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ABSTRACT

An Adverse Selection Model of
Optimal Unemployment Insurance’

We derive the shape of optimal unemployment insurance (Ul) contracts when agents can
exert search effort but face different search costs and have private information about their
type. We derive a recursive solution of our dynamic adverse selection problem with repeated
moral hazard. Conditions under which the Ul agency should always offer separating
contracts are identified. We show that the good searcher receives an information rent and
that the bad searcher receives the minimal entitlement. From a methodological point of view,
we achieve a precise characterization of the sets of jointly feasible entitlements. This allows
us to map our analytical results one-to one to a numerical algorithm. According to our results
the contract for the good searcher has a decreasing benefit profile, as the one he would be
offered in a pure moral hazard environment. In contrast, the contract of the bad searcher is
distorted by an adverse selection effect, so that it tends to have an upward-sloping benefit
profile. We provide a comparative static analysis of changes in various parameters of our
model.
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1 Introduction

Governments in all developed countries provide unemployment insurance
(UI). There is remarkable empirical evidence that the existence of such a
social insurance prolongs unemployment spells (compare the overview arti-
cles Atkinson and Micklewright (1991) and Meyer (1995)). This fact can be
attributed to the disincentive effects of UI on job search. Designing an opti-
mal Ul scheme, the government has to trade off incentives to search against
insurance aspects of providing benefits. A contract theoretical framework un-
derlying this interpretation was first introduced by Shavell and Weiss (1979)
and later refined and simulated by Hopenhayn and Nicolini (1997). A key re-
sult is that Ul benefits should decrease with the length of the unemployment
spell.

In this paper, we propose to reconsider the optimal design of an Ul
scheme. The distinguishing feature of our analysis is agents’ heterogene-
ity with respect to their reemployment probability (there are ”good” and
"bad” searchers). Agents in a heterogeneous population will in general not
face the same probability of finding a job (given a certain search effort). And
the government will in general lack information about individual reemploy-
ment probabilities. Our paper focuses on two questions. First, under which
circumstances will it be optimal to offer only one UI contract to all agents -
a situation that resembles real world UI schemes in most countries? Second,
is a decreasing UI benefit scheme not only optimal in a homogeneous but
also in a heterogeneous population? We identify a condition under which it
is never optimal to offer only one UI contract. Loosely speaking, the con-
dition says that good searchers react more sensitively to search incentives
than bad searchers. This condition is met in all numerical specifications of
our model. Furthermore, the optimality of a decreasing Ul benefit scheme
only holds for the good searchers. In contrast, the benefit scheme for the bad
searchers is distorted by an adverse selection effect. If this effect is strong,
he should face an upward-sloping UI benefit scheme. We investigate these
issues theoretically and numerically.

The literature on optimal Ul has evolved in several waves and around
different questions. Economic aspects considered include job matching, work
performance, wage bargaining and human capital acquirement. We will not
discuss this extensive literature here in detail and refer the interested reader
to the comprehensive overview article by Karni (1999).

The strand of literature on which we build takes a contract theoretical



perspective of the Ul design problem. The seminal contributions are Shavell
and Weiss (1979) and Hopenhayn and Nicolini (1997) (HN hereafter)'. In
their setup, the probability of receiving a job offer depends on a costly and
unobservable search effort. The principal designs a Ul benefit scheme in or-
der to guarantee a certain ex-ante-utility for the agent at lowest (expected)
cost taking into account the (dynamic) moral hazard of agents. In this frame-
work, the optimal Ul benefit scheme should decrease with the length of the
unemployment spell. Furthermore, HN show that a government should use
the additional instrument of a wage tax after reemployment with a tax rate
that should increase with the length of the unemployment spell.

All these contributions have one feature in common: They consider ex-
ante identical workers. With search effort hold constant, everybody faces
the same probability of receiving a job offer. Our aim is to investigate the
shape of optimal contracts in a framework where two types of agents (good
and bad), with the type of an agent being private information, face different
hazard rates of finding a job so that their resulting search costs are different.
From a contract theoretical point of view we consider a dynamic adverse
selection problem with repeated moral hazard.

Some steps toward an analysis of this question can be found in the litera-
ture already. The issue of adverse selection has been raised first by Mortensen
(1983) who applies the seminal Rothschild and Stiglitz (1976) paper to UL
His analysis is, however, static and does not include search incentives. Wang
and Williamson (1999) present a numerical welfare analysis of Ul in a dy-
namic economy with moral hazard and heterogeneous agents. Their focus is
the effect of (full and partial) experience rating on optimal Ul In contrast
in our model agents choose from a set of different UI contracts offered by
the principal. Finally, Hopenhayn and Nicolini (2001) address the issue of
heterogeneity of agents in a two period model of Ul similar to their earlier
work HN. They assume, however, that the agents’ type is observable and
contractable.

In our set-up the principal wants to ensure a certain ex-ante lifetime util-
ity to both agents at lowest cost. In the first period he can offer one or
two contracts specifying the benefit levels for each period where the agent
remains unemployed. To keep track of the search incentives generated by
a contract we introduce the remaining expected life-time utility guaranteed
by a contract to an agent as a state variable of the problem (that we call

Recent contributions include Pavoni (2000), Zhao (2001) and Hassler and Mora (2002).



entitlement in the sequel). With this state variable, we are able to give a
recursive formulation of two separate cost minimization problems that gen-
erate optimal contracts implementing previously specified entitlements. The
adverse selection problem can then be stated in terms of these cost mini-
mization problems. Finally we show - in analogy to the standard adverse
selection problem (cf. Chap. 2 of Laffont and Martimort (2002)) - that the
entitlement constraint of the bad searcher and the incentive constraint of the
good searcher must be binding, whereas the entitlement constraint of the
good searcher is implied by the other constraints and thus slack. We thus
combine a recursive method and an approach to adverse selection problems
followed by classical contract theory.

As HN, our paper technically builds on recursive solutions of repeated
games and principal agents problems as studied in the papers by Spear and
Srivastava (1987), Thomas and Worrall (1990), Abreu, Pearce, and Stacchetti
(1990) [APS], Atkeson and Lucas (1992) and Chang (1998). This literature
has introduced entitlement utilities as state variables in order to analyze
models of repeated moral hazard. The methodological contribution of this
paper is a precise characterization of the sets of jointly feasible entitlements
which is used one-to-one in our numerical algorithm. This corresponds to the
calculation of the set of ”sustainable outcomes” in the terminology of infinite-
dimensional models, that is characterized theoretically as the fix-point of a
set-operator in APS and Chang (1998).

From our solution we can deduce a number of results: : First, the good
searcher receives an information rent, whereas the bad searcher receives the
minimal entitlement. Second, the contract for the bad searcher is distorted
by an adverse selection effect. In the simulation we will see that if this effect
is strong, his contract will show an upward-sloping profile. Third, if the
incentive constraint of the bad searcher is slack, the contract for the good
searcher is identical to the one he would be offered in a pure moral hazard
framework, given his entitlement.

We use our recursive solution to derive further results in a a numerical
simulation. In particular, we study the effect of various parameters of the
model on the two optimal contracts. We are interested in their impact on
the adverse selection effect and the information rent for the good searcher.
Our findings are as follows:

1. In all our examples, the incentive constraint of the bad searcher is slack.
In particular, this means that the good searcher always receives the



same contract as in a pure moral hazard environment with a decreasing
benefit profile.

2. The adverse selection effect is strong for low values of the entitlement
and for small population shares of the bad searcher. Also, it is rein-
forced by a fall of the bad searcher’s hazard rate.

3. The information rent increases as the entitlement decreases; it is low
if the population share of the bad searcher is high or if the agents are
highly risk-averse.

We provide an economic intuition for the results of the comparative static
exercise and discuss their implications for the application of an optimal Ul
program with more than one contract.

The paper is organized as follows: In Section 2 the model is introduced
and the theoretical solution is presented. In section 3 the model is solved nu-
merically. We also present an extensive comparative statics exercise. Proves
are given in the appendix.

2 Model

Our framework for analyzing Ul is a dynamic principal-agent model. The
principal represents the government (or UI agency) providing social insur-
ance.

The agents’ problem The agents are unemployed workers searching for a
job. There are two types of agents, differing in their opportunities of finding
a new job. There is a continuum of agents, modeled by the unit interval.
The fraction of agents of type B ("bad searcher”) ¢ and of type G (”good
searcher”) 1 — ¢ are common knowledge. Both agents are equally risk-averse,
they enjoy the same utility w(.) from consumption. Also, we assume that
once an agent has been employed, he will keep his job with a fixed wage
rate 2 w until his death in period 7. We can thus calculate an agent’s total
expected lifetime utility in period ¢ as

2Technically, the assumption that both agents get the same wage is in no way important
for our analysis, it is introduced for simplicity’s sake. In the solution to our model we
could keep track of the impact of different wages for B and G on the search incentives;
qualitatively, the results would not change.
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W, = Z 5lu(w)'
I=t

Subscripts denote the time index, 3 is the common time discount rate.

