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ABSTRACT

Programme Evaluation with Multiple Treatments®

This paper reviews the main identification and estimation strategies for microeconomic policy
evaluation. Particular emphasis is laid on evaluating policies consisting of multiple
programmes, which is of high relevance in practice. For example, active labour market
policies may consist of different training programmes, employment programmes and wage
subsidies. Similarly, sickness rehabilitation policies often offer different vocational as well as
non-vocational rehabilitation measures. First, the main identification strategies (control-for-
confounding-variables, difference-in difference, instrumental-variable, and regression-
discontinuity identification) are discussed in the multiple-programme setting. Thereafter, the
different nonparametric matching and weighting estimators of the average treatment effects
and their properties are examined.
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1 Introduction

Programme evaluation is an important tool for informed decision-making with respect to the

L' Evaluation

efficient allocation of resources and for the improvement of existing policies.
attempts to assess how far a programme has achieved its intended aims. Consider an active
labour market programme, such as a vocational training programme for unemployed persons.
A principal aim of the programme is to improve the employability of the participants so that
they quickly become re-employed and earn higher wages. To assess how far this aim has
been fulfilled, it would be necessary to compare the employment situation of the participants
after the programme with the employment status they would have had, if they had not
participated in the programme. A naive comparison of their employment status before and
after the programme is not informative since some of the participants would have found
employment even without the programme. A comparison of the re-employment rates of the
participants and of the non-participants is futile, too, unless the participants were chosen
randomly. Because programme participation is often the result of deliberate decisions, the
individuals who decided or were assigned to participate are a selected group, such that a direct
comparison of their outcomes with those of the non-participants would lead to selection bias.
Instead, a variety of statistical corrections are necessary to compare only like persons and to
identify the average treatment effect, which is the difference between the expected outcome in
the case of participation and the expected outcome in the case of non-participation. Whereas
earlier evaluation studies often employed parametric selection models, these are increasingly
replaced by nonparametric methods that avoid strong functional form assumptions and are,
thus, more robust to misspecification. The applicability of these methods depends on the
available data and on the specific details of the programme, particularly on the way how
programme participation decisions were made.

Whereas most of the literature on programme evaluation has focused on the evaluation of
a single programme (see, for example, the surveys by Angrist and Krueger 1999, Heckman,
LaLonde, and Smith 1999), many social policies consist of a variety of different programmes.

Active labour market policies, for example, usually comprehend job-search assistance,

1For example with respect to active labour market programmes, welfare-to-work programmes, vocational
b )
training programmes, entrepreneurship promotion schemes, educational programmes, tuition subsidies, sickness

rehabilitation programmes or disease prevention programmes.



vocational training programmes, public employment programmes, wage subsidies -etc.
Evaluating such a diverse policy requires the identification and estimation of many different
treatment effects, which makes the analysis more complex. Proper evaluations of policies with
multiple programmes have only been carried out recently. This survey gives an overview of
possible identification and estimation strategies for the evaluation of policies with multiple
programmes.

In Section 2, the concepts of potential and counterfactual outcomes and average treatment
effects are introduced. Selection bias is discussed and the various nonparametric strategies to
identify treatment effects in the context of multiple treatments are presented, together with a
discussion on practical issues regarding their implementation and data requirements. These
include controlling-for-confounding-variables, difference-in-difference, instrumental-variable
and regression-discontinuity identification. In Section 3, the nonparametric estimation of
average treatment effects and of mean counterfactual outcomes is discussed. Different
generalized matching and weighting estimators are presented, including an examination of

propensity score matching and asymptotic efficiency bounds. Section 4 concludes.

2 Identification of average treatment effects

Policy and programme evaluation is concerned with measuring how far a policy or a
programme has achieved its intended aims. A policy is hereafter defined as a bundle of R
different programmes. This includes the case of evaluating a single programme (R = 2,
participation versus non-participation) and evaluating multiple programmes (R > 2).
One example of policies consisting of multiple programmes are active labour market
policies, which often comprise various public employment programmes, on-the-job training,
retraining, classroom training, job search assistance, wage subsidies etc. Another example
are rehabilitation policies for the re-integration of people with long-term illnesses, which
may consist of different forms of vocational workplace training, vocational schooling, medical
rehabilitation and social and psychological programmes. In the following, often the neutral
term treatment will be used synonymously for programme, since the methods presented here
are not restricted to the evaluation of social policies but apply similarly to, for example, the
evaluation of the effectiveness of medical drugs or of different schooling choices, or of the

effects of participation in the military. Since participation in a policy is often voluntary, or



since full compliance in a ’'mandatory’ policy might not always be enforceable, the set of
different treatments usually includes a ’'no-programme’ or ’'non-participation’ option. As
it is assumed that all individuals are untreated before participation in the policy, i.e. that
they had not participated previously in the programmes,? this non-participation’ treatment
is often special in the sense that it is the treatment most similar to the situation before
participation in the policy. To illustrate this asymmetry, the treatment set will be indexed by
r € {0,..,R — 1}, i.e. consisting of a 'non-participation’ treatment (r =0) and R — 1 active
treatments. In the case of the evaluation of a single programme the treatment set consists of
r =0 (non-participation) and r =1 (participation).

The basic ideas and concepts of the current approaches to causal inference in programme
evaluation stem from the statistical analysis of randomized experiments and potential
outcomes.®  The notion of potential outcomes was formalized in Neyman (1923), who
considered potential yields of crop varieties on different plots of land with the plots
randomly allocated to the crop varieties. Rubin (1974, 1977) provided a more thorough
statistical framework for the concept of potential outcomes and extended it to the analysis of
observational studies, where the units are not randomly assigned to the treatments.

Let i denote a unit (an individual, a household) which is assigned to one of R mutually

exhaustive and exclusive treatments, i.e. each individual participates in exactly one of these

treatments. Let
}/ZO’ Yil: - Y,L'Rfl

denote the potential outcomes for this individual. Y is the outcome that would be realized
(after treatment) if the individual i were assigned to treatment 0. Likewise, Y;! is the outcome
that would be realized if the individual ¢ were assigned to treatment 1 and so forth.* Ex-ante,
i.e. before participation in the policy, each of these potential outcomes is latent and could be
observed if the individual participated in the respective programme. Ex-post, only the outcome

corresponding to the programme in which the individual eventually participated is observed.

The other potential outcomes are counterfactual and unobservable by definition.

?For the evaluation of sequential programmes see Lechner and Miquel (2002).
3For an introduction to causal reasoning see Holland (1986) and, particularly, Pearl (2000).
*Considering the potential outcomes Y;" as deterministic (non-random) values is only for convenience. The

analysis would not change if Y;" were random variables.



2.1 Stable-unit-treatment-value assumption

The definition of potential outcomes already made implicit use of the assumption of 'no in-
terference between different units’ (Cox 1958, p.19) or stable-unit-treatment-value assumption
(SUTVA, Rubin 1980). It is assumed that the potential outcomes Y, V;!, .., ¥;*1 of individ-
ual ¢ are not affected by the allocation of other individuals to the treatments. Formally, let
D denote a treatment-allocation wvector, which indicates for all individuals the programme in
which they participate. Let Y denote the vector of the observed outcomes of all individuals.
Define Y (D) as the potential outcome vector that would be observed if all individuals were
allocated to the policy according to the allocation D. Further let Y;(D) denote the i-th element
of this potential outcome vector.

The stable-unit-treatment-value assumption states that for any two allocations D and D’
Y;(D) = Y;(D’) if D,;= D},

where D; and D} denote the i-th element of the allocations D and D’, respectively. In other
words, it is assumed that the observed outcome Y; depends only on the treatment to which
individual 7 is assigned and not on the allocation of other individuals.

This assumption might be invalidated if individuals interact, either directly or through
markets. For example, if active labour market programmes change the relative supply of
skilled and unskilled labour, all individuals may be affected by the resulting changes in the
wage structure. In addition, programmes which affect the labour cost structure, e.g. through
wage subsidies, may lead to displacement effects, where unsubsidized workers are laid off and
are replaced by subsidized programme participants. Individuals might further be affected
by the taxes raised for financing the policy. The magnitude of such market and general
equilibrium effects often depends on the scale of the policy, i.e. on the number of participants
in the programmes. Departures from SUTVA are likely to be small if only a few individuals
participate in the policy, and usually they become larger with increasing numbers of
participants. This is the motivation of studies attempting to estimate the general equilibrium
effects in the evaluation of active labour market policies by an augmented matching function
approach, such as Blanchard and Diamond (1989, 1990) or Puhani (1999). In these studies,
observed variations in the scale of the policy over time or geographic location are exploited to

estimate the influence of the scale of the policy on the number of unemployed persons who



become re-employed. Although these studies provide important insights, their interpretation
is often difficult. Apart from using arbitrary parametric specifications, they often do not rest
on an explicit causal framework. In many cases, the variations in the policy scale over time
are not exogenous, but influenced by the outcomes of the policy in previous periods, which
makes it difficult to define a causal effect. Furthermore, disentangling the general equilibrium
effects of policies with multiple programmes could be a demanding task.

A different form of interference between individuals can arise due to supply constraints. For
example, if the number of programme slots of a certain programme is limited, the availability
of the programme for a particular individual depends on how many participants have already
been allocated to this programme. Such interaction does not directly affect the potential
outcomes and, thus, does not invalidate the microeconometric evaluation approaches discussed
subsequently. However, it restricts the set of feasible allocations D and could become relevant
when trying to change the allocation of participants in order to improve the overall effectiveness
of the policy. Supply constraints are often (at least partly) under the control of the programme
administration and could be moderated if necessary.

Henceforth, the validity of SUTVA is assumed. Such an approach is warranted if the policy
under consideration is rather small in size, if market effects are unlikely, or if the counterfactual
world against which the policy is evaluated is such that similar distortions through market and
general equilibrium effects would persist, e.g. if the only feasible policy options are to marginally

increase or decrease the scale of the policy.

2.2 Average treatment effects and selection bias

The difference between the potential outcome Y;” and the potential outcome Y;* can be inter-
preted as the gain or loss that individual ¢ would realize if he participated in programme r
relative to what he would realize if he participated in programme s. Thus the difference Y;" —
Y;? is the causal effect of participating in programme r and not participating in programme
s. In the binary treatment case (i.e. the evaluation of a single programme), the difference
1 0 . o« e . . . . . .« .
Y —Y;” represents the difference between participating and not participating. Such individ-
ual treatment effects (Rubin 1974) can never be ascertained since only one of the potential
outcomes Y, V!, ..,YiR_1 can be observed ex-post: Y;D " where D; € {0,..,R — 1} indicates

the programme in which individual 7 actually participated. Therefore programme evaluation



seeks to learn about the properties of the potential outcomes in the population. Since only
one of the potential outcomes can be observed for each individual, the joint distribution of the
potential outcomes Y, .., Y21 is not identified and, consequently, at most the properties of
their marginal distributions can be uncovered. A parameter of interest is the average treatment

effect (ATE)
EY" -Y7], (1)

which is the difference between the outcome expected after participation in programme r and
the outcome expected after participation in programme s for a person randomly drawn from

the population. Analogously, the average treatment effect on the treated (ATET)
E[Y" —Y*ID =] (2)

is the expected outcome difference for a person randomly drawn from the subpopulation of
participants in programme 7. The most interesting parameter depends on the specific policy
context. For example, in the binary treatment case with voluntary participation it may be
more informative to know how the programme affected those who participated in it, than how
it might have affected those who could have participated but decided not to. In this case, the
average treatment effect on the treated E[Y'! — Y°|D = 1] would be more interesting than
the average effect on the non-participants E[Y! — YYD = 0]. A further discussion about
these evaluation parameters and their appropriateness in different circumstances is found in

Heckman, LaLonde, and Smith (1999).

