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1 Introduction

The prototypical model of the econometric evaluation literature is the following: An individual

can choose between two states, like participation in a training program or non-participation in

such a program. The potential participant in such a program will get an hypothetical outcome in

both states. This model is also termed the Roy (1951)-Rubin (1974) model of potential outcomes

and causal effects.1 Since its statistical content is most clearly spelled out in Rubin (1974), this

model is called the Rubin-model in the following. It clarifies that the individual causal treatment

effect - defined as the difference of the two potential outcomes, for example - is never identified.

Therefore, the lack of identification has to be overcome by plausible, generally untestable

assumptions that usually depend heavily on the problem analyzed and the data available. One

such assumption is that treatment participation and treatment outcome is independent conditional

on a set of (observable) attributes. Subsequent papers by Rubin (1977) and Rosenbaum and

Rubin (1983) show how this assumption could effectively be used for treatment evaluation. In

many cases this identifying assumption is exploited via a matching estimator, for recent examples

Angrist (1998), Dahejia and Wahba (1998, 1999), Heckman, Ichimura, and Todd (1997, 1998),

Lechner (1999a) and the very comprehensive survey by Heckman, LaLonde, and Smith (1999).

This literature focuses on models with only two potential states, treatment and non-treatment.

However, when evaluating European labour market programs for example a more complex

framework appears to be necessary, since the actual choice set of individuals contains more than

just two options. Potential participants may or may not participate in one of perhaps several

different training programs or an employment program, or something else. This paper extends the

conventional two state framework to allow for multiple mutually exclusive treatments. It shows

that all major properties shown by Rubin (1977) and Rosenbaum and Rubin (1983) also hold in

that framework, if suitably refined.2 The paper also sketches a matching estimator that takes

account of this multiple treatment structure.

                                                          
1 See for example Holland (1986) and Sobel (1994) for an extensive discussion of concepts of causality in statistics,

econometrics, and other fields.
2 Parallel to this work similar ideas appeared in Imbens (1999).
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2 Notation and definition of the causal effects

2.1 Two treatments

Let 1Y  and 0Y  denote the outcomes (1 denotes treatment, 0 non-treatment). As a notational

convention, capital letters indicate quantities of the population or of members of the population,

whereas small letters represent their respective quantities in the sample of size N (i=1,...,N). The

units of the sample are supposed to stem from N independent draws in this population. Addi-

tionally, denote variables that are unaffected by treatments - called attributes by Holland (1986) -

by X. Define a binary assignment indicator S, that determines whether the unit receive the

treatment (S = 1) or not (S = 0). For participants in the treatment the actual (observable) outcome

is 1Y , and 0Y  for non-participants. The causal effect, for example defined as the difference of the

two potential outcomes, can never be estimated, because the respective counterfactual ( 1Y  or 0Y )

to the observable outcome  (Y )  is never observed. However, under certain assumptions the

average causal effect, denoted by  θ 0  and defined in equation (1), is identified. For simplicity,

within this section we concentrate entirely on the average treatment effect on the treated:

)1|()1|()1|(: 0101
0 =−===−= SYESYESYYEθ . (1)

The short hand notation E(⋅|S=1) denotes the mean in the population of all units who participate

in training (S=1). Finally, to make the model’s representation of outcomes adequate for causal

analysis, the stable-unit-treatment-value assumption (SUTVA) has to be satisfied for all members

of the population (e.g. Rubin, 1991). Among other things, SUTVA excludes cross-effects, or

general equilibrium effects, among potential treatment participants that could occur because of

their actual participation decision.

