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ABSTRACT 
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A Cautionary Tale of Cleaning Data 

 
In empirical research it is common practice to use sensible rules of thumb for cleaning data. 
Measurement error is often the justification for removing (trimming) or recoding (winsorizing) 
observations whose values lie outside a specified range. We consider a general 
measurement error process that nests many plausible models. Analytic results demonstrate 
that winsorizing and trimming are only solutions for a narrow class of measurement error 
processes. Indeed, for the measurement error processes found in most social-science data, 
such procedures can induce or exacerbate bias, and even inflate the variance estimates. We 
term this source of bias “Iatrogenic” (or econometrician induced) error. Monte Carlo 
simulations and empirical results from the Census PUMS data and 2001 CPS data 
demonstrate the fragility of trimming and winsorizing as solutions to measurement error in the 
dependent variable. Even on asymptotic variance and RMSE criteria, we are unable to find 
generalizable justifications for commonly used cleaning procedures. 
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1 Introduction

Empirical researchers frequently use simple rules of thumb to clean data on the basis of the dependent

variable. As an example, researchers analyzing survey reports of wages and salaries often remove observations

whose value for the hourly wage is below the minimum wage or above some prespeci�ed cuto¤: sample

exclusions based on wages can be found in Katz and Murphy (1992), Card and Krueger (1992), Bound

and Freeman (1992), Juhn, Murphy, and Pierce (1993), and Buchinsky (1994). We cite these authors to

illustrate the endorsement of this practice by leading scholars in the �eld. As we demonstrate in this paper, the

intuitively appealing strategy of discarding certain observations is not costless and can introduce speci�cation

error in cases where no error previously existed. Given the fact that the inconsistency is exacerbated by

the analyst�s actions, we borrow a term from the medical literature and term this form of bias �iatrogenic�

speci�cation error. In the medical literature an iatrogenic event is an adverse reaction to a well-intentioned

treatment initiated by a physician, and we believe that parameter inconsistency that is caused by the analysts

well intentioned actions shares the same features of physician induced complications.

Given the widespread acceptance of this practice, the topic of �robust� estimation has received the

attention of both economists and statisticians. In one the earliest formal examinations, Stigler (1977) poses

an interesting question: how much have methods such as trimming, winsorizing, the Edgeworth average, or

Tukey�s Biweight, reduced the bias in the laboratory estimation of physical constants such as the speed of

light or the density of the earth? Stigler concludes that the 10 percent trimmed mean, the smallest trimming

amount considered in his study, is the most reliable estimator. In this he echoes the famous mathematician

Legendre who recommended deleting those observations with errors �too large to be admissible.� Stigler

looks at the role of measurement error in the physical sciences; the error process may be vastly di¤erent

in the social-sciences where economic agents may have strategic or cultural incentives to in�ate or de�ate

their reports. In the econometrics literature, Angrist and Krueger (2000) apply trimming and winsorizing

techniques to the matched employer-employee data from Mellow and Sider (1983). When they trim both

the employer and employee wage data, they �nd that the correlation between the two measures improves.

Interestingly, this result does not hold for reports of hours worked. On the basis of this �nding they conclude

that �a small amount of trimming could be bene�cial.�Their prescription, which summarizes the intuition

and current practice of most analysts, may be summarized as:

�Loosely speaking, winsorizing the data is desirable if the extreme values are exaggerated
versions of the true values, but the true values still lie in the tails. Truncating the sample is more
desirable if the extremes are mistakes that bear no resemblance to the true values. (p.1349)�

We examine this practice in detail here, using wages and earnings as a motivating example, though the

results are likely to apply to other errors of measurement in survey data. We posit a general model of

response error in the dependent variable of a linear regression model and characterize the e¤ect of di¤erent

cleaning techniques on the estimated coe¢ cients. We demonstrate, both analytically as well as through

the use of simulations, that in general there is no reason to believe that removing �obvious errors� in the
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dependent variable reduces bias. This is similar in spirit, to the �nding of Hyslop and Imbens (2001), who

examine instrumental variables approaches to solving the measurement error problem and �nd that they only

apply to very speci�c measurement error processes. Our work is most closely related to that of MacDonald

and Robinson (1985), who consider Bayesian estimation of an error components model in panel data when

one of the error components is measurement error. They explicitly show that trimming can be thought

of as an extremely dogmatic prior belief. Our paper di¤ers in that we explicitly consider a general error

process and we do not consider a panel setting. Moreover we discuss an optimal trimming approach and

other classical approaches to estimation. We demonstrate that the results in Stigler (1977) do not necessarily

carry over in a regression framework. Indeed, trimming or winsorizing can bias coe¢ cient estimates by as

much as 10-30 percent, and in many cases either induces bias that did not previously exist, or exacerbates

the bias due to measurement error. The intuition for our result is simple: assuming that the researcher trims

or winsorizes the data based on a lower bound of c or an upper bound of C, it will be shown that cleaning

creates selection-bias, and this is generally worse than the e¤ects of measurement-error in the dependent

variable.

Our paper is organized as follows: Section 2 describes identi�cation with general measurement error

in the dependent variable. We use the linear projection of the mismeasured dependent variable onto the

covariates to derive analytical results. In Section 3, we generalize the use of this projection to consider three

speci�c models of measurement error (additive white noise, linear transformation and the contaminated data

process) that are found in social-science data. Section 4 examines the theoretical implications of trimming the

data on bias as well as the asymptotic variances of the coe¢ cients. We prove that only in highly specialized

cases, unlikely to be found in social-science data, does cleaning reduce bias. In these cases, we demonstrate

that the information necessary to reduce bias leads to a simpler correction that requires fewer assumptions.

This section also demonstrates that trimming will not necessarily reduce standard-errors. Section 5 presents

simulation results for the cases considered analytically. We generate quasi-simulated data from the 1990 US

Decennial Census to study the properties of winsorizing and trimming in a multivariate context. Finally,

we present an empirical example from the March 2001 Current Population Survey (CPS). These simulations

and examples support the results of the earlier two sections. Section 6 provides concluding comments. The

Appendix to this paper provides detailed mathematical proofs and also considers the e¤ects of winsorizing

on bias and e¢ ciency.