The differences between the two types of agents in their search technology
is expressed by agent i’s probability of remaining unemployed p;(a), that is
a function of the search effort a he exerts. We assume that

pB(CL) > pG(a’)>

i.e. for any given search effort the bad searcher has a higher probability of
remaining unemployed than the good searcher (we will sharpen the notion of
heterogeneity in condition 2.4 below). Given any benefit scheme {by, ..., br},
the agent chooses a in any period when he is unemployed. In his decision to
increase his search effort he faces a trade-off between increasing search costs
on the one hand and an increasing reemployment probability on the other.
The total lifetime utility he expects when remaining unemployed is the key
variable determining this decision. We denote by V', agent i’s expected
(discounted) lifetime utility from period ¢+ 1 on. Moreover, in the sequel we
will denote by z; = u(b;) the utility value of consuming benefit b;. Thus we
can state the agent’s problem in period ¢ recursively by

V) =maxz —a+ flpi(a)Vi, + (1 - pi(a)) Wi . (1)

Recall that W, is the expected lifetime utility of employment starting
in t + 1. We denote by a! the decision of agent i:

G, = argmax, z — a+ Blpi(a)Viy + (1 — pi(a)) Wiga]. (2)

Taking the agents’ decision problem into consideration, the principal min-
imizes total expected costs. Hereby the current cost function is the inverse
of the agent’s utility function ¢(z;) = u~'(z;) = b;. The following property of
¢(.) is implied by strict concavity of an agent’s utility function u(.), i.e. risk
aversion.

Condition 2.1 The current cost function c(.) is increasing and strictly con-
vew.



The principal’s problem The principal’s objective is to minimize the
cost of providing insurance by the design of optimal contracts for the agents.
We will call {zi,...,25} a contract designed for agent i (with i = B,QG).
In his minimization problem, the principal has to take into consideration
the different reemployment probabilities of the agents. Furthermore, he has
to take into account the following constraints: First, he has to respect the
entitlement V (i.e. total expected lifetime utility) the contracts should at
least guarantee to agent B and G respectively. Second, he has to guarantee
incentive compatibility. We assume that the principal can fully commit to
the contract promised in period zero. The principal’s problem can thus be
stated as

min qle(zr') + Bps(ar)e(zy) + Bps(ay)le(25) + .1 +

{zfg,...,z%},{zf,...,zg}

(1= @)le(=) + Bpa(af)le(z5) + Bpa(as)le(2) + ..]...]

subject to the entitlement constraints (EC)

wh o= v, (3)

we = v, (4)
and the incentive constraints (IC)

vz v (5)

ez v (6)

Here, th’i denotes total expected lifetime utility in period ¢ by contract
j (j = b, g) for the unemployed agent i (i = B,G).> Both the V;"'s and the
als can be calculated from the array of equations 1 and 2.

Remark 2.2 If agents are homogeneous in their search costs, i.e. they all
have the same p;(a), then the setup is identical to the one considered by
Shavell and Weiss (1979) (except for the finite time dimension,).

3The superscript j indicates for which agent the contract is designed, i.e., contract b
is designed for agent B and contract g for agent G. A priori both agents can of course
choose either contract. The IC conditions ensure that they will in fact choose the contract
designed for them.



Formal Assumptions Now we formalize in detail the idea that agents
differ in their reemployment probabilities. First, we assume that to achieve
a given probability 1 — p; of being reemployed, agent 1 has to exert a higher
effort than agent 2. Moreover, to develop the model model formally we make
some standard technical assumptions on the p;(.).

Condition 2.3 We assume the following for the probability of remaining
unemployed p;(a) of agent i:

1. Smoothness pi(a) € C*(R)

2. Strict Convexity pi(a) <0 pila) >0

3. Boundary conditions pi(0) =1 lim, . pi(a) =0
4. Inada conditions lim, o pi(a) = —oco  lim, o pli(a) =0

Condition 2.3 ensures that the agents’ problem 1 always has a unique
interior solution that can be characterized by a first order condition.

Condition 2.4 The relation of the two probability functions is assumed to
be as follows:

1. Given the same effort, type B has a higher probability of remaining
unemployed than type G: pg(a) > pa(a).

2. Given any contract {zy, ..., 2r}, in equilibrium pg(a?) > pg(ad).

Condition 2.4 formally characterizes the heterogeneity in our model. Its
second part sharpens the basic concept of a bad or good searcher: Given
any contract, the bad searcher may exert a higher search effort than the
good searcher, but his effort will not be so high that his chance of finding
a job exceeds the good searcher’s chance. The next lemma shows that the
condition is in fact well-known from standard contract theory.

Lemma 2.5 Property 2 of condition 2.4 is equivalent to the following Spence-
Mirrlees property:

ov;B B 3‘4@
azt—i—s aZH—s
forallt with1 <t <T and s with1 < s <T —t.

>0 (7)
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Proof. Firstly, we prove that pg(a’®) > pg(a¥) ensues from the Spence-
Mirrlees-Property 7. We calculate

8zt+1 = ﬁpz(at) aZt-H = 51%(%)7

where we use the Envelop Theorem. The assertion now follows immediately.
Secondly, assume that pg(aZ) > pg(a¥) holds. In the case where s = 1, the
Spence-Mirrlees property follows from what we have shown above. So let
s> 1. Then

ovE Ve . ovE,
aZt—i—s aZt—l—s B 382t+s

Y
8Zi&—i—s

where we have used the Envelop Theorem once more. The assertion follows
by induction. m

Condition 2.3 and 2.4 will be used in all results that follow. For our
first result, we need one more assumption on p;. As we mentioned above,
condition 2.3 ensures that the agent’s choice of effort 1 can be characterized
by the following first order condition:

Pal) = ot
S BV — W)
Equation 8 establishes a one-to-one (and smooth) relation between V!

and ai. We can therefore define the following function for the next-to-last
period:

(8)

mer) =) = (007 (5o ))

So m;(z7) is agent i’s probability of remaining unemployed when facing benefit
utility zr in the last period. It is clear that m; is increasing. We formulate
a condition on the elasticity of m; with respect to z7, which is -of course- an
implicit assumption on p;.

oy s . . . om;(z)
Condition 2.6 1. The marginal probability of remaining unemployed =5 =

of agent i facing promised utility z is greater for agent G than for agent
B:

10



org(2) - orp(z)
0z 0z

2. If the marginal probabilities aﬂa;iz) of agent G and B are equal for two

utility values 2& and 22, then the utility of G, 2%, must be smaller than
the utility of B, 2%

O (29) _ orp(2P) L G _ B
0z 0z

What is the economic content of Condition 2.67 The first part says that
agent G reacts more strongly to a change in the promise z than agent B. In
other words: The probability of finding a new job depends more critically on
the UI benefit promise in the case of agent G than in the case of agent B.
Note that here we compare agents G and B that face the same contract. The
second part of condition 2.6 says, that whenever the reaction is equal, then
agent G must face a lower promise than agent B. Summarizing condition 2.6
we can say that the incentive sensitivity of agent G is higher than the one of
agent B.

What role do conditions 2.4 and 2.6 play in our analysis? The model
presented in this paper incorporates two different paradigms, hidden infor-
mation and (repeated) hidden action. Condition 2.4 is the typical techni-
cal assumption in hidden information models. Condition 2.6 is a condition
that ensures in our setup a feature of (pure) repeated hidden action that has
been analyzed numerically in Pavoni (2000) and discussed in Hopenhayn and
Nicolini (2001): The fact that the (full information) UI contract should fall
the more steeply the better a searcher is the agent. Loosely speaking, condi-
tions 2.4 and 2.6 ensure that our model exhibits the standard behavior of a
pure hidden information model and a pure hidden action model. We will see
in section 3 that both conditions will be met in our functional specification.

Finally, to make our problem interesting, the initial entitlements to total
expected lifetime utility have to be below the total lifetime utility from work.
We take this as a natural political prerogative. If the entitlements are Vti’j
are higher than W; for any period posterior to one in that the unemployed
agents exert search effort, the efforts would necessarily be zero, and thus the
probability of remaining unemployed p; would be 1.

Condition 2.7 We assume that the utility entitlement of the unemployed
agent is below the one guaranteed by lifetime work: V. < Wj.

11



We are now prepared for a first result.

Pooling is Not Optimal The first question we ask is whether and under
what circumstances it is actually optimal to offer two contracts in order to
screen the agents. The answer gives a first indication that it may indeed be
relevant to consider the cost saving potential of a differentiated UL

Theorem 2.8 There exists a solution to the Principal’s Problem. If Condi-
tion 2.6 holds, any solution is separating.