The difficulty with the identification of θ 0 from a large random sample is the term )1|( 0 =SYE ,

because the pair )1,( 0 =ii sy  is not observable. Much of the literature on causal models in statistics

and selectivity models in econometrics is devoted to finding identifying assumptions to estimate

)1|( 0 =SYE  by somehow using the observable pairs )0,( 0 =ii sy . One such condition states that

the assignment is random conditional on a set of covariates (Rubin, 1977). Hence, the assignment
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is independent (denoted by C ) of the potential non-treatment outcome conditional on the value

of a covariate set or attribute set (conditional independence assumption, CIA):3

xXSY =|0 C ,  ∀ ∈x χ . (2)

χ  denotes all of the attribute space for which the treatment effect is defined. If CIA holds, then

=== ),1|( 0 xXSYE  ),0|( 0 xXSYE == . 1( )P x  denotes the propensity score that is defined as

the participation probability conditional on x [P(S=1|X=x)]. If 10 ( ) 1P x< <  holds in χ , then

)1|( 0 =SYE  = ]1|),0|([ 0 === SxXSYEE  can be estimated in large samples using respective

sample analogues.

Rosenbaum and Rubin (1983, RR) showed that if CIA is valid, then the estimation problem sim-

plifies. In the case of two treatments, RR found that if the two treatments are independent of the

assignment conditional on X, then they are also independent conditional on specific functions of

X, denoted as balancing score (b(X)), that fulfil the so-called balancing score property:

0 | ,Y S X x x χ= ∀ ∈C      Ð     0 | ( ) ( )Y S b X b x=C , ∀ ∈x χ ,

     if   1[ ( 1| ) | ( ) ( )] [ 1| ] ( )E P S X x b X b x P S X x P x= = = = = = = ,   10 ( ) 1P x< < , ∀ ∈x χ . (RR)

Note that the random variable S can only be zero or one. In the set-up of RR one particularly

important balancing score is the propensity score, because it reduces the dimension of the

conditioning set to one. If the potential non-treatment outcome is independent of the assignment

mechanism conditional on X = x, then it is also independent of the assignment mechanism

conditional on 1 1( ) ( )P X P x= , thus:

0 1 1 0 1 1[ | 1, ( ) ( )] [ | 0, ( ) ( )]E Y S P X P x E Y S P X P x= = = = = . (3)

Hence, 0 0 1 1( | 1) { [ | 0, ( ) ( )] | 1}E Y S E E Y S P X P x S= = = = =  can be used for estimation. When

the propensity score is known or can be N -consistently estimated with a parametric model,

                                                          
3 See Dawid (1979) for notations, definitions, and implications related to the concept of conditional independence.
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then the major advantage of this property is the reduction of the dimension of the estimation

problem, especially important for nonparametric estimation techniques.4

2.2 Many treatments

Consider the outcomes of (M+1) different mutually exclusive treatments, denoted by

{ , ,..., }Y Y Y M0 1 . It is assumed that each participant receives exactly one of the treatments

(typically the ’0’ category denotes the case of the treatment type no treatment). Therefore, for any

participant, only one component of { , ,..., }Y Y Y M0 1  can be observed in the data. The remaining M

outcomes are counterfactuals in the language of the Rubin model. Participation in a particular

treatment m is indicated by the variable S M∈{ , ,... }0 1 . The number of participants observed in a

random sample to participate in treatment m is denoted by N m  ( N N m

m

M

=
=

∑
0

).

The definitions of average treatment effects used for the case of just two treatments need to be

extended.5 In the following equations, the focus is on a pair-wise comparison of the effects of the

treatments m and l:

γ 0
m l m l m lE Y Y EY EY, ( )= − = − ; (4)

α 0
m l m l m lE Y Y S m l E Y S m l E Y S m l, ( | , ) ( | , ) ( | , )= − = = = − = ; (5)

θ 0
m l m l m lE Y Y S m E Y S m E Y S m, ( | ) ( | ) ( | )= − = = = − = . (6)

γ 0
m l,  denotes the expected (average) effect of treatment m relative to treatment l for a participant

drawn randomly from the population (N).6 Similarly, α 0
m l,  denotes the same effect for a

participant randomly selected from the group of participants participating in either m or l. Note

that both average treatment effects are symmetric in the sense that γ 0
m l,  = −γ 0

l m,  and α 0
m l,  = −α 0

l m, .7

θ 0
m l,  is the same expected effect for an individual randomly drawn from the population of