2 General Measurement Error in the Dependent Variable

To evaluate the widespread practice of �cleaning� data as described above we consider a general model

for measurement error processes in the dependent variable. To keep the analysis simple, we focus on a

linear regression model as the underlying structural model of interest to the researcher. Assume that the
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relationship between the �true�dependent variable and the covariate is described by:

y�i = x
0

i� + ui; (1)

Our maintained assumption is that the analyst is interested in estimates of �:1 We assume a general process

that relates the true value y�i to the observed value yi :

yi = h (y
�
i ; "i) ; (2)

There are six assumptions that are made for identi�cation of the vector � and its associated covariance

matrix:2

A1 : E [uijxi] = 0
A2 : xi is a vector random variable with mean 0 and full rank second moment matrix Vx
A3 : Random Sampling

A4 : h(:; :) has �nitely many discontinuities

A5 : "i is independent of (y�i ; xi; ui)

A6 : Cov (yi; y
�
i ) > 0

Regardless of the process in equation 2, one summary of the joint distribution of yi and y�i is the population

linear projection of yi on y�i :

yi = � + 
y
�
i + ei: (3)

Here, � = E [yi] ; 
 =
Cov(yi;y

�
i )

V (y�i )
;and E [ei] = E [eiy

�
i ] = 0: The linear projection is not a statement about

the data generating process, but rather a summary measure of the joint distribution of (yi; y�i ) : The actual

measurement process, as de�ned by h (y�i ; ") may be substantially more complicated. Assumption A6 insures

that 
 > 0:

The researcher is only able to observe (yi; xi). Substituting equation 1 into equation 3 yields:

yi = � + x
0
i�
 + 
ui + ei: (4)

Assumption A5 insures that Cov (xi; 
ui + ei) = 0 and E [
ui + ei] = 0: This de�nes the population linear

projection of yi on xi :

yi = a+ x
0
ib+ �i (5)

where b = 
�; a = �;and �i = 
ui + ei:

1 If the analyst is not interested in � per se, but other features of the joint distribution between y and x such as cov(y; x)
or var(yjx), then it is possible that our results do not apply. Further analysis is required to understand the applicability of
trimming, winsorizing or even rescaling for this class of problems. We thank an anonymous referee for suggesting this caveat.

2The mean independence assumption is stronger than necessary for identi�cation of the vector �, but allows for a simpler
analysis below. The zero mean for xi is the usual normalization. The fourth assumption is necessary for moments to be
well de�ned, and A6 simply ensures that the measurement error process is not so perverse that yi is uninformative about y�i
(covariance of zero), or that yi and y�i are negatively related. Indeed, the necessary condition would simply be that the sign of
the covariance were known and that the covariance is not zero. The �fth assumption is the strongest one. It implies that the
measurement error process is independent of xi and ui except through y�i ; and insures that f(yijy�i ) = f(yijy�i ; xi; ui):
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Therefore, the OLS regression of yi on xi yields a consistent estimate of b which is proportional to �: The

parameters of interest are identi�ed up to an unknown scaling constant. This would imply that estimates

of ratios of the parameters are consistent. In some settings, identi�cation up to scale is considered su¢ cient.

For example, in wage regressions the coe¢ cients on years of education and years of labor market experience

can be combined to consistently identify the relative return of experience to education; a fact that might be

su¢ cient for estimation of schooling choices. In general however, we assume the researcher is interested in

recovering the parameters �. This suggests two important identi�cation approaches: obtain information

about the scaling constant 
, or obtain information about one of the elements in �: While it may be possible

to obtain some consistent estimate of one element in � from auxiliary regressions or economic theory, the

use of validation data may permit estimation of 
: Bound and Krueger (1992) and Bollinger (1998) have

examined the structure of response error when y is the natural log of annual labor market earnings using

Social Security Income data matched to the Current Population Survey. They �nd a point estimate for 
 is

0.90. This estimate could be used in log wage models to rescale slope coe¢ cients to account for measurement

error.3

3 Speci�c Measurement Error Models

The above analysis holds for general examples of measurement error. In this section, we present three

special cases of the above model. These cases are chosen because they are commonly examined or supported

in the literature or lead to results in the context of this paper which are of interest. Assumptions 1-6 are

maintained, additional assumptions are also imposed.

3.1 Additive White Noise:

The classical measurement error process is often assumed: yi = y�i + "i; and E ["i] = 0: Indeed, the error

term in regression models is often motivated as measurement error. The parameters of the linear-projection

of y on y� are 
 = 1, � = a = 0, and the least squares estimates are consistent for the parameters of interest

�: In this model, if y�i were hourly wages, it would be possible to have observations less than the minimum

wage (or for that matter even negative observations) and observations above whatever threshold is deemed

as a maximum. While it may be true that observations outside the acceptable region are measured with

error, observations within the acceptable region are also measured with error. However, as is well known,

classical measurement error does not lead to any bias� the estimated standard-errors are in�ated but all

statistical tests remain valid. Researchers will often point out that �standard errors are too large�because

of the additional measurement error. Standard errors are meant to capture the variation in estimates due to

3The results in Bound and Krueger (1991) and Bollinger (1998) rely on estimates from the the 1977 and 1978 CPS-SSA
matched �les. It is possible that the structure of measurement-error has changed over time, thereby reducing the applicability
of the rescaling option since it hinges critically on knowledge of the correct 
: Estimation of 
 is further complicated by the
fact that low earning repondents in the SSA data may be reporting their CPS earnings correctly. Examining these hypotheses
is an important avenue for future research.
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di¤erences across samples. As long as the data generating process does not change, the sampling variation of

the estimating coe¢ cients will depend on the variation in both the structural model, as well as the variation

in the error model. Hence, estimates of the standard error are not biased, but rather re�ect the variation

across samples for this data generating process.

3.2 Linear Measurement Error

A second case is where the data generating process is linear: yi = d+ gy�i + "i: Here, the parameters in the

linear-projection of y on y� are 
 = g and � = d; and the model can either have 
 > 1 or 
 < 1. The

data generating process can lead to observations outside the �acceptable�range. Because of the values of

� and the distribution of "i; even if 
 < 1, it is quite possible to have both observations that are �too high�

and observations that are �too low�. Empirical work by Bollinger (1998) and Bound and Krueger (1991)

supports the possibility that 
 < 1: For example, using non-parametric regression on the 1978 CPS-SSA

matched data, Bollinger (1998) estimates that 
 is equal to 0.91 for men and 0.97 for women. He estimates

the intercepts � to be $1,364 and $211 respectively. Cognitive psychologists have noted that this model, with


 < 1, will arise when respondents exhibit �regression to the mean.� If survey respondents give answers that

try to make them appear �average,�then those below the mean report higher values, on average, while those

above the mean report lower values, on average. Similarly, the hot deck procedure used by Census to impute

earnings can also lead to a regression to the mean (Hirsch and Schumacher, 2001). To our knowledge, no

study has found any variable with 
 > 1.