To identify average treatment effects from a sample of past programme participants and
non-participants, additional assumptions are required. Let {(Xj, D;,Y;)}; be a sample of
previous participants, where Y; = YiD ¢ is the observed outcome and X; are other individual
characteristics. Since Y" is only observed for the participants in programme r, the data
identifies E[Y"|D = r] and E[Y"|X, D = r] for all » but not E[Y"]| or E[Y"|D = s|. Generally

the potential outcomes are different in the various subpopulations

E[Y'|D=v]£E[Y'|D=s #E[Y"].

’Lechner (2001a) defined a further parameter E[Y" — Y*|D € {r, s}] which is a weighted combination of the
two average treatment effects on the treated E[Y" —Y®|D =r] and E[Y" —Y?*|D = s].



Consequently, estimating the average treatment effect on the treated (2) by the difference in

the subpopulation means E[Y"|D = r| and E[Y*|D = s] would give a biased estimate since

EY'|D=r]-E[Y’|D=5s] = E[Y" —Y°D=1] (3)

+{E[Y®|D=r]-E[Y®|D=s]}.

The second last term in (3) is the proper average treatment effect on the treated (2), whereas
the last term in (3) is the selection bias (Heckman and Robb 1985, Manski 1993). Selection
bias arises because the participants in programme r and the participants in programme s
are deliberately selected groups that would have different outcomes, even if they were placed
into the same programme. In making their programme participation decisions, individuals
conjecture about their potential outcomes and base their choice on these guesses. In addition,
unobserved character traits, such as health, motivation, ability or work commitment, lead
to selection bias if they are correlated with the programme participation decision and the
potential outcomes (e.g. earnings, employment status). Often programme participation is not
completely voluntary but a joint decision of different parties, e.g. an unemployed person and
a case worker. Again selection bias arises if the programme participation decision depends
either consciously or unconsciously on factors related to the potential outcomes, for example, if
case workers assign unemployed persons to particular programmes on the basis of their labour

market history.

2.3 Nonparametric identification strategies

Hence data alone are not sufficient to identify average treatment effects. Conceptual causal
models are required, which entail identifying assumptions about the process through which the
individuals were assigned to the treatments, or about stability of the outcomes over time, see
Pearl (2000). The corresponding minimal identifying assumptions cannot be tested with obser-
vational data and their plausibility must be assessed through prior knowledge of institutional
details, the allocation process and behavioural theory. Below possible evaluation strategies to
identify average treatment effects are presented. Which of these identification strategies, if any,
is appropriate depends on the outcome variable of interest. As most policies pursue multiple
and often conflicting goals, usually many different outcome variables are of interest, includ-

ing economic, social, health and psychological indicators as well as programme cost variables.



Since selection bias is a phenomenon caused by factors that affect jointly the participation de-
cision and the potential outcome, selection bias might occur for some outcome variables but
not for others. If the effects of a policy should be ascertained with respect to multiple outcome
variables (Y being a vector), the appropriate identification strategy has to be chosen for each
outcome variable on a case by case basis. It may be that a simple evaluation strategy can
be used for some outcome variables, for which selection bias seems unlikely (e.g. monetary
programme costs), whereas sophisticated evaluation strategies are required for other outcome
variables, and finally, it may happen that for some outcome variables, no effect can be identi-

fied with the available data.

The nonparametric identification strategies discussed below all rely in one way or another
on comparing the observed outcomes of one group of individuals with the observed outcomes of
another group of individuals to identify average treatment effects. An exception to these com-
parison group approaches is the before-after estimator which estimates E[Y” — Y°|D = r| by
comparing the observed outcomes of the participants before and after the treatment. It relies
on the assumption of temporal stability (Holland 1986), i.e. that the outcome observed be-
fore participation is the same as the outcome that would be observed in the 'non-participation’
treatment at a later point in time. This assumption is usually not valid if the individual’s en-
vironment changes over time. For example, Ashenfelter (1978) observed that the earnings of
participants in active labour market programmes often had deteriorated recently before par-
ticipation in the programme. If this decline in earnings represents a transitory labor market
shock, it is likely that earnings would have recovered (at least partly) even without participa-
tion. The before-after estimator, however, would ascribe all increases in earnings to the pro-
gramme participation. In this case, the effect of the treatment would be overstated. Particu-
larly, if medium and long term effects of a programme shall be estimated, temporal stability
is often not valid. Besides this, the before-after comparison strategy is not very suited for the
evaluation of a policy consisting of multiple programmes, since it could only be used to esti-
mate the treatment effect on the treated relative to non-participation, but not for any compar-

ison between the active treatments.



2.4 Randomized experiment

The ideal solution to avoid selection bias due to systematic selection of the participants is to
assign individuals randomly to the programmes, as advocated in Fisher (1935). Randomization
ensures that the probability to be assigned to a certain treatment is not influenced by the

potential outcomes
P(D=dY’ . YY) =P(D=d)

or in the notation of Dawid (1979) that the potential outcomes YV, .., Y~ are statistically

independent (L) of the treatment indicator D
YO, ., yiElup.

Random programme assignment ensures that any differences between the treatment groups
are by pure chance and not systematic. Consequently, the observed outcomes Y” among the
participants in programme r have the same expected value as the potential outcomes Y among

the participants in programme s
EY'|\D=r|=FE[Y"|D=s|=E[Y"],

and selection bias is thus avoided.

Yet implementing a randomized experiment for evaluating social programmes is often not
trivial. Participation in a particular policy is often voluntary such that randomization can only
be implemented with respect to the individuals who applied for the programme.® However,
these might be different from the population of interest. Particularly, if randomization covers
only parts of the population, the experimental results may not be generalizable to the broader
population. Even if a policy is mandatory and all individuals can be randomly assigned to the
treatments, full compliance is often difficult to achieve if participants must exercise some effort
during the participation and may refuse their cooperation. Heckman and Smith (1995) dis-
cuss different sources that may invalidate the experimental evaluation results. Randomization
bias occurs if the prospect of randomized allocation alters the pool of potential participants

because individuals may be reluctant to apply at all or reduce any preparatory activities such

®These can be assigned to the different programmes and to the non-participation’ treatment (randomized-

out).



as complementary training due to the fear of being randomized-out (threat of service denial).
Substitution bias occurs if members of the control group (the randomized-out non-participants)
obtain some treatment or participate in similar programmes, e.g. training obtained from pri-
vate providers. In this case, the experimental evaluation measures only the incremental value
of the policy relative to the programmes available otherwise. Drop-out bias occurs if individ-
uals assigned to a particular programme do not (or only partly) participate in it. Heckman
and Smith (1995) also mention that randomized experiments are expensive, often face political

obstacles and may distort the operation of an on-going policy.”

2.5 Control for confounding variables

Even if a randomized experiment would have been feasible, it often simply has not been imple-
mented at the onset of the policy. In this case, only observational data are available and the
selection problem must be solved by other means. One approach is to mimic the idea of a ran-
domized experiment and to form comparison groups which are as similar as possible. Accord-
ingly this identification strategy is also called quasi-experimental. The underlying motivation
can be illustrated as in Rubin (1974): If two individuals ¢ and j are found that are identical
(or very similar) in all their characteristics, then also Y, and Y, should be similar. If one
of these individuals takes part in programme r and the other in programme s, and if many
such pairs are found, then the difference in observed outcomes could be used as an estimate of
the average treatment effect between programme r and programme s. For this estimate to be
consistent, the individuals within each pair must be identical with respect to all confounding
variables X, i.e. with respect to all variables that influenced treatment selection and the po-
tential outcomes. This implies that, conditional on X, the probability of being selected to a

particular programme is not affected by the potential outcomes:
Y'UD|X vr. (4)

This assumption is known as selection on observables (Barnow, Cain, and Goldberger 1981),

ignorable treatment assignment (Rosenbaum and Rubin 1983) or as conditional independence

"Even if a proper experiment is conducted, it might still occur by chance that the treatment groups differ
substantially in their characteristics particularly if the sample sizes are small. Although the differences in sample
means provide unbiased estimates of average treatment effects, adjusting for the differences in the covariates, as

discussed in Section 3, can reduce the variance of the estimates (Rubin 1974).

10



assumption (Lechner 1999), and it states that, given the characteristics X, knowing the pro-
gramme an individual has chosen contains no additional information about his potential out-
comes. In other words, treatment selection depends on the potential outcomes only to the ex-
tent to which they can be anticipated on the basis of the exogenous characteristics X, but not
on an anticipation based on unobserved characteristics.

The confounding variables often include time-varying variables as well. For example,
Ashenfelter (1978) noted that the decision to participate in active labour market programmes
is highly dependent on the individual’s previous earnings and employment histories. Recent
negative employment shocks often induce individuals to participate in training programmes.
Hence the employment situation in the months before the programme starts is an important
determinant of the programme participation decision and is also likely to be correlated with
the potential employment outcomes. However, since usually no explicit start date can be
observed for the participants in the 'non-participation’ treatment, the employment situation
in the months before the programme started is undefined for them. To solve this problem,
Lechner (1999) suggested drawing hypothetical start dates for the 'non-participants’ from the
distribution of start dates among the participants.® Lechner (2002b) analyzed the assignment
of hypothetical start dates further. Instead of drawing dates from the unconditional
distribution of start dates, he also considered drawing from the distribution conditional on
the confounding variables. This conditional distribution can be simulated by regressing
the (logarithm of the) start dates on the covariates and fitting the mean of the conditional
distribution at the covariate values of the respective non-participant. In his application both

methods led to similar results.

On the other hand, X must not include any variables that are itself affected by the policy.
These are (endogenous) variables that are caused by the policy and conditioning on such
variables would block the part of the causal effect that acts through these variables (Pearl 2000).
The variables that must and must not be included in X cannot be inferred from the data, nor
can their completeness be tested. Knowledge of the institutional details and a conceptual

causal model are required to assess which variables are relevant. Hence a priori, the selection

8 And to delete the 'non-participant’ observations for which the assigned start date implies an inconsistency.
For example, if unemployment is a basic eligibility condition for participation in an active labour market pro-
gramme, individuals with an assigned start date after the termination of their unemployment spell are discarded

(because participation could not have been possible at that date).
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on observables assumption (4) can neither be regarded as a strong or a weak condition; this
depends entirely on the policy specific details, the outcome variable of interest and the available
data.” However the validity of this assumption should be carefully assessed, since leaving out
relevant covariates can change the estimation results considerably and lead to wrong conclusions
as, for example, demonstrated in Lechner (2002b).

Generally speaking, identification by the conditional independence assumption (4) is easier
to achieve the more bureaucratic, rule-based and deterministic the programme selection pro-
cess is'’ and the more parties are involved that (truthfully) report their judgements about the
individual’s characteristics and behaviour (e.g. case worker’s and physician’s judgements in
Frolich, Heshmati, and Lechner (2000)). For example, in his analysis of the effects of voluntary
participation in the military on civilian earnings, Angrist (1998) takes advantage of the fact
that the military is known to screen applicants to the armed forces on the basis of particular
characteristics, primarily on the basis of age, schooling and test scores. Hence these charac-
teristics are the principal factors guiding the acceptance decision, and it appears reasonable to
assume that among applicants with the same observed characteristics, those who finally enter
the military and those who do not are not systematically different. A similar reasoning applies
to the effects of schooling, if it is known that applicants to a school or university are screened
on the basis of certain characteristics, but that conditional on these characteristics selection is
on a first-come/first-serve basis.

