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1 Introduction

On July 31, 1993, an interesting transaction was sealed within American
professional baseball. On that day, the Blue Jays acquired Rickey Henderson,
”the best lead-off hitter in the history of baseball” (O’Malley and O’Malley
1994, p. 11). This deal seems to be puzzling, because the Blue Jays
needed a pitcher and not a hitter at that time. However, the acquisition of
Henderson was quite rational for the Blue Jays since it successfully prevented
that the Yankees or other competitors were able to acquire Henderson for
strengthening their teams. We can also imagine other examples of strategic
mismatching. For example, a law firm hires the best law students that have
passed their exams in a certain year not because additional lawyers are needed
in the firm at that time but because thereby other law firms are not able to
realize a competitive advantage by hiring these students. Or a firm tries to
raid a competing firm by acquiring some of its managers despite of their large
amount of firm-specific human capital solely to harm the competing firm.
This paper discusses these and other types of strategic mismatches, and
the conditions under which strategic mismatching is possible. In general,
strategic mismatching is given when players voluntarily form inefficient teams
or forego the formation of efficient teams, respectively.! There are several
effects which influence the possibility of a strategic mismatch: the well-known
free-rider effect in teams, a cost effect based on economies or diseconomies
of scope generated by the team composition, a winner’s curse and a loser’s
curse resulting from overestimating or underestimating the gains from team

formation, respectively, and the influence of luck in the final tournament

!The terms "matching” and ”mismatching” come from labor economics and denote the
formation of efficient or inefficient combinations of employers and workers, respectively.

See, e.g., Jovanovic (1984), Mortensen (1988).



competition between the one-player and/or two-players teams. The model
considers two incumbent players who one after another can offer a team
contract (i.e. an equal sharing arrangement) to a new entrant into the market.
If no (two-players) team is formed, the two incumbents and the entrant will
compete as single players against each other in a tournament at the final stage
of the game. If one of the incumbents forms a team with the entrant there
will be a tournament competition between a two-players team (consisting of
the one incumbent and the entrant) and a one-player team (consisting of the
other incumbent). This model is best reflected by the market for professional
services (e.g. the market for lawyers) where a new entrant (e.g. a new lawyer)
can either work as a self-employed or form a partnership (e.g. a law firm)
with one of the incumbents. Several interesting results can be derived for this
model. For example, when luck plays a dominant role in the tournament,
the marginal costs of effort are large, and the winner prize is small, strategic
mismatching can be rational where players choose the organizational form
— self-employment or team — that minimizes the incentives to exert effort.
In this context, diseconomies of scope and free riding can be beneficial for
the team to reduce work incentives. Another result shows that the loser’s
curse, a kind of decision anomaly, may be welfare improving by mitigating
the perils of strategic mismatching.

The paper is organized as follows. Section 2 describes the model and
solves the tournament competition at the final stage of the sequential game.
Section 3 contains the main results of the paper. In this section, three types
of mismatches are defined and the conditions under which these mismatches

may exist are analyzed. The last section concludes.



2 The Model

In the following model, three risk neutral players compete for a benefit B
(e.g., a large market share or highly profitable order). The three players
are the two incumbents I; and I> and the new entrant F into the market.
Before competition starts there is a sequential contracting process which is

described by Figure 1.
[Figure 1]

In ¢, incumbent I; can offer a team contract to the entrant E (e.g., the
three players belong to the professional services and I; offers E a partnership
contract). If I; offers a contract and E accepts, the game will continue in
ts5, where the team consisting of I; and F competes against I in a simple
tournament. The winner of the tournament — the team {I;, E} or I, —
receives the benefit B (B > 0), whereas the loser gets nothing.? If I; does
not offer a contract to E or F rejects I;’s offer in to, the incumbent I5 has
to decide about a contract offer. If I, offers a team contract and E agrees to
it, the team {I, £} will compete against [; in t5. If I chooses not to offer
a contract or F rejects Io’s offer in t4, there will be a standard tournament
between the three single players I, Is, and E in t5. Before I start to discuss
possible mismatches that can arise during ¢; — t4, further details about the
tournament subgame in t5 have to be described.

There are three possible states in ¢5. First, no team {I;, E} or {5, E'},

respectively, has been formed. This state is denoted by s;. In this state,

2 As an alternative, we can choose a winner prize By and a loser prize By (< By) for the
tournament. But this modification would not be of great consequence, because only the
prize spread B; — By (=: B) generates incentives in the tournament and not the absolute

values of the winner and the loser prizes.



the three players are independent competitors. Each player i (i = Iy, I, F)
has a simple linear production function ¢; = e; + ¢; where e; denotes i’s
effort and &; a random or luck component.®* The ;s are assumed to be
independently and identically distributed (i.i.d.-assumption) according to a
cumulative distribution function F'(e) with density f(¢). For simplicity, we
assume that the g;s are uniformly distributed over the interval [0,Z] with
F(e) = ¢/z and f(¢) = 1/2.* The player with the highest realized outcome
q; will be the winner of the tournament and receives the benefit B. Player
i’s disutility of effort (in monetary terms) is described by the cost function
c(e;) = £e? (k > 0). Each competitor wants to maximize his expected utility

which is identical with his expected net income:

k
EUi(e;;s1) = B - pr{i wins} — 562 . (1)

(2

The analysis is restricted to symmetric equilibria in the tournament
subgame, where each player chooses the same amount of effort e* =
ej, = e}, = €.° Thus, the winning probability pr{i wins} can
be written as pr{i wins} = pr{qz- > q(g)} = pr{emtaz- > e*+5(2)} =
pr{a(g) —g < e — e*} = pr{X < e; —e*} = G(e; — €*) where both g() and

3Most of the assumptions follow the standard tournament model by Lazear and Rosen

(1981).
4In the following, we have to calculate with order statistics to derive the equilibrium

efforts for the tournament subgame. It is well-known that calculating with order statistics
implies some difficulties. Therefore, the simplifying assumption of uniformly distributed
luck is used in this model. Note also that the paper will focus on mismatching and not on

tournament competition.
5This restrictive assumption is not unusual in the tournament literature; see, for

example, Nalebuff and Stiglitz (1983, pp. 26—27), Lazear (1989, p. 565). There may
be asymmetric equilibria, too. But intuitively it is reasonable to think of symmetric

equilibria, because the three players have identical characteristics.