3.3 Contaminated Data

A third example is a simple contaminated sample: yi = (y�i ) � 1 ["1i > �] + (d+ "2i) � 1 ["1i < �]. The term

1[:] is the indicator function and ("1i; "2i) are mean zero and mutually independent. This model produces

a mixture: with some probability p = Pr ["1i > �], we observe the true variable y�i , while with probability

(1� p) we observe only noise: (d+ "3i) : This leads to a model where we have some correctly measured

observations and some observations where the observed y has no relationship to the actual y�. In this

model 
 = p and � = d (1� p) : Again, some observations may fall outside a given range, depending on

the distribution of "2i and the value of d. An important implication of this model is that estimates of the

slope parameter � can be obtained if an estimate of p is available. Horowitz and Manski (1995) note that

the expectation of y� given x cannot be bounded unless information about d is available. Our analysis

does not contradict this, but rather points out that in a linear model, the slopes can be identi�ed up to

the contamination rate. In many cases researchers have a priori bounds for the contamination rate. The

bounds on the contamination rate will yield trivial bounds for the slope coe¢ cients. If p< p < p, then the

elements of �, �j , are bounded by
h
bj
p ;

bj
p

i
.
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4 E¤ect of Cleaning

We assume that the researcher truncates above and below the mean. The cleaning approaches we consider

are de�ned by

fyi; xijc � yi � Cg (6)

for known constants (c; C) such that c < E [y] < C. We compare the slopes obtained from a least squares

projection of the cleaned yi on xi to those obtained from the uncleaned data regressed on the covariate (that

is, relative to b the biased estimate of � from the uncensored data). Since the choice for the researcher is

to �clean�or not clean, this is the relevant comparison. As noted in the section above, the slope b may be

larger or smaller in magnitude than the true slope �:

4.1 Analytic Results: Trimmed Data

We �rst derive analytic results under the additional assumption of joint-normality.

A7 : (yi; xi) are jointly normal.

As Goldberger (1981) demonstrates, the slope vector from the least squares projection of yi on xi in the

truncated sample (where observations above C and below c are discarded) is given by:

Proposition 1 Under assumptions 1-7, the truncated slope b� is attenuated relative to the slope b from the

least squares projection in the full sample.

b� =

�
�

1� (1� �)�2

�
b (7)

with

� =
V (yijc � yi � C)

V (yi)
(8)

and

�2 =
b2�2x
V (yi)

: (9)

Proof: Goldberger (1981).

As Goldberger notes, 0 � �
1�(1��)�2 � 1.

4 Clearly, if 
 � 1, then the attenuation bias of the measurement

error is exacerbated by the attenuation bias of the sample truncation. Hence, only if the researcher is certain

that 
 > 1 can truncation alleviate bias from measurement error. For this case, the optimal level is determined

by �nding (c; C) such that
�

�
1�(1��)�

�

 = 1. With two unknown terms and only one restriction, there are

many solutions. Too little truncation will fail to fully correct for the bias, while too much will overcorrect.

Therefore, selecting the trimming bounds on the basis of a priori values for the supports of y� (as proxied

4Since yi is normally distributed, the variance of the doubly truncated distribution can be expressed (see Madalla, 1983) as:

V (yijc � yi � C) = V (y)

2641 +
24
�
c�E[yi]
V (yi)

�
�

�
c�E[yi]
V (yi)

�
�
�
C�E[yi]
V (yi)

�
�

�
C�E[yi]
V (yi)

�
�

�
C�E[yi]
V (yi)

�
��

�
c�E[yi]
V (yi)

�
35�

24 �

�
c�E[yi]
V (yi)

�
��

�
C�E[yi]
V (yi)

�
�

�
C�E[yi]
V (yi)

�
��

�
c�E[yi]
V (yi)

�
352
375
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by the 1 and 99 percentiles of the wage distribution, or trimming at the minimum wage) will not necessarily

correspond to the optimal trimming rule. Other solutions exist as well. For example, if the analyst chooses

c = E [y]� c� and C = E [y]+ c�; only the term c� needs to be found in order to devise an optimal trimming

rule. It is implicitly described in the next proposition:

Proposition 2 Under assumptions 1-7 and 
 > 1; an optimal trimming rule of the form fyi; xijc � yi � Cg

with c = E [y]� c� and C = E [y] + c� may be derived implicitly as:

2

�
c�

V (y)

�0@ �
�

c�

V (y)

�
�
�

c�

V (y)

�
� �

�
�c�
V (y)

�
1A =


 � 1

 � �2 : (10)

Proof: see Appendix.

Because the solution involves the cdf of the standard normal distribution, there is no closed form expres-

sion. The optimal cleaning depends on the variance of the observed y; the correlation between y and x; and


: The right hand side of (10) is increasing in 
 and the left hand side of (10) is decreasing in c�. Therefore,

as 
 increases, the truncation points must move closer to the mean and the data must be truncated more

heavily. In order to use this approach a number of highly restrictive assumptions must be met. First, the

data must be jointly normally distributed. Any discrete variables in xi will violate this assumption. Second,

the measurement error process must result in a projection equation for yi on y�i where 
 > 1: Finally, speci�c

information on 
 must be obtained in order to arrive at a truncation rule. Ad hoc cleaning approaches that

ignore the strong nature of these assumptions may be of little value in reducing the bias in b.

The variance of the measurement error is often used as a measure of the severity of the error. Since

b� =
�

�
1�(1��)�2

�
b under trimming; the derivative of �

1�(1��)�2 with respect to �
2
" reveals how the truncation

bias is e¤ected by the measurement error. This result motivates the next proposition:

Proposition 3 Under assumptions 1-7, the absolute value of the di¤erence between elements of b and b�

becomes larger since, @
@�2"

�
�

1�(1��)�2

�
< 0.

The above proposition is may appear to be prima-facia counterintuitive, but the intuition behind it is

simple. As the measurement error becomes more severe (as measured by it variance), trimming is more likely

to result in deleting observations based on the regression error instead of the measurement error, thereby

causing sample-selection bias.

4.1.1 Does Trimming Reduce Standard Errors?

A second reason sometimes cited for trimming is the reduction of standard errors. To examine this procedure

more rigorously we begin by noting that the truncation will introduce heteroskedasticity by reducing the vari-

ance of errors in the tails of the distribution. Therefore, the asymptotic variance of the estimated slope from

7



the truncated data can be derived from the expression: AV
�bb�� = Q�1E h(yi � x0ib�)2 xix0ijc � yi � CiQ�1;

where Q = E
�
xix

T
i jc � yi � C

�
:

In the appendix we demonstrate that this expression for asymptotic variance may be written as the sum

of two terms:

AV
�bb�� = �V (yi)

�
1�

�
�

1� (1� �) �2

�
�2
�
Q�1 (11)

+Q�1E
h
(x0ib

� �m (xi))2 xix0ijc � yi � C
i
Q�1:

The size of the leading term is indeterminate relative to its full-sample OLS counterpart.5 This fact is

in contrast to similar comparisons for the mean (and consequently the results in Stigler (1977)). For the

trimmed mean, the term �V (yi) < V (yi) and therefore trimming necessarily reduces the variance in the

leading term. Here, the comparison is not so straight forward. The second term is due to heteroskedasticity

from the trimming and is necessarily positive de�nite. Hence, even if the leading term is smaller than the

variance of the OLS estimate on the full sample (in a positive-de�nite sense), the second term may reverse,

or at least mitigate that di¤erence.