Proof. see Appendix m

Economically speaking: It is not efficient to offer only one Ul contract to
two agents that face different search costs in the labor market if the good
searcher reduces his effort more than the bad searcher in response to an
increase in the entitlement while unemployed (i.e. so that his reemployment
chance falls more quickly). In other words: If the good searcher reacts more
sensitively to the search incentives set by the principal than the bad searcher,
he should not offer a single contract to both agents.

Remark 2.9 In the case of CARA and CRRA utility one can show that

to obtain the "no pooling” result of theorem 2.8 it is sufficient to impose
omi(z) 2
0z mi(2)|"

assumption 2.6 on the elasticity o' (z) =

What makes the theorem very appealing from a more applied perspec-
tive is the fact that our numerical implementation with CRRA utility shows
that the good searcher is very likely to react more sensitively to the search
incentives than the bad searcher. Considering this numerical result as robust
we could claim that the Ul agency has a definite potential for cost-saving by
switching from offering only one to offering two UI contracts.

But what should the optimal contracts look like? The answer to this
question is not evident: We can neither apply Shavell and Weiss (1979) so-
lution directly, since we should expect the influence of hidden information
on the optimal design of the contracts, nor can we apply standard solutions
of adverse selection models that do not incorporate repeated hidden action.
Moreover we cannot hope to find a direct recursive formulation of the prob-
lem, because both the incentive constraints and the entitlement constraints
in the principal’s problem have to hold only in the first period.

12



The Solution of the Model In the sequel, we develop a characterization
of the solution to the principal’s problem in Propositions 2.10, 2.12 and 2.16.
The strategy is as follows: We first look at each contract separately, giving
- in Proposition 2.10 - a recursive formulation of the problem of finding the
cost-minimizing contract that provides agent B and agent G with a specified
level of ex-ante lifetime utility (entitlement) under a given contract. The
goal of this proposition is to summarize the cost minimization problem in
a compact way, i.e., give two separate recursive formulations, one for each
contract. In this formulation the entitlements (as seen by the agent in period
t) serve as state variables of the problem (compare HN).

The question left open by proposition 2.10 is which pairs of entitlements
are actually jointly feasible under a given contract. The answer to this ques-
tion has to take into account the laws of motion for the entitlements under a
given contract as well as the induced choices of effort by the agents. Propo-
sition 2.12 gives a precise theoretical description of the correspondence map-
ping pairs of entitlements of the agents today (V,Z, V%) to jointly feasible
policy options (z, thl, V;til)a i.e. the benefit today and the entitlements for
tomorrow. This proposition is the main theoretical result of the paper and
serves as the cornerstone of our recursive numerical implementation. We can
now calculate the cost of providing agents with given entitlements in the first
period.

Finally, we merge the two separately solved cost minimization problems.
We can state the original adverse selection problem faced by the principal
as a four-dimensional minimization problem in the entitlements of the first
period. In Proposition 2.16 we further simplify the minimization problem
by showing that the entitlement constraint of G must be slack, and that the
entitlement constraint of B and the incentive constraint of G must be binding
at the solution. This reduces the dimension of the problem from four to two
which allows us to solve the problem with high numerical accuracy.

We begin the characterization of the solution by the recursive formula-
tion of contract b, i.e. the contract designed for agent B. As usual in adverse
selection problems, we anticipate that only agent B will choose contract b in
the end and thus stochastically discount costs at his rate. For the time being,
the (total) entitlements of contract b for agent B and agent G, V%5 and V%%,
are taken as given. Their optimal values will be calculated in Proposition
2.16 below. The recursive formulation takes the form of a (finite-dimensional)
Bellman Equation: The principal minimizes the costs of paying out a benefit

13



worth z; (in utility units) today and promising entitlements V;Tf and Vfg

for tomorrow. In doing so, he has to observe the entitlements of B and G
today, V;b’B and th’G, that serve as state variables of the problem. A "law
of motion” connects the state and the choice variables. We denote the set of
possible choices (2, V27, V%9 in state (V2 VP9) by Ty(VP2, V,P). This
correspondence will be characterized later in Proposition 2.12. Moreover, the
choices of effort a of the agents facing the promised entitlement V}'; for to-
morrow are taken as given by the principal (thus we incorporate the incentive
constraints from the hidden action problem). The recursive formulation is
completed by two boundary conditions: In the first period, the entitlements
Vlb’B and Vlb’G have to take the values V2 and V%% respectively, in the last
period, the entitlements Vr_,lf’B and V;’G have to take the value of the last
benefit zp. Thus we can state the following proposition without proof:

Proposition 2.10 (Recursive Formulation of Contract b) The cost func-
tions for contract b, guaranteeing a utility of V®2 to agent B and V*C to
agent G, has the following recursive form:

CPVP Ve = min c(z) + 5PB(GB)CtB+1(V£17 Vﬁl) 9)

{z:,VE VG YeT (VB V)

subject to

Law of motion for contract b (LOM)

2 —a” + Blpp(a® )V + (L —pp(a®))Wi] = VP
2 —a% + Blpe @)V + (1= pe(a®)Wia] = V©
Choice of effort in contract b (CE)
W8 = argmax, 2 — a+ Alpp(@ViE, + (1 - p(a)) Wisi]
a® = argmax, z —a+ Blpc(a)V,S + (1 — pa(a)) Wi

as well as the boundary conditions

VP o=y (10)
Ve = Ve (1)
Vi = (12)
VE = 2p (13)

14



The correspondence I'y maps into the values of jointly feasible z, thl,
Vi$, given the pair of entitlements (V,2,V,0).

Remark 2.11 Of course the contract g for agent G takes the same form as
contract b for agent B in Proposition 2.10.

In order to make use of Proposition 2.10, we actually have to know the
correspondence I'(.,.). This is particularly important for any numerical ap-
plication of the recursive formulation. The following proposition gives a
precise characterization of I';. For technical reasons we distinguish between
the case where the utility z; from consuming the Ul benefit is bounded from
below from the case where it is not. We will discuss this and other issues
after stating the proposition.

Proposition 2.12 (Characterization of I';) The following formulas char-
acterize the correspondence T'y(V2, V,E), that gives all feasible policy options
for given entitlements V;2 and V,€ in period t.

1. Fort < T — 2, if no restrictions are imposed on the utility values of
benefits z;, the correspondence of feasible entitlements has the following
form

Ft(‘/;B, ‘/;G) — {Zt(@), ‘/;El(a/% ‘/;S;-l(a)}lZE[O,OO] : ‘/tB S ‘/tG S Wt
0 . else
(14)
The jointly feasible values z/(a), V5, (a) and V,$,(a) are differentiable
functions of a.

2. Again, be t < T — 2, but let z; > z. Then there exists a lower bound
VE and so that for V¢ < VE < W,:

) { {24(0), VI (0). VL@ gy V€ VPV, VL (V)
0 : else
(15)
The jointly feasible values z/(a), V5, (a) and V,$,(a) are differentiable
functions, the boundary functions a(V,P,VE), a(V;2,V,¢) and VE(V,S),
Vf(VtG) are continuous. For V,% below V., the correspondence T'y(V,2, V,E)
s the empty set.
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3. In period T—1 the correspondence T'r_ (V.2 |, VI ) is either the empty
set or contains only one point of jointly feasible choices {zr_1, V.E, VF}.

Proof. see Appendix m
We have two technical remarks on Proposition 2.12.

Remark 2.13 The upper bound W; on VB is artificial: Of course the prin-
cipal can ensure lifetime utilities above the value of secure lifetime income
from work. However, this cannot be optimal, since it reduces the search ef-
fort to zero, and in view of Condition 2.7 we exclude lifetime utilities above
Wy from our considerations.

Remark 2.14 The distinction in Proposition 2.12 between the case where
the benefit utility z; s unbounded from the case where it 1s bounded is made
for technical reasons: Some utility functions map onto the real line R, some
only onto the half-line Ry (modulo normalization). An example of the former
kind are CARA wutility functions, one of the latter CRRA utility functions
with risk aversion vy smaller than one.

With Proposition 2.12 at hand, we can define precisely the notion of
feasibility in our model: A pair of entitlements (V,%,V,¢) is called ”jointly
feasible” if the set I',(V,Z, V,%) is non-empty.

Let us now be more specific why this proposition is so important for
our purposes. Models including repeated moral hazard, as ours, have been
discussed in the framework of a strand of literature building on Spear and
Srivastava (1987), Thomas and Worrall (1990), Abreu, Pearce, and Stacchetti
(1990) [APS], Atkeson and Lucas (1992) and Chang (1998). We are not
bound to provide a detailed discussion of this literature, the following remark,
however, relates proposition 2.12 to it.

Remark 2.15 The sets of jointly feasible entitlements are the finite-dimensional
analogon of the set of sequential equilibrium payoffs (of the agents’ game) in
the infinite-dimensional framework of APS or the set of sustainable outcomes

in the (again infinite-dimensional) framework of Chang (1998).