£(2) denote the highest of two order statistics, respectively,” and X := g5y —¢;
with cumulative distribution function G(z) and density g(z). Therefore,

equation (1) can be rewritten as
* k 2
EUi(ei;s1) = B-G(e; — €") — 56 - (2)

The first order condition EU; = B-g(e* —e;) — ke; = B-g(0) — ke; = 0 gives
the Nash equilibrium effort

B
e*:e*:—ZF, t=1,,1,F (3)

where the last expression follows from the assumption of uniformly

distributed luck.” By substituting (3) into (2) we obtain®

B B? ,
EUZ(e:‘,sl) = E—WEQ, Z:]1,IQ,E. (4)

The second state, s, considers the case where I, and E form a team {I,, E'},
which competes against I; in the tournament. It is assumed that [, and
E produce an outcome according to a linear team production function
q(en,,er) = en, + ex + €1,. Here, £, denotes the same stochastic luck as in

state s1.” The team effect of joint production is reflected by the cost function

6Te., q2) = max{gm, ¢»} and ey = max{ey, &,} with m,n € {I;, I, E}\ {i} and

m # n.
"See the Appendix A for the derivation of the density g(x). The second order condition

holds for uniformly distributed e;.
8Note that G(0) = 1/3.
9 Alternatively, we can define a team production function q(ez,,er) = er, +ep+er, + g,

but then there is an additional advantage of forming a team, because the realizations of the
;s are exclusively nonnegative. This additional effect would bias the trade-off considered
in this paper and should therefore be eliminated. As another alternative, we can assume
that there is positive luck as well as negative luck, i.e. the ;s are distributed over [—¢, 2.

But then the variance of the team production function g(ey,,eg) = ey, +eg +e5, +eg is



of each team member:

cle;) = ie?, Y, >0, i =1 F. (5)
27g, ’

The new cost parameter v;, can be either greater or lower than one, where
vr, > 1 indicates economies of scope and vy;, < 1 diseconomies of scope,
respectively. Furthermore, we assume that if the team wins the benefit B
will be shared equally among I and F.!° Thus, I5’s and E’s expected utility

in state s, is given by
EU;(e;; s2) = g -pr{team {Iy, E} wins} — 2ie?, i=1I,E. (6)

I

Incumbent [, remains alone. It is assumed that he has the same production

function and the same cost function as in state s,. Therefore, his expected

utility is
. k
EUy (e1,;82) = B - pr{l; wins} — 5€h- (7)

Comparing equations (6) and (7) we see that a trade-off has to be taken
into account by I, and FE when they decide about forming a team:
Economies of scope (i.e., 7;, > 1) can make the formation of a team
attractive, because [, and E would realize lower marginal costs. This
effect is defined as cost effect. On the other hand, I, and E will
only receive half of the benefit B if they win against [;. This effect

twice as high as the variance of a single competitor’s production function. This additional
effect should be eliminated, too, because this paper focuses on other aspects, which become

more clear when the underlying stochastic structure is as simple as possible.
100f course, such an equal sharing arrangement is not always optimal. It is a simplifying

assumption, which can be motivated by the fact that individual contributions to the joint
team outcomes are often non-contractible. Therefore, the team members agree on an equal
sharing contract. In addition, the equal sharing of B can be characterized as the outcome

of the Nash bargaining solution.



reduces the team members’ incentives to exert effort and is well-known
as free-rider effect. The winning probability pr{team {I5, F} wins} can
be written as pr{team {I,, E} wins} = pr{e;, +eg+e, >e, +e5,} =
prier, —ep <ep+eg—en}t=pr{Y <ep+eg—epn}=H(e, +ep—ep)
where Y : = e, — €, has a cumulative distribution function H(y) and a

density h(y). Now, equations (6) and (7) can be written as

B ko

EU[2(€[2;82) ZE-H(eIQ—i—eE—eh)—WeIQ (8)
I
B k
EUE(GE, 32) = E . H(6[2 +eg — 6[1) - We% (9)
I

k

EUp(er;s9) =B-[1—H(ep, +ep —ep,)] — =€7, (10)

no |

From the first order conditions we obtain the following reaction functions:!!

B k

—h,(€[2 + €p — 6[1) - — €, = 0 (11)

2 Vi

B k

Eh(eh +€E—€]1) ——€E:0 (12)
7[2

Bh,(€[2 +eg — 6[1) - keh =0. (13)

Equations (11) and (12) show that if a Nash equilibrium exists, the team
members [, and E will exert the same amount of effort, i.e. e, = eg.

Combining this result with (11) (or (12)) and (13) yields the following

UFor the derivation of h(y) see Appendix A. We assume that the second order conditions
hold and a Nash equilibrium exists. The problem that this additional assumption is needed
is already known in the tournament literature. See, e.g., Lazear and Rosen (1981, p. 845,

fn. 2); Nalebuff and Stiglitz (1983, p. 29); Lazear (1989, p. 565, fn. 3).



condition, which emphasizes the trade-off between the cost effect and the

free-rider effect:

—2611 . (14)

BE:€]2 =

Equation (14) shows that whether a team member or I; exerts more effort in
equilibrium depends on the relation between the cost effect and the free-rider
effect. If the cost effect is dominant (i.e. y;, > 2), each team member will
exert more effort than /. If the free-rider effect is dominant (i.e. 2 > v,,),
the opposite will hold.

To derive the equilibrium efforts we have to substitute the concrete form
of the density h(y) into (11)—(13). The results of Appendix A show that
the convolution A(y) of two uniform (or rectangular) densities is a triangular
density function, which is symmetric around zero. Thus, we have to discuss
two different cases. First, it is possible that e;, + eg < e;,. In that case,
we have to use the left-hand part of the triangular density h(y) for solving
(11)—(13). From (14) we know that this scenario will become possible, if
and only if v;, < 1, ie. if there are diseconomies of scope or a "negative”
cost effect.!? Secondly, the opposite relation ey, + eg > e, can hold. In
this case, the right-hand part of the density h(y) becomes relevant and we
have economies of scope or a "positive” cost effect for the team {I, F'}, i.e.
71, > 1. After some calculations the "negative scenario” e, +ep < e;, yields

the following expressions for the equilibrium efforts:'?

*

er = el =12 be
L "F 2 B — By, + k&2

(15)

12Because of (14) the condition ej, + eg < ey, can be rewritten as 2erp < ey,

<= 21;2-611 < ey, < v, <1 assuming that no negative effort levels are possible.
I3Note that the three effort levels are positive, because v, < 1 in this "negative

scenario”.