                                                          
4 The trade-offs involved by conditioning on 1( )P X  instead of X are discussed in detail by Hahn (1998).
5 Assume for the rest of the paper that the typical assumptions of the Rubin model are fulfilled (see Holland, 1986,

or Rubin, 1974, for example).
6 If a variable Z cannot be changed by the effect of the treatment (like time constant personal characteristics of

participants), then all what follows is also valid in strata of the data defined by different values of Z.
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participants in treatment m only. Note that if the participants in treatments m and l differ in a non-

random fashion, then θ 0
m l,  ≠  −θ 0

l m, , i.e. these treatment effects on the treated are not symmetric.8

It is worth noting that α 0
m l m lE Y Y S m l, ( | , )= − =  is a weighted combination of θ 0

m l,  and θ 0
l m, . The

weights are given by the participation probabilities in the respective states m and l:

α 0
m l m lE Y Y S m l, ( | , )= − =

       = E Y Y S m P S m S m lm l( | ) ( | , )− = = =  + ( | )[1 ( | , )]m lE Y Y S l P S m S m l− = − = =

       = θ 0
m l P S m S m l, ( | , )= =  - ,

0 [1 ( | , )]l m P S m S m lθ − = = ;

                                              P S m S m l
P S m

P S l P S m
( | , )

( )

( ) ( )
= = = =

= + =
.

3 Identification and the balancing score

3.1 Conditional independence assumption

In this paper identification is considered for a particular assumption that plays a prominent role in

evaluation studies, namely the conditional independence assumption (Rubin, 1977). The

conditional independence assumption (CIA) states that the potential treatment outcomes are

independent of the assignment mechanism for any given value of a vector of attributes (X) in a

particular attribute space χ .9 This assumption is formalized in expression (7):

Y Y Y S X x xM0 1, ,..., | ,C = ∀ ∈χ . (7)

                                                                                                                                                                                           
7 For m = l, all effects are of course zero.
8 Note that this list of treatment effects is by no means exhaustive, neither with respect to comparisons of types of

treatments, nor with respect to populations under consideration. These issues will be further explored in future
work.

9 Note that CIA can be seen as overly restrictive, since all what is needed to identify mean effects is conditional
mean independence. However, the former has the virtue of making the latter valid for all transformations of the
outcome variables. Furthermore, in an application it is usually difficult to argue why conditional mean
independence should hold and CIA might nevertheless be violated.
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In this case a generalisation of the balancing score property suggested by Rosenbaum and Rubin

(1983) holds as well:

Y Y Y S X xM0 1, ,..., |C =            Ð               Y Y Y S b X b xM0 1, ,..., | ( ) ( )C = , ∀ ∈x χ ,

 if [ ( | ) | ( ) ( )] [ | ] ( )mE P S m X x b X b x P S m X x P x= = = = = = = , 0 ( ) 1mP x< < ,∀ =m M0,..., . (8)

The proof of this property is given in Appendix A. Functions that can be used as balancing scores

are for example the vector of attributes X, or the M-dimensional vector of propensity scores

1( ) [ ( ),..., ( ),..., ( )]m MP x P x P x P x= .10 Note that the dimension is reduced only to the order of M.

This means that from the point of view of dimension reduction, using the propensity scores

directly, instead of X, as conditioning variables, is only useful when the dimension of X is larger

than M.

It is shown in the next section that versions of (7) exist that are technically less restrictive but

nevertheless sufficient to identify the various treatment effects. Their main advantage will be to

reduce the dimension of the estimation problem still further.

3.2 Identification and balancing scores

This section discusses the identification of θ 0
m l,  and γ 0

m l,  from an infinitely large random sample.