On the other hand, if individuals decide largely autonomously, and if no details about
their personal traits are available (e.g. in form of truthful self-assessments), validity of the
conditional independence assumption is much harder to establish. In this case, longitudinal
data containing, for example, past employment and earnings histories can help to proxy typical,
though unobserved traits of the individual (e.g. ability, discipline, work commitment, health
status). Such a very informative longitudinal dataset is used, for example, in Gerfin and

Lechner (2002) for the evaluation of active labour market policies in Switzerland.

9The control-for-confounding-variables evaluation strategy is widely applied in the evaluation of active labour
market programmes, see for instance Heckman, Ichimura, and Todd (1997) and Dehejia and Wahba (1999) for
the USA, Lechner (1999) for Eastern Germany, Larsson (2000) for Sweden, Brodaty, Crépon, and Fougere (2001)

for France, Gerfin and Lechner (2002) for Switzerland, and Jalan and Ravallion (2002) for Argentina.
0Pprovided a random element exists that guarantees that each individual could be assigned to each of the

programmes (with non-zero probability). This is the common support condition discussed below.
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If the conditional independence assumption (4) is valid, the potential outcomes conditional

on X are identified because
EY"|X,D=r|]=E[Y"|X,D=s]=FE[Y"X].

The average treatment effect (1) and the average treatment effect on the treated (2) can be
obtained by weighting these outcomes by the distribution of X in the respective population.

By the law of iterated expectations, the average treatment effect is identified as

ElY"—Y*] = E[Y"|—E[Y”] (5)
= EB[E[Y'|X]) - E[E[Y*X]

= /(E[YT\XZLE,D:T] —EY?|X =2,D =s])- fx(x)dx,

where fx(x) is the density of X in the population. Since E[Y"|X,D = r] and E[Y*|X,D =
s] can be estimated from observed data, the average treatment effect can be obtained by
estimating the expected outcome conditional on X in both treatment groups and weighting
them accordingly by the distribution of X in the full population.

Analogously, the average treatment effect on the treated is identified as

EY"—Y!D=v] = E[Y'|D=r]-E[E[Y*|X,D=1]|D=1r] (6)

_ E[Y’”|D:r]—/E[YS|X:33,D:s]-fXDT(x)daz,

where fx|p—r(x) denotes the density of X among the participants in programme r. The former
term is identified by the sample mean outcome of the participants in programme r, and the
latter term can be estimated by adjusting the average outcomes in treatment group s for the

distribution of X among the participants in r.

The requirement of a common support has been neglected in the discussion so far.
Although the conditional independence assumption (4) identifies the conditional potential
outcomes FE[Y"|X = x| through observations on participants in programme r, this
identification holds only for all x for which there is a positive probability that participants in

programme 7 are observed with characteristics x. Let

S" = {33 : fX|D:r(fL") > 0} (7)
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denote the support of X among the participants in programme 7, which can also be expressed

S"=A{z:p"(z) > 0},

where p"(x) = P(D = r|X = x) is the probability that an individual with characteristics x
participates in programme r.!' For any x ¢ S” the expected outcome E [Y"|X = x, D = r] is
not identified, since it is impossible to observe any participant in programme r with charac-
teristics x. Let S denote the support of X in the population, i.e. S = {x: fx(z) > 0}, which
is the union of all treatment group supports: S = US”". The average treatment effect on the
treated E[Y" —Y*|D = r| is only identified, if S" C 5%, i.e. if any x with positive mass among
the participants in treatment r belongs also to the support of the treatment subpopulation
s. Identification of the average potential outcome E[Y"] requires even that S™ = S, i.e. that
each individual has also a positive probability of being observed in programme r. Analogously,
the identification of the average treatment effect E[Y" — Y?| requires S™ = S* = S. In the
case of randomized experiments these conditions are automatically satisfied (for the population
on which randomization took place) since each individual has a positive probability of being
randomized into any of the available programmes. With observational studies, however, this
is often not the case. For example, in active labour market programmes being unemployed
is usually a central condition for eligibility. Thus employed persons cannot be participants as
they are not eligible and, hence, no counterfactual outcome is defined for them. In these cases,
it might be adequate to concentrate on the part of the population for which the effect can be
identified and to redefine the average treatment effect (1) as
ST%'SS Y-y = X\Xegris)E Y7 =YX
and the average treatment effect on the treated (2) as
ST%?SS Y™ -Y?®D=r],

where Egrngs refers to the expected outcome with respect to the common support, i.e. with
respect to the part of the population which has characteristics X belonging to the supports

S" and S%. If most of the population mass belongs to the common support, these re-defined

"' The definition 8™ = {z : p"(z) > 0} means S” = {z : p"(z) > 0 and p"(z) is defined} and, thus, excludes all

x where the density fx(z) in the population is zero.
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treatment effects are likely to be close to the treatment effects for the full population. Fur-
thermore, if the potential outcomes are bounded random variables, the intervals in which the
average outcomes E[Y"] and E[Y?] lie can be bounded, which directly implies bounds on the
average treatment effect E[Y" —Y®]. For a further discussion about bounding the effects when
ST # 5% see Lechner (2001b). For the remainder of this paper, conditioning on the common

support is usually kept implicit to ease notation.!?

A way to 'verify’ the validity of the conditional independence assumption (4), known as the
'pre-programme test’, is based on observed outcomes before treatment participation (Heckman
and Robb 1985). To distinguish pre- and post-treatment outcomes, the notation has to be
extended to take explicit account of time. Redefine Y}?, .., YtR*1 as the potential outcomes at a
time ¢ after the assignment to treatment. Let Y., .., Y.®*=! be the potential outcomes at a time
T before the assignment to treatment and Y, = Y.” the observed outcome. Suppose that the
outcomes before the assignment to the treatment are not affected by the subsequent treatment,
i.e. that the outcome before treatment is the same regardless of the programme in which the

individual eventually participates:
Yi=v!i=_.=y1L (8)

Hence the observed outcome before treatment Y; = Y. is no longer contingent on the treat-
ment.

Validity of the conditional independence assumption (4) in period ¢ means that all
confounding variables are included in X such that, conditional on X, any differences between
the treatment groups are unsystematic or at least not related to the potential outcomes
Y2, ..,YtR_l. If the 'non-participation’ outcome Y0 is strongly related over time, it is likely
that the confounding factors consist of the same variables in time ¢ and in 7. This would imply
that, conditional on X, also the outcomes observed before treatment are not systematically

different between the treatment groups

EY:|X,D =r| = E[Y7|X,D = 5| = E[Y;|X]. 9)

L21f all pair-wise treatment effects E[Y"™ — Y*] Vr,s are of interest, Lechner (2002b) suggests to define the
_ R—1
effects with respect to the joint common support S = QOST such that all effects are defined for the same

subpopulation and can easier be compared with each other.
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On the other hand, if the conditional independence assumption is invalid, there are con-
founding factors, which are not included in X, that influence programme selection as well as
the potential outcomes and cause selection bias: E[Y/|X,D = r| # E[Y/|X,D = s|. Again,
if the 'non-participation’ outcome Y,? is strongly related over time, it is likely that these fac-
tors would also generate systematic differences between the treatment groups in earlier time

periods:
E[Y;|X,D =] # EY;|X, D = 5] # E[Y;|X]).

Large differences in the pre-programme outcomes between the treatment groups would thus
cast doubts on the validity of the conditional independence assumption (4) and a formal test
statistic can be derived as in Heckman and Robb (1985). Yet, it is not a proper test of
the conditional independence assumption since its justification requires additional untestable

assumptions about the relationship between pre- and post-treatment outcomes.

Furthermore, the application of the pre-programme test requires to find a time period 7
where Y is neither a confounding variable itself nor a variable already causally influenced by the
programme. The former condition is routinely violated if previous Y, influence the participation
decision D. For example, the past employment situation is often a strong determinant of
participation in active labour market programmes. Hence Y itself is a confounding variable
and as such must be included in X as a conditioning variable.

The latter condition is violated if anticipation of programme participation changes the
individual’s behaviour even before the programme starts. For example, if an unemployed
person gets informed that he is assigned to a particular labour market programme, he might
immediately adjust his job-search intensity or any complementary training activities. This

implies that the potential outcomes differ even before the beginning of the programme:
N (10)

Accordingly the observed outcome Y, = Y.’ depends on the treatment eventually received. In
this case, the equality (9) no longer holds.

In these cases the pre-programme test cannot be applied and this discussion highlights the
importance of taking account of the time structure of the outcome variable. In different periods
of time 7 before the start of the programme, the variable Y; can be a confounder (in which

case it must be included in X), an outcome variable causally affected through programme
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anticipation (in which case it must not be included in X), or neither confounding nor causally

affected (in which case the pre-programme test can be applied).

2.6 Difference in Difference - Predictable bias assumption

In many evaluation settings it may not be feasible to observe all confounding variables. In these
cases the evaluation strategy has to cope with selection on unobserved variables. Nevertheless,
average treatment effects may still be identified either through an instrumental variable (see
below) or if the average selection bias can be estimated from pre-treatment outcomes. This
latter approach is based on a similar motivation as the pre-programme test: If systematic
differences in the pre-programme outcomes between different treatment groups occur, these
differences may not only indicate that not all confounding variables have been included, but may
further be useful to predict the magnitude of selection bias in the post-programme outcomes.

If X does not contain all confounding variables, adjusting for the differences in the X
distributions, analogously to (6), will not yield a consistent estimate of the average treatment

effect on the treated because
E7ID=r)~ [ BYFIX = 2,0 = 3] - fxpe(a)da
# BWID=rl~ [ EIX = 2.0 =1]: fp-pla)de = BV} = ¥?|D =1
since E[Y?|X, D = r| # E[Y?| X, D = s|. The difference
[ (BW?IX = 2,D =1~ EVEIX = 2,0 = s]) - fxper(a)da

is the systematic bias in the potential outcome Y,® in period ¢ that still remains even after
adjusting for the different distributions of X.

Pre-programme outcomes might help to estimate this systematic bias with respect to the
non-participation’ outcome Y,?. Therefore the following discussion centers on the identification
of average treatment effects on the treated relative to non-participation: E[Y;” — Y?|D = r].!3

Define the average selection bias

Bi= [ (B01X =D =] = EIVOIX = 0. D=0]) - Fypor (o)

BEstimates of E[Yy — Yf|D = 7] for s # 0 or of E[Y{] for s # 0 generally cannot be obtained with
this approach, since the pre-programme outcomes are only informative about the potential 'non-participation’

outcome Y.
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as the systematic outcome difference between the group of non-participants (D = 0) and the
group of participants (D = r) if both groups would participate in treatment 0. If, for example in
the evaluation of active labour market programmes, the individuals who decided to participate
were on average more able, it is likely that their labour market outcomes would also have been
better even without participation in the programme. In this case, the average selection bias
B; would be positive. If the potential outcome in the case of non-participation Y, is related
over time, it is likely that these differences between the treatment groups would also persist in
other time periods including periods before the start of the programme. In other words, the
more able persons would also had enjoyed better labour market outcomes in periods before
treatment.