Be
- , 16
‘0T BBy, + ke (16)

A comparison of (15) and (16) shows the trade-off between the cost effect and
the free-rider effect (in analogy to (14)). In addition, we see that the strategic
interaction between the team {I5, F'} and I; in the tournament results in a
spillover of the cost effect. An increasing 7,, reduces the denominator of
(15) as well as the denominator of (16) and results in increasing efforts of all
players. However, the cost effect is larger for the two team members, because
an increasing +y, additionally increases the numerator of (15). Substituting
(15) and (16) into (8)—(10) and using the concrete form of the distribution

function H(y) (see Appendix A) gives the expected utilities in equilibrium:**

EUIQ(eIQ; s9) = BEUg (e}; 2) = gBke 5= By, + krj?z)Q (17)
B%(1 — 24 BEE?3(3 — 2v,)) + L1k%&t
BU=(e}352) = B2 L Tn) G—27) ¥oFE g

(B — By, + k&2)?
Similar calculations can be made for the ”positive scenario”. Now we obtain

h Bz

L :6*E_7B71 — B + k&2 19

2

Bz
7= 20
0T By, — B+ ke 0)

as equilibrium efforts and
EUE(e}Q; s9) = EUL(e};s2) =
BAB*(1 — vp,)? + Bke?(Tyy, — 8) + 2k*e* (21)
8 (B, — B+ kz2)?
1 ke? - B

EUf (¢},; 55) = = Bk&® c (22)

27" (By,, — B + ka2

14The ”—” indicates that here the "negative scenario” is considered.

9



as expected utilities in equilibrium.!?

The third state, s3, considers the case where I; and F form a team
{I;, E} in ty which competes against I5 in the tournament in ¢5. The above
considerations concerning state s, analogously hold for s3. Interchanging the

indices I and I; in (15)—(22) and substituting ss for s yields

., . 1, 2kE*— Byp,
BUR (ei ) = BUR ek o0) = B 5 o ()
B*(1 —y;,)* + Bke*(3 — 2v,) + k%

(B — B'}/Il + ng)Q
for the expected utilities in the "negative scenario” equilibrium of state s3

and

EUﬂ(e}l; s3) = EUL(e};s3) =
B4B?*(1 —yy,)? + Bke*(Tvy, — 8) + 2k%&*
g (Bry, — B + k)

(25)

EUg(eIQ;Sg) = §Bk5 (B, — B+ F)
1

(26)

for the expected utilities in the ”positive scenario” equilibrium of state s3
where 7, indicates the economies or diseconomies of scope when I; and
form a team in analogy to 7,, in state s5.'°

The preliminary results of this section describe the equilibrium solutions
of the tournament subgame in t5 for the three states s;, s, and s3. The

next section focuses on strategic mismatching that can arise during t; — ¢,.

It contains the main results of the paper.

5Here, ”+” indicates the ”positive scenario”. Note that v, > 1 in the ”positve scenario”

guarantees positve efforts in equilibrium.

161e., I;’s and E’s cost function can be described by c(e;) = % e, v, >0,i=1,
1

5
E, in state s3.

10



3 Strategic mismatching

In this section, we will look for subgame perfect equilibria in the game
described by Figure 1 that lead to (strategic) mismatching between Iy, Io,
and E. The problem of mismatching might become relevant during ¢; — 4,
when the three players decide about forming a team. Nevertheless, the
results of Section 2 are still important, because the players have to regard
the tournament in ¢5 and the three states s;, ss, and s3 when deciding
about a team formation. Thus, the objective to reach or to avoid a certain
outcome in t5 can be the major cause for strategic mismatching during ¢ —t,4.
Before discussing the possibility of strategic mismatching under different
information structures, we have to differentiate between the various types
of mismatches. To reduce complexity, the following analysis is restricted to
mismatches that can arise in connection with player I;. Similar results could
be derived by focusing on player I;. Concerning player [; there are three

types of mismatch equilibria in the game:

e Mismatch I equilibrium: [; and E form a team, although the team
{I>, E} would generate larger economies of scope, i.e. v, > ~v; > 1.
Without I;’s offer in ¢; there would be an efficient match between I

and E.

e Mismatch II equilibrium: /; and F form a team in spite of diseconomies
of scope, ie. v, < 7, < 1. Without I;’s offer in ¢; there would be

efficient matching, where all players remain self-employed.

e Mismatch IIT equilibrium: [; and F do not form a team despite of

economies of scope, i.e. vz,vg > 1.

11



Mismatch I deals with the classical problem of mismatching where the
wrong players decide to form a team. Mismatch I considers the case in which
the players form a team when there should be no team because of efficiency
reasons. Mismatch III considers the opposite case where players forego an
efficient match. In the following subsections, the existence of these three
types of mismatch equilibria will be discussed under different information
structures. Subsection 3.1 discusses the symmetric information case of
purely strategic mismatches. Subsection 3.2 adds asymmetric information
to the problem of mismatching and assumes that the incumbents have less
information about v; and ~y;, than the entrant. Subsection 3.3 considers the

case of better informed incumbents concerning v, and .

3.1 Symmetric Information

Information problems are the traditional reason for mismatching in
economies. In this subsection, information problems are completely excluded.
Thus, we can concentrate on purely strategic mismatching, because all the
mismatches left must be voluntary. Here, we assume that the cost parameters
v, and 7y, are common knowledge in the whole game. By that means, each
player is able to correctly calculate the consequences of the cost effect and
the free-rider effect and therefore the possible outcomes in the states sq, o,

and s3 in t5. Under these assumptions we obtain the following results:

Proposition 1

If all players have complete information the following will hold:
(i) There does not exist a mismatch I equilibrium.

(ii) There is the possibility of a mismatch II equilibrium if and only if
3B < 2kz2,

12



(iii) There is the possibility of a mismatch III equilibrium if and only if
27B?% + 3Bkz? < 2k*2".

