 4 are higher than those randomly obtained

at all standard signiÞcance levels.

Result 2 On average, behavior of subjects is in line with the predictions of
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when not to imitate in almost 90% of all cases. This result signiÞ-

cantly outperforms random predictions. At the individual level, a large

majority of subjects shows compliance rates higher than 80%.

4.2.2 When to imitate (according to IBM and IBA)

Before checking particular imitation rules, we Þrst ask how often subjects�

behavior can be classiÞed as imitating in general. Recall that all rules de-

scribed in Section 3 are imitating behavioral rules, i.e. they prescribe to

imitate an action that has been observed in the previous period (abstract-

ing from noise). The Þrst line in Table 5 shows the percentages of decisions

that are imitating (regardless of payoff). Since this measure may sometimes

give a misleading impression, we also report in Table 5 compliance rates

weighted with respect to the number of different actions a player observes.

The weighted compliance rate wp for population p is deÞned as

wp =

P
i

P
j

P
t (5−#O(i, j)t) I(i, j)tP

i

P
j

P
t (5−#O(i, j)t)

, (1)

where #O(i, j)t is the number of different actions in player (i, j)�s set of

observed actions at period t, and I(i, j)t is a dummy variable that equals 1

if player (i, j) was imitating at period t and 0 otherwise. The weight on an

imitating choice is decreasing in the number of actions a player observed.

(If all Þve actions are observed, any choice is imitating; hence there is zero

weight.)

In order to assess the qualitatively similar IBM (�imitate best max�)

and IBA (�imitate best average�) rules, we compute at the individual, pop-

ulation, and treatment level the number of times behavior is in accordance

with the predictions of IBM and IBA, as stated in DeÞnition 1. Table 5

reports the average absolute rates of compliance, and the average condi-

tional rate of compliance given that imitation was observed, with IBM and

IBA for GROUP, ROLE, and FULL, separately. Note that in GROUP,

IBA and IBM prescribe the same behavior by deÞnition. For the remaining

treatments the observed average rates of success of IBA and IBM are also

identical up to one decimal point. This is due to the fact that the two rules
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Table 5: Compliance with IBM or IBA

ROLE GROUP FULL

share imitating 58.3% 66.5% 73.1%
weighted comp. 56.5% 65.0% 69.4%
IBM 48.2% 59.3% 55.4%
IBA 48.2% 59.3% 55.4%
IBM given imit 82.5% 88.7% 75.4%
IBA given imit 82.4% 88.7% 75.4%
Note: share imitating gives the percentage of decisions that copy an action observed

in the previous period: weighted comp. reports the percentage of the weighted

compliance rates for imitating behavior. �given imit� counts only cases in which

some action from O(i, j) was chosen.

typically prescribe the same actions (because the strategy with the highest

max is typically also the one with the highest average). Only in less than

2% of all cases they diverge.

The Þrst fact to notice when inspecting Table 5 is that there are many

non�imitating choices (between 27 and 45%). Those may be viewed as

instances of experimentation or as behaviors based on own past payoffs.

Thus, it is certainly not appropriate to consider imitation as the exclusive

explanation for observed behavior.

Given this, it is not surprising that the absolute compliance rates for IBM

and IBA shown in lines 3 and 4 of Table 5 are not terribly high although we

will show below that they are signiÞcantly higher than under random play.

But whenever subjects do imitate, they have a strong tendency to follow

IBA and IBM with compliance rates ranging from 75% to 88%.

In order to compare the data to random behavior using the method

described in the previous subsection, we again simulated 100 populations of

9 players. The average (absolute) rate of compliance thus obtained for IBM

and IBA pooled for GROUP, ROLE, and FULL under random choice is 35%

with a standard deviation of 2.22%. Permutation tests on the basis of the

average rates of compliance for the populations show that both imitation

rules outperform random predictions at any conventional signiÞcance level.

This further conÞrms that imitation is present in our data, and that, in
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Figure 4: Distribution of individual players on the basis of the observed rates of
agreement with the predictions of IBA and IBM for treatments GROUP, ROLE,

and FULL pooled together.

particular, IBM and IBA play a signiÞcant role explaining it.