By introducing entitlements, marginal utilities or sequential equilibrium
outcomes as state variables -instead of ”intuitive” state variables- we in-
evitably run into the difficulty of defining precisely the sets of possible values
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these state variables can take. APS and Chang (1998) characterize these
sets as the largest fix-point of a set operator. Moreover, they show that the
fix-point can be obtained by a fix-point iteration of sets. This is theoretically
sound. However, it does not provide an entirely satisfactory description of
the sets nor the definite algorithm to calculate them numerically, in particular
if the state space is more than one-dimensional. In fact, the numerical deter-
mination of these sets may be a tricky issue in simulations of models building
on these methods. In Proposition 2.12 we give -for our model- a ”precise”
description of the sets of the state variables: The boundaries of the sets are
(continuous) functions, in particular, the sets are compact and connected.
In the next section we will point out that this is crucial for the numerical
implementation of our solution. Moreover, Proposition 2.12 states that the
principal’s choice problem in a given period is essentially one-dimensional,
except for the next-to-last period, where there is only one choice left.

After this methodological digression, we return to the solution of the
principal’s problem. Given proposition 2.10 it can be stated as follows:

ps g GICT (VIR V) 4 (1= g O (V22 Vo) (16)

st Ty(VP2,V00) 2 ¢ (17)
Ly (V92 V96) 7§ (15)

ybB > V9B (19>
Vg,G > Vb’G (2())
Vb’B > K (21)

(22)

Vol >y, 22

This is a four dimensional minimization problem, and thus still rather
complex. However, as in the case of standard adverse selection problems
(compare e.g. the book by Laffont and Martimort (2002), Chap. 2), we
are able show that agent B’s entitlement constraint and agent G’s incentive
constraint must be binding, and that agent G’s entitlement constraint must
be slack at the solution. And so we finally characterize the solution to the
principal’s problem as follows:

Proposition 2.16 (Solution of the Principal’s Problem) For values of
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V that are not too low *, solutions to the principal’s problem are solutions to
the simplified problem

min _gCB(V, V9% + (1 — )C% (V9B vo0)

V9B V9.G

st. V>V9B

Proof. see Appendix m

Two Corollaries Two corollaries ensue from proposition 2.16. The set-up
considered by Shavell and Weiss (1979) will be our benchmark, i.e. a set-up
where the principal knows the type of the agent and sets the benefits to give
optimal search incentives. We will call it the pure moral hazard environment.
About the contract for type B we learn:

Corollary 2.17 Type B receives the minimal entitlement utility V.. His con-
tract is distorted with respect to the optimal contract in a pure moral hazard
environment such that its value V®C for type G is reduced.

Proof. The first assertion is point 2 in the proof of 2.16. To see the sec-
ond assertion, note that, given that V9% is chosen optimally for each value
of V9% the cost function of contract g is strictly increasing in V9¢. More-
over, in a full information optimum (i.e. the pure moral hazard case for both
contracts) the optimal V¢ (optimal with respect to V®? = V) can be char-
acterized by a first order condition. We thus obtain a first order reduction
of costs for contract g by lowering V9% = V¢ (constraint 20 is binding!)
below the value of V%% in a full information optimum, whereas there is only
a second order increase in costs for contract b. m

In the case of the contract for type G, we deduce:

Corollary 2.18 1. Type G receives an information rent, i.e. the utility
V9C that his contract provides him with is greater than V.

4This condition is needed to avoid corner solutions. In the simulation we found that all
reasonable values of V were high enough (compare the proof in Appendix C and footnote
5 in Section 3.1).
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2. If the incentive constraint of the bad searcher 19 is slack at the solution,
his contract is identical to the optimal contract in the pure moral hazard
environment (given the level of entitlement V).

Proof. The fact that V9¢ > V has been proved in Proposition 2.16; so
we look at the second assertion.

In our framework, we can recover the Shavell-Weiss contracts (i.e. the
contracts from the pure moral hazard environment) at a given level of enti-
tlement V% by solving (i # j)

min C{ (V" V')
Va
st. LOM,CE

and applying forward induction afterwards. This is because by minimiz-
ing the costs of contract ¢ with respect to its value for agent j, we just neglect
the impact of this value for the optimal contract.

Now, if our objective function is optimized without further restriction,
we recover the optimal contract from the pure moral hazard environment,
because the value V98 of contract g for type B does not appear in the cost
function of contract b. m

In our numerical simulations, we found that the incentive constraint of
the bad searcher 19 was always slack.

We thus recover the rent extraction/efficiency trade-off from a simple ad-
verse selection model without moral hazard (cf. chapter 2 of Laffont and
Martimort (2002)), where efficiency here is the search efficiency of agent B.

The corollaries provide first economic insights as to how the unemploy-

ment agency should design optimal UI contracts. Further economic aspects
will be discussed after a simulation of optimal contracts in the next section.

3 Simulation

3.1 Computational Strategy

The simulation closely follows Proposition 2.10, Proposition 2.12 and Propo-
sition 2.16 in Section 2. The first part of the simulation calculates the cor-
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respondence I'; by backward induction. As in Proposition 2.12, we use the
entitlement of agent G V,% as a parameter for the upper and lower bound
on the entitlement V,® for agent B. We introduce a grid on V,“ and then
calculate the bounds on V,? by a bracketing procedure.

More precisely, for a given tuple (V,2, V,%) of state variables, we check
whether the corresponding path of choice variables (z(a), V7, (a), V¢, (a))
(compare the proof of Proposition 2.12, Appendix C) intersects the set of
jointly feasible values (z;, V., V,$,) as determined in the previous induction
step. As defined in the previous section, by ”jointly feasible” we refer to
tuples (V,B,, V) such that T';1(V,Z,,V;%,) is non-empty; in the case of z,
we only have to check whether it is above the lower bound z. By proposition
2.12, we know that for each V,¢ (within the limits of feasible entitlements for
G) there exits a V2 (V%) and Vf (V%) that limits the range of V;? jointly fea-
sible with V.. Since for every V,¢ the set of jointly feasible V;? is an interval,
we can "encircle” VP (and, separately, Vf ) by values of V,® above and be-
low and then calculate the bound by a (highly precise) bracketing procedure.
It is thus proposition 2.12 that guarantees that our algorithm calculates a
characterization of the set of jointly feasible entitlements (V;Z, V%) by stating
that the set of jointly feasible entitlements (V,Z,,V,S,) is connected.

As we have pointed out in the preceding section (compare remark 2.15
and the following discussion), the virtue of proposition 2.12 lies in a more
"precise” characterization of the sets of jointly feasible entitlements (the set
of ”sustainable outcomes” in the terminology of Chang (1998)). It is ex-
actly here in the numerical algorithm where this characterization becomes
useful: The description of the set of sustainable outcomes as a fixed-point
of a set-operator by APS is mathematically precise, but poses a serious pre-
cision problem in numerical applications with more than one state variable
(compare section 8 of Chang).

The second part of our numerical procedure uses the recursive formulation
in Proposition 2.10. It calculates a numerical approximation of the cost
functions C¢(V,?,V,%) based on a solution of the minimization problems in
the backward induction of the principal.

More precisely, we cover the domain of C} (i.e. the set of jointly feasible
entitlements (V;2,V,%) for which I';(V,Z, V%) is non-empty) by a large grid.
For each tuple (V,Z, V,%) in the grid ("states of the world”), we solve the min-
imization problem along the path of choice variables (z(a), V;%,(a), V., (a)),
i.e. we solve it in a. Ignoring the exact value of the limits a and @, we
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use a bracketing procedure in which we allocate an extremely high cost to
a values delivering choice variables outside the set of feasible values. Note
that we make use of the characterization of I'; in two ways: First, we rely
on the fact that the set of jointly feasible entitlements (V,%, V,%) is compact
and connected. Second, we exploit the reduction of the number of choice
variables from three (z, V,Z,, V) to one a.

Finally, each cost function is then approximated as a linear combination of
complete Chebychev polynomials by regression (for this standard procedure,
compare Judd (1998), Chapters 6.4, 6.12 and 12.8).

In the third part, the approximated cost functions C% are combined in
the objective function of the principal’s problem. According to proposition
2.16, we have to solve a two-dimensional minimization problem °.

After an initial grid search, the solution is calculated by a Nelder-Mead
multidimensional minimization procedure.

3.2 Calibration of the Model

In our calibration, we work with a monthly interval. Therefore we set the
discount rate to # = 0.995 which corresponds to an annual discount rate of
0.95. The overall time-spell is a year, i.e. the number of periods is set to T' =
12. As for the probability function, we choose p;(a) = 1 — /1 — exp(—b;a),
where 60; remains to be determined. We use CRRA utility functions u(b) =
bll%, as common in the Ul literature.