If the pre-programme outcome in period 7 is not causally affected by the programme, so that
(8) holds, the mon-participation’ outcomes Y, = Y; are observed for the different treatment

groups and the corresponding average selection bias in period T
B, = / (EY,X =2,D =1~ E[Y;|X = 2,D = 0]) - fxjp_r(2)da
is identified from the observed pre-programme data.
Assuming that the average selection bias is stable over time
B =B, (11)
the average treatment effect on the treated is identified as
E[Y, -Y ID=r]=E[Y/|D=r] - (/E [YPIX =2,D =0] - fxp—p(z)dz + Bt>
= (E[Y/|D=1] - E[¥;|D=7))
— / (E[Y|X =2,D=0] - E[Y;|X =2,D =0]) fx|pr(z)dz. (12)

This resembles a difference-in-difference type estimator adjusted for the distribution of the X
covariates, which is further discussed in Section 3.14
The bias-stability assumption (11) is not strictly necessary. Instead, it suffices if B; can be

consistently estimated from the average selection biases in pre-programme periods (predictable-

M For an application of nonparametric difference-in-difference estimation to the evaluation of active labour
market programmes in East Germany, see Eichler and Lechner (2002) or Bergemann, Fitzenberger, Schultz, and

Speckesser (2000) and Bergemann, Fitzenberger, and Speckesser (2001).
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bias assumption). If (causally unaffected) pre-programme outcomes are observed for many pe-
riods, the average selection bias can be estimated in each period and any regular trends ob-
served in By, Br_1, Br_o,.. may lead to better predictions of the bias B; than simply estimat-

ing By by the selection bias in period 7, as the bias-stability assumption (11) would suggest.

Loosely speaking, the predictable-bias-assumption (with the bias-stability-assumption as a
special case) is weaker than the conditional independence assumption (4) since it allows that
B; # 0, whereas the conditional independence assumption requires By = 0. However, both
assumptions are not nested because B; may be zero while BT,BT_l,BT_Q,.. may be unable
to predict B; = 0.1 A further difference occurs if the pre-programme outcomes Y, are them-
selves confounders, i.e. influencing the treatment selection decision and the post-programme
outcomes. If, in addition, all other confounding variables are observed, the independence as-
sumption (4) would be valid conditional on the pre-programme outcomes and the other con-
founders. This would imply zero selection bias (B; = 0) and the applicability of the control-
for-confounding-variables approach. The difference-in-difference approach, on the other hand,
would introduce selection bias (B; # 0) by not conditioning on the pre-programme outcome
Y; (i.e. not including Y7 in X).

A weakness of the difference-in-difference approach is that it does not entail any theoretical
guidelines for deciding which variables (if any at all) should be included in the conditioning
set X.!0 Heckman, Ichimura, and Todd (1997), Heckman, Ichimura, Smith, and Todd (1998)
and Smith and Todd (2002) consider a stronger version of the bias-stability-assumption (11),

which requires that the bias is stable not only on average but for any possible value of X
EY?-Y:|X,D=r]=E[Y?-Y;|X,D=0]. (13)

This stronger assumption demands that all variables that affect the increase (growth) in the
non-participation outcome over time (Y, —Y;) and the selection to treatment 0 or r are included
in X. Although this stronger assumption does not help to identify the average treatment effect
on the treated, it may be useful in the search to identify the relevant conditioning variables X:

because if (13) is true then also (11) holds.

5 For instance, if B, = 0 and B, # 0 and, erroneously, bias stability (11) is assumed.
16 Although the guideline for the control-for-confounding-variables approach is rather vague, it still gives some

indication which variables are relevant and which are not.
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2.7 Instrumental variables identification

An alternative strategy to handle selection on the basis of unobserved characteristics exploits
the identifying power of an instrumental variable, which is a variable that influences the prob-
ability to participate in a particular treatment but has no effect on the potential outcomes.
It affects the observed outcome only indirectly through the participation decision. Causal ef-
fects can be identified through a variation in this instrumental variable since the effect of this
variation is entirely channeled via the programme selection. Here only the basic ideas are out-
lined and illustrated for the binary treatment case (R =2) with a binary instrumental variable
Z € {0,1}. Causal inference through instrumental variables has been analyzed in greater de-
tail by Imbens and Angrist (1994), Angrist, Imbens, and Rubin (1996), Heckman and Vytlacil
(1999) and Imbens (2001), among others.

A fundamental result of instrumental variables identification is that average treatment
effects can only be identified with respect to the subpopulation that could be induced to change
programme status by a variation in the instrumental variable (Imbens and Angrist 1994).
For subpopulations that would participate in the same treatment regardless of a hypothetical
exogenous change in the value of Z, their counterfactual outcomes are not identified. This is
similar to the common support restriction discussed above. Hence an average treatment effect
for the full population could only be identified if all individuals change programme status with
a variation in Z. Otherwise, only a local average treatment effect (LATE) for the subpopulation
responsive to Z is identified (Imbens and Angrist 1994).

Define D; z,—0 as the programme participation status D € {0,1} that would be observed
for individual ¢ if Z; were set exogenously to the value 0. Define D; 7,—1 analogously as the
participation status that would be observed if Z; were set to 1. Hence D; z,—o and D; z,—1
are potential participation indicators, and let D; z, denote the observed value of D; for indi-
vidual ¢, i.e. the participation decision corresponding to the realized value Z;. According to
the potential participation behaviour, the population of all individuals can be partitioned into
4 subpopulations: Individuals for whom D; z,_o = D; z,—1 = 1 always participate in the pro-
gramme regardless of the value of the instrumental variable. On the other hand, individuals
with D; 7,0 = D; z,—1 = 0 never participate. Individuals for whom D; z,—o = 0 and D; 7,1 =
1 participate in the programme only if the instrument takes the value 1 and do not participate

otherwise. These individuals ’comply’ with their instrument assignment and are denoted com-
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pliers. Finally, individuals with D; z,.—o = 1 and D; z,—1 = 0 participate only if the instrument
takes the value 0 and are called defiers. Thus each individual can be classified either as an
always-participant, a never-participant, a complier or a defier. Let 7; denote the participation-

type of individual i:

Definition of types

Ti=a | if D;z—0=1and D; z,_1 =1 | Always-participant

Ti=mn | if D; z,—0 =0 and D; z,—1 =0 | Never-participant (14)
Ti=c | if Djz—0=0and D; z,—1 =1 Complier

Ti=d |if Djz—o=1and D; 7,1 =0 Defier.

Since the individuals of type always-participant and of type never-participant cannot be in-
duced do change treatment state through a variation in the instrumental variable, the impact
of D on Y can at most be ascertained for the subpopulation of compliers and defiers. To an-
alyze identification of local average treatment effects by instrumental variables, the potential
outcomes framework needs to be extended: Define Yi%izo and Yi’DZii:1 as the potential outcomes
for individual 7, where Y;PZZ:O is the outcome that would be observed for individual 7 if D; were
set to 0, and Y;.?Zifl is the outcome that would be observed if individual i were assigned to
the programme. Define Yz’,%izo and Yi%i:l as the outcomes that would be observed if the in-

' . L D=0 +,D;=1 +1,D;=0 +,D;
strument Z; were set to 0 or 1, respectively. Similarly, Y1 70" YZ Z,—0° Y1 Zi—17 Y; 7,—1 are the

outcomes that could be observed if the instrument Z; and the participation indicator D; were
set exogenously. The conceptual difference between the potential outcomes Yi%’;%, Yi?zi;lo,
YiPZizol, YZPZi;ll and the potential outcomes Yif)zii:m YZ.PZiFl is that in the former case Z and
D are fixed by external intervention, whereas in the latter case only Z is set exogenously and
D; is determined by the participation behaviour of individual ¢. In other words, the former
outcomes isolate the direct effect of the instrument Z on Y, while the latter embed the direct
effect and the indirect effect of Z on Y via the treatment participation D. Finally, Y; = YZDZZZ
is the observed outcome where Z; and D; are the realized values for individual <.

With these definitions the expected value of the outcome variable Y can be written as the

expected value of Y in the four subpopulations defined by (14) weighted by the relative size of
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these subpopulations:

E[Y]=E[Yi|ri=a] P (r: = a) (15)
+E[Yilri=n]-P(ri=n)
‘EYilri=c- P(ri=c)
+EYi|ri=d)- P(ri = d)

Analogously, the conditional expectation of Y given the instrument can be written as:

ElY|Z=0 = E[Y;%‘i\zi:o,n:a}-P(Ti:ayzi:(J)
+E Y312 = 0.mi =n| - P (ri = | Zi = 0)
+E {YiPZiJZi:O,Ti:C}-P(Ti:C|Zi:O)

+E [ﬁ,DzﬂZi =0,7; :d} P (r;=d|Z = 0)

= Bzi=0r=d - P(r=alZ=0)
+B Y2202 = 0.mi = n| - P (ri = nlZi = 0)
+B Y5242 =07 = | - P(ri = clZ;=0)
+E[

Y20 = 0,7 = d| - P(ri = d| Zi = 0)

i,2;=0
and
Elrlz=1] = E {K’%;Uzi =17, = a} -P(ri=alZ; =1)
+E [Yi,DZi;OﬂZi =17 = n} P (r;i=n|Z =1)
B {YiPZi;ll’Zi =L7i= c} “P(ri=clZ;=1)
+EB[YEZi=1mi=d] P(ri=dZ:=1).
Suppose

[Assumption 1: Unconfounded participation type] that the relative size of the subpopulations

always-participants, never-participants, compliers and defiers is independent of the instrument:
P(ri=tlZ;=0)=P(r;, =t|Z; =1) for t € {a,n,c,d}. (16)

Suppose further
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[Assumption 2: Mean exclusion restriction] that the potential outcomes are mean independent

of the instrumental variable Z in each subpopulation
E [}g?zifoyzi =0,7; = t} = E [}g?zifo\zi =17 = t} for t € {n, c,d} (17)
E [YJJZZZHZi =0,7; = t} = FE [Yif)zii:”Zi =1,1,= t} for t € {a,c,d}.

With this exclusion restriction the expected value of Y given Z is independent of Z in
the always- and in the never-participant subpopulation. Hence when taking the difference
E[Y|Z = 1] — E[Y|Z = 0] the respective terms for the always- and for the never-participants

cancel:

EY|Z=1]-FE[Y|Z =0
= (B[vhAz=1ri=c]| BV S1Zi=0m=c]) - Pri=0)
+ (E [K%;%\Zi =1,7;= d} ~E [Y;?Zgj)\zi =0,7; = dD P (7; = d)
and with the mean exclusion restriction for the compliers and the defiers:
= (B3 -3 ni=c]) - P(ri=0)
—(BY3 T -Y5 ri=d)) - P(ri=d). (1)

The difference E [Y|Z = 1] — E[Y|Z = 0] thus represents the difference between the average
treatment effect on the compliers (who switch into treatment as a reaction on a change in the
instrument from 0 to 1) and the average treatment effect on the defiers (who switch out of
treatment). An estimate of (18) is not very informative since, for example, an estimate of zero
could be the result of a treatment without effect as well as the result of a treatment with a
large impact but offsetting flows of compliers and defiers. Hence the exclusion restriction (17) is
not sufficient to isolate a meaningful treatment effect. However, as (18) indicates, a treatment
effect could be identified if either no compliers P (7; =¢) = 0 or no defiers P(1; =d) = 0
existed. If an instrumental variable is found that affects all individuals in the ’same direction’,
e.g. that either induces individuals to switch into participation or leaves their participation
status unchanged, but does not induce any individual to switch out of treatment, the average
treatment effect on the responsive subpopulation is identified.