Finally, an often overlooked reason for why trimming may not reduce standard-errors is the e¤ect of

truncation on sample size. The �nite sample variance of bb� is given by
V
�bb�� = AV

�bb��
N �

�
�
�
C�E[yi]
V (yi)

�
� �

�
c�E[yi]
V (yi)

�� : (12)

The term �
�
C�E[yi]
V (yi)

�
� �

�
c�E[yi]
V (yi)

�
< 1; measures the proportion of the sample discarded from the trun-

cation rule, and increases in this proportion will raise estimates of the �nite sample variance.

In conclusion, we �nd that comparisons between the variance of the truncated estimates and the variance

of the full sample estimates is complicated and depends on the underlying parameters of the joint distribution.

It is not possible to sign this di¤erence, even under normality. In fact, the simulations below show little or

no e¤ect of trimming on standard-errors.

4.2 Analytic Results: Winsorized Data

Rather than truncation, winsorized data are censored at the points c and C: Here, no observations are

removed, but values of yi outside of the region (c; C) are transformed as:

ywi =
C if yi � C
yi if c < yi < C
c yi � c:

(13)

5The leading term is comparable to the asymptotic variance expression for the OLS estimate in the full sam-

ple: V (yi)
�
1� �2

�
E
�
xix

T
i

��1
: Furthermore, �V (yi)

�
1�

�
�

1�(1��)�2
�
�2
�
� V (yi)

�
1� �2

�
: However, the di¤erence

E
�
xix

T
i

��1 � E
�
xix

T
i jc � yi � C

��1 is necessarily positive semi-de�nite since the variance of xi in the truncated sample
cannot be larger than the variance of the full sample (a su¢ cient condition here is joint normality (see Goldberger(1981)).
Hence, a comparison of the leading terms is indeterminate.
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In the appendix we show that the analytical results from winsorizing are similar to those obtained for

trimming. The empirical results suggest winsorizing has less of an impact on the slope coe¢ cients (relative

to OLS) than truncation. Again, if 
 > 1;an optimal choice of winsorizing points is available, but of course 


is unknown. Ascertaining the e¤ect of winsorizing on the size of the standard errors is conceptually similar

to the e¤ect of trimming on standard-errors, but algebraically more di¢ cult. We provide a discussion of this

point in the appendix. One advantage winsorizing has over trimming is that the penalty of lost data does

not e¤ect the expression for the �nite sample variance. But overall, winsorizing and trimming have similar

e¤ects on both slope estimates and asymptotic variance.

4.3 Cleaning Data in the General Case

The results derived in the previous section rely heavily upon normality. However, as Goldberger (1981)

demonstrates, without normality some coe¢ cients may be attenuated by truncation, while others may be

in�ated. Clearly, as a theoretical matter, truncation or winsorizing cannot be relied upon to adjust slope

coe¢ cients for the bias in general. In contrast, the results from Section 2 were derived under much weaker

conditions.

5 Results

To suggest more general results, we present a set of Monte Carlo simulations. We draw data from the

1990 PUMS and estimate the returns to schooling, treating estimates from the full PUMS �le as population

parameters. The results of di¤erent cleaning procedures are gauged against these parameters. This allows

for a complicated measurement model, with relationships similar to those found in typical economic data.6

5.1 Evidence from U.S. Decennial Census Data

We begin with evidence from quasi-simulated data drawn from the PUMS samples of the 1990 US Decennial

Census. The advantage of these data is that they provide a complex multivariate distribution for analysis.

We study the problem of estimating the returns to schooling, using a standard �Mincerian speci�cation�(that

is, lnwage = �0+�1Schooling+�2Experience+�3Experience
2+�4Black+u) to describe the relationship

between hourly wages, years of schooling, race and potential experience. We �rst select prime-aged men who

6Our working paper [Bollinger and Chandra (2003)] provides more detailed Monte Carlo simulations for the univariate and
multivariate case, and data from the normal, uniform, and log-normal distributions. Of note are the results for the realistic case
of 
 = 0:9: We note that cleaning procedures are always dominated by not cleaning the data. Even though the bias from not
cleaning the data is a little over 10 percent, the bias from trimming is uniformly greater. 1% winsorizing or the use of median
regression are neutral rules with respect to point-estimates, but both procedures are dominated by not cleaning the data on
the basis of a RMSE criteria. When 
 > 1; a 1 percent trimming rule clearly dominates not cleaning the data. Before this
conclusion is embraced too quickly by practitioners, we raise two important caveats: First, even though 1% trimming works,
5% trimming is much worse that not cleaning the data; the optimal trimming rule is therefore not a known constant and small
perturbations from the optimal truncation will generate large biases relative to not cleaning the data. In fact, the �best rule�
for the case of 
 > 1 would be to use 5% winsorizing. Second, we reiterate the di¢ culty in being able to justify a behavioral
model for why 
 would exceed one.

9



are working full time in a non-agricultural industry. We remove individuals who earn less than the minimum

wage. The resulting 346,900 observations consitute a sample that closely simulates the ideal population

distribution assumed by many researchers. Column 1 of Table 1 presents mean and standard deviation

parameters for this pseudo-population. Black men comprise 8.3 percent of the population, the mean years of

potential experience is 17.67, and the mean years of schooling is 13.37. The regression parameters generated

by an OLS regression on all 346,900 observations are reported in Column 2 of Table 1. For our simulations,

we randomly draw samples of size 1000 from the psuedo-population of 346,900 observations. Ordinary least

squares performed on these data (without any cleaning) are reported in the third column of the table. In

Columns 4-8, we report the e¤ect of alternative cleaning procedures when no measurement error has been

added to the PUMS data.7 The idea of cleaning data with no error might strike the reader as a peculiar

exercise. Our motivation for doing so is to demonstrate that cleaning procedures are not benign and can

introduce signi�cant bias when they are not required; alternatively, if the degree of contamination is low,

the iatrogenic error from cleaning data may be substantial. In this situation, the cleaning procedures do not

generally perform better than not cleaning the data. In general, the RMSE from the cleaning procedures

(including median regression) is greater than that from doing nothing. Whereas a 1% trimming rule improves

the estimation of the coe¢ cients on experience and experience squared, it is inferior to not cleaning the data

as regards the estimation of the coe¢ cients on schooling and race. Together these results con�rm those from

the univariate case: No cleaning procedure is neutral when applied to already clean data.