Needless to say, the corresponding cost function ¢(.) = u~!(.) meets the
convexity condition 2.1:

c(z) = 2%,

where a = ﬁ > 1. Also, Conditions 2.3, 2.4 and 2.6 are fulfilled by

the probability function p;(a) ®. So in particular, in our numerical setup the
prerequisites of Theorem 2.8 hold.

5 There is one point to take care of, though: In order to apply proposition 2.16, we
have to ensure that the minimal entitlement V is so high that z; > z (compare the proof
in Appendix C). We ran alternative minimization routines for low values of V, showing
that the assertion holds.

6Our probability function p;(a) has a slightly more intricate functional form than the
one used by HN (pgn(a) =1 —exp(—ra)). We have chosen it because the latter does not
fulfill the Inada condition (cf. Condition 2.3).
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In the benchmark case, following HN, we set o = 2 (i.e. risk aversion
v = %), which corresponds to intermediate risk aversion on behalf of the
agents.

The wage is set to be w = 100, so that unemployment benefits become
equal to replacement rates. The lower bound on the Ul benefits is set to
z = 0, the lowest possible value taken by CRRA utility functions with
0 < v < 1. As in the proofs to the propositions, in our simulation we
have normalized utility from consuming the wage to zero, i.e. all expected

lifetime utilities are negative.

We have finally chosen the parameters ¢; = 0.007 and 6, = 0.017 to
match reasonable escape rates from unemployment in autarky (compare
Meyer (1990)): For type B, the bad searcher, this is then 22.7% per month,
for type G, the good searcher, it is 35.8% per month. As a comparison:
HN assume a weekly escape rate in autarky of 10% as an average for the
US, which corresponds to a monthly escape rate of 34.4%. Other choices of
parameters will be discussed in the next section, where we give a detailed
comparative statics analysis.

Our first figures, figure 2 to 5, show how the set of feasible entitlements
becomes larger and larger along the backward induction. Figures 6 to 14 show
optimal UI contracts for different levels of entitlements to the agents and for
different values of ¢, the share of the first agents in the population. The
entitlement bounds chosen are V. = —20, —25, —30 and —35 (also denoted
in the legend). This corresponds to a certainty equivalent of 68.67%, 61.76%,
55.21% and 49.03% of the wage per period respectively, i.e. the utility of an
(unemployed) agent who consumes X % of the wage for all periods and cannot
gain employment.”

3.3 Results

In this section we will explore the dependence of the optimal contracts on
different choices of parameters. Since we know that Theorem 2.8 applies, all
solutions are separating. Moreover, for all parameter values we have looked
at the incentive constraint of agent B, equation 19 was slack. For contract g
designed for the good searcher G this means according to Corollary 2.18 that

"In the cases of V. = —20, —25 the UI benefits for agent G exceed a replacement rate
of 100% in the first periods. This reflects the fact that our model does not incorporate
effects of Ul on work effort and its impact on employment.
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it is identical to the one considered by Shavell and Weiss (1979). From their
paper (compare also HN and Pavoni (2000)) we know that in our setup the
optimal contract for the good type G has a falling benefit profile, induced by
moral hazard; and this property is reflected by our figures. Changes in the
parameter values do not qualitatively change contract g; the falling benefit
profile is robust, as our theory predicts (for a detailed numerical discussion
of the comparative statics of the contract in a pure moral hazard environ-
ment see Pavoni (2000)). However, the level of entitlement for G (and so, in
particular, his information rent) varies with the parameters of our model.

We will thus concentrate our discussion on contract b and the information
rent for G. The shape of contract b is determined by two effects:

1. a moral hazard effect (MH), arising as in the case of type G from the
agents’ search problem,

2. an adverse selection effect (AS), arising from the principal’s wish to
lower the value of the contract for type G (compare Corollary 2.17) in
order to separate the type types.

We know that in the pure MH environment, benefit schemes are falling.
What would agent B’s contract look like in a pure AS environment? As
a pure adverse selection environment, we consider a set-up where the type
of an agent is still hidden information, but the probabilities of remaining
unemployed of type B and G are fixed constants pg > pg. This is then a
typical adverse selection problem as discussed in Chapter 2 of Laffont and
Martimort (2002). Due to the assumption of full commitment, the dynamics
of the contracts is rather simple. Now, as in the case of the full problem
(Cf. Corollary 2.18), agent G receives an information rent, and, given the
entitlement V9%, his contract is the first best contract. In the pure AS
case, this means his consumption is fully smoothed. Trivially, the following
Spence-Mirrlees property holds (as in the full problem, compare Lemma 2.5):

ovE  ave
024 s O0zi4s

>0 Vs > 1

Therefore, in order to separate the two types, the contract for agent B
has to show an increasing benefit scheme. ®

8 A formal derivation of the solution to the principal’s problem in a pure adverse selec-
tion environment is available upon request.
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Information Rents
\%4 ‘ Certainty Equivalent ‘ q=02 ¢q=05 ¢=0.8

-35 49.03 108% 181 % 222%
-30 95.21 73% 139% 17.0%
-25 61.76 48 % 105% 129 %
-20 68.67 3%  72%  99%

(rents expressed as percentage increase over minimal entitlement)
Table 1: Information Rents obtained by agent G

Elasticities o, of agent B
Vv ‘ Certainty Equivalent ‘ A = 0.004 0 =0.007 6 =0.010

-35 49.03 0.0070 0.0116 0.0167
-30 55.21 0.0075 0.0131 0.0188
-25 61.76 0.0079 0.0139 0.0199
-20 68.67 0.0083 0.0146 0.0209

Table 2: FElasticities of unemployment probability w.r.t. benefit level for
agent B

So should we expect the benefit scheme for agent B to be rising or falling?
Whether the MH or the AS effect dominates depends on the choice of param-
eters. In the sequel, we discuss the influence of different parameters on the
relative weight of the MH and the AS effect. As our benchmark, we use the
parameterization of the previous subsection [« = 2, 65 = 0.007, 65 = 0.017,
q = 0.5].

The entitlement bound V  For the good searcher, a decrease in the en-
titlement shifts the contract uniformly downwards (figures 6-9), as can be

expected.
We can also see from figures 6 to 9 that for the bad searcher the MH effect

prevails for high entitlement bounds V and thus his optimal contract falls as
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well (figure 6). But as V is lowered the AS effect becomes more and more
important and the benefit profile becomes hump shaped (figure 8) or even
rises (figure 9).

It is interesting to note that at the same time, according to table 1 (compare
also table 3 and 4), the information rent for agent G is increasing as V falls.
We infer that the distortion of contract b away from the contract for B in
a pure moral hazard environment (compare Corollary 2.17) increases as V.
is lowered. So broadly speaking we can say that the rent extraction/search
efficiency trade-off is more severe for low than for high values of V. How can
this be explained?

Let us first briefly mention a mechanism that reinforces the MH effect as V'
increases but cannot fully account for the observed changes in benefit profiles.
The elasticity of the probability of remaining unemployed o' (z) with respect
to the UI benefits are increasing in the benefit level ? (compare Remark 2.9
and table 2). This means that at higher levels of utility a reduction of future
benefits has a greater effect on the search effort and thus the reemployment
chances of the unemployed agent. Hence the MH effect is more likely to
matter at higher levels of utility, as we see in the figures. However, the
tables show that the elasticities o (z) alter only slightly as the utility V is
lowered. Thus this ”elasticity effect” alone cannot explain the changes we
observe in the result of the comparative static exercise.

The main force driving the result is the convexity of the cost function,
i.e., the fact that the marginal costs of providing a certain utility increases
in the level of utility. Put in terms of the agents’ utility function we can
say that a reduction of benefits hurts an agent disproportionately badly at a
low level of utility. So in particular, a cost neutral shift of a benefit scheme
from a flat to a bended profile comes at a greater relative loss of utility at
low utility levels than at high utility levels. Loosely speaking, consumption
smoothing is more important at low levels of utility than at high levels.

Now we look at contract b. Its utility V> for agent B is fixed at V,
and so we concentrate on its value V¢ for G. As we have pointed out
above, the rent extraction/search efficiency trade-off is reflected by the AS
and the MH effect: The slope of contract b is upward sloping in a pure AS
and downward sloping in a pure MH environment. Assume for a moment
that the elasticity of the probability of remaining unemployed ¢t (z), that

9For reasons of computational ease we have calculated the elasticities w.r.t. to the
benefit in the period subsequent to the effort only.
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determines the importance of the MH effect, remains constant along shifts of
the entitlements (actually we have seen that the increase of ¢’ (z) in z even
reinforces the results). In other words: We assume for a moment that the
search efficiency of B is equal across levels of utility.