In such a sample all participation probabilities are identified. Therefore, and since it is shown in

section 2 that α 0
m l,  = θ 0

m l P S m S m l, ( | , )= =  - θ 0
l m P S l S m l, ( | , )= = , there is no need to address the

identification of α 0
m l,  explicitly. α 0

m l,  is identified whenever θ 0
m l,  and θ 0

l m,  are identified.

3.2.1 The effect for the population (γ 0
m l, )

To discuss identification it is useful to rewrite equation (4) in the following way:

                                                          
10 Note that there are only M linearly independent probabilities, because of adding-up.
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,
0
m l m lEY EYγ = −

( | ) ( ) ( | ) ( )m mE Y S m P S m E Y S m P S m= = = + ≠ ≠

( | ) ( ) ( | ) ( )l lE Y S l P S l E Y S l P S l− = = + ≠ ≠

( | ) ( ) [ ( | , ) | ] ( )m m

X
E Y S m P S m E E Y X S m S m P S m= = = + = ≠ ≠

( | ) ( ) [ ( | , ) | ] ( )l l

X
E Y S l P S l E E Y X S l S l P S l− = = + = ≠ ≠ .

Hence (7) identifies γ 0
m l,  as long as ( ) ( ) 0m lP x P x > , since it implies ( | , )jE Y X x S j= =  =

( | , )jE Y X x S j= ≠ , ,j m l= .

Defining a new random variable 1( )jS S j= =% , the following two conditions that follow from (7)

are sufficient to identify γ 0
m l, :

| , 1( ), , ,j j jY S X x S S j x j m lχ= = = ∀ ∈ ∀ =% %C . (9)

Based on these conditions a balancing score property can be deduced:

| ,j jY S X x x χ= ∀ ∈%C          Ð        | ( ) ( ),j j j jY S b X b x x χ= ∀ ∈%C ,

  if [ ( ) | ( ) ( )] ( )j j j jE P x b X b x P x= = , 0 ( ) 1jP x< < ,  ,j m l= . (10)

Expression (10) corresponds to the binary case considered by Rosenbaum and Rubin (1983) and

given in expression (RR). The fact that it is applied twice - for m as well as for l - is not essential.

Hence no further proof is necessary.

Expression (10) leads to ( | ( ), )j jE Y b x S j=  = [ | ( ), ]j jE Y b x S j≠ , ,j m l= . As for the binary

case the balancing scores of minimum dimension are the marginal choice probabilities, hence

,
0
m lγ  could be rewritten as follows:
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,
0

( )
( | ) ( ) [ ( | ( ), ) | ] ( )

m

m l m m m

P X
E Y S m P S m E E Y P X S m S m P S mγ = = = + = ≠ ≠

( )
( | ) ( ) [ ( | ( ), ) | ] ( )

l

l l l

P X
E Y S l P S l E E Y P X S l S l P S l− = = + = ≠ ≠ .

Thus the dimension of the estimation problem is reduced to one.

3.2.2 The effect for participants in m (θ 0
m l, )

As before it is useful to rewrite equation (6) to discuss identification:

,
0 ( | ) ( | )m l m lE Y S m E Y S mθ = = − =

( | ) [ ( | , ) | ]m l

X
E Y S m E E Y X S l S m= = − = =

Hence, (7) identifies ,
0
m lθ  as long as ( ) ( ) 0m lP x P x > , since it implies ( | , )lE Y X x S l= =  =

( | , )lE Y X x S m= = .11

To derive a balancing score of dimension one again note that (7) implies the independence of lY

and S within any restricted choice set defined by values of S. Therefore, the following condition

holds:

| [ , , ],lY S X x S l m x χ= = ∀ ∈C . (11)

’S=l,m’ is a short hand notation for the event ’S = l or S = m’. (11) is sufficient to identify ,
0
m lθ ,

because it implies ( | , )lE Y X x S l= =  = ( | , )lE Y X x S m= = . (11) also implies the following

balancing score property:

| [ , , ],lY S X x S l m x χ= = ∀ ∈C    Ð     || [ ( ), , ],l l mlY S b X x S l m x χ= = ∀ ∈C ,

                                                          
11 ( ) ( ) 0m lP x P x >  implies 1 ( | , , ) ( ) /[ ( ) ( )] 0m m lP S m x S m l P x P x P x> = = = + > .