Measurement error is added to the data in Table 2. We select two values for the variance of this error using

the results of Bound and Krueger (1991), who note that V ar(lnY ) = 0.458 and 0.529 with corresponding

error variances are 0.083 and 0.116. This implies that the variance of the error is 18% and 22% of the total

variation in lnY . Rogers, Brown and Duncan (1993) �nd even higher implied estimates of the variance of

the measurement error. Therefore, to study empirically relevant cases we simulate measurement error whose

variance is 0:1V ar(wage) and 0:3V ar(wage). In order to keep the reported number of results manageable we

only report results from the latter simulation, but note that the results from the former are quantitatively

similar [see Bollinger and Chandra (2003) for details]. In the case of additive white noise we �nd that

trimming is once again dominated by not cleaning the data. A case can be made for a 1% winsorizing rule

over not cleaning the data, but it is important to note that signi�cant bias is introduced when the censoring

rate is increased to 5%. For this case, least-squares is found to be superior to median regression. When


 = 0:9 there is no cleaning procedure that strictly dominates OLS. A 1% winsorizing rule provides superior

estimates on a RMSE criteria for many coe¢ cients but simultaneously raises the bias on others. For example,

the coe¢ cients on Exp, Exp-Sq and Black all have lower RMSE when a 1% winsorizing rule is applied, but

the coe¢ cient on schooling has a larger RMSE at the same time. When 
 = 1:1 winsorizing at 1% and

5% are preferred to doing nothing. In this case, trimming procedures dominate not cleaning the data on a

7 In the last column of the table, we report results from performing Median Regression. While not explicitly studied in
our paper, we include these estimates because several readers of our paper argued that it may be viewed as an alternative to
trimming and winsorizing.
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RMSE criteria, but can be worse in terms of the bias component.

5.1.1 Comparing rescaling approaches to trimming approaches.

As noted in previous sections, another identi�cation approach is to rescale the estimates. The optimal

trimming rule derived in Section 4 requires both information about 
 and normality: Clearly, if 
 < 1,

trimming or winsorizing will be dominated by the rescaling approach. Even when 
 > 1, the amount

of trimming or winsorizing necessary depends upon the variance of the errors (see Bollinger and Chandra

(2003)): Examining the �rst Column of Table 2, shows that knowledge of 
 alone will be su¢ cient to arrive

at consistent estimates.

Even if 
 is not known, the rescaling results can be used to perform sensitivity analysis. For example,

researchers might ask: how sensitive to di¤erent values of 
 are the conclusions we draw from our OLS

estimates? The robustness of these conclusions may be examined either by placing bounds on 
; as suggested

in Manski (1995), or alternatively by asking what values of 
 support the conclusions typically drawn (an

approach suggested in a similar context by Bollinger (2003), and Bollinger (2001)). Further, researchers may

not have detailed information about 
 but may have information about the likely range of 
: It is di¢ cult

to use that information for trimming and winsorizing, but it can be trivially used in a rescaling approach.

5.2 Empirical example from the CPS

We also examine data cleaning approaches using the March 2001 Current Population Survey. There are two

measures of hourly wage that a researcher could exploit in these data. One is the hourly wage constructed

from the reported annual earnings, weeks worked and usual hours worked. The CPS also asks the actual

hourly wage for workers who are paid hourly. Most researchers do not use this variable, as the resulting

sample is smaller and only represents hourly wage workers. In this context, the two measures provide an

interesting comparison to examine the implications of trimming as is typically practiced. Our sample consists

of males, working full time, year round in non-agricultural positions who are not self-employed. In March

2001, we �nd 2,626 men who are full time, year round non-agricultural hourly wage workers.

The �rst column of Table 3 presents the log wage regression on the reported hourly wage, while the second

column uses the constructed hourly wage. We restricted the constructed hourly wage sample to contain only

those workers who also reported an hourly wage, hence any di¤erence between the two columns re�ects only

di¤erences in the measurement of the hourly wage, rather than sample di¤erences. One perspective with

these results is that the �rst column represents the "true coe¢ cients," while the results in column two are

biased due to response error. Interestingly, most of the coe¢ cients in column 2 are larger in magnitude

than their corresponding coe¢ cients in column 1. The exception to this is the coe¢ cient on Bachelors

degree. This is a case where trimming might be useful. However, the fact that the coe¢ cient on Bachelors

is the exception demonstrates that it is di¢ cult to �nd perfect cases.

If column 1 represents the "true coe¢ cients," then columns 3 and 4 represent attempts to correct column

11



2. Trimming at about 1/2 of the minimum wage is a common practice (see Angrist and Krueger, 2000).

Column 3 represents this approach. Another logical correction is to trim at the minimum wage; column

4 represents this approach. Comparing column 3 with columns 1 and 2, we �nd that the coe¢ cients

on experience and experience squared and black are largely una¤ected by the trimming, and are still "too

large." The coe¢ cient on less than high school has actually increased in magnitude, and made the bias

worse. The coe¢ cients on associates degree and graduate degree have declined in magnitude, reducing the

bias, but not eliminating it. The coe¢ cient on bachelors degree has decreased in magnitude increasing the

bias in this coe¢ cient.

Trimming at the minimum wage, represented by column 4, improves some coe¢ cients but not others.

The coe¢ cients on experience and experience squared are now both smaller in magnitude and closer to

the "ideal" column 1. The coe¢ cient on less than high school has now declined in magnitude, but it still

somewhat larger than the coe¢ cient in column 1. The coe¢ cient on associates degree has declined and is

biased relative to the target in column 1; it now underestimates the magnitude. The coe¢ cient on graduate

degree has not changed any further and still overstates the target in column 1. The coe¢ cient on black

has declined in magnitude and is now closer to the coe¢ cient in column 1, but is still larger in magnitude.

The coe¢ cient on bachelors degree has declined further in magnitude increasing the bias still further. The

conclusion we take from this is that there is no clear advantage to trimming. While it certainly may reduce

the bias for some estimates, it is simultaneously making other estimates worse. Since it is rare to have a

target (as we do in this case), it is only through serendipity that one will pick the right trimming rule even

if the researcher is only interested in one speci�c coe¢ cient.

A second perspective on the estimates in columns 1 and 2 is that they both contain measurement error in

the dependent variable. One would expect that trimmed versions of the two regressions would converge to

some set of correct estimates. Columns 5 and 6 are trimmed versions of column 1. As one might expect, the

reported wage has fewer observations below the trimming points than the constructed wage. In column 5

there is very little change in the coe¢ cients. In column 6 there is little change the coe¢ cients on experience,

experience squared, or less than High School. The coe¢ cient on Bachelors degree increases in magnitude.

This is in sharp contrast to trimming the constructed wage, where the coe¢ cient decreased in magnitude.