Now according to what we have said about the preferences for flat versus
bended contracts of agents with concave utility functions, we deduce that
agent G would prefer to have his consumption smoothed more strongly at
low than at high levels of benefits. Since his own contract g is falling, the
(flatter) contract b becomes more attractive to him as the utility level is
reduced. So in order to ensure that the agents are separated, in equilibrium
the principal grants G a higher information rent (in relative terms, i.e. as
a fraction of his entitlement) and accepts a stronger distortion of contract b
from the pure moral hazard contract for B as V is lowered (recall that we
hold the MH effect fixed for the moment). The distorted (upward sloping)
contract b is then relatively less attractive for G than for B because of the
Spence-Mirrlees property, as explained above.

The share of type B agents ¢ Figures 10, 9 and 11 depict the optimal
contracts at the entitlement bound V = —35 (Certainty equivalent: 49.03%)
for ¢ = 0.2, 0.5 and 0.8 respectively. As the share of the bad searchers ¢
increases, we see a clear shift of contract b dominated by the AS effect to
one dominated by the MH effect. Furthermore, the contract for the good
searcher is uniformly shifted upwards. Moreover, from table 1 we can see
that his information rent rises.

We can explain these observations as follows: With a small proportion of
type B agents, the principal concentrates on lowering the costs of contract g.
He does so by pushing down the information rent of agent G, thus heavily
distorting the value of contract b for agent G (recall that the incentive con-
straint for the good searcher binds, V®¢ = V%), Since the value of contract
b for agent B is fixed at V, the value V»“ can only be lowered by steeply
raising the benefit scheme b. This is true because of the Spence-Mirrlees
property.

With an increasing proportion of type B agents, reducing the costs arising
from their contract predominates the principal’s problem and the issue of
paying an information rent to type G agents looses importance. In order
to keep the costs of contract b low, the principal prefers to avoid a large
distortion of V¢ away from its first best and consequently accepts a higher
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Information Rents
V| Certainty Equivalent | 65 = 0.004 05 = 0.007 05 = 0.010

-35 49.03 20.6 % 18.1 % 14.2 %
-30 55.21 14.3 % 13.9 % 10.9 %
-25 61.76 9.7 % 10.5 % 82 %
-20 68.67 6.6 % 7.2 % 6.2 %

(rents expressed as percentage increase over minimal entitlement)

Table 3: Information Rents obtained by agent G

information rent paid to type G agents.

Economically speaking, with a high proportion of type G agents, the
principal wants to curb the information rent, whereas with a high proportion
of type B agents, the principal wants to ensure the search efficiency of type
B agents.

Agent B’s unemployment probability parameter 63 The parameter
fp determines the search capacity of agent B: The higher it is, the lower
is his probability of remaining unemployed, given the same search effort a.
We have looked at the case where the agents become more similar in their
search technology, i.e. 6p increases while 65 is held fix. In our analysis,
we have therefore kept agent G’s search parameter at 5 = 0.017 and have
looked at the cases of g = 0.004, g = 0.007 and 0 = 0.010. The latter
correspond to an escape rate in autarky of 15.6%, 22.7 and 27.7% per month
respectively. Figures 12, 8 and 13 show the optimal contracts at a utility
level of V. = —30 (certainty equivalent: 55.21%). From these figures we see
that the AS effect prevails for low values of 6, whereas for high values the
MH effect is dominant.

For the good searcher an increase in g shifts his benefit scheme down-
wards. At the same time an increase in fg implies for the bad searcher that
the AS aspect looses importance and the MH becomes increasingly impor-
tant. One reason for this can be seen from table 2. The elasticity of the
probability of remaining unemployed is increased considerably as g rises.
As explained in the paragraph on V, this means that the search incentives
for agent B are enhanced.
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Information Rents
Certainty Equivalent ‘ a=15 a=2 a=25

49.03 273 % 181 % 104 %
55.21 21.5% 139 % 82 %
61.76 171 % 10.5 % 5.8 %
68.67 137% 72% 3.7 %

(rents expressed as percentage increase over minimal entitlement)

Table 4: Information Rents obtained by agent G

Risk aversion QT’l The exponent in the cost function « determines the
risk aversion of both agents, i.e., the coefficient of relative risk aversion is
O‘T_l. In this paragraph we look at the impact of a change in risk aversion
on the optimal contracts and the information rents for type G.The results
for the latter two are shown in table 4. As is apparent from the tables
we compare levels of certainty equivalents of the unemployment entitlement
bounds rather than levels of utility (which would of course make no sense).
All other parameters are identical.

Figures 14, 6 and 15 show the optimal contracts at a replacement rate of
68.67%. In these figures we make two observations. First, the contract for
type B, that is dominated by the MH effect at a = 1.5, becomes smoother
as « increases. Furthermore it slightly shifts upwards. Second, we can see
that the falling contract for G is shifted upwards as « increases. At the same
time his information rent falls (see table 4).

The economic explanation for these two phenomena is straightforward.
In our model the coefficient of relative risk aversion is identical to the in-
verse of the intertemporal elasticity of substitution of consumption, i.e., more
risk averse agents have a stronger preference for intertemporal consumption
smoothing. Put the other way round: The marginal costs of guaranteeing a
certain level of instantaneous utility rise as relative risk aversion rises, so -
given that the principal guarantees a specified total expected lifetime utility
- falling and rising benefit schemes become relatively more expensive as com-
pared to flat ones. Therefore contracts tend to become flatter as « increases.

For agent G the contract shifts upwards because his contract is falling.
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Therefore, as risk aversion increases, he needs to be compensated by higher
benefits in order to achieve a given certainty equivalent. This also explains
the fall in his information rent. Since his contract becomes disproportionately
more expensive in terms of benefits as « increases (recall the convexity of the
cost function), the Ul agency wants to save information rent. This mechanism
resembles the fall of the information rent for G as V increases (see above).
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A Proof of Theorem 2.8

Proof. It is clear that there is a solution to the principal’s problem. So
assume that the relative expected marginal cost is increasing in zr and that
it is greater for agent G than for agent B. By contradiction we prove that
there is no pooling solution. So assume that the principal’s problem is solved
by one contract p, {zf,..., 25 |, 28}, for both agents, that generates a total
expected utility of V;Z and V¢ in period ¢ for agent B and G respectively.
We have a look at the "first best” solutions for the last two periods that
generate the same utilities V.2 | and V¢, as p. As "first best” solution,
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we refer to the solution of the pure moral hazard problem as considered by
Shavell and Weiss (1979), i.e. the problem of guaranteeing agent i a utility
of Vi, at lowest cost. This is stated as follows:

minz%717z% C(Z%_l) + 6pi(ai)c<z%)
st. Vi, =zh | —a + Blp(a’)zh + (1 — pla’))u(w))
1 = fpi(a’)[zp — u(w)]

This is the two period cost minimization problem (the principal’s problem
in this framework) in the case of agent i, subject to the promise keeping
constraint and the first order condition of the agent’s problem, determining
the choice of effort a’. Plugging the entitlement constraint into the objective
function and making use of the envelop theorem, we calculate the following
first order conditions for the principal with respect to zy (we abbreviate

pi = pia’)):

() = Lo+ ) )
(.G _ _(p/G)sc B e
(7)) = PPl (27) +¢(27) (24)

The factor of the cost function on the right-hand side is

(pp)* 1 Omi(er)
pip; B mi(zr) Ozr
and so we see that the RHS is identical to the relative expected marginal
cost. By condition 2.6 the RHS is greater for agent G than for agent B. °
We may therefore deduce that the Shavell-Weiss contract of agent B is flatter
than its counterpart for agent G, where we define "flatter” in the following
sense:

)

G B

RT—1 RT_q
a B *
i “n

10Note that we could weaken condition 2.6: To ensure that the RHS of G is higher than

the RHS of B it is sufficient to assume that the relative marginal probability of remaining

unemployed m%Z) a”giz) is higher for agent G than for agent B.
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In the following we will dicuss the last two periods of the pooling contract
only and show that it cannot be optimal to offer it to both agents. We will
refer to the first best solutions as Shavell-Weiss (SW) contracts.

First, suppose that the pooling contract p is flatter than the SW contract
of agent G. Then the principal can offer p and a second contract g’ that is
identical to contract p except for the last two periods, where 2z | and z&
are substituted by 2% | and 2% | from the SW contract. This is incentive
compatible: Agent G is indifferent between p and g’ by construction. Suppose
that agent B (weakly) preferred g’ over p. Then for period 1 to T'— 2, he
can excert the same effort af to af._, (i.e. that he chooses in the case of
contract g') when facing contract p, and thus the stochastically discounted
utility from the benefits z; to zp_o is identical for both contracts. In the
last two periods, in contrast, agent B -excerting effort optimally- gains a
higher utility from the flatter contract p than from contract g’ because of
the Spence-Mirrlees property (cf. Lemma 2.5). So agent B cannot prefer g’
over p. Offering the two contracts p and g’ is also cheaper for the principal,
because g’ is the (unique) cost-optimizing contract for agent G during the
last two periods. Contradiction.