11

  if | | |[ ( | , , ) | ( ) ( )] ( | , , ) ( )l ml l ml l mlE P S l X x S l m b X b x P S l X x S l m P x= = = = = = = = = ,

                                                                                            |0 ( ) 1l mlP x< < . (12).

Again, since the only population of interest is the one with S = m or S = l, the proof of this

balancing score property is the same as in the binary case considered by Rosenbaum and Rubin

(1983). Hence no proof is given here.

Expression (12) leads to |( | ( ), )l l mlE Y b x S l=  = |[ | ( ), ]l l mlE Y b x S m= . Contrary to the case

considered in the previous section, the balancing score of minimum dimension is the conditional

choice probability | ( )l mlP x , so that ,
0
m lθ  could be expressed as follows:

|

, |
0

( )
( | ) [ ( | ( ), ) | ]

l ml

m l m l l ml

P X
E Y S m E E Y P X S l S mθ = = + = = .

Again, the dimension of the estimation problem is reduced to one. In the cases when the

conditional choice probabilities are more difficult to obtain than the marginal ones, it may be

attractive to condition on ( )lP X  and ( )mP X  instead of | ( )l mlP X . This also identifies ,
0
m lθ

because ( )lP X  together with ( )mP X  is finer than | ( )l mlP X .12

4 Potential estimators

To obtain consistent estimates of the treatment effects discussed above consistent estimates of

their components are needed. The following suggestion is in line with the conventional matching

estimators used in the case of two treatments only (see for example Rosenbaum and Rubin,

1985).

                                                          
12 |[ ( ) | ( ), ( )]l ml l mE P X P X P X  = ( )

[ | ( ), ( )]
( ) ( )

l
l m

l m

P X
E P X P X

P X P X+
 = | ( )l mlP X .
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a) Estimation of P S j( )=

The first set of components are the conditional and unconditional probabilities of the type

P S j( )=  and 
( )

( | )
( ) ( )

P S j
P S j S k or S j

P S j P S k

== = = =
= + =

 ( j k≠ ). Consistent estimates can

be obtained by using the respective cell frequencies.

b) Estimation of ( | )jE Y S j=

( | )jE Y S j=  can be estimated by the mean of the outcomes of units observed in category j.

c) Estimation of { [( | ( ), ] | }j jE E Y b X S j S j= ≠  and |{ [( | ( ), ] | }j j kjE E Y b X S j S k= =  ( k j≠ )

In this case the following matching estimator is feasible:

In the first step estimate a probability model to obtain consistent estimates of the choice

probabilities ˆ ( )j
NP x  and |ˆ ( )j kj

NP x  (or ˆ ( )k
NP x  and ˆ ( )j

NP x ) that form the respective balancing scores.

For the choice of that model a priori knowledge is important. For example, if the choices are

ordered, like in a dose-response set-up, an ordered choice model would be appropriate.13 In other

cases a multinomial logit or a more flexible model like a multinomial probit or a semiparametric

model may be the appropriate choice.

In the second step ˆ{ [( | ( ), ] | }j j
NE E Y P X S j S j= ≠ , |ˆ{ [( | ( ), ] | }j j kj

NE E Y P X S j S k= =  or

ˆ ˆ{ [( | ( ), ( ), ] | }j j k
N NE E Y P X P X S j S k= =  needs to be estimated when using the probabilities as

balancing scores. There are several options to proceed. First, one could get a parametric, semi-

parametric or a non-parametric regression estimate of the expectation conditional on the

respective one or two dimensional balancing scores. The outer expectation could then be

estimated by averaging that function with respect to the empirical distribution function of X in the

respective subpopulation.