Proof. See Appendix B. m

The result of Proposition 1(i) seems to be plausible. In the case of
symmetric information £ knows that forming a team with I is better for him
than forming a team with I; because of 7;, > v, . In t; player E anticipates
that he will receive a contract offer from I, in t3. Therefore, he would
never accept the less attractive offer from player I; in t,. Hence, without
any information problem a mismatch I equilibrium cannot exist. The result
of Proposition 1(ii) seems to be puzzling. Here, I; and E form a team in spite
of the free-rider effect and diseconomies of scope, i.e. there is no cost effect,
which can outweigh the disadvantages of the free-rider effect. Thus, we would
expect the non-existence of a mismatch II equlibrium as a plausible result.
Such expectations are supported by the fact that with Cournot competition
instead of tournament competition in ¢; a mismatch II will not arise in a
situation with symmetric information (see Krikel 1999). Thus, the kind
of competition in t; seems to be the cause for the result of Proposition
1(ii). Here, we have a tournament competition, which makes a mismatch II
equilibrium possible as long as the parameter condition 3B < 2kz? is met.!”
This puzzling result can be explained by looking at the right side of the
parameter condition. First, the condition means that luck plays a dominant
role for the outcome of the tournament as € is required to be large which

implies a large variance for the stochastic luck component ;.'¥ Then it is

1"Note that this condition implies that the expected utility of each player has to be

positive in state si.
18A large & means that the ¢;s are distributed over a wide range [0,Z]. Note that

g = 1/¢(0). For the interpretation of 1/¢(0) as a measure of luck in the symmetric

tournament equilibrium (here: in state s1) see Lazear (1995), p. 29.

13



rational for each player to exert only minimal effort, because in this situation
effort is not decisive for the tournament outcome but generates costs c(e;).
Secondly, the parameter condition means that the cost parameter £ is large.
This would strengthen the players’ incentives to exert only little effort. At
last, the left side of the parameter condition shows that the benefit B has
to be small. This would also result in minimal work incentives, because
the winner prize B is the driving force for exerting effort in tournaments.
Altogether, a large £, a large k, and a small B imply that it is rational to
withhold effort, because winning the tournament is not very attractive and
effort does not have any real influence on the outcome of the tournament but
generates considerable disutility of effort. Therefore, it can be profitable to
form a team, which leads to free riding and diseconomies of scope, because
both effects increase the incentives to exert minimal effort. In such a
situation, /; and F bind themselves to reduce effort and the disutility of effort
by forming a team.'® In other words, I; and E form a team not in spite of
but because of the free-rider effect and diseconomies of scope. The result of
Proposition 1(iii) can be explained in an analogous way. Here, we also have a
large €, a large k, and a small B in the given parameter condition. In analogy,
it is rational for the players to choose the organizational form which minimizes
their efforts and thereby their disutilities of effort. But now, the formation
of a team would lead to high efforts due to the cost effect (i.e. v, ,vy > 1).
Therefore, the optimal strategy is not to form a team. Interestingly, the
parameter condition of Proposition 1(iii) is stronger than the condition of

Proposition 1(ii), as 27B% + 3Bke? < 2k%* <= 25 4 3B < 2kz2. That

Y9From Section 2 we know that the effort of I; (and E) is k% when not forming a team

(state s1) and %% when forming a team (state s3). As long as v;, is small
1

enough, i.e. the diseconomies of scope are large enough, there will be less effort if I; and

FE form a team.

14



means a mismatch III equilibrium is less likely (i.e., it holds for a smaller
range of parameter values) than a mismatch II equilibrium. Considering the
arguments above this result seems to be plausible, because formation of a
team already leads to lower efforts according to the free-rider effect. Thus,
in this context the ”benefits of free riding” have to be compensated before
switching to self-employment. This makes the existence of a mismatch III
equilibrium less likely.

For simplicity, the analysis has been restricted to team contracts in form
of equal sharing arrangements. In this setting, the case of Rickey Henderson
illustrated in the introduction cannot be explained, because a mismatch I
equilibrium does not exist. However, the Rickey Henderson case can be
derived by allowing the possibility of entrance fees, which can be charged by

I, I, or E when forming a team:

Proposition 2

If there is symmetric information but entrance fees are allowed in team

contracts, a mismatch I equilibrium will become possible.

Proof. See Appendix B. =

The proof of Proposition 2 shows that a mismatch I equilibrium will
become possible for purely strategic reasons if [; is allowed to offer an
entrance fee in addition to the equal sharing agreement. Then, for a
sufficiently high entrance fee E/ will accept I;’s offer in spite of larger efficiency
gains from a team contract with I, (i.e. vz, > 7;). The crucial point in this
sort of strategic mismatching is the fact that I, has no chance to prevent E
from accepting I’s offer despite of v;, > ~;,. Player I; could promise to add
an entrance fee to his equal sharing offer, too, but such a promise could not

be credible. At t3 of the sequential game, Is would never offer an entrance
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fee in addition to the standard equal sharing contract, because at this point
of time E cannot threat I5 to form a team with I;. Player F anticipates this
in to when he decides about accepting or rejecting I;’s offer.

The proof of Proposition 2 also points out, which parameter constellations
make a mismatch I equilibrium (with entrance fee) more likely. For example,
71, has to be high enough for a mismatch I. A high v, means that offering
a team contract to E would be profitable for I,. In addition, a high v
results in large competitive disadvantages for I; when I and F form a team
in this situation. This effect is indicated by equation (22), which shows that
EU/ (e}, s2) is decreasing in 7y;,. Therefore, if 7, is sufficiently high player I;
will have strong incentives to prevent a team {I5, E'}. This is just the Rickey
Henderson case considered in the introduction. Furthermore, the proof of
Proposition 2 shows that a mismatch I equilibrium becomes more likely for a
high «;, too. A high 7, guarantees that there are also considerable efficiency
gains for I; and E when forming a team. This makes £ more likely to accept
I’s equal sharing offer and, in addition, allows I; to pay an entrance fee that
is sufficiently high for E to forego an efficient match with Is.

To sum up, the Propositions 1 and 2 have demonstrated that the
three types of mismatches are possible for strategic reasons in sequential
team contracting, although all players are completely informed. The next
two subsections add asymmetric information to the analysis for discussing
the question whether the perils of mismatching do increase or not under

additional information problems.

3.2 Uninformed Incumbents

In this subsection, the assumption of completely informed players is revised.