Second, suppose that the pooling contract p is identical to or steeper
than the SW contract of agent G. The principal then offers p and a second
contract b’ that is identical to contract p with z& |, and 2% substituted by
22 and 2B from the SW contract. Since the SW contract of agent B is
flatter than the SW contract of agent G, as we have seen, we can infer the
contradiction in the same way as in the first case. m

B Proof of Proposition 2.12

Proof. In order to simplify the proof we introduce a normalization: The
utility from consuming the wage w is set to zero. Thus, all W; become zero,
too, and the entitlement utilities of the unemployed agents take non-positive
values. Note that the lower bounds for the entitlements, stemming from the
lower bound on the benefit utility z, thus shift downward each period along
the backward induction.

First, we look at the agents’ problem. Remember it takes the form

Vi= max z — a + Blpi(a) Vi + (1 — pi(a))Wiid].
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Given our normalization we obtain the following first order condition at
an interior solution:

: 1
/ 1
pila) = o (25)
' BV
By the Inada condition in Condition 2.3 we assure that the interior solu-
tion always applies.

The Case of t =T —1 We start with point 3 of the proposition, i.e. the
case of Ty(V,Z, V,¢) with t = T — 1. Mathematically speaking, the next-to-
last period is different from the previous ones in that there is an additional
contraint on the choice variables V:: The boundary conditions 12, 13, namely
VP = V¥ = zp. This is the very reason why, given the pair of state variables
(V2 VF ), there is only one choice left for the principal. First, let’s look
at the Law of Motion (LOM) for the state variables V;# | and V5 ,:

Zr_1 — Cl?_1 + ﬁPB(ag—ﬂV:l? = VCZ]“B—D
2r_1 — G(T;_1 +ﬁPG(Gg—1)VTC’; = VTG—17

where we will drop the time index from the effort variables a% ;. In the
following, we will denote the difference between the entitlements of the agents

by
A, = v;G — vtB, (26)

With this new notation and remembering both our normalization and

Vi = zp, we solve the LOM for z7_, equalize both equations and solve for
AT_li

Ar_y =a® —a® + Bpg(a®)zr — Bpp(a®)2r (27)

We want to further simplify equation 27. In the next to last period, the
first order condition of the agents’ problem 25 takes the following form

_ 1
ﬁZT'

Again by Condition 2.3, the p} are strictly increasing functions

(28)
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P, (0,00) — (—00,0).

Remark B.1 Given Condition 2.7, the principal will never promise an en-
titlement above W, (= 0 under our normalization), since at Wy the agents
stop searching (i.e. ai = 0) and their probability of remaining unemployed
becomes p;(al) = 1.

Thus in particular Vi = z7 < 0.

From this we deduce that the p, are one-to-one and onto. Therefore the
following function v(a®) is well defined:
¥(a) = (plp) ™" 0 p(a).

Now we have everything at hand to define Ap_; as a function of a®:

a%) — a®
AT—l(aG) _ ’Y(CLG) —a% 4 pc(a”) : pg("}/( ) (29)
P (a)
In order to show point 3 of Proposition 2.12, we have to show that Ar_4(.)
is invertible.

We do so by proving

Al (a%) > 0. (30)
Using the agents’ first order condition 25 and
,Y/(GG) — pg(aG)
Pi(v(a%))
we calculate
pe(a%)

Af_y(a%) = [ps(y(a)) = pa(a®)] (31)

(Pe(a))
By Condition 2.3 we know that p/(.) > 0, and since pg(y(a®)) > pg(a®)
by Condition 2.4 assertion 30 follows.

Finally we observe that -again by Condition 2.3-
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lim Agp_y(a®) =0. (32)
aG—0
Together with 30 we deduce that as agent B’s entitlement V;? | approaches
agent G’s one V& |, the effort of the agent G a® (as well as the effort of agent
B) go to zero. Because of 25 this means that the benefit for the last period
zr has to converge to zero, i.e. the wage consumption utility.

Summarizing our results so far, we can state the following: Given entitle-
ments V.2 | and V& | such that Ar_; > 0, we can find a unique corresponding
choice of effort by agent G a“ (for the time being, we neglect the lower bound
z on the benefits z;). From this we can calculate -uniquely- the choice of ef-
fort by agent one a” and the benefit for the last period 2y from equation 25,
and the benefit of the next to last period zy_; from LOM. All these functions
are differentiable. As Ap_; goes to zero, the benefit of the last period zp
goes to zero, i.e. the cost of the benefit converges to the wage.

We finally have to look at the set of feasible entitlements V£ ; and V& ;.
In the first case of the theorem (without a lower bound z on z;), nothing
remains to be shown. In the second case, there is a natural lower bound
V&_ |, namely the stochastically discounted sum of the bounds on zy_; and
zp. Given V& | € [V$ |,0] we now have to prove that there is a lower and

an upper bound V2 _ (V.S |) and ngl(VTG_l) on the corresponding feasible
V.2 . Because of 25 the lower bound on 27 translates into an upper bound a®
on the corresponding choices of effort of agent G. It is attained with equality.
By 26 and 30 we find the lower bound

Kgfl(vigfl) = ngil - ATfl(aG)-

As for the upper bound V?_l(VTGfl), one can see intuitively that V2
is bounded by V¥, (for a rigorous argument, see point 1 in the proof of
2.16). However, V2 | does not necessarily attain this bound, because of an
additional constraint: zr_; > z. From the LOM and 25 we know

G _ pi(a®)
pi(a)

The right hand side is increasing in a”, so a lower bound on zy_; implies
a lower bound on the effort of the second type, a® (note that because of

Zr—1 — Vf,l +a

G
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our normalization, the reference points for each period have been shifted
downwards). Because of 30 a lower bound on Ap_; ensues. Given V,& |, we
thus find the upper bound on V7 :

—B
VT—I(VTG—I) = VTG—l - AT—I(QG)‘

We see that V2 | attains V¥ | only if the lower bound a® becomes zero
(the smallest possible effort). Since Ar_;(.) is an increasing function, we

see that all values V.2 | € [K?_l,Vi 1| are attainable as long as a® > a“.
This must be the case for V.¢ | > V&_|, since then there are corresponding
benefit values zp_1, zp such that z; > z. Finally, because of the Theorem of
the Maximum both a; , and @r_; depend continuously on V& | and since

: . —B
Ar_; is a smooth function, the lower and the upper bound V2 | and V.,
are continuous functions of V& .

So for period T'— 1, we have shown that the set of feasible values takes
the form stated in the theorem. Note in particular that this set is compact
and connected.

The Case of t <T —2 In this paragraph, we prove the assertion 2 of
the proposition by backward induction; point 1 is embedded in what we will
show. As we have stated above, the crucial difference between the next to
last period and the previous ones is the boundary condition of the last pe-
riod 12 and 13. Before, for every feasible pair of state variables (V2 |, V& )
-or more precisely, for the difference of these state variables Ar_i- there
existed one corresponding choice of effort a$ ; that determined all choice
variables (27_1, V.2, V&), As we will see below, now to each pair of feasible
state variables (V,2,,V,%,) (again, more precisely, to the difference of these
state variables A; 1) there corresponds a line of possible choices of effort
al | that parameterizes a compact and connected path of choice variables

(2e1(), VP (), ViE ()

We have a look at the LOM once more. With the help of the agents’ first
order condition we transform it into
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B
a
Zt_aB‘i‘pF( B) = ‘/;‘/Bv
ppa?)
G
a
Zt—aG“‘p,G( G) — ‘/;G’
pe(a%)

where again we have dropped the time index from a!. This inspires the
definition of the following functions (i = 1, 2)

. , Z-(ai)
fi(&l) = (IZ —_ .
pi(a’)
From the LOM we can now derive a necessary equation for the choice
variables (as represented by the a's, replacing the V’s) to hold:

Ay + fa(a®) = fa(a®), (33)

where we have used definition 26.

We have a closer look now at f;. From

/= pipi

(P})?

we can see that it is a strictly increasing function (bearing in mind Con-
dition 2.3). Moreover we calculate

>0 (34)

im f() = 0 )
lim fi(a") = oo. (36)

Now note that there is a natural lower bound V& on each V¥, namely the
stochastically discounted sum of the zs (where ¢ = ¢,...,T). In the case of
T — 1, we have shown that the set of jointly feasible values V.2 |, V& | takes
the form stated in the theorem. So let T';(V,Z, V,¢) be non-empty and take the
form of a path in the space (z, V5, V,¢,) for VP € [Kf(KG),Vf(VtG)] with
V¢ > V¥ We have to show first that then T',_y(V,%,, V,%,) is non-empty for
VP e VPOV

. : =B
(V,%)] for some continuous functions V2, V,_ | when
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V¢ > V& and takes the form of a path in (z,_, V;%, V;%).