An alternative is to estimate both expectations in one step by using a matching estimator. The

idea of the simplest version of such an estimator is to find for every participant in k or (not j) one

participant in j that has (almost) the same balancing score. Taking the mean of the outcome

variable for these matched comparison observations gives the desired estimate. Note that standard

                                                          
13 See Imbens (1999).
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matching procedures typically use each control observation (here S j= ) only once, because the

number of comparison observations is typically much larger than the treated observations

(necessary to get ’good’ matches). However, for the case of many treatments each group will act

as a treated group as well as a comparison group. Therefore, requiring the number of comparison

observations to be larger than the number of treated observations does not make much sense.

Thus, one needs to rely on matching algorithms that use single observations more than once.

Appendix B gives an estimator and its variance using such an approach. This estimator is also

used in an empirical study by Lechner (1999b). Two practical concerns could arise with this kind

of matching estimator. First, it may be that the respective distributions of the scores do not

overlap. This can be checked by comparing the distributions of the respective balancing scores in

the respective subsamples. Second, due to the multiple use of single observations, it could be that

a few observations are ’over-used’ in the sense of unnecessary inflating the variance of the

estimator. This can easily be checked. If this phenomenon appears, a more sophisticated version

of matching is called for.

5 Conclusion

The Rubin causal model has been the working horse in the evaluation literature. However, a

model that allows for more than two treatment possibilities is necessary to evaluate the different

types of active labour market policies in European countries, for example. The paper extends the

classical Rubin model to the case of many treatments and discusses various measures of the

causal effects. It also discusses the identification of these effects under the conditional

independence assumption. It is shown that the so-called balancing score properties of the model

with two treatments can be extended to that model as well. Finally, the paper shows that feasible

non-parametric estimators such as matching can be devised by exploiting the dimension reducing

effect of using that balancing score property.

Appendix A: Proof of the balancing score property

In the following it will be shown that the claim made in  (8)  of the main part of the paper is

correct:
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Y Y Y S X xM0 1, ,..., |C =  (CIA)          Ð        Y Y Y S b X b xM0 1, ,..., | ( ) ( )C = , ∀ ∈x χ ,

 if [ ( | ) | ( ) ( )] [ | ] ( )mE P S m X x b X b x P S m X x P x= = = = = = = , 0 ( ) 1mP x< < , ∀ =m M0,..., .(8)

Proof:

Let F ( )⋅  denote the joint distribution function of S and the potential outcomes, then the following

equation holds generally:

F Y Y Y S XM( , ,..., , | )0 1 =  F S Y Y Y X F Y Y Y XM M( | , ,..., , ) ( , ,..., | )0 1 0 1 .

CIA can be expressed in terms of the distribution of S conditional on the potential outcomes:

F S Y Y Y X F S XM
CIA

( | , ,..., , ) ( | )0 1 = . (A.1)

If the balancing score property given in  (8)  holds, then it is also true that:

F S Y Y Y b X F S b X F S XM( | , ,..., , ( )) ( | ( )) ( | )
!

0 1 = = . (A.2)

Since S is discrete random variable with M+1 possible values, F S X( | )  is a discrete function with

M+1 values for every given value of X. Hence, (A.2) can be reformulated in terms of

probabilities:

P S m Y Y Y b X P S m b X P S m XM[ | , ,..., , ( )] [ | ( )] ( | )
!

= = = = =0 1 ,        ∀ =m M0,..., . (A.3)

(A.3) will be proofed as follows:

P S m Y Y Y b XM[ | , ,..., , ( )]= 0 1  = E P S m Y Y Y X Y Y Y b XM M{ [ | , ,..., , ]| , ,..., , ( )}= 0 1 0 1

      = E P S m X Y Y Y b XM{ [ | ]| , ,..., , ( )}= 0 1
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If the balancing score b(X) is at least as fine as the propensity score P S m X[ | ]= , i.e.