[Assumption 3: Monotonicity] Suppose that the subpopulation of defiers has relative size zero

P(r=d)=0, (19)



or in other words, that D; z,—1 > D; z,—o for all 7. Suppose further
[Assumption 4: Existence of compliers] that the instrumental variable does have an impact on

treatment choice, i.e. that the subpopulation of compliers exists
P(r=c¢)>0. (20)

With these additional assumptions, the expression (18) can be written as

_ _ ElY|Z=1-E[Y|Z=0]
D=1 D;=0 N
B [Y;’Zi B Y’”Zi i = c} - P(r=c¢) ’

where F {Y;?Zii:l - Yi%i:o |Ts = c} is the average treatment effect in the subpopulation of com-
pliers.

Noting further that P(D = 1|Z = 0) = P(t=a) + P(1=d) and P(D = 1|Z = 1) =
P (1 =a)+P (1 = ¢), it follows with (19) that the relative size of the subpopulation of compliers

is identified as
P(r=¢)=P(D=1Z=1)—-P(D=1|Z=0).

Hence the average treatment effect on the compliers is identified as

_ElY|Z=1-E[Y|Z=0]
 E[D|Z=1]-E[D|Z=0]

E|\Y= -y = ri=c (21)

This is the average treatment effect on those individuals who are induced to switch into the
programme due to the instrumental variable. Since the subpopulation of compliers is not iden-
tified, it often may be difficult to interpret this treatment effect. As the complier subpopu-
lation is defined through the instrumental variable, any local average treatment effect is di-
rectly tied to its instrumental variable and cannot be interpreted on its own. For example, if
the instrumental variable Z represents the size of a programme (e.g. the number of available
slots), the local average treatment effect would represent the impact of the programme if it
were extended from size zg to size z; on the subpopulation which would participate only in the

enlarged programme.

A central condition for the identification of the local average treatment effect (21) is the

mean exclusion restriction (17). This mean exclusion restriction combines two conceptually
distinct assumptions, which can be seen by rewriting (17) for the potential outcome YiDZi:1 as

BlYSzZi=0m=t| =B YR Zi=0m=t| =B Y |zi=1,m =4 (22)
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for t € {a,c,d}. The first equality sign corresponds to an exclusion assumption on the individual
level. Tt is assumed that the potential outcome YiD i=! for individual ¢ is unaffected by an
exogenous change in Z;. It rules out any direct systematic impact of Z on the potential
outcomes on an individual level (and this assumption is satisfied for instance if Yz%;lo =
SQDZ’:;) The second equality sign in (22) represents an unconfoundedness assumption on the
population level. It assumes that the potential outcome YzDZl;l is identically distributed in
the subpopulation of individuals for whom the instrument Z; takes the value 0 and in the
subpopulation of individuals with Z; = 1. This assumption rules out selection effects on the
population level. Hence the second part of the mean exclusion restriction (22) refers to the
composition of individuals for whom Z = 1 or Z = 0 is observed, whereas the first part refers
to how the instrument affects the outcome Y of a particular individual.

The second part of the mean exclusion assumption (22) is trivially satisfied if the instrument
7 is randomly assigned. Nevertheless randomization of Z does not guarantee that the exclusion
assumption holds on the individual level. On the other hand, if Z is chosen by the individual
itself, unconfoundedness of Z (on the population level) is unlikely to hold. For example,
Card (1995) uses college proximity as an instrument for estimating the returns to schooling.
Living closer to a college is likely to induce some children to obtain more college education.
Although it appears reasonable that distance to the nearest college by itself does not affect the
subsequent potential labour market outcomes of the child (first part of (22)), it might be that
the families who decide to reside nearer or farther to a college are rather different. In this case
the instrumental variable is subject to self-selection and the mean exclusion assumption (17)
is unlikely to be satisfied.

In situations where the instrumental variable is not randomly assigned, the instrument Z
might also be confounded with the potential participation indicators D; z,—o and D; z,—1, thus
invalidating the unconfounded participation-type assumption (16). E.g. the composition of
always-participants, never-participants and compliers might be different among families who
decide to reside close to a college than among those who live distant to a college. To identify
an average treatment effect when the instrument Z itself is confounded with the potential
participation indicators D; z,—o, D; z—1 or with the potential outcomes Yi%:(), Y;%’fl, it is
necessary to consider extended versions of Assumptions 1 and 2 where the unconfounded-

participation type and mean exclusion assumptions are required to hold only conditional on all
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confounding variables X. These extensions are examined, for example, in (Imbens 2001).7
Identification of treatment effects on the basis of Assumptions 1 to 4 has been applied, for
example, in Hearst, Newman, and Hulley (1986) and Angrist (1990) to estimate the effects
of participating in the Vietnam war on mortality and civilian earnings, respectively. A suited
instrumental variable was provided through the U.S. conscription policy during the years of
the Vietnam war, which conscripted individuals on the basis of randomly drawn birth dates.
Imbens and van der Klaauw (1995) used variations in the compulsory conscription policy in
the Netherlands during World War II to estimate the effect of veteran status on earnings.
Angrist and Krueger (1991) estimated the returns to schooling using the quarter of birth as
an instrumental variable for educational attainment. According to U.S. compulsory school
attendance laws, compulsory education ends when the pupil reaches a certain age, and thus,
the month in which termination of the compulsory education is reached depends on the birth
date. Since the school year starts for all pupils in summer/autumn, the minimum education
varies with the birth date, which can be exploited to estimate the impact of an additional
year of schooling on earnings. For a survey of other 'natural’ or ’quasi’ experiments see Meyer

(1995).

2.8 Regression-discontinuity design

A particular type of instrumental variable identification is exploited in the regression-
discontinuity design. This approach uses discontinuities in the programme selection process
to identify a causal effect. Suppose a (continuous) variable Z influences an outcome variable
Y and also another variable D, which itself affects the outcome variable Y. Hence, Z has a
direct impact on Y as well as an indirect impact on Y via D. This latter impact represents
the causal effect of D on Y, which can be identified if the direct and the indirect impacts of
Z on Y can be told apart. In the case that the direct impact of Z on Y is known to be
smooth but the relationship between Z and D is discontinuous, any discontinuities (jumps)
in the observed relationship between Z and Y at locations where the relation Z to D is
discontinuous can be attributed to the indirect impact of Z on Y via D.

This idea has been utilized by Thistlethwaite and Campbell (1960) to estimate the effect

of receiving a National Merit Award on subsequent career aspirations. Since the Award is only

'"The confounding variables X are all variables that affect Z and D; z,—0, Di,z,—1 or Z and Yisz"’fo, YZDZ’[:1
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granted if a test score Z exceeds a certain threshold zp, the treatment status D (Award granted:
D = 1, not granted: D = 0) depends in a discontinuous way on the test score Z. Let Y! and
Y? denote the corresponding potential outcomes. Certainly the test score Z influences not
only D but also affects the potential outcomes directly. Hence Z is not a proper instrumental
variable, since the exclusion restriction is not satisfied. Nevertheless, in a small neighbourhood
around the discontinuity at zg, the direct impact of Z on the potential outcomes is likely to vary
only a little with Z. Hence locally the instrumental variable assumptions (exclusion restriction,
monotonicity) are satisfied, and the difference between the mean outcome for individuals just
above the threshold 2y and the mean outcome for individuals just below the threshold represents
the causal effect E[Y! — Y%|Z = 2]. Again, this is a kind of local average treatment effect

since it is identified only for the subpopulation of individuals with test score equal to zy.

In the above example programme participation status D = 1(Z > zp) is a deterministic
function of Z, which is also called a sharp design (Trochim 1984) since all individuals change
programme participation status exactly at zp. This requires a strictly rule-based programme
selection process (such as age limits or other eligibility criteria). For example, Hahn, Todd,
and van der Klaauw (1999) analyze the effect of antidiscrimination laws on the employment
of minority workers by exploiting the fact that only firms with more than 15 employees are
subject to these antidiscrimination laws.

Often, however, the participation decision is not completely determined by Z, even in a
rule-based selection process. Case workers may have some discretion about whom they offer
a programme, or they may base their decision also on criteria that are unobserved to the
econometrician. Additionally, individuals offered a programme may decline participation. In
this fuzzy design not all individuals would change programme participation status from D =0
to D =1 if Z were increased from 2y — ¢ to zp + . Rather, the relation between Z and D may
be discontinuous at zp only on average. In the fuzzy design the expected value of D given Z
(which is the probability of treatment receipt) is supposed to be discontinuous at z:

ImE [D|Z = 2y +¢]| # hI’%E [D|Z =z —¢€]. (23)
£—

e—0

For example, van der Klaauw (2002) analyses the effect of financial aid offers to college ap-
plicants on their probability of subsequent enrollment. College applicants are ranked according

to their test score achievements into a small number of categories. The amount of financial aid
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offered depends largely on this classification. Yet, the financial aid officer also takes other char-
acteristics into account, which are not observed by the econometrician. Hence the treatment
assignment is not a deterministic function of the test score Z, but the conditional expectation

function E[D|Z] displays jumps because of the test-score rule.'®

Hahn, Todd, and van der Klaauw (2001) analyze nonparametric identification in the
case of a fuzzy regression-discontinuity design, where D € {0,1} is a random function of
Z but E[D|Z] is discontinuous at zp.!” Since Z may also influence the potential outcomes
directly, the treatment effect is not identified without further assumptions. Supposing that
the direct influence of Z on the potential outcomes is continuous, the potential outcomes
change little when Z is varied within a small neighbourhood. Under a localized version of the
unconfounded-participation-type assumption, the exclusion restriction and the monotonicity
assumption (discussed in the previous section on instrumental variables identification), they

show that the average treatment effect on the local compliers is identified as

lim Y'-YY|D(Z=2+4¢)=1,D(Z=2—¢)=0]
E—>
hH(l]E Y|Z=2z+¢] - lir%E Y|Z =z — €]
_ E— E—
N lim & [D|Z = zp+¢] — lim F7 [D|Z = zy — €]
£—> £—

(24)

The local compliers is the group of individuals whose Z value lies in a small neighbourhood
of zp and whose treatment status D would change from 0 to 1 if Z were changed exogenously
from zg —e to zgp+¢. As a special case, in the sharp design all individuals are locally compliers
and change their treatment status at zp. Thus the denominator of (24) would be 1.

The regression-discontinuity approach permits identification of a treatment effect under
weak conditions. In particular a type of instrumental variable assumption needs to hold only
locally. On the other hand, the average treatment effect is identified only for the local compliers.
And due to its local nature of identification, no y/n-consistent estimator can exist for estimating

it.

8 Further applications of the regression-discontinuity approach include the effects of unemployment benefits
on recidivism rates of prisoners (Berk and Rauma 1983), the effects of classroom size on students’ test scores
(Angrist and Lavy 1999), or parents’ willingness to pay for higher quality schooling for their children (Black 1999),

among others.
9 Obviously, this includes the sharp design as a special case.
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2.9 Bounds

In evaluation settings where none of the above outlined identification strategies is feasible, it
might still be possible to estimate intervals wherein the average treatment effects lie. Such
bounds on the treatment effects have been derived by Manski (1989, 1990, 1997) in a series of
papers. Consider the simplest case where no further information is available except that the
outcome variables Y and Y® have bounded support: Y” € [Y,Y], Y* € [Y,Y]. With these

bounds on the support of Y, the expected outcome of Y is bounded to lie in the interval

E[Y"] = E[Y"|D=v]-Ppey +E[Y"|D #7] P,

€ [E[Y"|D=17Pp_y+ PpyY, EY'|D=r] Pp_y + Pps Y],

where Pp—, = P(D = r) is shorthand notation for the size of the subpopulation participating in
programme r. The width of this interval decreases with P(D = r) since the expected outcome
is only identified in this subpopulation. Using an analogous argument for E[Y*], the average

treatment effect E[Y" — Y®] can be bounded to lie in the interval

E[Y —Y*| €[ E[Y"|D=7v]Pp—y — E[Y®|D = 5] Pp—y + PptrY — Pps,Y,

EY"|D=r|Pp—y — E[Y®|D = s| Pp—s + PpsY — PpssY |.
The width of this interval is
(Y-Y) (P(D#7r)+P(D#5s))
= YY)2-PD=r)-P(D=5s))

and narrows for larger probabilities to participate in programme r or s. However, even in the
binary treatment case, where P(D = r)+P(D = s) = 1, the interval width is (Y-Y) and a zero
treatment effect cannot be ruled out. Hence without further assumptions, such as monotonous
instrumental variables as in Manski (1997) or Manski and Pepper (2000), these bounds on the

treatment effects provide only limited information.