The coe¢ cients on graduate degree and Black both increase in magnitude slightly. We conclude that it

appears only serendipitous if any coe¢ cients converge with trimming. If one is interested in the return to a

college degree, trimming is likely to be undesirable. While if one is interested in the Black-white wage gap,

trimming at an even higher threshold may be desirable. The e¤ects of trimming are unclear since we cannot

even predict which direction the slope coe¢ cients will change when we trim. Without apriori information,

it is di¢ cult or impossible to know if trimming has reduced bias, increased bias, or some of both.
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6 Conclusions

The common practice of cleaning data by removing observations where the dependent variable is larger or

smaller than some threshold is used in the hope of reducing the impact of measurement error. While this

sounds sensible, it may make matters worse. Analytical results using normality demonstrate that cleaning

strategies using truncation or winsorizing work only the case where measurement error in the dependent

variable results in an upward bias on the magnitude of coe¢ cients. This case is not empirically supported

by investigations of response error in earnings data. Under certain circumstances it may be possible to

achieve an optimal cleaning strategy, but if the information necessary for that result were available, a

simpler approach based on rescaling the estimated coe¢ cients would work too.

Our empirical results demonstrate that a 1 percent winsorizing rule does not alter the results in a

meaningful manner, but we note that this policy is generally dominated by doing nothing to the data. Still,

winsorizing is clearly better than truncation. We caution, however, that small increments to this rule (for

example to 5 percent) can dramatically increase bias and render the cleaning undesirable on MSE grounds.

Two important extentions we hope to address in future work is cleaning based on covariates, and cleaning

based up panel data where the researcher has multiple observations on the dependent variable. In both

cases, it may be possible to develop cleaning proceedures that exploit other information.
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7 Appendix

Derivation of equation10

To solve for the expression in 10, begin by noting that E [y] = � + +
� + 
��x and V (y) = 

2�2�2x +


2�2u + �
2
": Additionally we simplify the analysis by only considering a symmetric truncation scheme where

c = E [y]� c� and C = E [y] + c�: so that only c� need be found. Consider �rst the expression for � in this

case:

� = 1 +

24
�
c�E[y]
V (y)

�
�
�
c�E[y]
V (y)

�
�
�
C�E[y]
V (y)

�
�
�
C�E[y]
V (y)

�
�
�

C���
��
��x

2�2�2x+


2�2u+�
2
"

�
� �

�
c�E[y]
V (y)

�
35

�

24 �
�
c�E[y]
V (y)

�
� �

�
C�E[y]
V (y)

�
�
�
C�E[y]
V (y)

�
� �

�
c�E[y]
V (y)

�
352

substituting the symmetric expressions for c; C yields
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Next, noting that � is observable and 
 is assumed to be known solve
�

�
1�(1��)�

�

 = 1 for � in terms of 


and �:

� =
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Substituting for � and solving, yields the implicit relationship expressed in equation (10):
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Proof of Proposition 3

To show that the bias gets worse with more variance in ", di¤erentiate the bias term with respect to the

variance of the measurement error:
@

@�2"
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This term is negative if and only if the numerator is negative. Considering only the numerator and grouping

similar derivatives yields
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As noted in Goldberger both �2 and � are bounded in the unit interval. Inspection of the de�nition of

�2 clearly demonstrates that @�2

@�2"
< 0: Now, consider the de�nition of �: inspection reveals that this has

the truncation points standardized by the mean and variance of y: Hence increasing �2" is equivalent to

increasing c and decreasing C for a truncated standard normal random variable. Since � is also the ratio

of the variance of the truncated standard normal to the variance of the untruncated standard normal (see

Goldberger), increasing c and decreasing C will result in a lower variance for the truncated distribution and

thus a lower �. Hence, by inspection, @�
@�2"

< 0. Combined with the bounds on �2 and �, the result is

established.

Does Trimming Reduce Standard Errors

Under assumptions A1-A7, the conditional distribution of yijxi is N
�
x0ib; V (yi)

�
1� �2

��
: We can use

the results in Goldberger (1981) to obtain an expression for the truncated second moment matrix as:

Q = E [xix
0
ijc � yi � C] = E [xix0i]� (1� �)E [xix0i] bb0E [xix0i] :

The term E
h
(yi � x0ib�)

2
xix

0
ijc � yi � C

i
is considered by using the law of iterated expectations. The

E
h
(yi � x0ib�)

2 jxi; c � yi � C
i
can be decomposed into the variation of yi around the conditional mean in

the truncated distribution, and the squared di¤erence between the conditional mean and the linear projection

term xTi b
�: Doing so yields:

E
h
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wherem (xi) is the conditional mean of yi given xi in the truncated sample. Combining these terms produces

the equation in the paper:

AV
�bb�� = �V (yi)

�
1�

�
�

1� (1� �) �2

�
�2
�
Q�1

+Q�1E
h
(x0ib

� �m (xi))2 xix0ijc � yi � C
i
Q�1:

Analytic Results: Winsorized Data

When data are winsorized, no observations are removed, but values of yi outside of the region (c; C) are

transformed as follows:

ywi =
C if yi � C
yi if c < yi < C
c yi � c:

As in the section on trimming, let b represent the vector of full-sample (uncleaned) coe¢ cients. Under

bivariate normality, the winsorized coe¢ cient vector, b�� is given by :

b�� =

�
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Does Winsorizing Reduce Standard Errors?

The e¤ects of Winsorizing on the variance are derived similarly to the results for trimming. We start by

noting that theAV
�cb��� = E [xix0i]�1E ��yWi � x0ib��
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i
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Combined with results from the previous section, we obtain
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Again, the comparison is di¢ cult. Here, the �rst term will necessarily be smaller than the OLS expression.

However, the second, third and fourth terms are all positive de�nite. As in the trimming case, the impact

on standard errors depends upon the parameters of the model.

16



References

[1] Angrist, Joshua D. and Alan B. Krueger, 2000. �Empirical Strategies in Labor Economics,� in Orley

Ashenfelter and David Card (Eds.) Handbook of Labor Economics, Vol 3A (Elsevier Science).

[2] Black, Dan A., Mark C. Berger and Frank A. Scott, 2000. �Bounding Parameter Estimates with Non-

classical Measurement Error,�Journal of the American Statistical Association 95: 739-48.

[3] Bollinger, Christopher R., 1996. �Bounding Mean Regressions When A Binary Regressor is Mismea-

sured,�Journal of Econometrics 73: 387-399.

[4] Bollinger, Christopher R., 2003 �Measurement Error in Human Capital and the Black -White Wage

Di¤erential,�Review of Economics and Statistics85: 578-587.

[5] Bollinger, Christopher and Martin H. David. 1997. �Modeling Food Stamp Participation in the Presence

of Reporting Errors,�Journal of the American Statistical Association 92: 827-35.

[6] Bollinger, Christopher, 1998. �Measurement Error in the Current Population Survey: A Nonparametric

Look,�Journal of Labor Economics 16(3): 57-71.

[7] Bollinger, Christopher and Amitabh Chandra. 2003. "Iatrogenic Speci�cation Error" NBER Technical

Working Paper 289, Cambridge, MA.

[8] Bound, John and Alan B. Krueger, 1991. �The Extent of Measurement Error in Longitudinal Earnings

Data: Do Two Wrongs Make a Right?� Journal of Labor Economics 9: 1-24.