Now, we assume that the entrant F still has complete information whereas
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the incumbents I; and I, are only provided with estimates of 7, and
vr,- These estimates are denoted by 7, and ¥, , respectively. We can
imagine that nearly any mismatch problem can be generated by introducing
sufficient uncertainty and asymmetric information. Thus, the asymmetric
information problem will be restricted to the case where I; and I, have
unbiased estimates of v;, and ~y,. In other words, £ knows the true values
vy, and 7, for sure, whereas both I; and I have the same estimates 7,
and 4, that are statistically unbiased in the sense of F [’yh | ’YIJ = vy
and E [7,, | v,] = 75,-2" In addition, for simplicity it is assumed that all
uncertainty is resolved in t5 before the tournament starts. Hence, we can still
use the preliminary results of Section 2. This assumption is quite strong,
but it helps to concentrate on the problem of mismatching. Mismatches
can arise during t; — t4, before the tournament starts. Therefore, we
assume asymmetric information only for this part of the sequential game.
Furthermore, as information problems will play a dominant role all types of
mismatches can be modelled by using suitable probability distributions and

information structures. In this context, we obtain the following results:

Proposition 3

If the entrant E is completely informed and the incumbents I, and Iy only

have unbiased estimates of v;, and v, before ts, the following will hold:

(i) There does not exist a mismatch I equilibrium.

(ii) There is the possibility of a mismatch II equilibrium. If EU; (e7;s3)
is concave in vy, and EUp(e},;s2) is conver in vy, a mismatch

1T equilibrium will become less likely compared to the situation with

20Here, E [] denotes the expectation operator.
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symmetric information. If EU, (e},;s2) is concave in vy, a mismatch

11 equilibrium will become more likely.

(iii) There is the possibility of a mismatch III equilibrium. A mismatch III

s more likely compared to the situation with symmetric information.

Proof. See Appendix B. m

Comparing Proposition 3 and Proposition 1 we see that introducing
asymmetric information leads to mixed results. On the one hand, a mismatch
I equilibrium does not exist with uninformed incumbents as well as with
symmetrically distributed information. In both situations, the entrant E is
able to verify that he will gain from forming a team with I,. Hence, he will
always reject I1’s offer in ts.

On the other hand, it is not clear whether a mismatch II equilibrium
is more likely under symmetric or under asymmetric information. The
proof of Proposition 3(ii) shows that in spite of unbiased estimates ¥; and
41, there are two decision anomalies which influence the matching process
during t; — t4. The first anomaly is the well-known winner’s curse which
follows from the convexity of EU; (e},;s2) and EU; (e} ;s3) concerning vy,
or v, respectively, by applying Jensen’s Inequality.”’ Here, a winner’s
curse means that I, and I; overestimate the gains from team formation
(in spite of unbiased estimates), as Ej,_ [EUL (€},;52)] > EU;(€},; 52) and

B

51, [EU, (€7,;s3)] > EU; (e}; 53). Interestingly, the winner’s curse lessens

21The winner’s curse is known from the bidding literature; see, e.g., Milgrom (1981).
Consider, for example, a common value auction between n bidders. Each bidder
(i = 1,...,n) is assumed to have an unbiased estimate z; of the unknown true value v
of the object to be auctioned, i.e. E [z; | v] =v. Then the estimate of the winning bidder,
max z;, is too optimistic as E [max x; | v] > max E [z; | v] = v because of the convexity

of the ”max”-function and Jensen’s Inequality; see Milgrom (1985), p. 265.
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the probability of a mismatch II, because now player I, is too optimistic
when he decides about offering a team contract to E (see inequality (A31)).
But this effect will result in a more severe mismatching, because v;, < vy,
< 1 indicates that a team {I5, E'} is "more inefficient” than a team {I;, E'}.
The winner’s curse concerning player I; has no influence as condition (A33)
(for E accepting I;’s offer) is stronger than inequality (A32). Altogether,
the winner’s curse results in a lower probability for a strategic mismatch II
at the expense of a higher probability for mismatching due to informational
reasons. The second decision anomaly can be characterized as loser’s curse.??
A loser’s curse will arise if EU,(e},; s2) and EU; (e},; s3) are concave in vy,
or 7y, , respectively. This results in /; and I underestimating the gains from
team formation. The effect of the loser’s curse is ambivalent, because the
loser’s curse concerning I; makes a mismatch II less likely whereas a loser’s
curse concerning Is increases the perils of mismatching.

At last, according to Proposition 3(iii) the probability of a mismatch
III equilibrium has increased compared to Proposition 1(iii). As the proof
of Proposition 3(iii) shows, this result follows from [; and I both being
affected by a loser’s curse when calculating the gains from team formation.
Now, both players underestimate the benefits of team work, which reinforces
the arguments given in the discussion following Proposition 1. Here, strategic
mismatching works in the same direction as mismatching due to asymmetric

information.

3.3 Uninformed Entrant

This scenario considers the case where the incumbents I; and I, are

completely informed whereas E only has two unbiased estimates 9; and

22For the loser’s curse see Holt and Sherman (1994).
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¥, With E [’yh | ’YIJ =y, and £ [’?[2 | 712] = 7,- Again, we assume that
asymmetric information is completely resolved before the tournament starts

in t5. Now, we obtain the following results:

Proposition 4

If the incumbents I, and Iy are completely informed and the entrant E only

has unbiased estimates of v;, and v, before ts, the following will hold:
(i) There is the possibility of a mismatch I equilibrium.

(ii) There is the possibility of a mismatch II equilibrium. A mismatch II is

less likely compared to the situation with symmetric information.

(iii) There is the possibility of a mismatch III equilibrium. A mismatch III

1s as likely as in the situation with symmetric information.

Proof. See Apendix B. m

Proposition 4(i) supports the initial claim from the beginning of
Subjection 3.2 that nearly any mismatch problem can be generated by
assuming sufficient uncertainty and asymmetric information. Propositions 1
and 3 have shown that, as long as entrance fees are not allowed, a mismatch
I can never exist for strategic reasons, because the entrant E will always
choose the efficient match with s to maximize expected utility. According
to the proof of Proposition 4(i), with an uninformed entrant a mismatch
I will become possible as long as the ”relative loser’s curse” Ay — Ay, is
large enough. But such a mismatch I would solely be due to information
problems. Proposition 4(ii) contains the interesting result that assuming
an uninformed entrant E makes a mismatch II less likely compared to the
symmetric information case. Here, the information problem of player E can

cause a loser’s curse that works against strategic mismatching, because F
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underestimates the potential gains of a (strategic) mismatch II. This result
points out that a decision anomaly like the loser’s curse may be welfare
improving in some situations. The result of Proposition 4(iii) is exactly the
same as the result of Proposition 1(iii), because in both cases no decision
node of player E is reached in the game. Therefore, it does not matter
whether E has complete information or not.

To sum up, the welfare effects of introducing an uninformed entrant F
are not clear. On the one hand, this kind of asymmetric information makes
a mismatch I possible, which cannot occur when E has complete information
and entrance fees are not allowed (see Proposition 1(i)). On the other hand,
a mismatch II equilibrium becomes less likely compared to the symmetric

information case of Proposition 1(ii).