Figure 4 shows the distribution of individual players on the basis of the

observed rates of (absolute) agreement with the predictions of IBA and IBM

for treatments GROUP, ROLE, and FULL pooled together. It is remarkable

that about 10% of the players show a percentage of absolute compliance with

IBM and IBA higher than 80%. This suggests that there is a sizeable number

of almost pure imitators. It is also worth noting that more than 35% of the

participants show a rate of agreement with IBM and IBA higher than 60%.

Result 3 IBM and IBA do about equally well, and both outperform random

predictions signiÞcantly. Moreover, 10% of subjects are almost pure

imitators whose choices are in line with IBM/IBA in more than 80%

of all decisions.

Our analysis of individual adjustments conÞrms the insight obtained by

looking at aggregate data. If individuals can imitate actions, most of them

do so. And some do so almost all the time.

Finally, Table 5 shows that the (absolute) degrees of compliance with

IBM and IBA are higher in GROUP than in ROLE. The permutation test

yields signiÞcance at the .05 level (two-sided).16 This is a surprise Þnding

16All other pairwise comparisons are not statistically signiÞcant.

24



that will gain further support below. Intuitively, one might expect that

imitation of others who are in the same role as oneself is more appealing

than imitation of a competitor who, after all, might have a different payoff

function. Recall that, at least initially, our subjects do not know that they

are playing a symmetric game. Also, subjects are randomly rematched every

period and can not expect to face the same opponents as last period.

Result 4 Imitation is signiÞcantly more pronounced when subjects can ob-

serve their immediate competitors (as in treatment GROUP) than

when they can observe others who have the same role in different groups

(as in treatment ROLE).

4.3 Estimating imitation rules

The predictions of Schlag�s imitation rules �Proportional Imitation�, DI and

SPOR explicitly refer to the probability of imitating an action. To do justice

to these predictions, we present in this section probit estimates for subjects�

choice functions. In particular, we analyze how subjects� decisions to change

their action depends on their own payoff and the best payoff they observe.

Furthermore, we also analyze how the likelihood of following IBM depends

on a subject�s own payoff and the best payoff the subject observes.17

Table 6 shows the result of estimating the following probit model with

random effects for all treatments,

Pr(sti 6= st+1i ) = Φ(α+ βπti + γπ
t
imax + vi + ε

t
i), (2)

where sti denotes subject i�s strategy in period t, π
t
i the subject�s payoff,

πtimax the maximal payoff the subject observed in his reference group. Φ is

the standard normal distribution, vi the subject-speciÞc random effect, and

εti the residual.

In agreement with imitation rules DI and SPOR, the regressions show

that coefficients for own payoffs are signiÞcantly negative while those for

17Due to the high correlation of the best max and the best average, results for IBA are
very similar and, therefore omitted.
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Table 6: Estimating the likelihood that subjects change their action

ROLE GROUP FULL

Constant α
1.103∗∗∗
(.1239)

.2197∗∗
(.0960)

.1360
(.1074)

Own payoff β
−.0013∗∗∗
(.0001)

−.0019∗∗∗
(.0002)

−.0011∗∗∗
(.0001)

Max payoff γ
.0003∗∗∗

(.0001)
.0014∗∗∗

(.0001)
.0005∗∗∗

(.0001)
# of obs. 3186 3186 3186

Note: ∗∗∗ denotes signiÞcance at the 1% level, ∗∗ denotes signiÞcance at the 5%
level.

maximal observed payoffs are signiÞcantly positive. This holds for all treat-

ments but it is most pronounced for GROUP.

After analyzing when subjects switch to a different action, we shall now

analyze where they switch to if they switch. Table 7 reports subjects�

likelihood of following IBM dependent on their own payoff and the maximal

observed payoff. These regressions are only run for cases in which a subject

actually switched to another action (since the theories allow for inertia, not

switching is always in line with the prediction). The estimated equation is

Pr(st+1i = stimax) = Φ(α+ θπ
t
imax + λ(π

t
imax − πti) + vi + εti), (3)

where stimax is the action that had the highest maximal payoff (IBM) in

period t in subject i�s reference group. All other variables are as deÞned

before. Note, however, that in contrast to regression (2) we now include

πtimax directly, and also in form of a variable which represents the difference

between the maximal observed payoff and the own payoff. We chose this

form to be able to test whether only the difference matters, as predicted e.g.

by Schlag�s Proportional Imitation rule, or whether own payoff and max

payoff enter independently.18 If θ is not signiÞcantly different from zero,

then only the payoff difference matters.