[9] Bound, John and Richard Freeman, 1992. �What Went Wrong? The Erosion of Relative Earnings

and Employment Among Black Men in the 1980s,�Quarterly Journal of Economics 107(1), February:

201-32.

[10] Bound, John, Charles Brown, Greg J. Duncan and Willard L. Rodgers, 1994. �Evidence on the Validity

of Cross-Sectional and Longitudinal Labor Market Data,�Journal of Labor Economics 12: 345-68.

[11] Buchinsky, Moche, 1994. �Changes in the U.S. Wage Structure 1963-1987: Application of Quantile

Regression,�Econometrica 62: 405-58.

[12] Card, David and Alan B. Krueger, 1992a. �School Quality and Black-White Relative Earnings: A Direct

Assessment,�Quarterly Journal of Economics 107, February: 151-200.

[13] Fuller, Wayne A. 1987. Measurement Error Models. John Wiley and Sons. (New York, NY).

[14] Goldberger, Arthur S., 1981, �Linear Regression after Selection,�Journal of Econometrics 15(3): 357-

66.

17



[15] Hirsch, Barry T. and Edward J. Schumacher, 2001. �Match Bias in Wage Gap Estimates Due to

Earnings Imputations,�unpublished manuscript.

[16] Horowitz, Joel L. and Charles F. Manski, 1995. �Identi�cation and Robustness with Contaminated and

Corrupted Data,�Econometrica 63(2): 281-302.

[17] Hyslop, Dean R. and Guido W. Imbens, 2001. �Bias From Classical and Other Forms of Measurement

Error,�Journal of Business and Economic Statistics 19(4): 475-481.

[18] Juhn, Chinhui, Kevin M. Murphy and Brooks Pierce, 1993. �Wage Inequality and the Rise in the

Returns to Skill,�Journal of Political Economy 101: 410-42.

[19] Katz, Lawrence and Kevin M. Murphy, 1992. �Changes in Relative Wages 1963-1987,�Quarterly Journal

of Economics 107(1): 35-78.

[20] MacDonald, Glenn M. and Robinson Chris, 1985. �Cautionary Tales About Arbitrary Deletion of Ob-

servations; or, Throwing the Variance out with the Bathwater,� Journal of Labor Economics 3(2):

124-52.

[21] Maddala, G. S., 1983. Limited Dependent and Qualitative Variables in Econometrics (Cambridge Uni-

versity Press).

[22] Manski, Charles F., 1995. Identi�cation Problems in the Social Sciences (Harvard University Press).

[23] Mellow, Wesley and Hal Sider, 1983. �Accuracy of Response in Labor Market Surveys: Evidence and

Implications,�Journal of Labor Economics 1: 331-44.

[24] Rodgers, Willard L., Charles C. Brown and Greg J. Duncan, 1993. �Errors in Survey Reports of Earn-

ings, Hours Worked and Hourly Wages,�Journal of the American Statistical Association 88: 1208-18.

[25] Stigler, Stephen M., 1977. �Do Robust Estimators work with Real Data?�Annals of Statistics 5(6):

1055-98.

18



Table 1: Effect of Cleaning Procedures on Uncorrupted Data,
Evidence from the Returns to Schooling in 1990 PUMS Data

Mean Population b No Cleaning Trim 1% Trim 5% Wins 1% Wins 5% Median

Schooling 13.3741 0.092 0.0918 0.0878 0.0704 0.0910 0.0856 0.1001
SE (Yrs of Schooling) 2.2189 - 0.0078 0.0072 0.0068 0.0075 0.0070 0.0086
RMSE - - 0.0078 0.0083 0.0227 0.0076 0.0095 0.0118

Potential Experience 17.6700 0.0374 0.0375 0.0361 0.0294 0.0372 0.0353 0.0402
SE (Schooling) 8.5976 - 0.0084 0.0079 0.0069 0.0082 0.0076 0.0095
RMSE - - 0.0084 0.0080 0.0106 0.0082 0.0079 0.0099

Pot. Exp. Sq /100 3.8639 -0.0535 -0.0538 -0.0522 -0.0419 -0.0535 -0.0508 -0.0565
SE (Pot. Exp) 3.3643 - 0.0218 0.0202 0.0175 0.0211 0.0196 0.0246
RMSE - - 0.0218 0.0203 0.0210 0.0211 0.0198 0.0248

Black (1= yes) 0.0831 -0.1419 -0.1416 -0.1374 -0.1072 -0.1417 -0.1339 -0.1640
SE (Black) 0.2762 - 0.0597 0.0544 0.0492 0.0579 0.0531 0.0697
RMSE - - 0.0597 0.0545 0.0602 0.0579 0.0538 0.0731

Constant - 0.8608 0.8639 0.9293 1.2376 0.8746 0.9649 0.7280
SE - - 0.1275 0.1195 0.1112 0.1229 0.1150 0.1430

Dependent variable is ln hourly wage. PUMS data are restricted to white (non-hispanic) and black men in the 1990 PUMS files
of the Decennial Census who are aged 25-55 during the census reference week. Nonworkers and repondents with hourly wages
less than $3.35 in 1989 (the nominal value of the minimum wage) are deleted from the analysis. Column (1) reports means and
standard deviations for this sample of 346,900 individuals, and column 2 reports the parameters from estimating the model: ln
wage=b0 +b1 Schooling +b2 Exp+b3 Exp2 +b4 Black + u on this sample. Reported estimates in other columns are empirical
sample moments from 1,000 replications each with a sample size of 1,000.   



Table 2: Effect of Cleaning Procedures on Corrupted Data, Evidence from the 1990 PUMS

No Cleaning Trim 1% Trim 5% Wins 1% Wins 5% Median

Error Model: ln wage = ln wage* + e;  var (e) = 0.3 x var (wage)
Schooling 0.0925 0.0883 0.0704 0.0916 0.0859 0.1001
SE (Schooling) 0.0081 0.0074 0.0068 0.0078 0.0072 0.0091
RMSE 0.0082 0.0084 0.0227 0.0078 0.0095 0.0121

Pot.  Exp 0.0377 0.0363 0.0294 0.0374 0.0354 0.0402
SE (Pot Exp) 0.0084 0.0078 0.0070 0.0081 0.0075 0.0096
RMSE 0.0084 0.0079 0.0107 0.0081 0.0078 0.0100

Pot. Exp. Sq /100 -0.0539 -0.0524 -0.0419 -0.0537 -0.0510 -0.0566
SE (Pot. Exp Sq) 0.0215 0.0201 0.0178 0.0209 0.0193 0.0248
RMSE 0.0215 0.0202 0.0213 0.0209 0.0195 0.0250

Black (1= yes) -0.1426 -0.1394 -0.1097 -0.1426 -0.1346 -0.1616
SE (Black) 0.0639 0.0578 0.0513 0.0616 0.0564 0.0730
RMSE 0.0639 0.0578 0.0606 0.0616 0.0569 0.0756