4 Conclusions

The results of this paper show that mismatches are not solely caused by
information problems but are also due to strategic reasons. Mismatching
will be rational, if the costs from mismatching are dominated by the benefits
of mismatching based on strategic considerations. For example, forming
an inefficient team can be beneficial when the resulting disadvantages for
competing teams are larger than the own efficiency loss. Another result of
this paper shows that voluntary mismatching can be rational to minimize
work incentives when effort only plays a subordinate role in tournament
competition (caused by the dominant influence of luck) but the marginal
costs of effort are high.

This paper also points in two further directions. First, comparing the

results of this paper and the results derived in Krikel (1999), it becomes

21



clear that the kind of competition at the final stage of the game can
play a major role in strategic mismatching. Krikel (1999) shows that
a mismatch II equilibrium (i.e., forming an inefficient team) cannot be
possible — neither assuming symmetric nor asymmetric information — when
considering Cournot competition at the final stage. This result seems to be
intuitively plausible because both the free-rider effect and diseconomies of
scope work in the same direction and make a mismatch II unprofitable. In
this paper, tournament competition takes place at the final stage. However,
this kind of competition makes a mismatch II equilibrium possible, especially
because of its luck component.”® Secondly, this paper combines strategic
mismatching with the problem of decision anomalies in form of the winner’s
curse and the loser’s curse, respectively. Both kinds of bidding failures
are originally known from the auction literature, but also arise in other
economic contexts when there is bidding under asymmetric information (e.g.,
bidding in takeover contests, see Roll (1986), or bidding for workers in the
labor market, see Milgrom and Oster (1987)). In the model considered
here there is also a sort of bidding under asymmetric information when the
incumbents bid for the new entrant by offering a team contract. The results
show that overestimating (winner’s curse) and underestimating (loser’s curse)
the potential gains from team formation may be welfare improving or not
depending on whether the decision anomalies mitigate or reinforce the

incentives for strategic mismatching.

23 A tournament can be interpreted as a kind of lottery where only the winner receives
a high prize. The outcome of this lottery can be influenced by the competitors’ efforts.

Therefore, tournaments are an extreme form of competition.
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Appendix

Appendix A: Derivation of g(x), h(y), and H(y)

The density g(-) of the random variable X = £(5) — ¢; is the convolution
of the densities for 3y and ¢;, where f(e;) = 1/ by assumption. The
density of the highest of two order statistics is fi2)((2)) = 2F (e(2)) f(e(2)) =
2¢(29)/82.2" Because £(9) and &; are stochastically independent, we obtain
9(x) = [ fioy(e@) fle) — x)de) = [ 2e(2)/8%de(2). To determine the exact
density function we need the concrete limits of the integral. We know that
0<epy<éeand 0< g <e<+=0<¢cp —ar<e<+=r<¢cy e+
The random variable X = g(5) — ¢; is distributed over the interval [—&,&],
because each of the random variables e() and &; can be 0 or £ in the worst
and in the best case, respectively. The interval [—,&| can be divided into
the two subintervals — 2 < z < 0 and 0 < x < €. Combining these two
subintervals with the two conditions 0 < g3y < € and = < g9y < £+, which
must hold at the same time, gives 0 < g5y < & +x for the first subinterval

and x < £(3) < & for the second subinterval. Thus, we have

E+x

f 22(32) dE(Q) if —2<z<0
g(z) = © o
f %dé‘(g) if O<zx<e

The density function h(y) can be derived in analogy to g(x). We obtain the

following triangular density:

+y =

= if —E<y<0
hMy)=4q = .

= if 0<y<e.

24For the distribution of order statistics and functions of random variables see, e.g.,

Mood, Graybill and Boes (1974).
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Integrating h(y) and noting that H(—&) = 0, H(0)

,and H(g) =1 yields

H(y) =

Appendix B: Proofs of Propositions 1—/
Proof of Proposition 1:
Result (i) can be proved as follows. For a mismatch I equilibrium four

conditions must hold:

EUE(@}Q; s9) = EUL (€3; 82) > EUj(ef581), i€ {1, E} (A1)
EUZ(@Z;S;;) > EUg(ez; S2) (A2)

EUg (€3 s3) = EUp (e s2) (A3)

Y, > > 1. (A4)

Inequality (A1) means that I, and E prefer competing as a team {Iy, E'}
in the tournament to competing as single players. Therefore, without the
interference of player I; efficient matching would arise. Condition (A2)
ensures that I offers a contract to F in t;. Inequality (A3) guarantees that
E will accept this offer, because his expected utility is at least as great as in
state so when forming a team with I,. Condition (A4) defines a mismatch
I, where the team {Iy, '} generates larger economies of scope than the team
{I1, E'}. Result (i) holds, because (A3) and (A4) cannot be true at the same
time: Equations (21) and (25) show that EUj (e} s3) and EUS (€};; s2) are
identical functions of v;, and 7, , respectively. These functions are increasing

in v;, and ~yy,, respectively, so that (A3) and (A4) lead to a contradiction.
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Now, result (ii) is considered. There are three conditions for a mismatch

1I:

EU, (e1,;82) < EUi(e;51), i€ {l, L, B} (A5)

EU; (e1,;83) = EUg (ef; s3) > EUs(ef;51), i € {I1, 2, B} (A6)

Y1, <7, <L (AT)

Inequality (A5) guarantees that I does not want to form a team {I,, E'}.
On the other hand, (A6) ensures that forming a team {I;, E'} is rational for
I; and E compared to state s, where all players compete alone against each
other in the tournament. At last, (A7) defines mismatch II. Substituting the
concrete expressions for the expected utilities from (4), (17), and (23) into

(A5) and (A6) we see that the conditions (A5)— (A7) are equivalent to

U(y,) <0, W(y,) >0, v, <7, <L, (AB)

with
Aly
W) = (A9)
(B — By + k&?)%k=
and
1 1 13 1
Aly) = =7 (533 — §k5232> + <ﬁk2543 - 3ke' B’ - B3>
1 2 1 1
—— ke + Zk2?B? — Zk%#'B + = B3, A10
12" T3 6 Pty (A10)

Note that the denominator of W(v) in (A9) is positive so that (A8) is

equivalent to

A(y,) <0, Aly,) >0, v, <7, <L (A11)
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The function A(y) describes a convex or a concave parabola, respectively,
depending on the sign of $B® — 1kg2B? If this expression is positive
(negative) the parabola will be convex (concave). Thus, there are two

possibilities for (A11) to hold, which are sketched in Figure 2.
[Figure 2]