Table 7 shows that in fact only the payoff difference matters. In all

three treatments the coefficient of the difference variable has the expected

18We performed the same test for regression (2) and found that own payoff and max
payoff enter independently.
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Table 7: Estimating the likelihood that subjects follow IBM

ROLE GROUP FULL

Constant α
−1.1354∗∗∗
(.1593)

−1.0767∗∗∗
(.0982)

−1.0008∗∗∗
(.1442)

Max payoff θ
−.00005
(.0001)

−.0003∗
(.0001)

−.0002
(.0001)

Difference to max λ
.0009∗∗∗

(.0001)
.0023∗∗∗

(.0002)
.0003∗∗∗

(.0001)
# of obs. 2079 1644 1920

Note: Only cases with st+1i 6= sti included. ∗∗∗ denotes signiÞcance at the 1% level,
∗ signiÞcance at the 10% level.

sign and is signiÞcant at the 1% level. In contrast, the coefficient of the

maximal payoff observed is only (weakly) signiÞcant in treatment GROUP

and not signiÞcantly different from zero in the other treatments. This is

strong support for all rules that satisfy Property (ii) above, in particular for

Schlag�s Proportional Imitation rule.

Result 5 In line with Schlag�s imitation models, probit estimations show

that the probability with which a subject changes his action decreases

in his own payoff and increases in the maximal observed payoff. Fur-

ther, imitation of the best action becomes increasingly likely when the

difference between own and maximal observed payoff increases.

4.4 Questionnaire results

While the choice data we collected clearly show that many of our subjects

behave as if they imitate, one cannot be sure whether subjects are aware

of what they are doing and imitate intentionally. Thus, at the end of the

experiment we asked subjects to Þll in a computerized questionnaire. Apart

from asking for their major Þeld of studies,19 we asked subjects to explain

in a few words how they made their decisions and to answer a multiple

choice question regarding the variables they based their decisions on. In

particular, we asked: �Please sketch in a few words how you arrived at your

19There are no signiÞcant effects with respect to the Þeld of studies.
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Table 8: Multiple choice questions

Number of subjects Treatment
inßuenced by... GROUP FULL ROLE

own past payoff(s) 34 32 37
payoffs of others in group 39 30 −
payoffs of others in role − 19 33
Note: There were 54 subjects per treatment. All subjects chose at least one cate-

gory, but multiple answers were possible.

decisions!�. The multiple choice question asked: �Which of the following was

of particular importance to your decision (multiple answers possible)? a) the

results of your past decisions; b) the average payoff of all participants (only

in FULL); c) the results of the participants who were randomly matched with

you (only in FULL and GROUP); d) the results of the other participants

playing the same role (only in FULL and ROLE).

Table 8 summarizes subjects� responses to the multiple choice question.

In all treatments own past payoffs were of importance to a majority of sub-

jects and in all but treatment GROUP own payoffs were the most frequently

named factor. More than 50% of subjects took also payoffs of other play-

ers into consideration. Interestingly, we again Þnd that subjects are more

interested in imitation when they can observe payoffs of their immediate

competitors (compare Result 4 above).

Some of the free�format answers sketching the decision criteria employed

are also quite instructive. To summarize them we have classiÞed the answers

into 8 main categories which are shown in Table 9 together with selected

typical answers. Some subjects argued exactly as assumed by the various

imitation theories (classiÞcations �group� and �role�). But other subjects

simply chose at random, tried to differentiate themselves from the behavior

of others, or followed obscure patterns. There were also subjects who were

clever enough to Þnd out the payoff structure of the game (but were often

in despair about their opponents� play). Finally, some subjects reported to

follow only their own past payoffs.

Table 10 lists by treatment the frequency of answers that fall into these

8 categories. Imitation of others in the same group is again a frequently
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Table 9: ClassiÞcation of questionnaire answers

classiÞcation typical answer

role �Answer with highest payoff of other players in previous round�

group

�When I had the highest payoff, kept the action for the next

round. Otherwise switched to the action that brought

the highest payoff. Sometimes had the impression that

convergent actions of all players yielded lower payoffs.�

random �by chance since all attempts of a strategy failed!�

differentiate
�tried to act anti-cyclically, i.e. not to do what the other

Z-players have done� (in treatment ROLE)

pattern
�tried to Þnd out whether an action yielded high payoffs

in a particular order � but pattern remained unknown�

�...proceeded according to the scheme: ADBECADBEC...�

clever

�My impression of the rule was that low letters correspond to

low numbers. The sum of payoffs seemed to be correlated with

the sum of the letters but those with higher letters got more.