E P S m X x b X[ ( | )| ( )]= =  = P S m X x[ | ]= = , then E P S m X x b X[ ( | )| ( )]= =  does not depend on

the potential outcomes, hence:

E P S m X Y Y Y b XM{ [ | ]| , ,..., , ( )}= 0 1  = E P S m X b X{ [ | ]| ( )}=

     = P S m b X P S m X[ | ( )] ( | )= = = ,                     ∀ =m M0,..., . 

Therefore, 1( ) [ ( ),..., ( )]Mb X P X P X=  is a valid balancing score. q.e.d.

Appendix B: Matching estimators and their variances

Table B.1 gives a condensed description of a matching protocol that could be used in practise.14

                                                          
14 For an application see Lechner (1999b).
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Table B.1: A matching protocol for the estimation of 0
mlθ

6WHS�� 6SHFLIL\�DQG�HVWLPDWH�D�PXOWLQRPLDO�FKRLFH�PRGHO�WR�REWDLQ� 0 1ˆ ˆ ˆ[ ( ), ( ),..., ( )]M
N N NP X P X P X �

6WHS�� (VWLPDWH�WKH�H[SHFWDWLRQV�RI�WKH�RXWFRPH�YDULDEOHV�FRQGLWLRQDO�RQ�WKH�UHVSHFWLYH�EDODQFLQJ�VFRUHV�
)RU�D�JLYHQ�YDOXH�RI�P�DQG�O�WKH�IROORZLQJ�VWHSV�DUH�SHUIRUPHG�

D� &RPSXWH� |
ˆ ( )ˆ ( )

ˆ ˆ( ) ( )

l
l ml N

N l m
N N

P X
P X

P X P X
=

+
�RU�XVH� ˆ ˆ[ , ( )]m l

N NP P X �GLUHFWO\��$OWHUQDWLYHO\�VWHS���PD\�EH

RPLWWHG�DQG�WKH�FRQGLWLRQDO�SUREDELOLWLHV�PD\�EH�GLUHFWO\�PRGHOOHG��DV�LQ�WKH�ELQDU\�FDVH��
E� &KRRVH�RQH�REVHUYDWLRQ�LQ�WKH�VXEVDPSOH�GHILQHG�E\�SDUWLFLSDWLRQ�LQ�P�DQG�GHOHWH�LW�IURP�WKDW

SRRO�
F� )LQG�DQ�REVHUYDWLRQ�LQ�WKH�VXEVDPSOH�RI�SDUWLFLSDQWV�LQ�O�WKDW�LV�DV�FORVH�DV�SRVVLEOH�WR�WKH�RQH

FKRVHQ�LQ�VWHS�D��LQ�WHUPV�RI� |ˆ ( )l ml
NP X �RU� ˆ ˆ[ , ( )]m l

N NP P X ��,Q�WKH�FDVH�RI�XVLQJ� ˆ ˆ[ , ( )]m l
N NP P X


FORVHQHVV
�FDQ�EH�EDVHG�RQ�WKH�0DKDODQRELV�GLVWDQFH��'R�QRW�UHPRYH�WKDW�REVHUYDWLRQ��VR�WKDW�LW
FDQ�EH�XVHG�DJDLQ�

G� 5HSHDW�D��DQG�E��XQWLO�QR�SDUWLFLSDQW�LQ�P�LV�OHIW�
H� 8VLQJ�WKH�PDWFKHG�FRPSDULVRQ�JURXS�IRUPHG�LQ�F���FRPSXWH�WKH�UHVSHFWLYH�FRQGLWLRQDO