In any case, the parabola A(7) has the following two roots:

—24B? + 13k%z* — 8 Bkz? + /144 B2k2z4 + 105k%28 — 240k32°B
—2(12B — 8kz2)B

=

(A12)

—24B2 1 13k2%4 — 8Bkz? — /144 B%k%% + 105k%2° — 240k3eB
—2(12B — 8ke?)B ‘

=21l

(A13)

Figure 2(a) shows the case where (A11) is fullfilled when the parabola A(7)
is convex. There are two conditions that have to be met. The first condition
guarantees convexity of of A(y):

1 2

1 B
—B3 — ZkE2B? =
2 3" 2

12B — 8kz%) > 0 . (A14)
The second condition requires that the right-hand root of A(y) lies between
0 and 1 (see Figure 2(a)). Comparing (A12) and (A13) we see that 7 is the
right-hand root: The denominator of 7 or 7, respectively, is negative because
of the convexity of A(y) (see (A14)). Therefore, for the right-hand root to lie
between 0 and 1 either both the numerator of ¥ and the numerator of v have

to be negative or one numerator has to be negative and the other one has to

be positive.?” In both cases 7 is the right-hand (or larger) root because of

25Tn the last case, v is the root with the negative numerator whereas 7 has a positive
numerator. This follows from the sign in front of the square root in the numerators of

(A12) and (A13).
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the negative denominator. This yields the following second condition:

0<vy<l1. (A15)

For 4 < 1 to be true the inequality

—24B? + 13k%2* — 8Bkz? — \/144B2k2z4 + 105k%2% — 240k325B >

—2(12B — 8ke*)B <=

1
—2kz%(12B — 531@2) — V144B2k25% + 105k42% — 240k325B > 0

(A16)

must hold. But this cannot be true, because both the first term (because of
(A14)) and the second term on the left side of (A16) are negative.
Figure 2(b) shows the situation where (A11) is fulfilled when the parabola

A(7) is concave. Again, we have two conditions that have to be met:

1 1 B?
533 — 51@232 = ﬂ(123 — 8k&?) < 0 <= 3B < 2k&%, (A1T7)

which guarantees concavity, and

0<y<l, (A18)

which means that left-hand root of A(7) lies between 0 and 1 (see Figure 2
(b)).2® (A18) can be rewritten as

—24Bkz% + 13k%" < /144B2k22% + 105k42® — 240k320B
< —24B* 4+ 13k%z* — 8Bkz* =

3B < 2k&%, (A19)

26Note that because of (A17) both the denominator of 7 and the denominator of 7 are
positive. Therefore, both numerators have to be positive, too, for condition (A11) to be
met. 7 is the left-hand (or smaller) root of A(y) because of the sign of the square root in

the numerators of (A12) and (A13).
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which will hold if (A17) is true. Altogether, if A(7y) is convex, (A11) cannot
be met. On the other hand, concavity of A(y) — i.e. (A17) holds — ensures
that the left-hand root of A(y) lies between 0 and 1 so that mismatch II
equilibria become possible.

At last, result (iii) has to be proved. This result requires three conditions

to be met:

EUIJQ(@Q?Sz) < EUi(ej;s1), i€ {11,127E} (A20)
EUZ(e}ﬁS:’)) < EUi(ej;s1), ie{ll,E} (A21)
’7[177]2 > 1 (A'22)

The inequalities (A20) and (A21) mean that neither I; nor I is interested in
forming a team with E. Together with condition (A22) we have a mismatch
IIT equilibrium, where I; and E forego to form a profitable team. Using the
concrete expressions for the expected utilities from (4), (21), and (25) we see

that the conditions (A20)—(A22) are equivalent to

>Sy>1: Qy) <0, (A23)
where
2 (p3 ., Ly om0 4 op2 D04 3
Q) : =7~ B+§kaB + gkaB —i-ﬁkaB—QB
Loy 5, op2 L3 3

The convex parabola described by (A24) has two roots:

,  24B% — 5k?z" — 16Bke? + V/5Tk"2® + 192k32° B + 144k°21B?
B 8B(kz2 + 3B)

8
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v 24B% — 5k%* — 16Bke? — /57k"e® + 192k%20B + 144k%' B2

T $B(kz2 + 3B) '
Therefore, the minimum of the parabola () lies below the horizontal axis.
In this case, (A23) means that the right-hand root of () must be greater

than 1, i.e. 4/ > 1. This condition can be simplified to

VB7k22% + 192Bkz2 + 14482 > 5k22 4+ 248 <

27B? + 3Bks? < 2k%h.

Proof of Proposition 2:

Consider the case where [, offers E/ an entrance fee > 0 in addition to
the equal sharing arrangement to make him sign the team contract. Thereby
the conditions (A1)—(A4) from the proof of Proposition 1 must be rewritten

as

EUE(@Q;&) = EUS (ef;52) > EUs(ej;51), i€ {h, L, E} (A25)

EU;;(GZ; s3) —mn > EU;;(GZ; S9) (A26)
EUL(€ely;83) +n > EUL (€5 52) (A27)
Y1, >V > L (A28)

In this situation, I; has all the bargaining power, because in ¢; he makes a
take-it-or-leave-it offer to £, whereas F has EUZ (e};; s2) as reservation value
and can only choose between accepting or rejecting the offer in t,. Therefore,
I; chooses n to make F just indifferent between his offer and forming a team

with Iy, i.e. n = EUf(efy;s0) —EUR(e};s3). After substituting for the
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expected utilities in (A25)—(A27) we obtain three conditions for a mismatch

I equilibrium with entrance fee:

1 B?
8 (B, — B + kz2)?

B
> g — _21652 (A29)

EUZ(@Z;Sg) — EUS (€5 82) + EUS (€} 83) > EU;;(GZ; Sg) <>

2 [4B*(1 — v,,)* + Bke*(Ty,, — 8) + 2k°%] (By,, — B + k&*)?
—4kz*(ke* — B)(Bv,, — B + k&%)*
— [4B*(1 — v,,)* + Bke*(Ty,, — 8) + 2k°"| (By,, — B + k&*)?

> 0 (A30)

Vi, > V1, > 1.