3 Estimation of mean counterfactual outcomes

After a proper identification strategy has been established, the treatment effects of interest

can be estimated. Although identification is the fundamental and crucial task in programme
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evaluation, the choice of an appropriate estimator can still make a difference. Keeping in mind
that collection of informative and reliable data on participants and non-participants is often
costly and time-consuming, an estimator should be chosen which uses the available information
in an efficient way. This seems to be particularly important in programme evaluation where the
interpretation and the consequences of evaluation studies often hinge on whether a programme
effect is estimated as statistically significant or not. Even in the case where two estimators
generate the same point estimates, the interpretation of these estimates depends on their
variability, such that the estimate according to the more precise estimator is more likely to
be statistically significant. Since insignificant programme effects are often interpreted as no
effect’, the choice of the estimator affects ceteris paribus the odds of the evaluation study’s
conclusions.

An important element in the estimation of programme effects is the conditional expected
potential outcome Y® weighted by the distribution of X among the participants in programme

(BY),, = [ EW*IX =2.D =8 fxjporlode (25)

Under the control-for-confounding-variables approach, the term (25) equals the average coun-

terfactual outcome for the participants in programme r:
E[Y?|D =r]
since
EY°ID=r]=FE[E[Y®|X,D=s]|D=r].

The expression (25) represents the adjustment of the expected potential outcome Y* for the
distribution of the confounding variables among the participants in programme 7. The estima-
tion of (25) is the decisive part for the estimation of average treatment effects on the treated
E[Y" —Y®|D = r] since E[Y"|D = r] can be estimated simply by the sample mean of the
participants in programme r.

The estimation of objects like (25) is also central to the estimation of average treatment

effects E[Y"] — E[Y®] and average treatment outcomes E[Y®] because E[Y*] can be written as

E[Y*|=E[Y*|D=s]-P(D=s)+E[Y*|D #s]-P(D #s),
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where E[Y*|D = s|, P(D = s) and P(D # s) can be estimated by sample means. The

estimation of the average counterfactual outcome

E[Y*|D#s] = E[E[Y*|X,D=5]|D s (26)

- /E [Y¥IX =2,D = 5] fx|pg(a)da

proceeds by weighting the conditional expectation function E[Y*|.X] by the density fx|p,, i.e.
by the density of X among the population not participating in programme s. This is analogous
to (25) with fx|p—, replaced by the density function fx|p.s-

In addition, also the difference-in-difference or predictable-bias approach, discussed
above, relies on weighting conditional expectation functions by density functions of other
subpopulations to estimate the selection bias in different periods. In particular, estimates of
JE[Y?X =2,D=0] fxp=r(x)dz and [E[Y;|X =z,D =0] fx|p—(z)dx are required
in (12). Thus the estimation of objects like (25) forms a crucial building block for many
programme evaluation estimators. In the following, various nonparametric estimators of (25)

and their properties are discussed.

The general framework for nonparametric covariate-distribution adjustment can be
characterized as follows: Data on an outcome variable Y* and covariates X are sampled
randomly from a ’source’ population (e.g. the participants in programme s). In addition, a
second sample, drawn from a ’target’ population (e.g. the participants in programme r), is
available, which contains only information on the covariates X but not on their potential
outcome variable Y?®. Denote the observations sampled from the source population by
{(Yei, Xsi) } 12y, with fo(x) the density of X,. Denote the sample drawn from the target
population by {X,;}77;, with density function f.. Suppose further that the support of
X in the target population is a subset of the support of X in the source population, to
ensure that the conditional expectation function in the source population is identified at

0

every er.Q This is a shorthand notation for the sample of participants in programme

st {(Yei, Xai) 12y = {(Y%, Xi)|D; = s}, and the sample of participants in programme
ri {Xp s = {X|Di = r},, where fs = fx|p=s and f, = fx|p=, and ns and n, are
the number of observed participants in programme s and programme r, respectively. (For

the estimation of average counterfactual outcomes (26) the target population needs to be

*UEstimation of the common support is discussed in Heckman, Ichimura, and Todd (1998) and Lechner (2002b).
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redefined correspondingly such that the target sample {Xm-};-il represents all observations
that participated in any programme except s.)  Nonparametric covariate-distribution
adjustment proceeds by weighting the conditional expectation function E[Y*|X] in the source

population by the density f, in the target population.

3.1 Generalized matching estimators

A class of estimators of (25) is obtained by replacing the target distribution f,. by its empirical
distribution function in the target sample and estimating nonparametrically the conditional
expectation function my(x) = E[Y*|X = x,D = s| from the source sample. This yields the

generalized matching estimator

1 .
n_r : ms (er) ) (27)
j=1

where 7h5() is an estimate of ms(x). This estimator adjusts the conditional expected outcome
for the distribution of X in the target population by evaluating and averaging ms(x) only at
the values X,; that are observed in the target sample. A variety of estimators to estimate
ms(Xrj) from the source sample {Ys;, Xo;}i2, have been suggested:

A simple and common method to implement the estimator (27) is based on pair-matching
(Rubin 1974). Pair-matching proceeds by finding for each observation of the target sample
an observation of the source sample with identical (or very similar) covariates X. These
'matched’ source sample observations mirror the covariate distribution of the target sample and
their average outcome provides an estimate of (25). In other words, pair-matching estimates
s (Xrj) by the observed outcome Yj; of that source sample observation ¢ which is most similar
in its covariates X; to X,;. Building on this idea, alternative estimators estimate 1, (X;;) by
a weighted mean of the observed outcomes of those source sample observations that are similar
to X,;, and accordingly (27) is called a generalized matching estimator.

Whereas pair-matching assigns zero weights to all observations except the closest observa-
tion to X,;, parametric regression-based matching estimators use all observations of the source
sample regardless of their similarity to X,;. In particular, least squares regression estimates
ms(z) as /3 with § = (X.X,) }(X.Y,), where X; is the matrix of all X/, and Y is the

column vector containing all Ys;. Hence the imputed value at X,; is 17 (Xrj) = X/, 3 and the
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least squares matching estimator of (25) is
X(XXs) H(XLY), (28)

where X, = n% > Xj is the average of the covariates in the target sample.

In between these two extremes, pair-matching and least-squares matching, exist a variety
of nonparametric estimators of ms (X,;), which take account only of the source sample obser-
vations that lie in a neighbourhood of X,; and downweight observations according to their dis-
similarity to X,;. These include k-nearest neighbours and local polynomial regression, which
lead to the k-NN matching and the local polynomial matching estimator, respectively. Con-
sistency of the matching estimator requires consistent estimation of ms(x), which in turn re-
quires that the local neighbourhood of X; shrinks with increasing sample size. Hence the least
squares matching estimator is in general inconsistent, whereas pair-matching and k-NN match-
ing and local polynomial matching with an appropriately chosen bandwidth value are consis-
tent. Thus in principle, implementation of the generalized matching estimator is straightfor-
ward by choosing a consistent nonparametric regression estimator and averaging the imputed

values 7, (X;) for the target observations.

In practice, however, nonparametric covariate-distribution adjustment often needs
to be performed with respect to a high-dimensional X wvector. For example, in the
control-for-confounding-variables approach, X includes all variables that affect the
participation decision and the potential outcome. Nonparametric estimation of the regression
function ms(z) = E[Y®|X = x,D = s| becomes then rather difficult since the convergence
rate of nonparametric regression estimators decreases with the number of (continuous)
covariates (Stone 1980). Pair-matching, for example, would require to find for each target
sample observation a source sample observation which is identical (or very similar) in all
characteristics. To circumvent this dimensionality problem, similarity between observations
is often measured through a multivariate distance metric, which maps the mismatch in the
characteristics onto the real line. One such metric is the Mahalanobis distance (-,-),,, which

weights the distance in the covariates by the inverse of their variance matrix
— -1
(Xois Xrg)py = (Xoi = Xog) [Var (X)] (Xi = Xog)

where Var (X) is an estimate of the variance of X in the source or the target population or a

weighted average of these. Pair-matching on the Mahalanobis distance proceeds by finding for
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each target sample observation X,; the source sample observation with the smallest distance

(Xsir Xrj) -

3.2 The propensity score

However, the choice of a distance metric (such as the Mahalanobis distance) to reduce the
dimensionality is rather ad-hoc. Besides the fact that a different distance metric might have
produced rather different results, it is not even guaranteed that the estimate is consistent.
Nevertheless, a distance metric based on the balancing score property of the propensity score
has favourable theoretical properties. For the case of binary treatment evaluation (R = 2),
Rosenbaum and Rubin (1983) showed that conditional independence (4) of programme
selection and potential outcomes given X also implies independence conditional on the
(one-dimensional) probability to participate in the programme given X, which they called the
propensity score. Imbens (2000) and Lechner (2001a) generalized this result to the evaluation
of multiple treatments (R > 2), where the appropriate propensity score is the probability to
participate in treatment s for an individual who participates either in treatment r or s and
has characteristics X.

Suppose that the potential outcome Y# conditional on X is identically distributed in source

and target population
Y*1LD|X,D € {r,s}, (29)

which is a slightly weaker version of the conditional independence assumption (4). Define
the (one-dimensional) propensity score p*I™(z) as the probability of belonging to the target

population instead of belonging to the source population

p5|”(a:) =P(D=s|X=x,D¢€c{rs}) =

];8($) (30)

p'(x) + p(x)’
where p"(x) = P(D = r|X = x) and p*(z) = P(D = s|X = z). Then, as shown by Lechner
(2001a), conditional independence on X implies conditional independence on the propensity

score pl"s

— Y°UD|pI"*(X),D e {r,s}. (31)

Proof. The proof is adopted from Lechner (2001a). Since conditional independence in (31) is

required only with respect to the subpopulations r and s, the participation indicator D € {r, s}
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is binary and all that needs to be shown is that
P (D = s [Y°,p(X),D e {r,s}) =P (D = s [p’(X),D e {r,s}) .
By the law of total probability and using (29):

P (D= sy, p™(x), D € {r,s})
= E[P(D=slY".X,D e {r,s)) V"9 (X), D € {r,s}
= B [p(X) [V, (X0), D € {5
— pS‘TS(X)
= B [p(X) p(X), D € {r,s}]
= EB[P(D=sX,D€ {rs)) [p™(X),D € {r,s}]

= P <D = s|p*I™(X),D e {r,s}) .

|
The intuition behind (31) is that the propensity score balances the distribution of X in the
source and the target population. In other words, conditional on p*"* the distribution of X is

identical in the source and the target population?!
X1.D|p*"(X),D € {r,s}.