I attempted to reach AAA but my co-players liked to play E...�

own �found out empirically where I got most points on average�
Note: These answers are typical because they are very descriptive of the categories

not because they are typical for all answers in this category.
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Table 10: Frequency of questionnaire answers

classiÞcation Treatment
GROUP FULL ROLE

role − 3 6
group 10 12 −
random 9 15 17
differentiate 2 5 5
pattern − 6 2
clever 8 2 −
own 13 11 9
Note: A few answers were classiÞed into two categories.

cited motivation in both, GROUP and FULL, whereas role�imitation is less

prevalent. Random behavior and own�payoff driven behavior is frequent in

all treatments. But there are also types that like to differentiate themselves,

types that believe in pattern or pattern recognition, and there are some

clever types that guessed the payoff structure correctly.

The key Þnding in this section is

Result 7 Subjects not only behave as if they imitate but many imitate inten-

tionally. Other behaviors like random choices, pattern driven behavior,

or behavior determined by own past payoffs can also be observed.

5 Conclusion

In contrast to traditional theories of rational behavior, imitation is a be-

havioral rule with very �soft� assumptions on the rationality of agents. Im-

itation is typically modelled by assuming that subjects react to the set of

actions and payoffs observed in the last period, by choosing an action that

was evaluated as successful.

Recent theoretical results have increased the interest in economics about

imitation. Of particular importance are the results due to Vega�Redondo

(1997) and Schlag (1998). In Cournot games, the former predicts the Wal-

rasian outcome while the latter predicts the Cournot-Nash equilibrium. In

principle, these differences could be due to the different adjustment rules the
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models employ and/or the different informational conditions they assume.

We study both rules in a generalized theoretical framework and show that

the different predictions depend exclusively on the different informational

assumptions.

We derive testable predictions for various classes of imitation rules (to

which Vega-Redondo�s and Schlag�s belong) for discrete Cournot games and

test them in an experiment. More speciÞcally, we study populations of nine

players who are assigned to one of three different roles. In each period,

players are randomly matched into three groups to play a simple symmetric

Cournot game, such that always one player from each role is assigned to a

group.

If agents only receive information about others with whom they interact,

all rules that imitate successful actions imply the Walrasian outcome as

the unique stochastically stable state. If agents only receive information

about others who have the same role as they themselves but interact in

other groups, Cournot-Nash play is the unique stochastically stable state.

If agents have both types of information, the set of stochastically stable

states depends on the speciÞc form of the imitation rule. But, in general,

stochastically stable states range from Cournot to Walrasian outcomes in

such settings.

The experimental results provide clean evidence on both, the aggregate

and individual level, for the relevance of imitation rules. Average outputs

per treatment are exactly, and signiÞcantly, ordered as suggested by the

generalized imitation model. Alternative learning models that are exclu-

sively based on own past payoffs cannot account for this difference. Similar

support for imitation models is found on the individual level by analyzing

compliance rates for individual adjustments. Additionally, estimations of

individual adjustment rules are in line with the basic principles of all imi-

tation rules. In particular, we Þnd support for Schlag�s models that suggest

that the likelihood of imitating another more successful action increases in

the difference between own and other�s payoff.

Finally, we observe that imitation of actions seems to be more prevalent

when subjects observe others with whom they interact as opposed to others
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who have the same role but play in different groups. There is no theoretical

model that would account for such a difference. Moreover, one might think

that imitation of others who are identical to oneself is more meaningful than

imitation of others with whom we play but who might be different. (After

all, subjects in our experiment did not know that they were playing a sym-

metric game.) But this is not supported by the data. One conjecture that

might explain the difference we observe is that imitation of more success-

ful actions might be particularly appealing when one directly competes with

those who are more successful. In other words, there might be a link between

imitation and the relevance of relative income. In environments where imi-

tation prevents agents to do worse than their immediate competitors, there

is an obvious �evolutionary� beneÞt from imitating. Thus, evolution might

have primed us towards imitative behavior if we compete with others for the

same resources. This would explain our data but more theoretical work is

needed to study the evolutionary advantages and disadvantages of imitative

behavior.