H[SHFWDWLRQ�E\�WKH�VDPSOH�PHDQ��1RWH�WKDW�WKH�VDPH�REVHUYDWLRQV�PD\�DSSHDU�PRUH�WKDQ�RQFH�LQ
WKDW�JURXS�

6WHS�� 5HSHDW�VWHS���IRU�DOO�FRPELQDWLRQV�RI�P�DQG�O�
6WHS�� &RPSXWH�WKH�HVWLPDWH�RI�WKH�WUHDWPHQW�HIIHFWV�XVLQJ�WKH�UHVXOWV�RI�VWHS���DQG�FRPSXWH�WKHLU�FRYDULDQFH

PDWUL[��VHH�EHORZ��
1RWH��,I�WKH�DLP�LV�WR�HVWLPDWH�RQO\�

,
0
m lγ �RU� 0

mγ ��WKHQ�WKH�DOJRULWKP�VLPSOLILHV�LQ�DQ�REYLRXV�ZD\�

Suppose that the matching protocol used gives us an estimator for E Y S ml( | )=  of the following

type:

$ ( | )E Y S m w yN
l

i
m

i
l

i l
= =

∈∑ .

The weight functions fulfil w Ni
m

i l

m

∈∑ = , ∀ =l M1,..., . N m  denotes the number of observations

in treatment m.

Using this notation we get the following estimators for the various treatment effects:

$ ,θ N
m l

m i
m

i m m i
m

i
l

i lN
y

N
w y= −

∈ ∈∑ ∑1 1
;

$ ( ) ( ),γ N
m l

j i
j

i
m

i m j i
j

i
l

i l
j

M

N
w y

N
w y P S j= − =�

! 
"
$#∈ ∈

=
∑ ∑∑ 1 1

0

;                  $ $, ,γ γN
m l

N
l m= − ;

$ $ ( | ) $ ( | ), , ,α θ θN
m l

N
m l

N
l mP S m S m or S l P S l S m or S l= = = = − = = = ;   $ $, ,α αN

m l
N
l m= − .
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To derive the variances of these estimators the weights and the probabilities are assumed to be

fixed and the observations are assumed to be independent. The first assumption is obviously an

approximation since the weights are estimated in the algorithm given in Table B.1. We also

assume that the variances of the observable outcome variables are the same within a particular

treatment, as well as that they do not depend on the values of the balancing scores.

Var
N

Var Y S m
w

N
Var Y S lN

m l
m

m i
m

i l
m

l( $ ) ( | )
( )

( )
( | ),θ = = + =∈∑1

2

2 .

It is useful to reformulate this estimator in the following way to obtain the variance of $ ,γ N
m l :

$ [ ( )] [ ( )],γ N
m l

i
m i

j

j
j

M

i m i
l i

j

j
j

M

i l
y

w

N
P S j y

w

N
P S j= = − =

=
∈

=
∈∑∑ ∑∑

0 0

;

Var
w

N
P S j Var Y S m

w

N
P S j Var Y S lN

m l i
j

j
j

M

i m

m i
j

j
j

M

i l

l( $ ) ( ) ( | ) ( ) ( | ),γ = =
�
! 

"
$#

= + =
�
! 

"
$#

=
=

∈
=

∈∑∑ ∑∑
0

2

0

2

.

It is again useful to reformulate the estimator ( P S m S m or S l Pm m l( | ) | ,= = = = ,

P S l S m or S l Pl m l( | ) | ,= = = = ) to obtain the variance of $ ,α N
m l :

$ ,α N
m l =  y

N
P

w

N
P y

N
P

w

N
Pi

m
m

m m l i
l

l
m m l

i m i
l

l
l m l i

m

m
l m l

i l
[ ( )] [ ( )]| , | , | , | ,1

1
1

1+ − − + −
∈ ∈∑ ∑ ;

Var
N

P
w

N
P Var Y S mN

m l
m

m m l i
l

l
m m l m

i m
( $ ) ( ) ( | ), | , | ,α = + −

�
! 

"
$# = +

∈∑ 1
1

2

+ + −
�
! 

"
$# =

∈∑ 1
1

2

N
P

w

N
P Var Y S ll

l m l i
m

m
l m l l

i l

| , | ,( ) ( | ) .
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