Although an observation of the source sample and an observation of the target sample with the

sI"s do not necessarily have the same X value (thus preventing

same propensity score value p
the application of (29)), the probability that X equals a particular value is the same for both
observations and the conditional independence assumption (29) can be invoked separately at

every possible X value.

The validity of (31) implies that the counterfactual outcome E [Y*|D = r] can be estimated

s|rs.

consistently by solely adjusting the distribution of the propensity score p
EY’|D=r] = E [E [Yﬂps‘”(X), D= s} D = r} (32)

— / E [Ys|ps\7's7D — S:| . fps‘rs‘D:T(ps\rs) . dps|7's7

2! This is a mechanical result because D € {r,s} is binary and thus P(D = s|X,p*I"*(X),D € {r,s}) =
ps\'rs(X).
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where fps|'rs| p—, is the distribution of the propensity score in the target population. Hence

matching on the one-dimensional propensity score p*I™

instead on X gives a consistent esti-
mator of the counterfactual mean (25). For example, if pair-matching is used, it suffices to
find pairs of participants and non-participants that have the same propensity score. They no
longer need to be identical on all X covariates.

An analogous relationship holds for the estimation of the counterfactual mean E [Y*|D # s]
(26) where the target population consists of all subpopulations which do not participate in
programme s. The appropriate propensity score is p®(x) since P(D = s|X = z) + P(D #
s|X = x) add up to one in (30), and consequently a propensity score matching estimator based

on p°
EY’|D#s] = E[E[Y®|p’(X),D =s]|D # s]
= [EWW D=5 fpp ) -’
1s consistent.

Remarkably, propensity score matching can even be used for estimating (25) in situations
where the conditional independence assumption is not valid. The equality of propensity score

matching and matching on X

[EWIX = 2.0 =] fxpporladde = [ B[y 0,0 = 8] fporspy (7)™ (33

is a mechanical result of the balancing property of the propensity score and independent of any
properties of the potential outcomes. As a consequence, propensity score matching can also
be used in the difference-in-difference or predictable-bias evaluation approach, which is often
pursued when the conditional independence assumption appears to be controversial. Hence

E[E Y -Y:|X,D=0] |D =r] in (12) can be estimated by propensity score matching as
E[E[Y)-Y.|X,D=0] |[D=r]
= BB -V, p"(X),D=0] |D="r|
= [ B[¥P"00.D = 0] fpopo (67) -
~ [ B[00, D = 0] - fpropp 6°70) - @,

0|r0

where p is the appropriate propensity score. Notice that panel data is not required since

the covariate adjustment can proceed separately for Y, and Y;.
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Propensity score matching circumvents the dimensionality problem since the nonparametric
regression needs to be performed only with respect to the one-dimensional propensity score and
thus avoids the so-called ’curse of dimensionality’. For this reason, propensity score matching
has been used in many applied evaluation studies, e.g. Brodaty, Crépon, and Fougere (2001),
Dehejia and Wahba (1999), Frolich, Heshmati, and Lechner (2000), Gerfin and Lechner (2002),
Heckman, Ichimura, and Todd (1997), Heckman, Ichimura, Smith, and Todd (1998), Jalan
and Ravallion (2002), Larsson (2000), Lechner (1999), Puhani (1999) etc. However, in most
cases the propensity scores themselves are unknown and need to be estimated consistently.
Parametric estimation of the propensity scores for the evaluation of multiple treatments is
discussed in Lechner (2002a), who compares binary probit models, multinomial logit models
and simulated multinomial probit models. Semiparametric estimation of the propensity score
is analyzed in Todd (1999). Propensity score matching proceeds then with respect to the

estimated propensity score.

Although matching on the propensity score balances the distribution of X in source and
target sample and thus provides a consistent estimate of the counterfactual mean (25), it may
not be the most precise estimator in finite samples, as the components of X might affect the
propensity score p*l™*(z) and the conditional expectation function my(z) = E[Y*|X =z, D = s
to different degrees. Some covariates may affect strongly the conditional expectation ms(x)
but have only little weight among the determinants of the participation probability p*I™(z),
whereas other covariates may be important determinants of p5|”(x) but have little impact on
ms(x). In this case, observations with a similar propensity score value are also likely to be
similar with respect to the latter covariates, but may not be so with respect to the former

covariates, since their influence on p*I"*

is small. Hence observations with identical propensity
score values may be very dissimilar with respect to the main determinants of ms(z). However,
as the main purpose of matching is to balance particularly the covariates that are highly
influential on the potential outcome, conditioning on the propensity score may not be the most
efficient method in finite samples. To achieve a balancing of the relevant variables in finite
samples, matching on the principal covariates determining mg(x) or on the propensity score
and a subset of covariates might be more appropriate. The latter refers to the augmented

propensity score approach, where matching proceeds on a vector (p5|” ,X ) consisting of the

propensity score p*I™* and a subset of covariates X, which are important determinants of ms(x)
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slrs  For example, in the evaluation of active labour

but might be under-represented’ in p
market programmes, it might occur that programme assignment decisions are largely driven by
the employment offices’ case workers whereas subsequent labour market programmes depend
mainly on individual characteristics. The use of the augmented propensity score has already
been suggested by Rosenbaum and Rubin (1983) in their analysis of balancing scores that are
‘finer’ than the propensity score. All the above discussed balancing properties hold as well with
the augmented propensity score, as can easily be seen by repeating the proof. The augmented
propensity score has, for example, been used in Lechner (1999), with respect to time-varying
and time-invariant covariates, and in Lechner (2002a), where he compares propensity score

matching on p*I™*(x) to matching on (p*(z), p(x)).?

3.3 The re-weighting estimator

An alternative estimation strategy to adjust for the differences in the covariate composition
among source and target population relies on weighting the observed outcomes by the density
ratio of X, which is considered in Horvitz and Thompson (1952), Imbens (2000), Hirano,
Imbens, and Ridder (2000) and Ichimura and Linton (2001). Since observations (Y*,X) at X
locations where the density fs(z) in the source population is large are relatively over-represented
and observations where fs(z) is small are relatively under-represented, a weighted average of
Y? should downweight the former observations and upweight the latter observations by the
ratio f,/fs of the density of X in the target and the source population. Rewriting the object
of interest (25)

[EWVIX=2.D=s f@)is = [EVIX=2.D=s. ; ngs(x)d
_ sz(X) _
- B[ e

suggests the re-weighting estimator
-V Y, (34)

as an alternative estimator of (25), where the covariate densities f; and f, can be estimated

from the source and the target sample, respectively. By multiplying the observations Y* of

22Conditioning on (p°(z), p"(x)) is 'finer’ than conditioning on p*I™*(z), since p°!I™® = p*/(p° + p").
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the source sample with the density ratio f,./fs the estimator rectifies the relative over/under-
representation of source sample observations at large/small values of fs.

The re-weighting estimator can also be written in terms of the propensity score by noting
that the propensity score ratio equals the density ratio times the size ratio of the subpopula-

tions:23

PIN(X) (X)) P(D
I—p(X) LX) P(D

)

r)

(35)

The relative size of the source population to the target population, P(D = s)/P(D =r), can
be consistently estimated by ns/n,. if sampling from the source and the target population was
done with the same probability. Accordingly (25) can also be expressed as

1—pis(X)P(D=s
pirs(X) P(D=r)

/.E[YS]X — D=4 fo(x)de=F |Y*.

and estimated as

s s _ pSlrs

1 1—pms (Xg)ms 1 1 —pilrs (X ;)
o Ve e = ) Y s (36)
ng p ( sz) Ny N~ p ( sz)

i=1
Again the conditional independence assumption (4) is not needed to justify using the propensity

score for consistent estimation of (25).

3.4 Properties of treatment effect estimators

The asymptotic properties of the generalized matching estimator and the re-weighting
estimator have been studied in the binary treatment framework (R = 2) by Hahn (1998),
Heckman, Ichimura, and Todd (1998), Hirano, Imbens, and Ridder (2000), Ichimura and
Linton (2001) and Abadie and Imbens (2001) under the conditional independence assumption
(4).  Hahn (1998) derived the +/n-semiparametric variance bounds for nonparametric
estimation of the average treatment effect and the average treatment effect on the treated.

Adopted to the multiple treatment framework, the variance bound for estimating the expected

s

**Proof: By Bayes’ theorem P(D = 7|X) = fx|p—(X)P(D = r)/fx(X). Hence p*'"*(z) = ﬁ% =
Ix|p=s(X)P(D=5s) and p?l"5 (@) Fx|p=s(X)P(D=s)
Ix|p=r(X)P(D=r)+fx|p=s(X)P(D=s) & 1—psI™s(z) ~ Fx|p=r(X)P(D=1)"
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potential outcome E[Y?] is

Ly (“3(”3) EYOIX =] E[YS})2> fx(@)de
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and for estimating the average treatment effect E [Y" —Y*] is

1020, 3@ e yeix o miyr v (e
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N

-1 ( L g [ﬂ(X)fgf(X)] + 1 E [cr%(X)f?((X)} +VarE[YT—YS\X]>
P2 e JX) ] P X)) i@
where P* = P(D = s) and 02(x) = Var(Y?®| X = x).

For estimating the mean counterfactual outcome E[Y*|D = r] and the average treatment
effect on the treated E[Y" —Y*|D = r| only the observations on the participants in programme
r and programme s are used. The observations on the participants in the other programmes
are not informative, neither for the estimation of E[Y*|X = z, D = s] nor for the estimation
of the distribution of X in the subpopulation of participants in programme r (programme-r-

subpopulation). Hence observations with D ¢ {r,s} are irrelevant. (See also the discussion

below on the value of the propensity score.) Consequently, the normalizing factor for the

1
Nptng

asymptotic variance is instead of %

The variance bound for estimating the mean counterfactual outcome E[Y?®|D = r]| is

1 /(ﬁmwmm privs ()

(E[Y*|X =2] - E[Y*|D = r])2> frs(x)dz  (38)
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where P""* = P(D = r|D € {r,s}) and frs(a:) is the density of X in the union of the
programme-r- and programme-s-subpopulations with f.s(z) = f.(z)P""™ + f,(z)P*I" and
P (x) = fo(x)P"1"/ fr5(2).2* The variance bound of the average treatment effect on the

fr(z)P"""S — Jr(@P(D=r)/(P(D=r)+P(D=s)) _ fr(z)P(D=r) fr(z)P(D=r)

24 .
Because =3¢y Fr@ P fa(@) PoTs = T @P(D=) =@ P(D=s) _ T (@ P(D=r)+1:(2)P(D=5)

p" (z) _ 7’|7’s
Fore@ =P (@)
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treated E[Y" —Y*|D =r] is

L @l (@) | oAwpl ()
/ r|rs Pr‘rs PTlTS pS|TS(m) fT‘S(x)d:p (39)
Mt hs SO\ GERE (YT - VX = a] - E[YT - Y¥|D = r])?

11 pr f7(X)
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A remarkable result of Hahn (1998) is that a projection on the propensity score (i.e. match-
ing on the propensity score) does not change the variance bound and that knowledge of the
true propensity score is not informative for estimating average treatment effects. The variance
bound (37) is the same regardless of whether the propensity score is known. Hence asymptoti-
cally the propensity score does not lead to any reduction in dimensionality. However, the vari-
ance bound (39) of the average treatment effect on the treated changes when the true propen-
sity score is known. Hahn (1998) attributes this to the 'dimension reduction’ property of the
propensity score. In my opinion this interpretation is highly misleading. I rather argue that
the only value of knowing the true propensity score is that the observed X values of individuals
who participated in other programmes than r can be used to improve the estimation of the
density fx D—r(x) among the programme-r-participants.