A Proofs

Proof of Proposition 1. First notice that if agents observe only strategies

played in the own group, IBM coincides with IBA. By standard arguments

(see e.g. Samuelson, 1994) only sets of states that are absorbing under the

unperturbed (ε = 0) process can be stochastically stable. A straightforward

generalization of Proposition 1 in Vega�Redondo (1997) shows that only

uniform states can be absorbing (in all other states there is at least one

agent who observes a strategy that fared better than his own), which is why

we can restrict attention in the following to uniform states.20 We will show

that ωe can be reached with one mutation from any other uniform state

ωs 6= ωe. The proof is then completed by showing that it requires at least
two mutations to leave the Walrasian state.

Consider any uniform state ωs 6= ωe and suppose that some player (i, j)t
20Notice that the random rematching of agents into groups is crucial here. If group

compositions were Þxed, different groups could, of course, use different strategies.
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switches to the Walrasian strategy e. As a consequence (i, j)t will have

the highest payoff in group j which will be observed by the other group

members. By property (v) all players who were in group j at time t will

play e in t + 1 with positive probability. Moreover, due to the random

matching it is possible that the three players who were in group j at time

t will be in three distinct groups in t + 1. In that case, each of them will

achieve the highest payoff in their respective group which will be observed

by their group members who then can also switch to the Walrasian strategy

e, such that ωe is reached. (If there are more than three groups, it will

simply take a few periods more to reach ωe.)

It remains to be shown that ωe cannot be left with a single mutation.

This is straightforward. In fact, it follows from exactly the same argument

as in Vega�Redondo�s result. If a player switches to some strategy s 6= e, he
will have the lowest payoff in his group and will therefore not be imitated.

Moreover, he observes his group members who still play e and earn more

than himself. Thus, he will switch back eventually. ¥

Proof of Proposition 2. Although with reference groups as in treatment

ROLE, IBM does not always coincide with IBA, we can use identical argu-

ments for both rules to prove the claim. This is due to the fact, that we can

establish the claim by restricting attention to one-shot mutations that do

not induce different payoffs for any particular strategy an agent observes.

By a similar argument as above, only states, in which all role players

in a given role receive the same payoff, can be candidates for stochastic

stability. We will show that the Cournot state ωc can be reached with a

sequence of one�shot mutations from any other absorbing state. The proof

will be completed by showing that it requires at least two mutations to leave

ωc. It is easy to see that every non�equilibrium state can be left with one

mutation. One of the players who is currently not best replying, say (i, j),

must simply switch to his best reply. This will increase (i, j)�s payoff which

will also be observed by all other players in role i. Hence, in the next period

all players in role i may have switched to their best replies against their

opponents. Thus, for the Þrst claim it remains to be shown that there exists

for any state ω 6= ωc a sequence of (unilateral) best replies that leads into
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ωc. This is easy to see by inspecting the payoff matrix, but follows more

generally from the observation that the game has a potential (see Monderer

and Shapley, 1996).

Now, consider ωc and see what happens when a single player (i, j)

switches to some other strategy. As he moves away from his best reply,

he will earn less than the other agents in the same role i. As he can observe

these other agents, he will not be imitated and will eventually switch back.

Thus, it is impossible to leave ωc with one mutation which completes the

proof.¥

Proof of Proposition 3. Note again that only uniform states can be

candidates for stochastic stability. We will show that it takes one mutation

to reach the set {ωc,ωd} from any absorbing state not in this set while it

takes two mutations to leave this set. Consider Þrst a possible transition

from ωe to ωc.With 1 mutation a transition to the state ω = (cee)(eee)(eee)

is possible. The two e�players in group 1 observe two e�players (including

themselves) that earn 400 and two others that earn 0, which is on average

200. But they also observe one c�player who gets 300. Thus, with positive

probability in the next round all players in group 1 play c and one round

later everyone plays c. We denote this possible transition in short as:

ωe
1→ (cee)(eee)(eee)→ (ccc)(eee)(eee)→ ωc,

where the number above the arrow denotes the required number of muta-

tions.