Put differently, we have to ask for which pairs (V,2,, V,¢,) there are choice
variables (z;_1, V;2,V,%) that are jointly feasible. By the agents’ first order
condition 25 we can replace V;Z and V,¢ by the corresponding choices of effort
aP | and af | (we will drop the time index in the sequel). The effort choices
a® and a“ have to satisfy equation 33. Since A,_; > 0 and by 34, 35 and
36, for all a® > 0 we can find a corresponding a® > 0. By the LOM, we
can furthermore determine z_; once a“ is given. Thus the number of choice
variables (z,_1(a%), V.2 (a%), V,¢(a%)) is reduced to the ”choice” variable a®.
All functions are combinations of differentiable functions and thus differen-
tiable. We will call the projection of the triple of choice variables into the
two-dimensional space (V,2(a%), V% (a%)) the curve ¢, , parameterized in
aC.

We have reduced the choice problem to one variable, but which a“ cor-
respond to feasible triples (z;_1, V,Z,V,%)? First we look at the constraint

211 > z. As in the preceding paragraph, by the LOM

21 = VI + fola®)

it translates into a constraint

el R VACH : G <
CLG > QG — { gG’ (z ‘/t—l) : gzc:;i ;é (37>

Second we have to ask: Which of the pairs of entitlements (V,” (a%), V,¢(a%))
are feasible? Well, those for which I';(V,?, V,¢) is non-empty. In other words:
Given VB, and V%, the set of feasible choices is the intersection of the
curve ¢a, , defined by 33, parameterized in a® with a® > a“, and the set
of (VB V) with T\(V,2, V) # (. Figure B depicts the intersection for the
case of period 4 of 12 in an example from our simulation. The solid lines
represent the bounds V7 (V&) and Vf(Vf), the dotted and the dashed line
are curves ¢, with two different values for As.

Two things remain to be shown:

1. we have to show that the set of (V,Z,,V,¢,), for which the intersection
is non-empty, takes itself the form of a set bounded by functions V2,

and Vﬁl.
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Figure 1: Set of jointly feasible entitlements in period 4 of 12
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2. we have to show that if the curve 33 intersects the set of feasible values
(VB V), it cuts the bounds at most twice, so that the set of feasible
choices is connected.

To show the first assertion, we look more closely at the family of curves

¢At71 a% — [(bB(aG)a (bG(a’G)]Atfl’

where

CLG = !
¢B( ) 6p/B(f§1(At71 + fG(G/G)))7 (38)
o 1
¢G(a ) - 6]916(@6‘)‘ (39)

Since ¢ is one-to-one, the curves can also be understood as a function

V;fB = ¢Az—1 (‘/tG)

We now want to prove the following: The curves are ”decreasing” in A;_1,
ie.
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At <AL= 08,4, (VE) > 0ap, (V). (40)

We do so by calculating the derivative

Gy _ " i CLB * 1
aAt—1(¢At_1)<V ) - (ﬁpll(aB))Z ﬂpl( ) fél (Atfl + f92(CLG>)

<0,

which is negative because of 34 and Condition 2.3. The property of ¢a,_,
is reflected by its dotted and the dashed representation in Figure B.

By the induction hypothesis, the set of (V2. V,%) for which T'y(V,2, V,¢) #
() is compact and connected. Thus we deduce from 40 that there are A,_; and
A, , so that the curves ¢, , intersect the set for A, ; < A, ; < A,_; and
do not intersect for A; 1 < A, , and A,y > A, (of course A, ; could be
smaller than zero, the lower limit for A; ;). From this ensues the existence

of two functions VZ (V%)) and V:B_ L(VE)) limiting the set of feasible pairs
(V;t§1> ‘/tgl) :

To show the second assertion, we have to look more closely at the shape of
the curve ¢a,_, as well as the limiting functions V2 |(.) and Vf_l(.). First, we
prove that the derivative of ¢a, , is smaller than one. We do so by showing
that

D(.) o ¢! (VE)) = (da(.) — ¢m(.) 0 65! (Vi)

is increasing in V;%,, i.e. the derivative of ¢, , is below the one of the
diagonal:

aV,ElD((bgll(‘/tgl)) =1- a{/ﬁﬁB(‘ﬁél(Vtcjl)) >0

Since we know that

dye (65 (VE) <0
by 25, it is sufficient to show that

D'(a%) < 0.
Using a® := f53' (A1 + fo(a®)) we calculate
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gy — . Palad) pp(a”)  fo(a®)

PUT) = 500 @@) e T Bluly@B)? * fpaB)
S ) pelah(e®) | hala®))
Be(@)) T BB " G@@)? * palaB)py(P)

(pG(GG)

p(a®)

" (.G
_ 1> " p?‘(aG) 5.
B(pe(a))
The last expression is negative by Condition 2.3 and 2.4.

Now, the second assertion follows if we can show that the derivative of
the boundary functions V?(.) and VB(.) is greater than one, for then ¢a, ,
crosses them at most once. So by induction hypothesis, assume that Kf (.)

and V? (.) have a derivative greater or equal than one (note that this is cer-
tainly true for the case of t =T —1).

According to what we have shown above, there are A,_; and A, ; that
limit the set of values A; 1 = V,¢, — VB, for which ¢, , intersects the set
of feasible (V,2,V,¢). From this we might be tempted to deduce immediately

both V2 | and Vf_ , must be linear functions with derivative one, for appar-
ently the limits only depend on the difference A, ; = V¢, — V;Z,. Note,
however, that the starting point a“ (see equation 37) for each curve ¢a,_, is
shifting upwards as V,¢, is falling. Thus since by induction hypothesis Kf

and Vf are more steeply increasing than the ¢a, ,, we may deduce that

1. indeed V2 |(.) is linear with derivative one because the ¢, ,s cross the
function VZ(.) at the lower bound V¢ at a high value for a®.

2. for lower values of V¢, the smallest A,_; for which ¢4, , intersects the
set of feasible values (V.2 V%) is below the one that would have been
obtained with a® fixed. Since the latter one would have corresponded

to a linear upper bound Vf (.) with derivative one, we conclude that

Vf (.) has to rise more steeply than this, i.e. that its derivative is
greater than one.

Thus by induction, we have shown that ¢, , and V2 (.) and Vil(.)
cross only once and the second assertion on the form of the correspondence
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I';_1 ensues. This concludes the proof of Proposition 2.12. m

C Proof of Proposition 2.16

Proof. To prove the proposition, we have to show that at the solution

1. the entitlement constraint 22 of type G is slack,
2. the entitlement constraint 21 of type B is binding,

3. the incentive constraint 20 of type G is binding.

Beginning with 1 we show that for all contracts V¢ > VB, The assertion
then follows by V®¢ > V%5 and agent B’s entitlement constraint 21.

So let’s consider a feasible Ul contract. Given any set of effort choices
(aB,al,...,a? ) of agent B, the same set of choices would yield a higher value
of total expected lifetime utility for agent G than for agent B, V¢(a?) >
VB(aP). This is the case because firstly (total) utility when employed is
higher than (total) utility when unemployed (compare the remarks 2.13 and
B.1) and secondly by condition 2.4, first part, pg(a®) > pg(a?) for any
a® > 0. Thus, in particular, at the optimum V& > V5.

We now prove point 2 by contraction. Suppose that for the solution con-
tracts b, (2%, ...,2%), and g, (27, ...,27), the constraint 21 did not bind. For
sufficiently high V' we may assume that all 2! > z for all ¢, in particular for
t = 1. But then create new contracts b’ and g’ by replacing zi by 2! — ¢
(i = b,g) for some € > 0 with 2{ — ¢ > 2. These contracts are certainly
feasible. They are also incentive compatible, since the entitlements Vf’j are
reduced by the same amount. However, the new contracts b’ and g’ are less
costly for the principal, since the costfunction ¢(.) is strictly increasing. Con-
tradiction.

Point 3 is proved by an argument simular to the one in point 2. m
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Figure 2: Set of jointly feasible entitlements in period 11 of 12
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Figure 3: Set of jointly feasible entitlements in period 8 of 12
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Figure 4: Set of jointly feasible entitlements in period 5 of 12
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Figure 5: Set of jointly feasible entitlements in period 1 of 12
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Figure 6: UI contracts
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Figure 7: Ul contracts
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Figure 8: UI contracts
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Figure 9: UI contracts
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Figure 10: UI contracts with ¢ = 0.2
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Figure 11: UI contracts with ¢ = 0.8
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Figure 12: UI contracts with 6z = 0.004, 65 = 0.017
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Figure 13: UI contracts with 6z = 0.010, 65 = 0.017
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Figure 14: UI contracts with v = 1.5
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Figure 15: UI contracts with a = 2.5
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