If the propensity score would indeed contribute to reducing the dimensionality of the esti-
mation problem, it should also help to estimate potential outcomes E[Y®] and average treat-
ment effects E[Y” —Y®] more precisely. On the other hand, the propensity score provides infor-
mation about the ratio of the density in the source and the target population and thus allows
source observations to identify the density of X in the target population and vice versa. Con-
sider the binary treatment case with » =1 (treated participants) and s = 0 (non-participants).
The (Y, X) observations of the treated sample are informative for estimating E[Y | X], whereas
the (Y, X) observations of the non-participant sample are informative for estimating E[Y?|X].
Since the joint distribution of Y',Y? is not identified, the observations of the treated sam-
ple cannot assist in estimating E[Y?|X] and vice versa. The X observations of both samples
are useful for estimating the distribution function of X in the population. With this informa-
tion the average treatment effect can be estimated by weighting the estimates of E[Y!|X] and
E[Y?|X] by the distribution of X in the population. Knowledge of the propensity score is of
no use. Now consider the estimation of the average treatment effect on the treated E[Y! —

Y?|D = 1] or of the counterfactual outcome E[Y°|D = 1]. Again the (Y, X) observations of
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both samples identify the conditional expectation functions separately. These conditional ex-
pectation functions are weighted by the distribution of X among the treated, which can be es-
timated by the empirical distribution function of X in the treated sample. The non-participant
observations are not informative for estimating the distribution of X among the treated. How-
ever, if the relationship between the distribution of X among the treated and the distribu-
tion of X among the non-participants were known, the X observations of the non-participants
would be useful for estimating the distribution of X among the treated. Since the propensity
score ratio equals the density ratio times the size ratio of the subpopulations (35), and since
the relative size of the treated subpopulation P(D = 1) can be estimated precisely, both the
treated and the non-participant observations can be used to estimate fx|p—1 if the propensity
score is known. Consider a simple example: In the case of random assignment with p!(z) = 0.5
for all z, the distribution of X is the same among the treated and the non-participants, and
using only the treated observations to estimate fx|p—; would neglect half of the informative
observations. With knowledge of the propensity score the counterfactual outcome E[Y?|D = 1]

is identified as
BIp=1 = [B[X=0D=0] fxpais (40)
- ﬁ /E [YIX = 2,D=0]p'(z) - fx()dz

and could be estimated by the empirical moment estimator

> g (X5) pt(Xs)
D;e{0,1}
> Xy

D;e{0,1}

which uses the X observations of both the treated and the non-participants. This estimator is
suggested by Hahn (1998, Proposition 7) and achieves the variance bound for known propensity
score.

The value of knowing the propensity score for estimating the distribution function fx|p—;

becomes even more obvious when rewriting (40) as

E[Y°D=1] = /E [YIX =2,D=0] - fxp_i(x)dx

— ]]Zgg i (1)§ /E [YO\X =x,D=0] % - fxip=o(@)dx,
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if p!(x) # 1 Va. This suggests the empirical moment estimator

S N _PH(XH)
Dizzomo (X3) 15

DZZ:Ol*Pl(Xi)

which uses only non-participant observations (D; = 0) to estimate the counterfactual outcome
for the treated. Hence with knowledge of the propensity score the counterfactual outcome
E[Y?|D = 1] for the treated could be estimated nonparametrically even without a single treated
observation!

In the case of multiple treatment evaluation there are a variety of propensity scores.

r|rs

Knowledge of p would allow using the X observations of the s sample to improve the
precision of estimating the distribution of X in the r subpopulation. Knowledge of p"I"* would
allow using the X observations of a t sample for estimating fx|p—(z). Knowledge of p"
would allow using all X observations to improve upon the estimation of fx; p—r(z). Hence, in

the multiple treatment setting, the variance bound for the average treatment effect on the

treated depends on which and how many propensity scores are known.

Besides deriving the efficiency bounds, Hahn (1998) further gives general conditions under
which a generalized matching estimator based on a particular nonparametric series regression
estimator attains both variance bounds (37) and (39).

Abadie and Imbens (2001) analyzed the asymptotic efficiency of k-nearest-neighbours
matching estimators in estimating average treatment effects when k is fixed, i.e. when the
number of neighbours is fixed and does not grow with increasing sample size.?” This includes
the standard pair-matching estimator (x = 1). They consider matching with respect to the
X variables and show that 1) these estimators do not attain the variance bound (37) and,
hence, are inefficient. 2) The bias term of the estimator is of order O(n=%°) where c is the
number of continuous covariates. Consequently, if the number of continuous covariates is 4,
the estimator is asymptotically biased. If the number of continuous covariates is even larger,
the estimator does no longer converge at rate \/n. 3) The bias term can be removed through
re-centering. However, since re-centering leaves the variance term unchanged, the modified
estimator is still inefficient.

Heckman, Ichimura, and Todd (1998) analyzed local polynomial matching for the estima-

%5 Consistent estimation of E[Y"|X, D = r] would require x — 0o as n — oo.
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tion of average treatment effects on the treated. They prove /n-consistency and asymptotic
normality when matching with respect to X, with respect to the known propensity score or
with respect to the estimated propensity score. The asymptotic distribution consists of a bias
term and a variance term. The variance term equals (39) when matching with respect to X.
When matching with respect to the known propensity score the variance term corresponds to
(39) with X replaced by the propensity score and the density functions f.(x) replaced by den-
sity functions with respect to the propensity score. Heckman, Ichimura, and Todd (1998) show
that this variance term can be either larger or smaller than the variance when matching on
X and conclude that neither matching on X nor matching on the propensity score necessarily
dominates the other. (However, they ignore in their discussion the different bias terms.) This
ambiguity holds also when the propensity score is estimated since the variance contribution
due to estimating the propensity score may be small. This variance contribution of estimated-
propensity-score matching is derived for a propensity score estimated parametrically or non-
parametrically by local polynomial regression with a suitably chosen bandwidth value.

Hirano, Imbens, and Ridder (2000) analyzed the efficiency of the re-weighting estimator for
estimating average treatment effects and average treatment effects on the treated. They show
that re-weighting using a propensity score estimated by a particular series estimator attains
the variance bounds (37) and (39).

Ichimura and Linton (2001) derived higher-order expansions for the re-weighting estimator.
Including second-order terms in the analysis is relevant since the first-order approximations do
not depend on the smoothing or bandwidth parameters used in the nonparametric first step,
such that optimal bandwidth choice cannot be discussed with first-order asymptotics. They
consider estimation of the propensity score by local linear regression methods and show that

the optimal bandwidth is of order O(n=/3) and O(n=2/%) for a bias corrected version.

The analysis of the asymptotic properties of the evaluation estimators implied no firm
recommendations on which estimator to use in practice. Generalized matching estimators as
well as re-weighting estimators with estimated propensity scores can be efficient. Yet, these
considerations may be of limited use for choosing an estimator in a particular application
with a given dataset. For example, although from an asymptotic perspective matching on the
propensity score implies no reduction in dimensionality and there are no reasons why matching

should not proceed with respect to X, propensity score matching can often be quite useful since
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”in practice inference for average treatment effects is often less sensitive to misspecification
of the propensity score than to specifications of the conditional expectation of the potential

outcomes” (Imbens 2000).

To examine the properties of these various evaluation estimators in finite samples, Frolich
(2000) investigated the mean squared error of different matching and re-weighting estimators
in samples of size 40, 200 and 1000, respectively. Matching on an observed covariate as well
as matching on an estimated propensity score were analyzed. Regarding the re-weighting
estimator, it turned out that it is rather sensitive to the choice of a trimming rule and it
performed very poorly without trimming.2°

The generalized matching estimators, on the other hand, appeared more promising, apart
from the inconsistent (global) least squares matching estimator, which performed poorly. The
pair-matching estimator, as the benchmark estimator, was compared to three different local
polynomial matching estimators: Kernel regression matching, local linear matching, and a
ridging local linear matching variant. Ridge regression was proposed by Seifert and Gasser
(1996, 2000), among others, to overcome the unbounded variance problem of local linear
regression.?”

The local polynomial matching estimators require the choice of a bandwidth parameter h,
which governs the size of the local smoothing neighbourhood. Since their behaviour depends on
this bandwidth value, sensitivity to the bandwidth choice is an important issue. As a first result
it turned out that although bandwidth choice by cross-validation is inconsistent for choosing
h in the covariate-distribution adjustment setting, it nevertheless performed remarkably well
in finite samples. Particularly the local linear ridge-regression variant of Seifert and Gasser
(1996, 2000) (SG matching) turned out to be very insensitive to the bandwidth choice. Kernel
matching was also quite robust to bandwidth choice, although to a much lesser extent. Local
linear matching, however, proved less reliable. It appeared sensitive to the bandwidth choice
and quite often performed worse than pair-matching.

The relative ordering of the various estimators with respect to mean squared error was
remarkably stable across sample sizes and simulation schemes (known and unknown optimal

bandwidth, known and unknown propensity score). SG matching, followed by kernel matching,

26 Further use of the re-weighting estimator would thus require the development of an optimal trimming rule.
*"In the study the implementation proposed by Seifert and Gasser (1996, 2000) was used.
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were the most reliable estimators in finite samples. The MSE of SG matching (with cross
validation bandwidth-selection) was on average®® about 25% smaller than the MSE of pair-
matching, when matching on an observed covariate. On the other hand, when matching on
an estimated propensity score, the reduction in MSE is about 40%.?Y The reason for this
difference is that pair-matching becomes less precise (relative to all other estimators) when
matching proceeds on estimated covariates, because it compares each target sample observation
with only one source sample observation. Although the observations within each matched pair
are supposed to have identical characteristics, they might indeed be rather different if the
covariates are imprecisely estimated. Hence matching each target sample observation to many
source sample observations (as in local polynomial matching) reduces not only the susceptibility
of the estimate with respect to the variability in the outcome Y but also with respect to the

variance of the estimated covariates.

4 Conclusions

In this paper various aspects of programme evaluation have been reviewed. Particular emphasis
has been laid on the evaluation of policies consisting of multiple programmes, as they are often
found in real world applications. First, different nonparametric strategies to solve the selection
bias problem and to identify average treatment effects have been inspected. Crucial issues such
as the time structure of the outcome variables, the multiplicity of policy goals and the selection
of conditioning variables have been examined and illustrated in the context of the evaluation
of active labour market policies. Second, in Section 3, nonparametric estimation of average
treatment effects has been studied, including a discussion of the dimension-reducing property
of the propensity score and of the asymptotic and finite-sample properties of these estimators.

The evaluation of multiple treatments is in many respects similar to the evaluation of
a single treatment (which has been the focus in most evaluation studies). However, many
more different treatment effects can be defined in the evaluation of multiple treatments and

the analysis becomes more complex with the number of treatments. Furthermore, some of

28 . . -
Over all simulation designs.
29The corresponding values for kernel matching are 15% and 30%, respectively. If the source sample is larger

than the target sample (ns > n,), which is often the case in binary treatment evaluation with a large control

sample, the precision gains of local polynomial matching vis-a-vis pair-matching are even larger.
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the identification strategies that are fruitful in the evaluation of a single programme, are less
appealing in the evaluation of multiple treatments. Particularly, the difference-in-difference
and the instrumental variable approach often identify only the treatment effect: participation

versus non-participation, and do not permit a comparison between the different treatments.
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