It is easy to see that the following transitions from x = a, b to y = c, d

require one mutation only,

ωx
1→ (yxx)(xxx)(xxx)→ (yxx)(yxx)(yxx)→ ωy

as well as the transition from ωe to ωd,

ωe
1→ (dee)(eee)(eee)→ (ddd)(eee)(eee)→ ωd.

Any transition from a state ωy, y = c, d to some states ωx, x 6= y, is

impossible with one mutation as the process must return to ωy

ωy
1→ (xyy)(yyy)(yyy)→ ωy.
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Transitions from {ωc,ωd} to ωe require 2 mutations:

ωc
2→ (ccc)(ccc)(aec) → (cec)(cec)(aec)→ ωe

ωd
2→ (ddd)(ddd)(ead) → (edd)(edd)(eae)→ ωe.

Transitions inside the set {ωc,ωd} also require 2 mutations in both direc-
tions,

ωd
2→ (ccd)(ddd)(ddd) → (ccc)(ddd)(ddd)→ ωc

ωc
2→ (ccc)(ccc)(adc) → (cdc)(cdc)(adc)→ ωd.

Thus, {ωc,ωd} is the set of stochastically stable states.¥
Proof of Proposition 4. Again notice Þrst that in treatment FULL a

state is absorbing if and only if it is uniform. (Otherwise there are still some

actions that will eventually be imitated.) We will Þrst show that we can

construct sequences of one-shot mutations that lead from any of the two

�collusive� uniform states (where everybody plays a or everybody plays b)

into one of the others (which we claim to be stochastically stable). Then

we will show that it requires three simultaneous mutations to leave the

more competitive states (where everybody plays c, everybody plays d, or

everybody plays e).

The Þrst step is easy. Consider one of the two collusive states and sup-

pose that one agent, say (i, j) switches at time t to either c, d, or e. Clearly,

this agent will have the highest overall payoff and can be imitated by every-

body in R(i, j). Now suppose that in t+ 1 agent (i, j) will only be imitated

by agents who are also in role i but not by those in his group (due to inertia).

Then each group in t + 1 will have one player with a competitive strategy

and two with collusive strategies (regardless of the matching). The highest

payoffs are, of course, obtained by those who now play the more competitive

strategy and everybody can observe at least one of these agents. Hence, in

t+ 2 everybody will play the competitive strategy.

Next we show that it is not possible to leave one of the competitive

states with a single mutation. Take, for example, the Walrasian state, ωe,

and suppose that one agent (i, j) switches at some time t to some strategy
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other than e. This will have two consequences: (i, j) will earn less than

the other agents in group j but more than the other agents in role i. Now

suppose that the other agents in role i imitate (i, j) in t+ 1, but that (i, j)

himself, does not immediately switch back to e (due to inertia). Then in t+1

all players in role i will play the same strategy other than e while everybody

else will still play e. Clearly, the latter earn more than the former such that

now everybody can revert to playing e.

The same argument applies to states where everybody plays d or ev-

erybody plays c. Moreover, a similar argument applies for the case of two

simultaneous mutations. (Again inertia can be used to compose identical

strategy proÞles in all groups after the mutations and the Þrst round of

imitation.) The proof is completed by the observation that any uniform

state can be reached from any other uniform state by exactly three simul-

taneous mutations. For movements from less to more competitive states we

can make such a transition if all players who have the same role i simulta-

neously switch to higher quantities. For reverse movements from more to

less competitive states we can construct the transition if all players in the

same group j simultaneously switch to lower quantities.21 This completes

the proof. ¥

Proof of Proposition 6.

(a) Only uniform states can be imitation equilibria, otherwise there

would be an imitation opportunity. To see that ωe is an imitation equilib-

rium note that if (i, j) deviates from ωe will experience lower payoffs than

any other player; nobody follows and (i, j) returns to e. To see that any

other uniform state is not an imitation equilibrium consider the deviation

of (i, j) to the immediate higher production level. This creates an imitation

opportunity to players in group j. By random matching this deviation may

spread out the whole population, in which case a destination is reached.

At the destination the payoffs of (i, j) are lower than at the original distri-

bution. Player (i, j) returns to the original action. Now players in group j

21Hence, a generalization of our statement for arbitrary numbers of groups and arbitrary
group sizes is not possible. The set of stochastically stable states will, in general, depend
on whether there are more roles or more groups.
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have higher payoffs than (i, j), do not imitate him, and (i, j) has an imitation

opportunity to go back to the deviation strategy.