These conditions hold for a lot of feasible parameter constellations which can
easily be checked by a numerical example (let, e.g., k = 2, 2 = 2, B =1,
7[2 - 57 ’7[1 - 45)

Proof of Proposition 3:

The result of Propositon 3(i) can be proved in analogy to Proposition 1(i).
Again, because of complete information the entrant F is able to recognize
in ¢ that he will gain from a match with /s compared to a match with I;.
Therefore, he will always reject I;’s offer in ¢, (without additional entrance
fee).

The result (ii) is different from the corresponding result in Proposition 1.

Here, a mismatch II equilibrium requires the following conditions to hold:

Es, [EUL(€l,;s2)] < EUi(ef;s1), i€ {l, I, E} (A31)

I
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E;, |EU(er;83)] > EUi(ef;51), i€ {1 E} (A32)
EUE(G*E,Sg) > EUi(G:;Sl), 1€ {II,IQ,E} (A33)

7]2 < 7[1 < 17 (A34)

where E, denotes the expectation operator with respect to ”0”. Note

that EU, (e},;s2) and EU; (e},;s3) are identical functions of v, and v, ,

respectively:

1 2kz? — By
I'(v) := = Bke*
)= §BRE B By T ey

(A35)

with v = v,,,7,, and I"(v) = 1B3kz? [~2B — By + 4k&?| / [B — By + k&)’

We see that I(v) is positive for v < ‘“CEQT_QB and negative for v > ‘““EQT_QB.

Therefore, I'(7) is convex (I'”(y) > 0) or concave (I'(v) < 0) depending on
» LY Y Y P g

the magnitude of . Hence, applying Jensen’s Inequality yields

—(o* —( % . 4]652 — 2B

E;, [EU,(eh,i90)] 2 BU(er,i82),  if 7, S ——
“(e* — (% . 4]652 — 2B
Es, [BU,(e1:5)] 2 BU,(eris3),  if 7y, S B

Proposition 1(ii) has shown that a mismatch IT becomes possible for certain
parameter values when v; and 7, are known for sure by I; and Io.
If EU; (e};s3) is concave in v, and EU (e},;s2) is convex in v, the
inequalities (A31) and (A32) will be stronger than the inequalities (A5)
and (A6) in the proof of Proposition 1(ii) (i.e., a mismatch II will become
less likely). In this situation, (A33) is irrelevant, because EUp (e}; s3)
= EU; (ej,;s3) and thereby (A32) implies (A33). On the other hand, if
EU , (e},; s2) is concave in v, the condition (A5) will be stronger than (A31)
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(i.e., a mismatch II will become more likely). The case where EU; (e7,; s3)
is convex in «y;, is unimportant, because now (A33) implies (A32).

The result of Proposition 3(iii) follows from the fact that EU} (ej,; s2)
and EUj (e} ;s3) are identical functions of +;, or 7; which are both
concave in vy, or 7, , respectively, because of 0°EU (e},;s2)/0v], < O
and 9°EU; (e} ;53)/073 < 0. Applying Jensen’s Inequality we obtain
By, [EU; (e},552)] < EU; (e}, s2) and By, [EU; (€5 83)] < EU; (e} ; s3).
Hence, the two inequalities (A20) and (A21) become more likely to hold,

which proves Proposition 3(iii).

Proof of Proposition 4:
The result of Propositon 4(i) considers the case of a mismatch I
equilibrium. In analogy to the proof of Proposition 1(i), the conditions of a

mismatch I are:

EU[(e1,;52) > EUs(ef;s1), i€ {l, L, E} (A36)
By, |EUE(ep; s2)] > EU(ejss1), i € {11, I, E} (A37)
EUIJ;(eZ; s3) > EUZ(GZ; S9) (A38)

Es, [EUZ (el 83)] > Es, [EUS (e1; 52)] (A39)

Y, > > 1 (A40)

Note that EU; (ej,;s2), EUE (€5 s2), EUL (€55 s3), and EU (e} s3) are
identical functions of v;, or ;, which are concave in v;, or v, , respectively

(i.e., the second derivative with respect to v, or ;, is negative). Therefore,
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by applying Jensen’s Inequality and substituting for the expected utilities
(A36)—(A40) can be written as*”

4B*(1 — vp,)* + Bke*(Tyy, — 8) + 2k?z* B B?

1
— - AL > = - — A37
8 (B~y,, — B + k&2)? B> 3 o (A7)
1 AB (1= )+ Bkz?(m_l —8) e 1, kB i
8 (B*yl1 — B + kz2)? 2 (B’yj2 — B+ kz2)?
(A38)
1 AB(1 =y, + Bk (T, — 8) + 22" A,
3 (By,, — B + k2)? 1
1_4B%*(1 — 24+ BkE*(7~v, —8 2k2z4
_B ( 7[2) € ( ’yIE )+ € _AIQ (A39;)
8 (Byy, — B+ ke2)?
Y, > > 1 (A40")

with Ap,A, > 0. In Proposition 1(i) and Proposition 3(i) the crucial
condition that E accepts I;’s offer could not be met. Here, (A39’) shows
that this condition holds as long as Ay is sufficiently small and Aj, is
sufficiently large. Altogether, there are feasible parameter constellations for
which (A37")—(A40’) hold at the same time.?

Next, (ii) is considered. A mismatch IT equilibrium will exist if

BU;,(¢f,;52) < BUilefss1), i€ {L, >, B} (A41)

EUJZ@E;S:’)) > EUi(ej;s1), ie{l,],E} (A42)

27Condition (A36) becomes irrelevant, because it is already fulfilled as (A37), or (A41),

holds.
28This can easily be checked by a numerical example; let, e.g., k =1, 2 =1, B = 1,

7[2 = 10a 7[1 = 957 AIz = 057 AIL =0.1.
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E;, [EUg(ey; s3)] > EUs(ef;s1), i€ {l, 1, E} (A43)

Iy

Y, < < L. (A44)

From the proof of Proposition 3 we know that EU (e}; s3) = EU (€] ; s3)
which is either convex or concave in 7y, for different ranges of v, . If convexity
holds, inequality (A42) implies condition (A43) to hold. Then, we have the
same conditions compared to (A5)—(A7) with symmetric information. If
concavity holds, inequality (A42) will become irrelevant, because (A43) is
stronger. Then, the conditions for a mismatch II equilibrium are less likely
to be met than the conditions (A5) - (A7) for mismatch II under symmetric
information.

The result of Proposition 4(iii) immediately follows from the fact that I,
and I, have the same information as in Proposition 1. Therefore, a mismatch

IIT is as likely as in the situation with symmetric information.
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