Constant 0.8535 0.9222 1.2396 0.8667 0.9621 0.7281
SE 0.1345 0.1237 0.1147 0.1289 0.1203 0.1502

Error Model: ln wage = 0.9 ln wage* + e;  var (e) = 0.3 x var (wage)
Schooling 0.0833 0.0795 0.0634 0.0825 0.0773 0.0901
SE (Schooling) 0.0074 0.0067 0.0062 0.0071 0.0066 0.0082
RMSE 0.0115 0.0142 0.0294 0.0119 0.0161 0.0084

Pot.  Exp 0.0339 0.0327 0.0264 0.0337 0.0318 0.0360
SE (Pot Exp) 0.0075 0.0071 0.0061 0.0073 0.0068 0.0087
RMSE 0.0083 0.0086 0.0127 0.0083 0.0088 0.0088

Pot. Exp. Sq /100 -0.0485 -0.0471 -0.0375 -0.0483 -0.0459 -0.0502
SE (Pot. Exp Sq) 0.0195 0.0182 0.0158 0.0190 0.0175 0.0225
RMSE 0.0201 0.0193 0.0225 0.0197 0.0191 0.0227

Black (1= yes) -0.1276 -0.1250 -0.0976 -0.1276 -0.1205 -0.1439
SE (Black) 0.0576 0.0518 0.0458 0.0554 0.0507 0.0641
RMSE 0.0594 0.0545 0.0637 0.0572 0.0551 0.0641

Constant 0.7672 0.8295 1.1165 0.7789 0.8651 0.6558
SE 0.1208 0.1108 0.1020 0.1158 0.1075 0.1351

Error Model: ln wage = 1.1 ln wage* + e; var (e) = 0.3 x var (wage)
Schooling 0.1018 0.0972 0.0775 0.1008 0.0945 0.1104
SE (Schooling) 0.0090 0.0082 0.0075 0.0087 0.0080 0.0100
RMSE 0.0132 0.0097 0.0164 0.0123 0.0084 0.0208

Pot.  Exp 0.0415 0.0400 0.0325 0.0412 0.0390 0.0441
SE (Pot Exp) 0.0092 0.0087 0.0075 0.0090 0.0083 0.0106
RMSE 0.0101 0.0090 0.0089 0.0097 0.0085 0.0125

Pot. Exp. Sq /100 -0.0594 -0.0577 -0.0466 -0.0591 -0.0562 -0.0616
SE (Pot. Exp Sq) 0.0239 0.0224 0.0192 0.0232 0.0214 0.0275
RMSE 0.0246 0.0227 0.0205 0.0238 0.0216 0.0286

Black (1= yes) -0.1560 -0.1527 -0.1204 -0.1562 -0.1478 -0.1789
SE (Black) 0.0702 0.0635 0.0554 0.0675 0.0618 0.0803
RMSE 0.0716 0.0644 0.0594 0.0690 0.0621 0.0884

Constant 0.9380 1.0126 1.3612 0.9522 1.0567 0.7982
SE 0.1480 0.1352 0.1238 0.1418 0.1321 0.1656

Dependent variable is ln hourly wage. PUMS data are restricted to white (non-hispanic) and black men in the 1990 PUMS files of the Decennial Census
who are aged 25-55 during the census reference week (n=346,900).  Nonworkers and repondents with hourly wages less than $3.35 in 1989 (the
nominal value of the minimum wage) are deleted from the analysis, and measurement error is added to observed lnwage using the specified error
models. Reported estimates are empirical sample moments from 1,000 replications each with a sample size of 1,000. The variance of ln(wage)=0.3144.



Table 3: Effect of Cleaning Procedures: Evidence from the March 2001 CPS

Sample is drawn from the March 2001 CPS. The sample consists of males who are not self-employed, working full time, year round in non-agricultural positions, who were paid
hourly.  Reported hourly wage refers to respondent’s report of hourly wage (true wage); constructed hourly wage is constructed using annual earnings, hours and weeks worked (and
therefore constitutes a noisy measure of wage). The correlation between the two wage measures is 0.39 (and 0.54 in logs). The standard-deviations for actual and constructed hourly pay
are 7.4 and 12.5 respectively (0.45 and 0.58 in logs). Reported hourly pay ranged from $1 to $99, whereas constructed hourly wages ranged from $0.02-$184.13.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Baseline Regressions Constructed Hourly Wage Reported Hourly Wage Constructed Hourly Wage Reported Hourly Wage

Reported
Hourly Wage

Constructed
Hourly Wage

Trim at 1/2 min
wage

Trim at min
wage

Trim at 1/2
min wage

Trim at min
wage

Wins at 1/2
min wage

Wins at the min
wage

Wins at 1/2
min wage

Wins at min
wage

Potential Exp 0.028 0.033 0.033 0.030 0.028 0.028 0.033 0.032 0.028 0.028
(0.002) (0.003) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)

Potential Exp 2 -0.045 -0.051 -0.051 -0.046 -0.046 -0.045 -0.052 -0.049 -0.045 -0.045
(0.005) (0.006) (0.006) (0.005) (0.005) (0.004) (0.006) (0.005) (0.005) (0.005)

Less than HS (1=Yes) -0.261 -0.287 -0.292 -0.280 -0.252 -0.253 -0.290 -0.285 -0.258 -0.256
(0.024) (0.031) (0.029) (0.028) (0.024) (0.023) (0.030) (0.028) (0.024) (0.023)

Associates Deg (1=Yes) 0.170 0.191 0.187 0.166 0.168 0.168 0.191 0.184 0.170 0.169
(0.028) (0.037) (0.034) (0.032) (0.028) (0.027) (0.035) (0.034) (0.028) (0.028)

Bachelors Deg (1=Yes) 0.254 0.242 0.235 0.211 0.253 0.270 0.238 0.232 0.254 0.258
(0.028) (0.037) (0.034) (0.032) (0.028) (0.027) (0.035) (0.034) (0.028) (0.028)

Graduate Deg (1=Yes) 0.377 0.590 0.575 0.575 0.375 0.450 0.584 0.577 0.377 0.398
(0.058) (0.076) (0.070) (0.066) (0.057) (0.056) (0.072) (0.069) (0.058) (0.056)

Black (1=Yes) -0.087 -0.135 -0.136 -0.113 -0.090 -0.093 -0.138 -0.130 -0.088 -0.090
(0.025) (0.033) (0.031) (0.030) (0.025) (0.024) (0.032) (0.030) (0.025) (0.025)

Constant 2.240 2.197 2.220 2.282 2.238 2.241 2.203 2.230 2.240 2.240
(0.025) (0.032) (0.030) (0.029) (0.024) (0.024) (0.031) (0.029) (0.025) (0.024)

Observations 2626 2626 2612 2534 2622 2605 2626 2626 2626 2626