(b) If (i, j) deviates from ωc, he will get lower payoffs than players in role

i. Nobody follows the deviation, and (i, j) returns to c. This shows that ωc

is an imitation equilibrium. It is easy to show that any state other than ωc

where members of the same role play the same action, but where differences

between roles are not excluded, is not an imitation equilibrium. Note then

that there is a (i, j) that is not best-replying, then a deviation of (i, j) to

his best-reply gives to him higher payoffs, creating an imitation opportunity

to players in role i. At this destination (i, j) has higher payoffs than at the

original state, and hence does not return to the original action. It remains to

be shown that a state where at least one role whose members play different

actions is not an imitation equilibrium. If in such a case, in any random

matching any player has an imitation opportunity, then the assertion holds.

Assume the opposite, then since there are not two different best-replies that

give the same payoffs, at least one player is not best-replying, and hence the

above argument shows that such a state is not an imitation equilibrium.

(c) To show in FULL that non-uniform states are not imitation equilibria

is tedious, and hence we concentrate on uniform states. We Þrst show that

ωc is an imitation equilibrium. At ωc let (i, j) deviate to sji 6= c. Then

players in role i will have higher payoffs than (i, j) and players in group j

will observe that those players in their respective role have higher payoffs

than (i, j). Hence, nobody follows. Then, (i, j) observes that c gives higher

payoffs to players in role i and hence returns to c.

Now we show that ωe is an imitation equilibrium. At ωe let (i, j) deviate

to sji 6= e. In t+ 1 players in role i will follow since will have lower payoffs
than (i, j) and will observe that their respective group players also have

lower payoffs than (i, j), but players in group j will not follow since will

have higher payoffs than (i, j). In t + 2 all players in role i including (i, j)

will imitate their respective group players and hence ωe is reached.

We now show that ωd is an imitation equilibrium. If at ωd (i, j) deviates

to sji ∈ {a, b, c}, then a deviation path that returns to ωd, analogous to
the one analyzed for the case of ωe, is generated . If at ωd, (i, j) deviates
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to sji = e, then a deviation path that returns to ωd, analogous to the one

analyzed for the case of ωc, is generated.

To show that ωa and ωb are not imitation equilibria it is enough to

show that there exists a sequence of random matchings that makes that the

imitation paths do not return to the original state. Let x = a, b and y = b

if x = a and y = c if x = b. Then, one can check that the following path

can be generated: ωx → (yxx)(xxx)(xxx) → (yyx)(yxy)(yxx) → ωy →
(xyy)(yyy)(yyy)→ ωy. ¥

B Instructions

Welcome to our experiment! Please read these instructions carefully. Do

not talk with the person sitting next to you and remain quiet during the

entire experiment. If you have any questions please ask us. We will come to

you.

During this experiment, which takes 60 rounds, you will be able to earn

points in every round. The number of points you are able to earn depends

on your actions and the actions of the other participants. The rules are very

easy. At the end of the experiment the points will be converted to Euros at

a rate of 3000:1.

Always 9 of the present participants will be evenly divided into three

roles. There are the roles X,Y, Z, taken in always by 3 participants. The

computer randomly allocates the roles at the beginning of the experiment.

You will keep your role for the course of the entire experiment.

In every round every X-participant will be randomly matched by the

computer with one Y - and one Z-participant. After this, you will have to

choose one of Þve different actions, actions A,B,C,D, and E. We are not

going to tell you, how your payoff is calculated, but in every round your

payoff depends uniquely on your own decision and the decision of the two

participants you are matched with. The rule underlying the calculation of

the payoff is the same in all 60 rounds.

After every round you get to know how many points you earned with

your action and your cumulative points.
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In addition, you will receive the following information:

You get to know which actions the other two participants who have the

same role as you (and who were matched with different participants) have

chosen, and how many points each of them earned.

You get to know which actions the other two participants you were

matched with have chosen, and how many points each of them earned.

Furthermore you get to know how many points all 9 participants (in all

the 3 roles) on average earned in this round.

Those are all the rules. Should you have any questions, please ask now.

Otherwise have fun in the next 60 rounds.
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